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In an effort to improve the quality of statistics in the
clinical urology literature, statisticians at European Urology,
The Journal of Urology, Urology and BJU International
came together to develop a set of guidelines to address
common errors of statistical analysis, reporting, and
interpretation. Authors should ‘break any of the guidelines
if it makes scientific sense to do so’, but would need to

provide a clear justification. Adoption of the guidelines will
in our view not only increase the quality of published
papers in our journals but improve statistical knowledge in
our field in general.
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Introduction
It is widely acknowledged that the quality of statistics in the
clinical research literature is poor. This is true for urology
just as it is for other medical specialties. In 2005, Scales et al.
[1] published a systematic evaluation of the statistics in
papers appearing in a single month in one of the four leading
urology medical journals: European Urology, The Journal of
Urology, Urology and BJU International. They reported
widespread errors, including 71% of papers with comparative
statistics having at least one statistical flaw. These findings
mirror many others in the literature, see, for instance, the
review given by Lang and Altman [2]. The quality of
statistical reporting in urology journals has no doubt
improved since 2005, but remains unsatisfactory.

The four urology journals in the Scales et al. [1] review have
come together to publish a shared set of statistical guidelines,
adapted from those in use at one of the journals, European
Urology, since 2014 [3]. The guidelines will also be adopted
by European Urology Focus and European Urology Oncology.
Statistical reviewers at the four journals will systematically
assess submitted manuscripts using the guidelines to improve
statistical analysis, reporting, and interpretation. Adoption of
the guidelines will, in our view, not only increase the quality
of published papers in our journals but improve statistical
knowledge in our field in general. Asking an author to follow

a guideline about, say, the fallacy of accepting the null
hypothesis would no doubt result in a better paper, but we
hope that it would also enhance the author’s understanding
of hypothesis tests.

The guidelines are didactic, based on the consensus of the
statistical consultants to the journals. We avoided, where
possible, making specific analytical recommendations and
focused instead on analyses or methods of reporting
statistics that should be avoided. We intend to update the
guidelines over time and hence encourage readers who
question the value or rationale of a guideline to write to the
authors.

1 The golden rule: Break any of the guidelines if it makes
scientific sense to do so. Science varies too much to allow
methodological or reporting guidelines to apply universally.

2 Reporting of design and statistical analysis

2.1 Follow existing reporting guidelines for the type of study
you are reporting. These include Consolidated
Standards of Reporting Trials (CONSORT) for
randomised trials, REporting Recommendations for
Tumor MARKer Prognostic Studies (REMARK) for
marker studies, Transparent Reporting of a
multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) for prediction
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models, STrengthening the Reporting of OBservational
studies in Epidemiology (STROBE) for observational
studies, or Assessing the Methodological quality of
Systematic Reviews (AMSTAR) for systematic reviews.
Statisticians and methodologists have contributed
extensively to a large number of reporting guidelines.
The first is widely recognised to be the CONSORT
statement on the reporting of randomised trials, but
there are now many other guidelines, covering a wide
range of different types of study. Reporting guidelines
can be downloaded from the Equator Web site (http://
www.equator-network.org).

2.2 Describe cohort selection fully. It is insufficient to state,
for instance, ‘the study cohort consisted of 1144 patients
treated for BPH at our institution’. The cohort needs
to be defined in terms of dates (e.g., ‘presenting March
2013 to December 2017’), inclusion criteria (e.g., ‘IPSS
>12’), and whether patients were selected to be
included (e.g., for a research study) vs being a
consecutive series. Exclusions should be described one
by one, with the number of patients omitted for each
exclusion criterion to give the final cohort size [e.g.,
‘patients with prior surgery (n = 43), allergies to 5a-
reductase inhibitors (n = 12), and missing data on
baseline prostate volume (n = 86) were excluded to
give a final cohort for analysis of 1003 patients’]. Note
that inclusion criteria can be omitted if obvious from
context (e.g., no need to state ‘undergoing radical
prostatectomy for histologically confirmed prostate
cancer’); on the other hand, dates may need to be
explained if their rationale could be questioned (e.g.,
‘March 2013, when our specialist voiding clinic was
established, to December 2017’).

2.3 Describe the practical steps of randomisation in
randomised trials. Although this reporting guideline is
part of the CONSORT statement, it is so critical and
so widely misunderstood that it bears repeating. The
purpose of randomisation is to prevent selection bias.
This can be achieved only if those consenting
patients cannot guess a patient’s treatment allocation
before registration in the trial or change it afterward.
This safeguard is known as ‘allocation concealment’.
Stating merely that ‘a randomisation list was created
by a statistician’ or that ‘envelope randomisation was
used’ does not ensure allocation concealment: a list
could have been posted in the nurse’s station for all
to see; envelopes can be opened and resealed.
Investigators need to specify the exact logistic steps
taken to ensure allocation concealment. The best
method is to use a password-protected computer
database.

