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Abstract 

 

In an effort to improve the quality of statistics in the clinical urology literature, statisticians at 

European Urology, The Journal of Urology, Urology and BJUI came together to develop a set of 

guidelines to address common errors of statistical analysis, reporting and interpretation. 

Authoヴs should さHreak aﾐ┞ of the guideliﾐes if it ﾏakes sIieﾐtifiI seﾐse to do soざ Hut would 

need to provide a clear justification. Adoption of the guidelines will in our view not only 

increase the quality of published papers in our journals but improve statistical knowledge in our 

field in general. 

 

 

It is widely acknowledged that the quality of statistics in the clinical research literature is poor. 

This is true for urology just as it is for other medical specialties. In 2005, Scales et al. published a 

systematic evaluation of the statistics in papers appearing in a single month in one of the four 

leading urology medical journals: European Urology, The Journal of Urology, Urology and BJUI. 

They reported widespread errors, including 71% of papers with comparative statistics having at 

least one statistical flaw[1]. These findings mirror many others in the literature, see, for 

instance, the review given by Lang and Altman[2]. The quality of statistical reporting in urology 

journals has no doubt improved since 2005, but remains unsatisfactory. 
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The four urology journals in the Scales et al. review have come together to publish a shared set 

of statistical guidelines, adapted from those in use at one of the journals, European Urology, 

since 2014[3]. The guidelines will also be adopted by European Urology Focus and European 

Urology Oncology. Statistical reviewers at the four journals will systematically assess submitted 

manuscripts using the guidelines to improve statistical analysis, reporting and interpretation. 

Adoption of the guidelines will, in our view, not only increase the quality of published papers in 

our journals but improve statistical knowledge in our field in general. Asking an author to follow 

a guideline about, say, the fallacy of accepting the null hypothesis, would no doubt result in a 

better paper, but we hope that it would also enhance the authoヴ’s uﾐdeヴstaﾐdiﾐg of h┞pothesis 

tests.  

 

The guidelines are didactic, based on the consensus of the statistical consultants to the 

journals. We avoided, where possible, making specific analytic recommendations and focused 

instead on analyses or methods of reporting statistics that should be avoided. We intend to 

update the guidelines over time and hence encourage readers who question the value or 

rationale of a guideline to write to the authors. 

 

1. The golden rule: Break any of the guidelines if it makes scientific sense to do so. Science 

varies too much to allow methodologic or reporting guidelines to apply universally. 

 

2. Reporting of design and statistical analysis 

2.1. Follow existing reporting guidelines for the type of study you are reporting, such as 

CONSORT for randomized trials, ReMARK for marker studies, TRIPOD for prediction 

models, STROBE for observational studies, or AMSTAR for systematic reviews. 

Statisticians and methodologists have contributed extensively to a large number of 

reporting guidelines. The first is widely recognized to be the Consolidated Standards of 

Reporting Trials (CONSORT) statement on the reporting of randomized trials, but there 

are now many other guidelines, covering a wide range of different types of study. 
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Reporting guidelines can be downloaded from the Equator Web site 

(http://www.equator-network.org).   

2.2. Describe cohort selection fully. It is iﾐsuffiIieﾐt to state, foヴ iﾐstaﾐIe, さthe stud┞ Iohoヴt 

consisted of 1144 patients treated for benign prostatic hyperplasia at our institutionざ. 

The Iohoヴt ﾐeeds to He defiﾐed iﾐ teヴﾏs of dates ふe.g. さpヴeseﾐtiﾐg MaヴIh ヲヰヱン to 

DeIeﾏHeヴ ヲヰヱΑざぶ, inclusion Iヴiteヴia ふe.g. さIP““ > ヱヲざぶ aﾐd whether patients were 

selected to be included (e.g. for a research study) vs. being a consecutive series. 

Exclusions should be described one by one, with the number of patients omitted for 

each exclusion criterion to gi┗e the fiﾐal Iohoヴt size ふe.g. さpatieﾐts ┘ith pヴioヴ suヴgeヴ┞ 

(n=43), allergies to 5-ARIs (n=12) and missing data on baseline prostate volume (n=86) 

were e┝Iluded to gi┗e a fiﾐal Iohoヴt foヴ aﾐal┞sis of ヱヰヰン patieﾐtsざ). Note that inclusion 

Iヴiteヴia Iaﾐ He oﾏitted if oH┗ious fヴoﾏ Ioﾐte┝t ふe.g. ﾐo ﾐeed to state さuﾐdeヴgoiﾐg 

ヴadiIal pヴostateItoﾏ┞ foヴ histologiIall┞ pヴo┗eﾐ pヴostate IaﾐIeヴざぶ; oﾐ the otheヴ haﾐd, 

dates may need to be explained if their rationale could be ケuestioﾐed ふe.g. さMaヴIh 

2013, when our specialist voiding clinic was established to DeIeﾏHeヴ ヲヰヱΑざぶ. 

