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Abbreviations: 

AR = absolute risk 
BMI = body mass index 
BSO = bilateral salpingo-oophorectomy 
CI = confidence interval 
df = degrees of freedom 
G x E = gene-environment interaction 
GWAS = genome-wide association study 
LRT = likelihood ratio test 
OCAC = Ovarian Cancer Association Consortium 
OCP = oral contraceptive pill 
OR = odds ratio 
RD = risk difference 
SNP = single nucleotide polymorphism 

 
Article category: Research Article (Cancer Genetics and Epigenetics) 
Novelty and Impact: Our paper conducts gene x environment interaction analysis on 
both additive and multiplicative scales using data from 9,971 ovarian cancer (OC) cases 
and 15,566 controls. Seven OC risk factors are considered with 28 variants identified 
from previous GWAS. The top interaction was between oral contraceptive pill (OCP) 
use (ever vs never) and rs13255292 (P-value=3.48x10-4). The protective benefit of OCP 
use differs by genotype suggesting that prevention strategies need tailoring to an 
individual’s genotypic profile. 

ABSTRACT 

As a follow-up to genome-wide association analysis of common variants associated with 

ovarian carcinoma (cancer), this study considers seven well-known ovarian cancer risk 

factors and their interactions with 28 genome-wide significant common genetic variants. 
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The interaction analyses were based on data from 9,971 ovarian cancer cases and 

15,566 controls from 17 case-control studies. Likelihood ratio and Wald tests for 

multiplicative interaction and for relative excess risk due to additive interaction were 

used. The top multiplicative interaction was noted between oral contraceptive pill (OCP) 

use (ever vs never) and rs13255292 (P-value = 3.48 x 10-4). Among women with the TT 

genotype for this variant, the odds ratio for OCP use was 0.53 (95% CI=0.46-0.60) 

compared to 0.71 (95%CI=0.66-0.77) for women with the CC genotype. When stratified 

by duration of OCP use, women with 1-5 years of OCP use exhibited differential 

protective benefit across genotypes. However, no interaction on either the multiplicative 

or additive scale was found to be statistically significant after multiple testing correction. 

The results suggest that OCP use may offer increased benefit for women who are 

carriers of the T allele in rs13255292.   On the other hand, for women carrying the C 

allele in this variant, longer (5+ years) use of OCP may reduce the impact of carrying 

the risk allele of this SNP. Replication of this finding is needed. The study presents a 

comprehensive analytic framework for conducting gene-environment analysis in ovarian 

cancer.  

Word Count: 4,537; Number of Figures and Tables: 6  
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INTRODUCTION 

Ovarian carcinoma (cancer) is a disease with high mortality; most women are 

diagnosed with advanced stage disease where five-year survival is less than 50% 1.  

Effective screening modalities have been elusive 2, and therefore primary prevention 

strategies remain the most promising avenue to minimize the incidence and mortality of 

ovarian cancer. 

Several factors consistently associated with reduced or increased risk have been 

identified for ovarian cancer, including some that represent opportunities for 

chemoprevention or surgical intervention.  Factors associated with reduced risk include 

oral contraceptive pill (OCP) 3 use aspirin use 4, tubal ligation 5, parity 3, salpingectomy 

6-9 and bilateral salpingo-oophorectomy (BSO). Common germline genetic variation 10-20, 

first-degree family history of ovarian cancer 21, 22,  menopausal hormone therapy use 23-

25, greater body mass index (BMI) 26 and endometriosis 27 are risk factors for the 

disease. OCPs and aspirin use represent feasible chemoprevention strategies whereas 

salpingectomy is now recommended by many gynecologic societies as an ovarian 

cancer prevention approach for women seeking tubal sterilization, having a 

hysterectomy, or having other pelvic surgery. 

Average lifetime risk of ovarian cancer diagnosis for women in the U.S. is 1.3% 28, 

but this number varies greatly depending on the composite exposure history of risk 

factors 29.  Pearce et al. estimated the lifetime risk for women in the general population 
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ranges from 0.35% (95%CI = 0.29% to 0.42%) to 8.8% (95%CI = 7.1% to 10.9%) 

depending on exposure history for six factors: OCP use, parity, tubal ligation, 

endometriosis, first degree family history of ovarian cancer and genetic risk score 

quintile 29.   