2.4 The statistical methods should describe the study
questions and the statistical approaches used to address
each question. Many statistical methods sections state

only something like ‘Mann–Whitney was used for
comparisons of continuous variables and Fisher’s exact
for comparisons of binary variables’. This says little
more than ‘the inference tests used were not grossly
erroneous for the type of data’. Instead, statistical
methods sections should lay out each primary study
question separately: carefully detail the analysis
associated with each and describe the rationale for the
analytical approach, where this is not obvious or if
there are reasonable alternatives. Special attention and
description should be provided for rarely used
statistical techniques.

2.5 The statistical methods should be described in sufficient
detail to allow replication by an independent statistician
given the same data set. Vague reference to ‘adjusting
for confounders’ or ‘non-linear approaches’ is
insufficiently specific to allow replication, a cornerstone
of the scientific method. All statistical analyses should
be specified in the Methods section, including details
such as the covariates included in a multivariable
model. All variables should be clearly defined where
there is room for ambiguity. For instance, avoid saying
that ‘Gleason grade was included in the model’; state
instead ‘Gleason grade group was included in four
categories 1, 2, 3 and 4 or 5’.

3 Inference and P values (see also ‘Use and interpretation
of P values’ below)

3.1 Do not accept the null hypothesis. In a court case,
defendants are declared guilty or not guilty; there is no
verdict of ‘innocent’. Similarly, in a statistical test, the
null hypothesis is rejected or not rejected. If the P
value is ≥0.05, investigators should avoid conclusions
such as ‘the drug was ineffective’, ‘there was no
difference between groups’, or ‘response rates were
unaffected’. Instead, authors should use phrases such
as ‘we did not see evidence of a drug effect’, ‘we were
unable to demonstrate a difference between groups’, or
simply ‘there was no statistically significant difference
in response rates’.

3.2 P values just above 5% are not a trend, and they are
not moving. Avoid saying that a P value such as 0.07
shows a ‘trend’ (which is meaningless) or ‘approaches
statistical significance’ (because the P value is not
moving). Alternative language might be: ‘although we
saw some evidence of improved response rates in
patients receiving the novel procedure, differences
between groups did not meet conventional levels of
statistical significance’.

3.3 P values and 95% CIs do not quantify the probability
of a hypothesis. A P value of, say, 0.03 does not mean
that there is 3% probability that the findings are due
to chance. Additionally, a 95% CI should not be
interpreted as a 95% certainty the true parameter value
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is in the range of the 95% CI. The correct
interpretation of a P value is the probability of finding
the observed or more extreme results when the null
hypothesis is true; the 95% CI will contain the true
parameter value 95% of the time were a study to be
repeated many times using different samples.

3.4 Do not use CIs to test hypotheses. Investigators often
interpret CIs in terms of hypotheses. For instance,
investigators might claim that there is a statistically
significant difference between groups because the 95%
CI for the odds ratio (OR) excludes 1. Such claims are
problematic because CIs are concerned with
estimation, not inference. Moreover, the mathematical
method to calculate CIs may be different from those
used to calculate P values. It is perfectly possible to
have a 95% CI that includes no difference between
groups even though the P value is <0.05 or vice versa.
For instance, in a study of 100 patients in two equal
groups, with event rates of 70% and 50%, the P value
from Fisher’s exact test is 0.066 but the 95% CI for the
OR is 1.03–5.26. The 95% CI for the risk difference
and risk ratio also exclude no difference between
groups.

3.5 Take care interpreting results when reporting multiple P
values. The more questions you ask, the more likely
you are to get a spurious answer to at least one of
them. For example, if you report P values for five
independent true null hypotheses, the probability that
you will falsely reject at least one is not 5%, but >20%.
Although formal adjustment of P values is appropriate
in some specific cases, such as genomic studies, a
more common approach is simply to interpret P
values in the context of multiple testing. For instance,
if an investigator examines the association of 10
variables with three different endpoints, thereby testing
30 separate hypotheses, a P value of 0.04 should not
be interpreted in the same way as if the study tested
only a single hypothesis with a P value of 0.04.

3.6 Do not report separate P values for each of two
different groups in order to address the question of
whether there is a difference between groups. One
scientific question means one statistical hypothesis
tested by one P value. To illustrate the error of using
two P values to address one question, take the case of
a randomised trial of drug vs placebo to reduce
voiding symptoms, with 30 patients in each group.
The authors might report that symptom scores
improved by 6 (standard deviation 14) points in the
drug group (P = 0.03 by one-sample t-test) and
5 (standard deviation 15) points in the placebo group
(P = 0.08). However, the study hypothesis concerns
the difference between drug and placebo. To test a
single hypothesis, a single P value is needed. A two-
sample t-test for these data gives a P value of 0.8;

unsurprising, given that the scores in each group were
virtually the same, confirming that it would be
unsound to conclude that the drug was effective based
on the finding that change was significant in the drug
group but not in the placebo controls.