2.3. Describe the practical steps of randomization in randomized trials. Although this 

reporting guideline is part of the CONSORT statement, it is so critical and so widely 

misunderstood that it bears repeating. The purpose of randomization is to prevent 

selection bias. This can be achieved only if those consenting patients cannot guess a 

patieﾐt’s treatment allocation before registration in the trial or change it afterward. 

This safeguard is known as allocation concealment. “tatiﾐg ﾏeヴel┞ that さa 

ヴaﾐdoﾏizatioﾐ list ┘as Iヴeated H┞ a statistiIiaﾐざ oヴ that さeﾐ┗elope ヴaﾐdoﾏizatioﾐ ┘as 

usedざ does ﾐot eﾐsuヴe allocation concealment: a list could have been posted in the 

ﾐuヴse’s statioﾐ foヴ all to see; eﾐ┗elopes Iaﾐ He opeﾐed aﾐd ヴesealed. Iﾐ┗estigatoヴs ﾐeed 

to specify the exact logistic steps taken to ensure allocation concealment. The best 

method is to use a password-protected computer database.  

2.4. The statistical methods should describe the study questions and the statistical 

approaches used to address each question. Many statistical methods sections state 

oﾐl┞ soﾏethiﾐg like さMaﾐﾐ-Whitney was used for comparisons of continuous variables 
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aﾐd Fisheヴ’s e┝aIt foヴ Ioﾏpaヴisoﾐs of Hiﾐaヴ┞ ┗aヴiaHlesざ. This sa┞s little ﾏoヴe thaﾐ さthe 

iﾐfeヴeﾐIe tests used ┘eヴe ﾐot gヴossl┞ eヴヴoﾐeous foヴ the t┞pe of dataざ. Iﾐstead, 

statistical methods sections should lay out each primary study question separately: 

carefully detail the analysis associated with each and describe the rationale for the 

analytic approach, where this is not obvious or if there are reasonable alternatives. 

Special attention and description should be provided for rarely used statistical 

techniques. 

2.5. The statistical methods should be described in sufficient detail to allow replication by 

an independent statistician given the same data set. Vague ヴefeヴeﾐIe to さadjustiﾐg foヴ 

Ioﾐfouﾐdeヴsざ oヴ さﾐoﾐ-liﾐeaヴ appヴoaIhesざ is iﾐsufficiently specific to allow replication, a 

cornerstone of the scientific method. All statistical analyses should be specified in the 

Methods section, including details such as the covariates included in a multivariable 

model. All variables should be clearly defined where there is room for ambiguity. For 

iﾐstaﾐIe, a┗oid sa┞iﾐg that さGleasoﾐ gヴade ┘as iﾐIluded iﾐ the ﾏodelざ; state iﾐstead 

さGleasoﾐ gヴade group ┘as iﾐIluded iﾐ fouヴ Iategoヴies ヱ, ヲ, ン aﾐd ヴ oヴ ヵざ.  

 

3. Inference and p-values ふsee also さUse and interpretation of p-valuesざ Helo┘ぶ 

3.1. Doﾐ’t aIIept the ﾐull hypothesis. In a court case, defendants are declared guilty or not 

guilty, theヴe is ﾐo ┗eヴdiIt of さiﾐﾐoIeﾐtざ. “iﾏilaヴl┞, iﾐ a statistiIal test, the ﾐull 

hypothesis is rejected or not rejected. If the p-value is 0.05 or more, investigators 

should a┗oid IoﾐIlusioﾐs suIh as さthe dヴug ┘as iﾐeffeIti┗eざ, さtheヴe ┘as ﾐo diffeヴeﾐIe 

Het┘eeﾐ gヴoupsざ oヴ さヴespoﾐse ヴates ┘eヴe uﾐaffeItedざ. Iﾐstead, authoヴs should use 

phヴases suIh as さ┘e did ﾐot see e┗ideﾐIe of a dヴug effeItざ, さ┘e ┘eヴe uﾐaHle to 

deﾏoﾐstヴate a diffeヴeﾐIe Het┘eeﾐ gヴoupsざ oヴ siﾏpl┞ さtheヴe ┘as ﾐo statistically 

sigﾐifiIaﾐt diffeヴeﾐIe iﾐ ヴespoﾐse ヴatesざ.  

3.2. P-values just above 5% are not a trend, and they are not moving. Avoid saying that a 

p-value such as 0.ヰΑ sho┘s a さtヴeﾐdざ ふ┘hiIh is ﾏeaﾐiﾐglessぶ oヴ さappヴoaIhes statistiIal 

sigﾐifiIaﾐIeざ ふHeIause the p-┗alue isﾐ’t ﾏo┗iﾐg). Alternative language might be: 

さalthough ┘e sa┘ soﾏe e┗ideﾐIe of iﾏpヴo┗ed ヴespoﾐse ヴates iﾐ patieﾐts ヴeIei┗iﾐg the 
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novel procedure, differences between groups did not meet conventional levels of 

statistiIal sigﾐifiIaﾐIeざ. 