However, these lifetime risk estimates were limited to six risk factors and did not 

consider their interaction with individual genetic variants identified through genome-wide 

association studies (GWAS)  28. The multiplicative scale is commonly used for gene-

environment interaction (G x E) analysis. Additive interaction analysis has been 

suggested for case-control studies in many recent papers for a more mechanistic 

interpretation 30-34.  Validity of a truly multiplicative model implies existence of additive 

interaction when the two factors under consideration have non-null main effects 35.  

Thus, failure to detect G x E interaction on multiplicative scale may imply there exists 

interaction on additive scale, but the ability to detect it depends on the sample size and 

the main and interaction effect sizes 35. We present here our efforts to evaluate both 

multiplicative and additive gene-environment interactions in ovarian cancer using data 

from the international Ovarian Cancer Association Consortium (OCAC) comprising 17 

case-control studies.   

We have included 28 common genetic variants previously associated with risk of 

ovarian cancer in genome-wide association analyses for our G x E analyses 36.  

Environmental factors included in our analysis are OCP use, parity, tubal ligation, 
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breastfeeding, menopausal hormone therapy, usual adult BMI, and endometriosis. A 

small number of studies in OCAC had data available on aspirin use and thus we have 

not included this risk factor in our analysis here.  Among our list of environmental factors, 

BMI, OCP use, tubal ligation, breastfeeding, and menopausal hormone therapy are of 

special interest because they are modifiable targets for prevention.  
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METHODS 

Study Population 

The OCAC is an international multidisciplinary consortium formed in 2005 

(http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/) with a goal of sharing data from 

worldwide ovarian cancer studies to establish reliable estimation of association between 

environmental and genetic factors related to risk of ovarian cancer 23, 37.  Cases were 

defined as women with ovarian carcinoma (i.e., invasive epithelial ovarian cancers), 

fallopian tube cancer and primary peritoneal cancer. Controls were women without 

ovarian cancer and who had at least one ovary.  For both cases and controls, 

individuals with prior cancers except non-melanoma skin cancers were excluded.  

Genetic Association Analysis 

In total, 28 single nucleotide polymorphisms (SNPs) previously identified through 

GWAS were included from 75 OCAC sites (Table 1).  The first 26 SNPs were found to 

be significantly associated with either ovarian cancer overall or one or more histotypes 

36. In addition, rs13255292 and rs10962643 were included because they were in the 

same region as two other significant SNPs but showed a strong independent 

association with ovarian cancer risk. The SNP at locus 15q26 (rs8037137), which was 

found to be genome-wide significant 13, was not included because not enough non-

carriers were present in our analytic dataset for examining interactions. The genetic 

data included both genotyped and imputed variants (imputation being carried out using 
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phase 2 Hapmap reference panel). More details regarding genotyping and imputation of 

the genetic data have been previously described 12, 17, 18, 20.  The methods for analyzing 

the SNP data in the OCAC have also been described previously 12, 17, 18, 20.  Briefly, 

logistic regression models were fit to examine the association between ovarian cancer 

and each genetic variant under an additive model (using risk allele dosage). The models 

were adjusted for ethnicity, genotyping panel and the leading principal components for 

each ethnicity.  The summary results are shown in Table 1 and are also available 

through the OCAC website (http:/apps.ccge.medschl.cam.ac.uk/consortia/ocac/). 

Environmental Association Analysis 

Environmental Variables (E): A total of seven established environmental risk 

factors for ovarian cancer were of primary interest (Table 2), including four associated 

with decreased risk and three with increased risk for ovarian cancer or one specific 

histotype. These included: OCP use (measured as both ever/never and duration of OCP 

use (never users including <1 one year of use, 1-<5, 5+yr), tubal ligation (yes/no), 

breastfeeding (ever/never), parity (0, 1-2, 3+ full-term births (i.e., those lasting >6 

months), type of menopausal hormone therapy use for more than 1 year after age 50 

(never user, menopausal estrogen therapy only, any use of menopausal estrogen + 

progestin therapy), BMI (<25, 25-<30, 30+), and a history of endometriosis (yes/no).  