3.7 Use interaction terms in place of subgroup analyses. A
similar error to the use of separate tests for a single
hypothesis is when an intervention is shown to have a
statistically significant effect in one group of patients
but not another. One approach that is more
appropriate is to use what is known as an ‘interaction
term’ in a statistical model. For instance, to determine
whether a drug reduced pain scores more in women
than men, the model might be as follows:
fFinal Pain Scoreg ¼ b0 þ b1fBaseline Pain Scoreg
þb2fDrugg þ b3fSexg þ b4fDrugg � fSexg. It is
sometimes appropriate to report estimates and CIs
within subgroups of interest, but P values should be
avoided.

3.8 Tests for change over time are generally uninteresting. A
common analysis is to conduct a paired t-test
comparing, say, erectile function in older men at
baseline with erectile function after 5 years of follow-
up. The null hypothesis here is that ‘erectile function
does not change over time’, which is known to be false.
Investigators are encouraged to focus on estimation
rather than inference, reporting, for example, the mean
change over time along with a 95% CI.

3.9 Avoid using statistical tests to determine the type of
analysis to be conducted. Numerous statistical tests
are available that can be used to determine how a
hypothesis test should be conducted. For instance,
investigators might conduct a Shapiro–Wilk test for
normality to determine whether to use a t-test or
Mann–Whitney, Cochran’s Q to decide whether to
use a fixed- or random-effects approach in a meta-
analysis, or use a t-test for between-group differences
in a covariate to determine whether that covariate
should be included in a multivariable model. The
problem with these sorts of approaches is that they
are often testing a null hypothesis that is known to
be false. For instance, no data set perfectly follows a
normal distribution. Moreover, it is often
questionable that changing the statistical approach in
the light of the test is actually of benefit. Statisticians
are far from unanimous as to whether Mann–
Whitney is always superior to t-test when data are
non-normal, or that fixed effects are invalid under
study heterogeneity, or that the criterion of adjusting
for a variable should be whether it is significantly
different between groups. Investigators should
generally follow a pre-specified analytical plan, only
altering the analysis if the data unambiguously point
to a better alternative.
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3.10 When reporting P values, be clear about the
hypothesis tested and ensure that the hypothesis is a
sensible one. P values test very specific hypotheses.
When reporting a P value in the results section, state
the hypothesis being tested unless this is completely
clear. Take, for instance, the statement ‘Pain scores
were higher in group 1 and similar in groups 2 and 3
(P = 0.02)’. It is ambiguous whether the P value of
0.02 is testing group 1 vs groups 2 and 3 combined
or the hypothesis that pain score is the same in all
three groups. Clarity about the hypotheses being
tested can help avoid the testing of inappropriate
hypotheses. For instance, P values for differences
between groups at baseline in a randomised trial is
testing a null hypothesis that is known to be true
(informally, that any observed differences between
groups are due to chance).

4 Reporting of study estimates

4.1 Use appropriate levels of precision. Reporting a P value
of 0.7345 suggests that there is an appreciable
difference between P values of 0.7344 and 0.7346.
Reporting that 16.9% of 83 patients responded entails
a precision (to the nearest 0.1%) that is nearly 200-
times greater than the width of the CI (10% to 27%).
Reporting in a clinical study that the mean calorie
consumption was 2069.9 suggests that calorie
consumption can be measured extremely precisely by a
food questionnaire. Some might argue that being
overly precise is irrelevant, because the extra numbers
can always be ignored. The counter-argument is that
investigators should think very hard about every
number they report, rather than just carelessly cutting
and pasting numbers from the statistical software
printout. The specific guidelines for precision are as
follows:

• Report P values to a single significant figure unless the P
is close to 0.05 (say, 0.01 to 0.2), in which case, report
two significant figures. Do not report ‘not significant’
(‘NS’) for P values of ≥0.05. Very low P values can be
reported as P < 0.001 or similar. A P value can indeed be
1, although some investigators prefer to report this as
>0.9. For instance, the following P values are reported to
appropriate precision: <0.001, 0.004, 0.045, 0.13, 0.3, 1.

• Report percentages, rates and probabilities to two
significant figures, e.g., 75%, 3.4%, 0.13%.

• Do not report P values of zero, as any experimental
result has a non-zero probability.

• Do not give decimal places if a probability or
proportion is 1 (e.g., a P value of 1.00 or a percentage
of 100.00%). The decimal places suggest it is possible
to have, say, a P value of 1.05. There is a similar
consideration for data that can only take integer values.

It makes sense to state that, for instance, the mean
number of pregnancies was 2.4, but not that 29% of
women reported 1.0 pregnancies.

• There is generally no need to report estimates to more
than three significant figures.

• Hazard ratios (HRs) and ORs are normally reported to
two decimal places, although this can be avoided for high
ORs (e.g., 18.2 rather than 18.17).