3.3. P-values and 95% confidence intervals do not quantify the probability of a 

hypothesis. A p-value of, say, 0.03 does not mean that there is 3% probability that the 

findings are due to chance. Additionally, a 95% confidence interval should not be 

interpreted as a 95% certainty the true parameter value is in the range of the 95% 

confidence interval. The correct interpretation of a p-value is the probability of finding 

the observed or more extreme results when the null hypothesis is true; the 95% 

confidence interval will contain the true parameter value 95% of the time were a study 

to be repeated many times using different samples. 

3.4. Don't use confidence intervals to test hypotheses. Investigators often interpret 

confidence intervals in terms of hypotheses. For instance, investigators might claim 

that there is a statistically significant difference between groups because the 95% 

confidence interval for the odds ratio excludes 1. Such claims are problematic because 

confidence intervals are concerned with estimation, not inference. Moreover, the 

mathematical method to calculate confidence intervals may be different from those 

used to calculate p-values. It is perfectly possible to have a 95% confidence interval that 

includes no difference between groups even though the p-value is less than 0.05 or vice 

versa. For instance, in a study of 100 patients in two equal groups, with event rates of 

70% and 50%, the p-value fヴoﾏ Fisheヴ’s e┝aIt test is 0.066 but the 95% C.I. for the odds 

ratio is 1.03 to 5.26. The 95% C.I. for the risk difference and risk ratio also exclude no 

difference between groups.  

3.5. Take care interpreting results when reporting multiple p-values. The more questions 

you ask, the more likely you are to get a spurious answer to at least one of them. For 

example, if you report p-values for five independent true null hypotheses, the 

probability that you will falsely reject at least one is not 5%, but >20%. Although formal 

adjustment of p-values is appropriate in some specific cases, such as genomic studies, a 

more common approach is simply to interpret p-values in the context of multiple 

testing. For instance, if an investigator examines the association of 10 variables with 
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three different endpoints, thereby testing 30 separate hypotheses, a p-value of 0.04 

should not be interpreted in the same way as if study tested only a single hypothesis 

with a p-value of 0.04. 

3.6. Do not report separate p-values for each of two different groups in order to address 

the question of whether there is a difference between groups. One scientific question 

means one statistical hypothesis tested by one p-value. To illustrate the error of using 

two p-values to address one question, take the case of a randomized trial of drug 

versus placebo to reduce voiding symptoms, with 30 patients in each group. The 

authors might report that symptom scores improved by 6 (standard deviation 14) 

points in the drug group (p=0.03 by one-sample t-test) and 5 (standard deviation 15) 

points in the placebo group (p=0.08). However, the study hypothesis concerns the 

difference between drug and placebo. To test a single hypothesis, a single p-value is 

needed. A two-sample t-test for these data gives a p-value for 0.8 – unsurprising, given 

that the scores in each group were virtually the same - confirming that it would be 

unsound to conclude that the drug was effective based on the finding that change was 

significant in the drug group but not in placebo controls. 

3.7. Use interaction terms in place of subgroup analyses. A similar error to the use of 

separate tests for a single hypothesis is when an intervention is shown to have a 

statistically significant effect in one group of patients but not another. One approach 

that is more appropriate is to use what is known as an interaction term in a statistical 

model. For instance, to determine whether a drug reduced pain scores more in women 

than men, the model might be as follows:                                                                                     
It is sometimes appropriate to report estimates and confidence intervals within 

subgroups of interest, but p-values should be avoided. 

3.8. Tests for change over time are generally uninteresting. A common analysis is to 

conduct a paired t-test comparing, say, erectile function in older men at baseline with 

erectile function after 5 years of follow-up. The ﾐull h┞pothesis heヴe is that さeヴeItile 

fuﾐItioﾐ does ﾐot Ihaﾐge o┗eヴ tiﾏeざ, ┘hiIh is kﾐo┘ﾐ to He false. Iﾐ┗estigatoヴs aヴe 
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encouraged to focus on estimation rather than inference, reporting, for example, the 

mean change over time along with a 95% confidence interval. 

3.9. Avoid using statistical tests to determine the type of analysis to be conducted. 

Numerous statistical tests are available that can be used to determine how a 

hypothesis test should be conducted. For instance, investigators might conduct a 

Shapiro-Wilk test for normality to determine whether to use a t-test or Mann-Whitney, 

CoIhヴaﾐ’s Q to deIide ┘hetheヴ to use a fi┝ed- or random-effects approach in a meta-

analysis or use a t-test for between-group differences in a covariate to determine 

whether that covariate should be included a multivariable model. The problem with 

these sorts of approaches is that they are often testing a null hypothesis that is known 

to be false. For instance, no data set perfectly follows a normal distribution. Moreover, 

it is often questionable that changing the statistical approach in the light of the test is 

actually of benefit. Statisticians are far from unanimous as to whether Mann-Whitney is 

always superior to t-test when data are non-normal, or that fixed effects are invalid 

under study heterogeneity, or that the criterion of adjusting for a variable should be 

whether it is significantly different between groups. Investigators should generally 

follow a prespecified analytic plan, only altering the analysis if the data unambiguously 

point to a better alternative. 