Four other environmental variables were included in our analysis, as covariates: 

baseline age (<50, 50-<55, 55-<60, 60-<65, 65-70, 70+ years), race (non-Hispanic 
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white, Hispanic White, Black, Other), education (less than high school, high school 

graduate, some college, college graduate) and first-degree family history of ovarian 

cancer (yes/no). In addition to these four covariates, study site, OCP use, tubal ligation, 

parity, BMI and endometriosis were also included in all models for the environmental 

association analysis and gene by environment interaction analysis.  

Harmonization and Imputation of Environmental Data: A brief description of 

environmental data harmonization across OCAC study sites is provided in eMethod 1 in 

the Supplementary Material. To optimize power and enhance the chance for discovery, 

we carried out multiple imputation of the environmental data. The maximal amount of 

data was used for imputation (see eMethod 1 and eFigure 1 in the Supplementary 

Material for details).  A total of 19 studies comprising 13,722 cases and 22,975 controls 

with partially missing data were included for imputation. Of these 19 studies, 12 were 

from the US, 4 from Europe, 2 from Canada and 1 from Australia (see eTable 1 for a 

description of study sites). Further details for these 19 studies have been previously 

described (see Supplementary Material).  The environmental variables included in our 

analysis were multiply imputed by chained equations (MICE) to produce ten imputed 

datasets. See details of imputation model in eMethod 2.1 in the Supplementary 

Material.  

All analyses were performed on each of the ten imputed datasets, and 

coefficients/test statistics were properly combined to account for uncertainty due to 
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imputation, following the recommended combination rule for multiply imputed datasets 

38 (see details in eMethod 2.3 in the Supplementary Material). Our marginal 

environmental association analysis was based on combined inference from the ten 

imputed versions of this harmonized E data. Logistic regression models were used for 

evaluating marginal associations between the environmental risk factors with ovarian 

cancer after adjusting for covariate. The estimated ORs, their 95% CIs, as well as two-

sided Wald tests after accounting for imputation uncertainty are presented in Table 2 

along with summary statistics of complete cases before imputation. Full results of the 

complete cases analysis using logistic regression models are presented in eTable 2.  

Gene by Environment Interaction Analysis 

After marginal analysis of the genetic and environmental risk factors, we 

considered gene by environment (G x E) interaction analysis both on the multiplicative 

(odds ratio/relative risk) and the additive (relative excess risk due to interaction/absolute 

risk) scale 39.  From the 19 studies with imputed environmental data, a subset of 17 

case-control studies with 9,971 cases and 15,566 controls had available genetic data, 

thus G x E analyses were carried out on these 17 studies. Each imputed environmental 

dataset was merged with the genetic data for subsequent G x E analyses. Interaction 

analyses were then carried out separately on the ten imputed G x E datasets, and then 

all tests and coefficients reported were combined using appropriate multiple imputation 

combination rules 38. 
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For both multiplicative and additive interaction analysis, we started with global 

likelihood ratio tests (LRTs) for each G x E pair as several environmental factors had 

multiple categories resulting in tests for interactions with multiple degrees of freedom 

(df). These global joint tests, serving as a screening step for G x E interactions, were 

carried out for a total of 196 (7×28=196) G x E pairs. After the global tests, we then 

followed up on the suggestive interactions (with global test P-value < 0.2) and carried 

out a two-sided Wald test for interactions involving each separate category of an 

environmental risk factor.  

For the k-th SNP 𝐺𝑘 (k = 1, … ,28), coded as a continuous allelic dosage, the j-th 

environmental risk factor 𝐸𝑗  (𝑗 = 1, … ,7), and a set of confounders/covariates �𝐶𝑞� (𝑞 =

1, … ,𝑄), the basic fitted model for the probability of ovarian cancer of the i-th subject, 

namely, 𝜋𝑖, is of the following form:  

 

𝑙𝑜𝑔𝑖𝑡�𝜋𝑖 | 𝐺𝑘𝑖 ,𝐸𝑗𝑖 ,𝐶1𝑖 , … ,𝐶𝑄𝑖� 

=  𝛽0 + 𝛽𝐺𝐺𝑘𝑖 + ∑ 𝛽𝐸𝑙𝐼�𝐸𝑗𝑖 = 𝑙� + ∑ 𝛽𝐺𝐸𝑙𝐼�𝐸𝑗𝑖 = 𝑙�𝐿
𝑙=1

𝐿
𝑙=1 𝐺𝑘𝑖 + ∑ ∑ 𝛽𝐶𝑞𝑚𝐼�𝐶𝑞𝑖 = 𝑚�,𝑀𝑞

𝑚=1
𝑄
𝑞=1   

 [M1] 

where L = (levels of 𝐸𝑗) – 1, 𝑀𝑞  = (levels of 𝐶𝑞) – 1, and Q is the number of adjusted 

covariates. 