4.2 Avoid redundant statistics in cohort descriptions.
Authors should be selective about the descriptive
statistics reported and ensure that each and every
number provides unique information. Authors should
avoid reporting descriptive statistics that can be readily
derived from data that have already been provided.
For instance, there is no need to state that 40% of a
cohort were men and 60% were women, choose one or
the other. Another common error is to include a
column of descriptive statistics for two groups
separately and then the whole cohort combined. If,
say, the median age is 60 years in group 1 and
62 years in group 2, we do not need to be told that
the median age in the cohort as a whole is close to
61 years.

4.3 For descriptive statistics, median and quartiles are
preferred over means and standard deviations (or
standard errors); range should be avoided. The median
and quartiles provide all sorts of useful information,
for instance, that 50% of patients had values above the
median or between the quartiles. The range gives the
values of just two patients and so is generally
uninformative of the data distribution.

4.4 Report estimates for the main study questions. A
clinical study typically focuses on a limited number of
scientific questions. Authors should generally provide
an estimate for each of these questions. In a study
comparing two groups, for instance, authors should
give an estimate of the difference between groups, and
avoid giving only data on each group separately or,
simply saying that the difference was or was not
significant. In a study of a prognostic factor, authors
should give an estimate of the strength of the
prognostic factor, such as an OR or HR, as well as
reporting a P value testing the null hypothesis of no
association between the prognostic factor and
outcome.

4.5 Report CIs for the main estimates of interest. Authors
should generally report a 95% CI around the estimates
relating to the key research questions, but not other
estimates given in a paper. For instance, in a study
comparing two surgical techniques, the authors might
report adverse event rates of 10% and 15%; however,
the key estimate in this case is the difference between
groups, so this estimate, 5%, should be reported along
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with a 95% CI (e.g., 1–9%). CIs should not be
reported for the estimates within each group (e.g.,
adverse event rate in group A of 10%, 95% CI 7–13%).
Similarly, CIs should not be given for statistics such as
mean age or gender ratio.

4.6 Do not treat categorical variables as continuous. A
variable such as Gleason grade groups are scored 1–5,
but it is not true that the difference between group 3
and 4 is half as great as the difference between group
2 and 4. Variables such as Gleason grade group should
be reported as categories (e.g., 40% grade group 1,
20% group 2, 20% group 3, 20% group 4 and 5) rather
than as a continuous variable (e.g., mean Gleason
score of 2.4). Similarly, categorical variables such as
Gleason grade should be entered into regression
models not as a single variable (e.g., a HR of 1.5 per
1-point increase in Gleason grade group) but as
multiple categories (e.g., a HR of 1.6 comparing
Gleason grade group 2 to group 1 and HR of 3.9
comparing group 3 to group 1).

4.7 Avoid categorisation of continuous variables unless
there is a convincing rationale. A common approach to
a variable such as age is to define patients as either old
(≥60 years) or young (<60 years) and then enter age
into analyses as a categorical variable, reporting, for
example, that ‘patients aged ≥60 years had twice the
risk of an operative complication than patients aged
<60 years’. In epidemiological and marker studies, a
common approach is to divide a variable into quartiles
and report a statistic such as a HR for each quartile
compared to the lowest (‘reference’) quartile. This is
problematic because it assumes that all values of a
variable within a category are the same. For instance,
it is likely not the case that a patient aged 61 years has
the same risk as a patient aged 90 years, but a very
different risk to a patient aged 59 years. It is generally
preferable to leave variables in a continuous form,
reporting, for instance, how risk changes with a 10-
year increase in age. Non-linear terms can also be
used, to avoid the assumption that the association
between age and risk follows a straight line.

4.8 Do not use statistical methods to obtain thresholds for
clinical practice. There are various statistical methods
available to dichotomise a continuous variable. For
instance, outcomes can be compared either side of
several different thresholds, and the optimal threshold
chosen as the one associated with the smallest P value.
Alternatively, investigators might choose a threshold
that leads to the highest value of sensitivity and
specificity, that is, the point closest to the top left-
hand corner of a receiver operating characteristic
(ROC) curve. Such methods are inappropriate for
determining clinical thresholds because they do not
consider clinical consequences. The ROC curve

approach, for instance, assumes that sensitivity and
specificity are of equal value, whereas it is generally
worse to miss disease than to treat unnecessarily. The
smallest P value approach tests strength of evidence
against the null hypothesis, which has little to do with
the relative benefits and harms of a treatment or
further diagnostic evaluation.

4.9 The association between a continuous predictor and
outcome can be demonstrated graphically, particularly
by using non-linear modelling. In high-school
mathematics, we often thought about the relationship
between y and x by plotting a line on a graph, with a
scatterplot added in some cases. This also holds true
for many scientific studies. In the case of a study of
age and complication rates, for instance, an
investigator could plot age on the x-axis against risk of
a complication on the y-axis and show a regression
line, perhaps with a 95% CI. Non-linear modelling is
often useful because it avoids assuming a linear
relationship and allows the investigator to determine
questions such as whether risk starts to increase
disproportionately beyond a given age.