3.10. When reporting p-values, be clear about the hypothesis tested and ensure that 

the hypothesis is a sensible one. P-values test very specific hypotheses. When 

reporting a p-value in the results section, state the hypothesis being tested unless this 

is completely clear. Take, for instance, the statement さPaiﾐ sIoヴes ┘eヴe higheヴ iﾐ gヴoup 

ヱ aﾐd siﾏilaヴ iﾐ gヴoups ヲ aﾐd ン ふp=ヰ.ヰヲぶざ. It is ambiguous whether the p-value of 0.02 is 

testing group 1 vs. groups 2 and 3 combined or the hypothesis that pain score is the 

same in all three groups. Clarity about the hypotheses being tested can help avoid the 

testing of inappropriate hypotheses. For instance, p-values for differences between 

groups at baseline in a randomized trial is testing a null hypothesis that is known to be 

true (informally, that any observed differences between groups are due to chance).  
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4. Reporting of study estimates 

4.1. Use appropriate levels of precision. Reporting a p-value of 0.7345 suggests that there 

is an appreciable difference between p-values of 0.7344 and 0.7346. Reporting that 

16.9% of 83 patients responded entails a precision (to the nearest 0.1%) that is nearly 

200 times greater than the width of the confidence interval (10% to 27%). Reporting in 

a clinical study that the mean calorie consumption was 2069.9 suggests that calorie 

consumption can be measured extremely precisely by a food questionnaire. Some 

might argue that being overly precise is irrelevant, because the extra numbers can 

always be ignored. The counter-argument is that investigators should think very hard 

about every number they report, rather than just carelessly cutting and pasting 

numbers from the statistical software printout. The specific guidelines for precision are 

as follows: 

 Report p-values to a single significant figure unless the p is close to 0.05, in which 

Iase, ヴepoヴt t┘o sigﾐifiIaﾐt figuヴes. Do ﾐot ヴepoヴt さN“ざ foヴ p-values of 0.05 or 

above. Very low p-values can be reported as p<0.001 or similar. A p-value can 

indeed be 1, although some investigators prefer to report this as >0.9. For instance, 

the following p-values are reported to appropriate precision: <0.001, 0.004, 0.045, 

0.13, 0.3, 1. 

 Report percentages, rates and probabilities to 2 significant figures, e.g. 75%, 3.4%, 

0.13%.  

 Do not report p-values of zero, as any experimental result has a non-zero 

probability. 

 Do not give decimal places if a probability or proportion is 1 (e.g. a p-value of 1.00 

or a percentage of 100.00%). The decimal places suggest it is possible to have, say, 

a p-value 1.05. There is a similar consideration for data that can only take integer 

values. It makes sense to state that, for instance, the mean number of pregnancies 

was 2.4, but not that 29% of women reported 1.0 pregnancies.  

 There is generally no need to report estimates to more than three significant 

figures. 
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 Hazard and odds ratios are normally reported to two decimal places, although this 

can be avoided for high odds ratios (e.g. 18.2 rather than 18.17).  

4.2. Avoid redundant statistics in cohort descriptions. Authors should be selective about 

the descriptive statistics reported and ensure that each and every number provides 

unique information. Authors should avoid reporting descriptive statistics that can be 

readily derived from data that have already been provided. For instance, there is no 

need to state 40% of a cohort were men and 60% were women, choose one or the 

other. Another common error is to include a column of descriptive statistics for two 

groups separately and then the whole cohort combined. If, say, the median age is 60 in 

group 1 and 62 in group 2, we do not need to be told that the median age in the cohort 

as a whole is close to 61.   

4.3. For descriptive statistics, median and quartiles are preferred over means and 

standard deviations (or standard errors); range should be avoided. The median and 

quartiles provide all sorts of useful information, for instance, that 50% of patients had 

values above the median or between the quartiles. The range gives the values of just 

two patients and so is generally uninformative of the data distribution. 

4.4. Report estimates for the main study questions. A clinical study typically focuses on a 

limited number of scientific questions. Authors should generally provide an estimate 

for each of these questions. In a study comparing two groups, for instance, authors 

should give an estimate of the difference between groups, and avoid giving only data 

on each group separately or, simply saying that the difference was or was not 

significant. In a study of a prognostic factor, authors should give an estimate of the 

strength of the prognostic factor, such as an odds ratio or hazard ratio, as well as 

reporting a p-value testing the null hypothesis of no association between the 

prognostic factor and outcome.  

4.5. Report confidence intervals for the main estimates of interest. Authors should 

generally report a 95% confidence interval around the estimates relating to the key 

research questions, but not other estimates given in a paper. For instance, in a study 

comparing two surgical techniques, the authors might report adverse event rates of 
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10% and 15%; however, the key estimate in this case is the difference between groups, 

so this estimate, 5%, should be reported along with a 95% confidence interval (e.g. 1% 

to 9%). Confidence intervals should not be reported for the estimates within each 

group (e.g. adverse event rate in group A of 10%, 95% CI 7% to 13%). Similarly, 

confidence intervals should not be given for statistics such as mean age or gender ratio.  