Multiplicative Interaction Tests: For testing the multiplicative interaction between 𝐺𝑘 

and 𝐸𝑗, we first used the global LRT with L degrees of freedom to test for the joint null 
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hypothesis 𝐻0: 𝛽𝐺𝐸1 = 𝛽𝐺𝐸2 = ⋯ = 𝛽𝐺𝐸𝐿 = 0. If the global test P-value < 0.2, we further 

assessed the multiplicative interaction at each level of 𝐸𝑗 by using a Wald test with one 

degree of freedom for the null hypothesis 𝐻0: 𝛽𝐺𝐸𝑙 = 0 for the l-th level. 

Additive Interaction Tests: Due to limitations of existing software (CGEN) 40 for testing 

additive interactions with continuous dosage data, we used the maximal probable 

genotype for imputed SNPs. We further conducted the LRTs with binary collapsing of 

SNPs assuming a dominant genetic susceptibility model (given the constraints in 

software) 31.  For a given SNP 𝐺𝑘 and an environmental risk factor 𝐸𝑗 with L categories, 

a global LRT with L df was used for the following joint null hypothesis  

𝐻0 : 
{exp(𝛽𝐸1) + exp(𝛽𝐺) − 1}

exp (𝛽𝐸1 + 𝛽𝐺)
= exp(𝛽𝐺𝐸1) , … ,

{exp(𝛽𝐸𝐿) + exp(𝛽𝐺) − 1}
exp (𝛽𝐸𝐿 + 𝛽𝐺)

= exp(𝛽𝐺𝐸𝐿), 

where the regression coefficients (𝛽) are log odds ratio parameters described in model 

[M1]. This null hypothesis is based on a rare disease assumption 41, which is tenable for 

our study (lifetime risk of ovarian cancer in the US is approximately 1.3%) 42. If the 

global LRT P-value < 0.2, we further assessed the additive interaction at each level of 𝐸𝑗 

through the relative excess risk due to interaction (RERI) 41. At the l-h level of 𝐸𝑗 , a Wald 

test with one degree of freedom (35) was used to test for the null hypothesis: 

𝐻0: 𝑅𝐸𝑅𝐼𝐺𝐸𝑙 = 0, where 𝑅𝐸𝑅𝐼𝐺𝐸𝑙 = exp(𝛽𝐸𝑙 + 𝛽𝐺𝐸𝑙 + 𝛽𝐺) − exp(𝛽𝐸𝑙) − exp(𝛽𝐺) + 1.  

 After the screening step, we further explored the structure of the most promising 

interactions (defined as global test P-value < 0.01). This was accomplished by exploring 

odds ratios corresponding to E in sub-groups defined by G (for the multiplicative 
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interaction) or absolute risks for ovarian cancer in each configuration of the values of (G, 

E) (for the additive interaction). To better understand these two different scales of 

interaction, we also compared the observed joint ORs with the corresponding expected 

ORs under the multiplicative and the additive nulls.  

To estimate sub-group specific absolute risk (AR) for each stratum defined by a 

given SNP 𝐺𝑘  and environmental risk factor, we need the relative risk and the joint 

distribution of 𝐺𝑘 and 𝐸𝑗. The former was estimated from the fitted model [M1], and the 

latter was empirically estimated from the observed joint frequency of 𝐸𝑗 and 𝐺𝑘 in the 

control population (details in eMethod3 from the Supplementary Material). Table 4 

presents the bootstrap confidence intervals for the estimated ARs and the risk 

differences (RDs) (see details in eMethod4 in the Supplementary Material). The 

results for G x E analysis are presented in Table 3 (multiplicative interaction), Table 4 

(additive interaction) and eTable 5 (observed and expected joint OR under the two 

different nulls). All calculations were performed in the statistical software R 30, 40.   