4.10 Do not ignore significant heterogeneity in meta-
analyses. Informally speaking, heterogeneity statistics
test whether variations between the results of
different studies in a meta-analysis are consistent
with chance, or whether such variation reflects, at
least in part, true differences between studies. If
heterogeneity is present, authors need to do more
than merely report the P value and focus on the
random-effects estimate. Authors should investigate
the sources of heterogeneity and try to determine the
factors that lead to differences in study results, e.g.,
by identifying common features of studies with
similar findings or idiosyncratic aspects of studies
with outlying results.

4.11 For time-to-event variables, report the number of
events but not the proportion. Take the case of a
study that reported: ‘of 60 patients accrued, 10 (17%)
died’. While it is important to report the number of
events, patients entered the study at different times
and were followed for different periods, so the
reported proportion of 17% is meaningless. The
standard statistical approach to time-to-event
variables is to calculate probabilities, such as the risk
of death being 60% by 5 years or the median
survival, the time at which the probability of survival
first drops below 50%, being 52 months.

4.12 For time-to-event analyses, report median follow-up
for patients without the event or the number followed
without an event at a given follow-up time. It is often
useful to describe how long a cohort has been
followed. To illustrate the appropriate methods of
doing so, take the case of a cohort of 1000 paediatric
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patients with cancer treated in 1970 and followed to
2010. If the cure rate was only 40%, the median
follow-up for all patients might only be a few years,
whilst the median follow-up for patients who
survived was 40 years. This latter statistic gives a
much better impression of how long the cohort had
been followed. Now assume that in 2009, a second
cohort of 2000 patients was added to the study. The
median follow-up for survivors will now be around a
year, which is again misleading. An alternative would
be to report a statistic such as ‘312 patients have
been followed without an event for at least 35 years’.

4.13 For time-to-event analyses, describe when follow-up
starts and when and how patients are censored. A
common error is that investigators use a censoring
date, which leads to an overestimate of survival. For
example, when assessing metastasis-free survival a
patient without a record of metastasis should be
censored on the date of the last time the patient was
known to be free of metastasis (e.g., negative bone
scan, undetectable PSA), not at the date of last
patient contact (which may not have involved
assessment of metastasis). For overall survival, date of
last patient contact would be an acceptable censoring
date because the patient was indeed known to be
event-free at that time. When assessing cause-specific
endpoints, special consideration should be given to
the cause of death. The endpoints ‘disease-specific
survival’ and ‘disease-free survival’ have specific
definitions and require careful attention to methods.
With disease-specific survival, authors need to
consider carefully how to handle death due to other
causes. One approach is to censor patients at the
time of death, but this can lead to bias in certain
circumstances, such as when the predictor of interest
is associated with other cause of death and the
probability of other cause of death is moderate or
high. Competing risk analysis is appropriate in these
situations. With disease-free survival, both evidence
of disease (e.g., disease recurrence) and death from
any cause are counted as events, and so censoring at
the time of other cause of death is inappropriate. If
investigators are specifically interested only in the
former, and wish to censor deaths from other causes,
they should define their endpoint as ‘freedom from
progression’.

4.14 For time-to-event analyses, avoid reporting mean
follow-up or survival time, or estimates of survival in
those who had the event. All three estimates are
problematic in the context of censored data.

4.15 For time-to-event analyses, make sure that all
predictors are known at time zero or consider
alternative approaches such as a landmark analysis or
time-dependent covariates. In many cases, variables of

interest vary over time. As a simple example, imagine
we were interested in whether PSA velocity predicted
time to progression in patients with prostate cancer
on active surveillance. The problem is that PSA is
measured at various times after diagnosis. Unless
they were being careful, investigators might use time
from diagnosis in a Kaplan–Meier or Cox regression
but use PSA velocity calculated on PSAs measured at
1- and 2-year follow-up. As another example,
investigators might determine whether response to
chemotherapy predicts cancer survival, but measure
survival from the time of the first dose, before
response is known. It is obviously invalid to use
information only known ‘after the clock starts’. There
are two main approaches to this problem. A
‘landmark analysis’ is often used when the variable of
interest is generally known within a short and well-
defined period of time, such as adjuvant therapy or
chemotherapy response. In brief, the investigators
start the clock at a fixed ‘landmark’ (e.g., 6 months
after surgery). Patients are only eligible if they are
still at risk at the landmark (e.g., patients who recur
before 6 months are excluded) and the status of the
variable is fixed at that time (e.g., a patient who gets
chemotherapy at 7 months is defined as being in the
no adjuvant group). Alternatively, investigators can
use a time-dependent variable approach. In brief, this
‘resets the clock’ each time new information is
available about a variable. This would be the
approach most typically used for the PSA velocity
and progression example.

4.16 When presenting Kaplan–Meier figures, present the
number at risk and truncate follow-up when numbers
are low. Giving the number at risk is useful for
helping to understand when patients were censored.
When presenting Kaplan–Meier figures, a good
general rule is to truncate follow-up when the
number at risk in any group falls below five (or even
10) as the tail of a Kaplan–Meier distribution is very
unstable.