4.6. Do not treat categorical variables as continuous. A variable such as Gleason grade 

groups are scored 1 - 5, but it is not true that the difference between group 3 and 4 is 

half as great as the difference between group 2 and 4. Variables such as Gleason grade 

group should be reported as categories (e.g. 40% grade group 1, 20% group 2, 20% 

group 3, 20% group 4 and 5) rather than as a continuous variable (e.g. mean Gleason 

score of 2.4). Similarly, categorical variables such as Gleason should be entered into 

regression models not as a single variable (e.g. a hazard ratio of 1.5 per 1-point increase 

in Gleason grade group) but as multiple categories (e.g. hazard ratio of 1.6 comparing 

Gleason grade group 2 to group 1 and hazard ratio of 3.9 comparing group 3 to group 

1).  

4.7. Avoid categorization of continuous variables unless there is a convincing rationale. A 

common approach to a variable such as age is to define patieﾐts as eitheヴ old ふ≥ ヶヰぶ oヴ 

young (<60) and then enter age into analyses as a categorical variable, reporting, for 

e┝aﾏple, that さpatieﾐts aged ヶヰ aﾐd o┗eヴ had t┘iIe the ヴisk of aﾐ opeヴati┗e 

IoﾏpliIatioﾐ thaﾐ patieﾐts aged less thaﾐ ヶヰざ. Iﾐ epideﾏiologic and marker studies, a 

common approach is to divide a variable into quartiles and report a statistic such as a 

hazard ratio for each quartile compared to the lowest (さreferenceざ) quartile.  This is 

problematic because it assumes that all values of a variable within a category are the 

same. For instance, it is likely not the case that a patient aged 65 has the same risk as a 

patient aged 90, but a very different risk to a patient aged 64. It is generally preferable 

to leave variables in a continuous form, reporting, for instance, how risk changes with a 

10-year increase in age. Non-linear terms can also be used, to avoid the assumption 

that the association between age and risk follows a straight line.  
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4.8. Do not use statistical methods to obtain cut-points for clinical practice. There are 

various statistical methods available to dichotomize a continuous variable. For instance, 

outcomes can be compared either side of several different cut-points, and the optimal 

cut-point chosen as the one associated with the smallest p-value. Alternatively, 

investigators might choose a cut-point that leads to the highest value of sensitivity + 

specificity, that is, the point closest to the top left-hand corner of a Receiver Operating 

Curve (ROC). Such methods are inappropriate for determining clinical cut-points 

because they do not consider clinical consequences. The ROC curve approach, for 

instance, assumes that sensitivity and specificity are of equal value, whereas it is 

generally worse to miss disease than to treat unnecessarily. The smallest p-value 

approach tests strength of evidence against the null hypothesis, which has little to do 

with the relative benefits and harms of a treatment or further diagnostic work up.    

4.9. The association between a continuous predictor and outcome can be demonstrated 

graphically, particularly by using non-linear modeling. In high-school math we often 

thought about the relationship between y and x by plotting a line on a graph, with a 

scatterplot added in some cases. This also holds true for many scientific studies. In the 

case of a study of age and complication rates, for instance, an investigator could plot 

age on the x axis against risk of a complication on the y axis and show a regression line, 

perhaps with a 95% confidence interval. Non-linear modeling is often useful because it 

avoids assuming a linear relationship and allows the investigator to determine 

questions such as whether risk starts to increase disproportionately beyond a given 

age. 

4.10. Do not ignore significant heterogeneity in meta-analyses. Informally speaking, 

heterogeneity statistics test whether variations between the results of different studies 

in a meta-analysis are consistent with chance, or whether such variation reflects, at 

least in part, true differences between studies. If heterogeneity is present, authors 

need to do more than merely report the p-value and focus on the random-effects 

estimate. Authors should investigate the sources of heterogeneity and try to determine 

the factors that lead to differences in study results, for example, by identifying common 
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features of studies with similar findings or idiosyncratic aspects of studies with outlying 

results.  

4.11.  For time-to-event variables, report the number of events but not the 

proportion. Take the case of a study that ヴepoヴted: さof ヶヰ patieﾐts aIIヴued, ヱヰ ふヱΑ%ぶ 

diedざ. While it is iﾏpoヴtaﾐt to ヴepoヴt the ﾐuﾏHeヴ of e┗eﾐts, patieﾐts eﾐteヴed the stud┞ 

at different times and were followed for different periods, so the reported proportion 

of 17% is meaningless. The standard statistical approach to time-to-event variables is to 

calculate probabilities, such as the risk of death being 60% by five years or the median 

survival – the time at which the probability of survival first drops below 50% - being 52 

months. 