RESULTS 

The marginal G analysis was carried out on 26,864 cases and 48,034 controls 

and the results are shown in Table 1.  These results are available through the OCAC 

website (http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/).  A total of 36,697 women 

with 13,722 ovarian cancer cases from 19 sites were included in the marginal E analysis 

using the imputed datasets. All seven environmental risk factors were associated with 
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ovarian cancer in the expected direction (Table 2).  OCP use for five or more years was 

associated with a 52% decrease in risk of ovarian cancer compared to never users 

(OR=0.48, 95%CI = 0.45 to 0.51). Tubal ligation (OR=0.73, 95%CI = 0.69 to 0.78) and 

breastfeeding (OR=0.76, 95%CI = 0.71 to 0.80) showed similar magnitudes of 

decreased risk. Also, having more than 3 children (versus none) was associated with a 

50% (OR=0.5, 95%CI = 0.46 to 0.53) reduction in risk of ovarian cancer. Using 

menopausal estrogen therapy only for more than one year (OR=1.22, 95%CI = 1.12 to 

1.34), being obese (OR=1.15, 95%CI = 1.08 to 1.22), and history of endometriosis 

(OR=1.60, 95%CI = 1.46 to 1.75) were all associated with increased risk of ovarian 

cancer.  The inference remained robust before and after imputation (eTable 2.). 

Gene by Environment Interaction Results 

Global Likelihood Ratio Tests: The global LRT essentially serves as a screening 

approach to identify a list of potentially interesting interactions.  All interactions with 

global LRT P-value < 0.2 (40 on multiplicative scale and 41 on additive scale) are listed 

in eTable 3, while more detailed analysis of the top interactions, which showed the 

strongest significance (P-value < 0.01; 4 on multiplicative and 2 on additive scale), are 

shown in Table 3 and Table 4, respectively. 

According to Global LRT results, the top interaction on the multiplicative scale 

was identified with the SNP rs13255292 and OCP use (ever and never use: P-value = 

3.48 x 10-4; duration of use [<1 yr, 1-5 yr, 5+ yr]: P-value = 7.26 x 10-3) (Table 3). None 
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of the observed interactions were significant based on a Bonferroni threshold of 

0.05/(28 x 7)= 2.55 x 10-4.  

Wald Tests for Multiplicative interactions:  For the most promising multiplicative 

interactions reported in Table 3 we carried out an in-depth analysis to better understand 

the structure of interactions by estimating the ORs (with accompanying Wald CIs and 

tests) corresponding to E in strata defined by G.  For example, the OR for OCP use 

among women with the TT genotype for rs13255292 is estimated to be 0.53 (95%CI = 

0.46 to 0.60), whereas for the CC genotype the estimated OR is 0.71 (95%CI = 0.66 to 

0.77) suggesting a stronger protective effect of OCP use among TT genotypes (Table 3, 

Figure 1A). 

When OCP use was further stratified by duration, we observed an interesting 

pattern in its interaction with rs13255292. The estimated OR corresponding to 1-5 year 

of OCP use vs < 1 year use in the TT genotype group was 0.58 (95%CI = 0.50 to 0.69) 

compared to an OR of 0.79 (95%CI = 0.72 to 0.87) among women with CC genotype, 

showing effect modification by the risk allele (C) of rs13255292 (Table 3, Figure 1B). 

This is akin to the result with ever/never user. However, the OR corresponding to 5+ 

years of OCP use vs < 1 year of use for the TT genotype group was 0.43 (95%CI = 0.37 

to 0.50) and for the CC genotype was 0.53 (95%CI = 0.49 to 0.58) (Table 3, Figure 1C). 

With overlapping confidence intervals, there is no significant difference in the odds 

ratios for long-term OCP users across genotype sub-groups. Table 3 shows that the P-
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value of the Wald test for interaction of rs13255292 and 1-5 years of OCP use (vs < 1 yr) 

was lower (P-value = 4.74 x 10-3), when compared to the P-value for interaction of the 

same variant with 5+ years of OCP use (vs < 1 yr) (P-value = 2.43 x 10-2).  

Wald Test for Additive interaction/RERI: For the most statistically significant additive 

interactions in Table 4, we estimated the sub-group specific absolute risks (ARs) and 

risk differences (RDs) in each E by G stratum. For example, for the strongest additive 

interaction based on the global likelihood ratio tests in Table 4, there was suggestive 

evidence that rs11658063 modified the effect of menopausal estrogen therapy use, 

compared to never use of menopausal hormone therapy (P-value = 3.01 x 10-2).  