5 Multivariable models and diagnostic tests

5.1 Multivariable, propensity and instrumental variable
analyses are not a magic wand. Some investigators
assume that multivariable adjustment ‘removes
confounding’, ‘makes groups similar’ or ‘mimics a
randomised trial’. There are two problems with such
claims. First, the value of a variable recorded in a data
set is often approximate and so may mask differences
between groups. For instance, clinical stage might be
used as a covariate in a study comparing treatments
for localised prostate cancer. But stage T2c might
constitute a small nodule on each prostate lobe or,
alternatively, most of the prostate consisting of a large,
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hard mass. The key point is that if one group has
more T2c disease than the other, it is also likely that
the T2c’s in that group will fall towards the more
aggressive end of the spectrum. Multivariable
adjustment has the effect of making the rates of T2c in
each group the same, but does not ensure that the
type of T2c is identical. Second, a model only adjusts
for a small number of measured covariates. That does
not exclude the possibility of important differences in
unmeasured (or even unmeasurable) covariates. A
common assumption is that propensity methods
somehow provide better adjustment for confounding
than traditional multivariable methods. Except in
certain rare circumstances, such as when the number
of covariates is large relative to the number of events,
propensity methods give extremely similar results to
multivariable regression. Similarly, instrumental
variables analyses depend on the availability of a good
instrument, which is less common than is often
assumed. In many cases, the instrument is not strongly
associated with the intervention, leading to a large
increase in the 95% CI or, in some cases, an
underestimate of treatment effects.

5.2 Avoid stepwise selection. Investigators commonly
choose which variables to include in a multivariable
model by first determining which variables are
statistically significant on univariable analysis;
alternatively, they may include all variables in a
single model but then remove any that are not
significant. This type of data-dependent variable
selection in regression models has several undesirable
properties, increasing the risk of overfit and making
many statistics, such as the 95% CI, highly
questionable. Use of stepwise selection should be
restricted to a limited number of circumstances, such
as during the initial stages of developing a model, if
there is poor knowledge of what variables might be
predictive.

5.3 Avoid reporting estimates such as ORs or HRs for
covariates when examining the effects of interventions.
In a typical observational study, an investigator might
explore the effects of two different approaches to
radical prostatectomy on recurrence while adjusting
for covariates such as stage, grade and PSA. It is rarely
worth reporting estimates such as ORs or HRs for the
covariates. For instance, it is well known that a high
Gleason score is strongly associated with recurrence:
reporting a HR of say, 4.23, is not helpful and a
distraction from the key finding, the HR between the
two types of surgery.

5.4 Rescale predictors to obtain interpretable estimates.
Predictors sometimes have a moderate association with
outcome and can take a large range of values. This can
lead to uninterpretable estimates. For instance, the OR

for cancer per year of age might be given as 1.02 (95%
CI 1.01–1.02; P < 0.001). It is not helpful to have the
upper bound of a CI be equivalent to the central
estimate; a better alternative would be to report an OR
per 10 years of age. This is simply achieved by
creating a new variable equal to age divided by 10 to
obtain an OR of 1.16 (95% CI 1.10–1.22; P < 0.001)
per 10-year difference in age.

5.5 Avoid reporting both univariate and multivariable
analyses unless there is a good reason. Comparison of
univariate and multivariable models can be of interest
when trying to understand mechanisms. For instance,
if race is a predictor of outcome on univariate analysis,
but not after adjustment for income and access to
care, one might conclude that poor outcome in
African-Americans is explained by socioeconomic
factors. However, the routine reporting of estimates
from both univariate and multivariable analysis is
discouraged.

5.6 Avoid ranking predictors in terms of strength. It is
tempting for authors to rank predictors in a model,
claiming, for instance, ‘the novel marker was the
strongest predictor of recurrence’. Most commonly,
this type of claim is based on comparisons of ORs or
HRs. Such rankings are not meaningful as, amongst
other reasons, it depends on how variables are coded.
For instance, the OR for human kallikrein 2 (hK2),
and hence whether or not it is an apparently ‘stronger’
predictor than PSA, will depend on whether it is
entered in nanogrammes or picogrammes per
millilitre. Further, it is unclear how one should
compare model coefficients when both categorical and
continuous variables are included. Finally, the
prevalence of a categorical predictor also matters: a
predictor with an OR is 3.5 but a prevalence if 0.1% is
less important that one with a 50% prevalence and an
OR of 2.0.

5.7 Discrimination is a property not of a multivariable
model but rather of the predictors and the data set.
Although model building is generally seen as a process
of fitting coefficients, discrimination is largely a
property of what predictors are available. For instance,
we have excellent models for prostate cancer outcome
primarily because Gleason score is very strongly
associated with malignant potential. In addition,
discrimination is highly dependent on how much a
predictor varies in the data set. As an example, a
model to predict erectile dysfunction that includes age
will have much higher discrimination for a population
sample of adult men than for a group of older men
presenting at a urology clinic, because there is a
greater variation in age in the population sample.
Authors need to consider these points when drawing
conclusions about the discrimination of models. This
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is also why authors should be cautious about
comparing the discrimination of different multivariable
models where these were assessed in different datasets.