4.12. For time-to-event analyses, report median follow-up for patients without the 

event or the number followed without an event at a given follow-up time. It is often 

useful to describe how long a cohort has been followed. To illustrate the appropriate 

methods of doing so, take the case of a cohort of 1,000 pediatric cancer patients 

treated in 1970 and followed to 2010. If the cure rate was only 40%, median follow-up 

for all patients might only be a few years, whilst the median follow-up for patients who 

survived was 40 years. This latter statistic gives a much better impression of how long 

the cohort had been followed. Now assume that in 2009, a second cohort of 2000 

patients was added to the study. The median follow-up for survivors will now be 

around a year, which is again misleading. An alternative would be to report a statistic 

suIh as さン12 patients have been followed without an event for at least ンヵ ┞eaヴsざ. 

4.13. For time-to-event analyses, describe when follow-up starts and when and how 

patients are censored. A common error is that investigators use a censoring date which 

leads to an overestimate of survival. For example, when assessing the metastasis-free 

survival a patient without a record of metastasis should be censored on the date of the 

last time the patient was known to be free of metastasis (e.g. negative bone scan, 

undetectable PSA), not at the date of last patient contact (which may not have involved 

assessment of metastasis). For overall survival, date of last patient contact would be an 

acceptable censoring date because the patient was indeed known to be event-free at 
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that time. When assessing cause-specific endpoints, special consideration should be 

given the cause of death. The endpoints さdisease-specific survivalざ and さdisease-free 

survivalざ have specific definitions and require careful attention to methods.  With 

disease-specific survival, authors need to consider carefully how to handle death due to 

other causes. One approach is to censor patients at the time of death, but this can lead 

to bias in certain circumstances, such as when the predictor of interest is associated 

with other cause death and the probability of other cause death is moderate or high. 

Competing risk analysis is appropriate in these situations.  With disease-free survival, 

both evidence of disease (e.g. disease recurrence) and death from any cause are 

counted as events, and so censoring at the time of other cause death is inappropriate. 

If investigators are specifically interested only in the former, and wish to censor deaths 

from other Iauses, the┞ should defiﾐe theiヴ eﾐdpoiﾐt as さfreedom from progressionざ.   

4.14. For time-to-event analyses, avoid reporting mean follow-up or survival time, or 

estimates of survival in those who had the event. All three estimates are problematic 

in the context of censored data.   

4.15. For time-to-event analyses, make sure that all predictors are known at time 

zero or consider alternative approaches such as a landmark analysis or time-

dependent covariates. In many cases, variables of interest vary over time. As a simple 

example, imagine we were interested in whether PSA velocity predicted time to 

progression in prostate cancer patients on active surveillance. The problem is that PSA 

is measured at various times after diagnosis. Unless they were being careful, 

investigators might use time from diagnosis in a Kaplan-Meier or Cox regression but use 

PSA velocity calculated on PSAs measured at one and two-year follow-up. As another 

example, investigators might determine whether response to chemotherapy predicts 

cancer survival, but measure survival from the time of the first dose, before response is 

kﾐo┘ﾐ. It is oH┗iousl┞ iﾐ┗alid to use iﾐfoヴﾏatioﾐ oﾐl┞ kﾐo┘ﾐ さafteヴ the IloIk staヴtsざ. 

There are two main approaches to this pヴoHleﾏ. A さlaﾐdﾏaヴk aﾐal┞sisざ is ofteﾐ used 

when the variable of interest is generally known within a short and well-defined period 

of time, such as adjuvant therapy or chemotherapy response. In brief, the investigators 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

start the clock at a fixed さlaﾐdﾏaヴkざ ふe.g. ヶ ﾏoﾐths afteヴ suヴgeヴ┞ぶ. Patieﾐts aヴe oﾐl┞ 

eligible if they are still at risk at the landmark (e.g. patients who recur before six 

months are excluded) and the status of the variable is fixed at that time (e.g. a patient 

who gets chemotherapy at 7 months is defined as being in the no adjuvant group). 

Alternatively, investigators can use a time-dependent variable approach. In brief, this 

さヴesets the IloIkざ eaIh tiﾏe ﾐe┘ iﾐfoヴﾏatioﾐ is a┗ailaHle aHout a ┗aヴiaHle. This ┘ould 

be the approach most typically used for the PSA velocity and progression example. 

4.16. When presenting Kaplan-Meier figures, present the number at risk and 

truncate follow-up when numbers are low. Giving the number of risk is useful for 

helping to understand when patients were censored. When presenting Kaplan-Meier 

figures a good rule of thumb is to truncate follow-up when the number at risk in any 

group falls below 5 (or even 10) as the tail of a Kaplan-Meier distribution is very 

unstable.  