Among women with the GG genotype, never users of menopausal hormone therapy 

had an estimated AR of 1.33% (95%CI =1.26% to 1.40%) while women who used 

menopausal estrogen therapy had an estimated AR of 1.96% (95%CI = 1.59% to 

2.33%), leading to an absolute risk increase of 0.63% (95%CI = 0.24% to 1.02%) (Table 

4, eFigure 2).  

For women with the CC genotype, the estimated AR was 1.27% (95%CI = 1.23% to 

1.32%) for never receiving menopausal hormone therapy and 1.36% (95%CI = 1.15% to 

1.57%) for receiving menopausal estrogen only therapy. This implies virtually no 

increased risk from taking menopausal estrogen only therapy among women with the 

CC genotype (95%CI = -0.14% to 0.31%; Table 4, eFigure 2).  The results on the 

additive interactions were in general weaker in terms of the strength of P-values. 
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DISCUSSION  

We have conducted a comprehensive multiplicative and additive interaction 

analysis of previously identified common genetic variants and environmental factors 

unequivocally associated with ovarian cancer risk. We observed six suggestive 

interactions (with P-value < 0.01), four on the multiplicative scale and two on the 

additive scale.  The lack of statistical significance of interactions after multiple testing 

correction from a large collection of data and well-curated studies enable us to conclude 

that it is unlikely that there are substantive interactions with single variants and 

environmental factors regardless of the choice of scale. This is consistent with what has 

been observed for other cancers. One may argue that the Bonferroni threshold for 

multiple comparisons is likely to be conservative for this set of correlated environmental 

factors, but the general pattern of findings remains consistent with smaller magnitude of 

interaction effect sizes. However, there are several interesting findings from this 

analysis that may be worthwhile to follow-up in future G x E studies of ovarian cancer.  

Mechanistic Insight: In addition to guiding targeted prevention strategies, G x E 

analysis has the potential to provide mechanistic insight into the complex multifactorial 

structure of the underlying biological pathway. One issue complicating observed gene-

environment interactions of even confirmed susceptibility loci is that the true casual 

alleles and the biological impact of the variants are unknown. Our top interaction is 

between OCP use and rs13255292. This variant lies in the 8q24 region which harbors 
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several risk loci for ovarian cancer 18 and other cancers 43, 44. The SNP is in the PVT1 

gene which interacts with the oncogene MYC 45. MYC has long been reported to be at 

least in part under hormonal control 46, 47 thus an interaction with OCP use is plausible. 

Conversely, our top additive interaction is between menopausal estrogen use and 

rs11658063 which falls in HNF1B. To our knowledge there is no relationship between 

HNF1B and hormones thus underscoring the difficulty of understanding these gene-

environment interactions given our limited understanding of the function of the variants 

and even more broadly the biological role of the genes.  

Exposure Pathways and Potential for Targeted Prevention: The strongest 

interactions are observed with OCP use or menopausal estrogen use which are 

modifiable exposures. Our most promising finding is the potential interaction between 

SNP rs13255292 and OCP use. This finding, if replicated could potentially lead to 

improved understanding of exposure pathways. 

 Analytic Architecture and the Choice of Scale for Measuring Interaction: 

We present a comprehensive analytical framework to carry out post-GWAS G x E 

analysis on both multiplicative and additive scale. Our framework starting with data 

harmonization and imputation followed by Global likelihood ratio tests and single df 

Wald tests provides a principled analytic architecture for such analysis. Our analysis 

reiterates the well-known fact that testing the additive and multiplicative nulls are very 

similar when the marginal associations are weak but could depart when both marginal 

 20 
This article is protected by copyright. All rights reserved.



associations are large in magnitude and the sample size is finite. In eTable 5, we 

present observed joint odds ratios for strata defined by G and E along with the expected 

odds ratios under the multiplicative null and the additive null. We use our top hit 

rs13255292 and OCP use (ever versus never) and length of OCP use (<1yr, 1-<5 yrs, 

5+ yrs) as an illustration. One can note that the expected ORs are fairly close under 

both models. However, their estimated departure from the observed joint OR is more 

pronounced for the 1-<5 yrs sub-group when compared to 5+ yrs, explaining the 

suggestive evidence for rejecting the null. 