5.8 Correction for overfit is strongly recommended for
internal validation. In the same way that it is easy to
predict last week’s weather, a prediction model
generally has very good properties when evaluated on
the same data set used to create the model. This
problem is generally described as overfit. Various
methods are available to correct for overfit, including
cross-validation and bootstrap resampling. Note that
such methods should include all steps of model
building. For instance, if an investigator uses stepwise
methods to choose which predictors should go into
the model and then fits the coefficients, a typical
cross-validation approach would be to: (i) split the
data into 10 groups, (ii) use stepwise methods to select
predictors using the first nine groups, (iii) fit
coefficients using the first nine groups, (iv) apply the
model to the 10th group to obtain predicted
probabilities, and (v) repeat steps ii–iv until all
patients in the data set have a predicted probability
derived from a model fitted to a data set that did not
include that patient’s data. Statistics such as the area
under the curve (AUC) are then calculated using the
predicted probabilities directly.

5.9 Calibration should be reported and interpreted
correctly. Calibration is a critical component of a
statistical model: the main concern for any patient is
whether the risk given by a model is close to his or
her true risk. It is rarely worth reporting calibration
for a model created and tested on the same data set,
even if techniques such as cross-validation are used.
This is because calibration is nearly always excellent
on internal validation. Where a pre-specified model is
tested on an independent data set, calibration should
be displayed graphically in a calibration plot. The
Hosmer–Lemeshow test addresses an inappropriate
null hypothesis and should be avoided. Note also that
calibration depends upon both the model coefficients
and the dataset being examined. A model cannot be
inherently ‘well calibrated’. All that can be said is that
predicted and observed risk are close in a specific data
set, representative of a given population.

5.10 Avoid reporting sensitivity and specificity for continuous
predictors or a model. Investigators often report
sensitivity and specificity at a given threshold for a
continuous predictor (e.g., a PSA level of 10 ng/mL),
or report specificity at a given sensitivity (e.g., 90%).
Reporting sensitivity and specificity is not of value
because it is unclear how high sensitivity or specificity
would have to be so as to be high enough to justify
clinical use. Similarly, it is very difficult to determine
which of two tests, one with a higher sensitivity and

the other with a higher specificity, is preferable
because clinical value depends on the prevalence of
disease and the relative harms of a false-positive
compared with a false-negative result. In the case of
reporting specificities at fixed sensitivity, or vice versa,
it is all but impossible to choose the sensitivity
rationally. For instance, a team of investigators may
state that they want to know specificity at 80%
sensitivity, because they want to ensure they catch 80%
of cases. But 80% might be too low if prevalence is
high or too high if prevalence is low.

5.11 Report the clinical consequences of using a test or a
model. In place of statistical abstractions, such as
sensitivity and specificity, or a ROC curve, authors
are encouraged to choose illustrative thresholds and
then report results in terms of clinical consequences.
As an example, consider a study in which a marker is
measured in a group of patients undergoing biopsy.
Authors could report that if a given level of the
marker had been used to determine biopsy, then a
certain number of biopsies would have been
conducted and a certain number of cancers found
and missed.

5.12 Interpret decision curves with careful reference to
threshold probabilities. It is insufficient merely to
report that, for instance, ‘the marker model had
highest net benefit for threshold probabilities of 35–
65%’. Authors need to consider whether those
threshold probabilities are rational. If the study
reporting benefit between 35% and 65% concerned
detection of high-grade prostate cancer, few if any
urologists would demand that a patient have at least
a one-in-three chance of high-grade disease before
recommending biopsy. The authors would therefore
need to conclude that the model was not of benefit.

6 Conclusions and interpretation

6.1 Draw a conclusion, do not just repeat the results.
Conclusion sections are often simply a restatement of
the results. For instance, ‘a statistically significant
relationship was found between body mass index
(BMI) and disease outcome’ is not a conclusion.
Authors instead need to state implications for research
and/or clinical practice. For instance, a conclusion
section might call for research to determine whether
the association between BMI is causal or make a
recommendation for more aggressive treatment of
patients with higher BMI.

6.2 Avoid using words such as ‘may’ or ‘might’. A
conclusion such as that a novel treatment ‘may’ be of
benefit would only be untrue if it had been proven
that the treatment was ineffective. Indeed, that the
treatment may help would have been the rationale for
the study in the first place. Using words such as ‘may’
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in the conclusion is equivalent to stating, ‘we know no
more at the end of this study than we knew at the
beginning’, reason enough to reject a paper for
publication.