 

5. Multivariable models and diagnostic tests 

5.1. Multivariable, propensity and instrumental variable analyses are not a magic wand. 

Some investigators assume that multivariable adjustﾏeﾐt さヴeﾏo┗es Ioﾐfouﾐdiﾐgざ, 

さﾏakes gヴoups siﾏilaヴざ oヴ さﾏiﾏiIs a ヴaﾐdoﾏized tヴialざ. There are two problems with 

such claims. First, the value of a variable recorded in a data set is often approximate 

and so may mask differences between groups. For instance, clinical stage might be used 

as a covariate in a study comparing treatments for localized prostate cancer. But stage 

T2c might constitute a small nodule on each prostate lobe or, alternatively, most of the 

prostate consisting of a large, hard mass. The key point is that if one group has more 

TヲI disease thaﾐ the otheヴ, it is also likel┞ that the TヲI’s iﾐ that gヴoup ┘ill fall towards 

the more aggressive end of the spectrum. Multivariable adjustment has the effect of 

making the rates of T2c in each group the same, but does not ensure that the type of 

T2c is identical. Second, a model only adjusts for a small number of measured 

covariates. That does not exclude the possibility of important differences in 

unmeasured (or even unmeasurable) covariates. A common assumption is that 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

propensity methods somehow provide better adjustment for confounding than 

traditional multivariable methods. Except in certain rare circumstances, such as when 

the number of covariates is large relative to the number of events, propensity methods 

give extremely similar results to multivariable regression. Similarly, instrumental 

variables analyses depend on the availability of a good instrument, which is less 

common than is often assumed. In many cases, the instrument is not strongly 

associated with the intervention, leading to a large increase in the 95% confidence 

interval or, in some cases, an underestimate of treatment effects. 

5.2. Avoid stepwise selection. Investigators commonly choose which variables to include in 

a multivariable model by first determining which variables are statistically significant on 

univariable analysis; alternatively, they may include all variables in a single model but 

then remove any that are not significant. This type of data-dependent variable 

selection in regression models has several undesirable properties, increasing the risk of 

overfit and making many statistics, such as the 95% confidence interval, highly 

questionable. Use of stepwise selection should be restricted to a limited number of 

circumstances, such as during the initial stages of developing a model, if there is poor 

knowledge of what variables might be predictive. 

5.3. Avoid reporting estimates such as odds or hazard ratios for covariates when 

examining the effects of interventions. In a typical observational study, an investigator 

might explore the effects of two different approaches to radical prostatectomy on 

recurrence while adjusting for covariates such as stage, grade and PSA. It is rarely worth 

reporting estimates such as odds or hazard ratios for the covariates. For instance, it is 

well known that a high Gleason score is strongly associated with recurrence: reporting 

a hazard ratio of say, 4.23, is not helpful and a distraction from the key finding, the 

hazard ratio between the two types of surgery.  

5.4. Rescale predictors to obtain interpretable estimates. Predictors sometimes have a 

moderate association with outcome and can take a large range of values. This can lead 

to uninterpretable estimates. For instance, the odds ratio for cancer per year of age 

might be given as 1.02 (95% CI 1.01, 1.02; p<0.0001). It is not helpful to have the upper 
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bound of a confidence interval be equivalent to the central estimate; a better 

alternative would be to report an odds ratio per ten years of age. This is simply 

achieved by creating a new variable equal to age divided by ten to obtain an odds ratio 

of 1.16 (95% CI 1.10, 1.22; p<0.0001) per 10-year difference in age. 

5.5. Avoid reporting both univariate and multivariable analyses unless there is a good 

reason. Comparison of univariate and multivariable models can be of interest when 

trying to understand mechanisms. For instance, if race is a predictor of outcome on 

univariate analysis, but not after adjustment for income and access to care, one might 

conclude that poor outcome in African-Americans is explained by socioeconomic 

factors. However, the routine reporting of estimates from both univariate and 

multivariable analysis is discouraged. 

5.6. Avoid ranking predictors in terms of strength. It is tempting for authors to rank 

predictors in a ﾏodel, Ilaiﾏiﾐg, foヴ iﾐstaﾐIe, さthe ﾐo┗el ﾏaヴkeヴ ┘as the stヴoﾐgest 

pヴediItoヴ of ヴeIuヴヴeﾐIeざ. Most Ioﾏﾏoﾐl┞, this t┞pe of Ilaiﾏ is Hased oﾐ Ioﾏpaヴisoﾐs of 

odds or hazard ratios. Such rankings are not meaningful since, among other reasons, it 

depends on how variables are coded. For instance, the odds ratio for hK2, and hence 

┘hetheヴ oヴ ﾐot it is aﾐ appaヴeﾐtl┞ さstヴoﾐgeヴざ pヴediItoヴ thaﾐ P“A, will depend on 

whether it is entered in nanograms or picograms per ml. Further, it is unclear how one 

should compare model coefficients when both categorical and continuous variables are 

included. Finally, the prevalence of a categorical predictor also matters: a predictor 

with an odds ratio is 3.5 but a prevalence if 0.1% is less important that one with a 50% 

prevalence and an odds ratio of 2.0.  