We discussed the multiplicative interaction results for rs13255292 and OCP use 

in the previous section.  We now explore the structure of additive interaction for this G x 

E result (Figure 2A-2C).  Marginally, without including any genetic information, from a 

pure environmental association analysis we observed a relationship between duration of 

OCP use and risk reduction for ovarian cancer. For 1-5 years of OCP use (vs <1 year) 

the estimated absolute risk difference was 0.47% (95%CI = 0.37% to 0.56%), while the 

estimated absolute risk difference for long-term use of OCPs (5+ year vs <1 year) was 

0.84% (95%CI = 0.77% to 0.92%) (Figure 2B-2C, eTable 4), in agreement with 

previous findings that longer duration of OCP use is associated with larger risk 

reduction in ovarian cancer 3. However, when stratified by rs13255292 genotype, we 

observed an interesting pattern. Among individuals with TT genotype, the corresponding 

absolute risk difference estimate for 1-5 year of OCP use (vs <1 year) was 0.69% 

 21 
This article is protected by copyright. All rights reserved.



(95%CI = 0.49% to 0.88%), whereas among individuals with CC genotypes the 

corresponding risk reduction estimate was 0.36% (95%CI = 0.22% to 0.50%), implying 

potential effect modification by the C allele at locus rs13255292 (P-value = 1.12 x 10-2) 

(Figure 2B, eTable 4). In contrast, the absolute risk difference is estimated at 0.95% 

(95%CI = 0.78% to 1.12%) for women with TT genotype and at 0.79% (95%CI = 0.69% 

to 0.90%) in women with CC genotype.  This indicates that longer OC use is associated 

with greater risk reduction overall and the risk reduction might be even greater for 

women with the TT genotype than those with the CC genotype. From Figure 2B-2C we 

observe the interplay between “nature vs nurture” with risk due to germline genetic 

mutations offset by long-term use of a modifiable protective factor. This analysis also 

highlights the benefit of measuring duration of exposure as opposed to a coarse 

indicator of ever/never use. 

Prior work in G x E for ovarian cancer has focused solely on multiplicative 

interactions.  We previously reported no departures from a multiplicative model with the 

first six risk loci identified through GWAS with a reduced set of exposures 3.  Follow-up 

work identified an interaction with menopausal estrogen therapy use and rs10069690 in 

the TERT gene 48, but that finding was not replicated in the present analysis which 

included a larger set of studies.  Fridley and colleagues have reported on G x E taking a 

candidate gene approach with several promising findings 49.  There are several studies 

in other cancers examining G x E on the multiplicative scale with limited success in 
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identifying interactions, but to our knowledge, only prostate cancer and bladder cancer 

have been studied on the additive scale. In prostate cancer, suggestive additive 

interactions between vitamin D, confirmed genetic variants and risk have been identified 

50.  In bladder cancer, additive interaction has been explored between confirmed genetic 

loci and smoking with risk of disease 31.  In this work the authors were able to 

demonstrate that the absolute risk of bladder cancer for current smokers varied from 2.9% 

to 9.9% based on the polygenetic risk score quartile.  These results are similar to our 

findings on the additive scale with absolute risk differing based on genetics and 

hormone therapy use; an interesting next step for our work is to consider the 

polygenetic risk score for all of these confirmed ovarian cancer susceptibility alleles.    

There are several limitations of the current analysis. Though we considered both 

multiplicative and additive interactions, the logistic model in (M1) is linear in covariates 

and exposures. We ignored potential non-linearity and exposure x exposure as well as 

exposure x covariate interactions. Similarly, we ignored any higher order interactions. A 

completely non-parametric machine learning approach, based on a recursive partition of 

the predictor space may avoid misspecification of the model, but would lack 

interpretability from an epidemiologic and public health perspective. We also 

acknowledge that this exploration of interaction is purely statistical, a more causal 

interpretation in a biological sense will require functional validation. One may also want 

to explore G x E interaction with loci that are not significant at genome-wide threshold 
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but are significant at a less stringent threshold or even conduct genome-wide G x E 

scans. 