6.3 A statistically significant P value does not imply clinical
significance. A small P value means only that the null
hypothesis has been rejected. This may or may not
have implications for clinical practice. For instance,
that a marker is a statistically significant predictor of
outcome does not imply that treatment decisions
should be made on the basis of that marker. Similarly,
a statistically significant difference between two
treatments does not necessarily mean that the former
should be preferred to the latter. Authors need to
justify any clinical recommendations by carefully
analysing the clinical implications of their findings.

6.4 Avoid pseudo-limitations such as ‘small sample size’
and ‘retrospective analysis’, consider instead sources of
potential bias and the mechanism for their effect on
findings. Authors commonly describe study limitations
in a rather superficial way, such as, ‘small sample size
and retrospective analysis are limitations’. But a small
sample size may be immaterial if the results of the
study are clear. For instance, if a treatment or
predictor is associated with a very large OR, a large
sample size might be unnecessary. Similarly, a
retrospective design might be entirely appropriate, as
in the case of a marker study with very long-term
follow-up, and have no discernible disadvantages
compared to a prospective study. Discussion of
limitations should include both the likelihood and
effect size of possible bias.

6.5 Consider the impact of missing data and patient
selection. It is rare that complete data are obtained
from all patients in a study. A typical paper might
report, for instance, that of 200 patients, eight had
data missing on important baseline variables and 34
did not complete the end of study questionnaire,
leading to a final data set of 158. Similarly, many
studies include a relatively narrow subset of patients,
such as 50 patients referred for imaging before
surgery, out of the 500 treated surgically during that
timeframe. In both cases, it is worth considering
analyses to investigate whether patients with missing
data or who were not selected for treatment were
different in some way from those who were included
in the analyses. Although statistical adjustment for
missing data is complex and is warranted only in a
limited set of circumstances, basic analyses to
understand the characteristics of patients with missing
data are relatively straightforward and are often
helpful.

6.6 Consider the possibility and impact of ascertainment
bias. Ascertainment bias occurs when an outcome

depends on a test, and the propensity for a patient to
be tested is associated with the predictor. PSA
screening provides a classic example: prostate cancer is
found by biopsy, but the main reason why men are
biopsied is because of an elevated PSA. A study in a
population subject to PSA screening will therefore
overestimate the association between PSA and prostate
cancer. Ascertainment bias can also be caused by the
timing of assessments. For instance, frequency of
biopsy in prostate cancer active surveillance will
depend on prior biopsy results and PSA levels, and
this induces an association between those predictors
and time to progression.

6.7 Do not confuse outcome with response. Amongst
subgroups of patients undergoing the same treatment,
patients with poorer outcomes may still be good
candidates for that treatment. Investigators often
compare outcomes in different subgroups of patients
all receiving the same treatment. A common error is
to conclude that patients with poor outcome are not
good candidates for that treatment and should receive
an alternative approach. This is to confuse differences
between patients for differences between treatments.
As a simple example, patients with large tumours are
more likely to recur after surgery than patients with
small tumours, but that cannot be taken to suggest
that resection is not indicated for patients with
tumours larger than a certain size. Indeed, surgery is
generally more strongly indicated for patients with
aggressive (but localised) disease and such patients are
unlikely to do well on surveillance.

6.8 Be cautious about causal attribution: correlation does
not imply causation. It is well-known that ‘correlation
does not imply causation’ but authors often slip into
this error in making conclusions. The introduction
and methods section might insist that the purpose of
the study is merely to determine whether there is an
association between, say, treatment frequency and
treatment response, but the conclusions may imply
that, for instance, more frequent treatment would
improve response rates.

Use and Interpretation of P values
That P values are widely misused and misunderstood is
apparent from even the most cursory reading of the medical
literature. One of the most common errors is accepting the
null hypothesis, for instance, concluding from a P value of
0.07 that a drug is ineffective or that two surgical techniques
are equivalent. This particular error is described in detail in
guideline 3.1. The more general problem, which we address
here, is that P values are often given excessive weight in the
interpretation of a study. Indeed, studies are often classed by
investigators into ‘positive’ or ‘negative’ based on statistical
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significance. Gross misuse of P values has led some to
advocate banning the use of P values completely [4].

We follow the American Statistical Association statement on
P values and encourage all researchers to read either the full
statement [5] or the summary [6]. In particular, we
emphasise that the P value is just one statistic that helps
interpret a study; it does not determine our interpretations.
Drawing conclusions for research or clinical practice from a
clinical research study requires evaluation of the strengths
and weakness of study methodology, the results of other
pertinent data published in the literature, biological
plausibility, and effect size. Sound and nuanced scientific
judgment cannot be replaced by just checking whether one of
the many statistics in a paper is or is not P < 0.05.

Concluding Remarks
These guidelines are not intended to cover all medical
statistics but rather the statistical approaches most commonly
used in clinical research papers in urology. It is quite possible
for a paper to follow all of the guidelines yet be statistically
flawed or to break numerous guidelines and still be
statistically sound. On balance, however, the analysis,
reporting and interpretation of clinical urological research will
be improved by adherence to these guidelines.
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