 The associations between ovarian cancer risk and some of the variants included 

here were limited to specific histotypes of ovarian cancer, however we have only 

presented results for all epithelial ovarian cancers combined.  Developing histotype-

specific risk stratification approaches is not feasible because for any given histotype the 

absolute risk is unlikely to ever reach an actionable threshold on a population level.  In 

addition, risk reducing strategies are the same across histotypes and thus there is little 

benefit to considering histotype specific results from a precision prevention perspective.  

Heterogeneous associations between environmental risk factors and ovarian cancer risk 

by histology has previously been well characterized 3, 23, 27. There is value in 

understanding histotype associations for disease etiology and mechanisms and this will 

be the focus of future work.   

The analyses presented here offer insight into potential biological mechanisms, 

opportunities for ovarian cancer risk stratification, and approaches to studying gene-

environment interactions. Ideally, replication for the six promising findings would be 

undertaken, but this is challenging with ovarian cancer given that most studies with the 

relevant data are included here. Functional studies for the regions harboring our most 

promising findings are underway and it is possible that the association described here 

may help inform those investigations 51. Also, gene-environment interaction analyses 
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can also be used to identify novel genetic associations 51 and thus a deeper evaluation 

of variants that are still borderline significant, but do not exactly achieve a genome-wide 

threshold is warranted for subsequent G x E analysis. Of particular interest will be to 

conduct risk stratification and risk prediction analysis using a summative polygenic risk 

score and to conduct an agnostic genome-wide search for G x E interaction.  Despite 

the limitations the comprehensive framework of data harmonization, imputation, 

screening test followed by characterization of effect and risk estimates that has been 

used in this analysis can serve as a robust model for future gene-environment 

interaction analyses. 
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Figure Legends 

Figure 1A-1C. ORs of oral contraceptive (OCP) use, marginally, or stratified by 

number of risk allele of rs13255292. The ORs were calculated from a logistic 

regression model assuming log-additive effect of SNPs. (A) OR of OCP (ever vs 

never) (B) OR of 1 to 5 years of OCP use (vs < 1 year) (B) OR of more than 5 years 

of OCP use (vs < 1 year). 

 

Figure 2A-2C. Estimated absolute risk (AR) of ovarian cancer given OCP use and 

number of copies of C allele, among non-Hispanic white college graduates aged 

below 50 with no family history of ovarian cancer, BMI below 25, no tubal ligation, 

no endometriosis, with one child. The ARs were calculated from a logistic 

regression model assuming log-additive effect of SNPs while all covariates fixed 

at their most frequent level as described above. (A) ARs stratified by OCP (ever 

vs never) and genotype (B) ARs stratified by 1 to 5 years of OCP use (vs < 1 year) 

and genotype (F) ARs stratified by more than 5 years of OCP use (vs < 1 year) and 

genotype. Risk differences were also reported as the solid black bar. 

 

 35 
This article is protected by copyright. All rights reserved.


	Ovarian carcinoma (cancer) is a disease with high mortality; most women are diagnosed with advanced stage disease where five-year survival is less than 50% 1.  Effective screening modalities have been elusive 2, and therefore primary prevention strate...
	Several factors consistently associated with reduced or increased risk have been identified for ovarian cancer, including some that represent opportunities for chemoprevention or surgical intervention.  Factors associated with reduced risk include ora...
	Average lifetime risk of ovarian cancer diagnosis for women in the U.S. is 1.3% 28, but this number varies greatly depending on the composite exposure history of risk factors 29.  Pearce et al. estimated the lifetime risk for women in the general popu...
	However, these lifetime risk estimates were limited to six risk factors and did not consider their interaction with individual genetic variants identified through genome-wide association studies (GWAS)  28. The multiplicative scale is commonly used fo...
	We have included 28 common genetic variants previously associated with risk of ovarian cancer in genome-wide association analyses for our G x E analyses 36.  Environmental factors included in our analysis are OCP use, parity, tubal ligation, breastfee...
	Figure Legends
	Figure 1A-1C. ORs of oral contraceptive (OCP) use, marginally, or stratified by number of risk allele of rs13255292. The ORs were calculated from a logistic regression model assuming log-additive effect of SNPs. (A) OR of OCP (ever vs never) (B) OR of...
	Figure 2A-2C. Estimated absolute risk (AR) of ovarian cancer given OCP use and number of copies of C allele, among non-Hispanic white college graduates aged below 50 with no family history of ovarian cancer, BMI below 25, no tubal ligation, no endomet...