5.7. Discrimination is a property not of a multivariable model but rather of the predictors 

and the data set. Although model building is generally seen as a process of fitting 

coefficients, discrimination is largely a property of what predictors are available. For 

instance, we have excellent models for prostate cancer outcome primarily because 

Gleason score is very strongly associated with malignant potential. In addition, 

discrimination is highly dependent on how much a predictor varies in the data set. As 

an example, a model to predict erectile dysfunction that includes age will have much 
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higher discrimination for a population sample of adult men than for a group of older 

men presenting at a urology clinic, because there is a greater variation in age in the 

population sample. Authors need to consider these points when drawing conclusions 

about the discrimination of models. This is also why authors should be cautious about 

comparing the discrimination of different multivariable models where these were 

assessed in different datasets.   

5.8. Correction for overfit is strongly recommended for internal validation. In the same 

┘a┞ that it is eas┞ to pヴediIt last ┘eek’s ┘eatheヴ, a pヴediItioﾐ ﾏodel geﾐeヴall┞ has ┗eヴ┞ 

good properties when evaluated on the same data set used to create the model. This 

problem is generally described as overfit. Various methods are available to correct for 

overfit, including crossvalidation and bootstrap resampling. Note that such methods 

should include all steps of model building. For instance, if an investigator uses stepwise 

methods to choose which predictors should go into the model and then fits the 

coefficients, a typical crossvalidation approach would be to: (1) split the data into ten 

groups, (2) use stepwise methods to select predictors using the first nine groups, (3) fit 

coefficients using the first nine groups, (4) apply the model to the 10
th

 group to obtain 

predicted probabilities, and (5) repeat steps 2-4 until all patients in the data set have a 

predicted probability derived from a model fitted to a data set that did not include that 

patieﾐt’s data. “tatistiIs suIh as the AUC aヴe theﾐ IalIulated usiﾐg the pヴediIted 

probabilities directly. 

5.9. Calibration should be reported and interpreted correctly. Calibration is a critical 

component of a statistical model: the main concern for any patient is whether the risk 

given by a model is close to his or her true risk. It is rarely worth reporting calibration 

for a model created and tested on the same data set, even if techniques such as 

crossvalidation are used. This is because calibration is nearly always excellent on 

internal validation. Where a pre-specified model is tested on an independent data set, 

calibration should be displayed graphically in a calibration plot. The Hosmer-Lemeshow 

test addresses an inappropriate null hypothesis and should be avoided. Note also that 

calibration depends upon both the model coefficients and the dataset being examined. 
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A ﾏodel Iaﾐﾐot He iﾐheヴeﾐtl┞ さ┘ell IaliHヴated.ざ All that Iaﾐ He said is that predicted 

and observed risk are close in a specific data set, representative of a given population. 

5.10. Avoid reporting sensitivity and specificity for continuous predictors or a model. 

Investigators often report sensitivity and specificity at a given cut-point for a 

continuous predictor (such as a PSA of 10 ng /mL), or report specificity at a given 

sensitivity (such as 90%). Reporting sensitivity and specificity is not of value because it 

is unclear how high sensitivity or specificity would have to be so as to be high enough 

to justify clinical use. Similarly, it is very difficult to determine which of two tests, one 

with a higher sensitivity and the other with a higher specificity, is preferable because 

clinical value depends on the prevalence of disease and the relative harms of a false-

positive compared with a false-negative result. In the case of reporting specificities at 

fixed sensitivity, or vice versa, it is all but impossible to choose the specific sensitivity 

rationally. For instance, a team of investigators may state that they want to know 

specificity at 80% sensitivity, because they want to ensure they catch 80% of cases. But 

80% might be too low if prevalence is high, or too high if prevalence is low.   

5.11. Report the clinical consequences of using a test or a model. In place of 

statistical abstractions such as sensitivity and specificity, or an ROC curve, authors are 

encouraged to choose illustrative cut-points and then report results in terms of clinical 

consequences. As an example, consider a study in which a marker is measured in a 

group of patients undergoing biopsy. Authors could report that if a given level of the 

marker had been used to determine biopsy, then a certain number of biopsies would 

have been conducted and a certain number of cancers found and missed. 

5.12. Interpret decision curves with careful reference to threshold probabilities. It is 

iﾐsuffiIieﾐt ﾏeヴel┞ to ヴepoヴt that, foヴ iﾐstaﾐIe, さthe ﾏaヴkeヴ ﾏodel had highest ﾐet 

benefit for threshold probabilities of 35 - ヶヵ%ざ. Authoヴs ﾐeed to consider whether 

those threshold probabilities are rational. If the study reporting benefit between 35 – 

65% concerned detection of high-grade prostate cancer, few if any urologists would 

demand that a patient have at least a one-in-three chance of high-grade disease before 
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recommending biopsy. The authors would therefore need to conclude that the model 

was not of benefit.  

 

6. Conclusions and interpretation 

6.1. Draw a conclusion, doﾐ’t just repeat the results. Conclusion sections are often simply a 

restatement of the ヴesults. Foヴ iﾐstaﾐIe, さa statistiIall┞ sigﾐifiIaﾐt ヴelatioﾐship ┘as 

fouﾐd Het┘eeﾐ Hod┞ ﾏass iﾐde┝ ふBMIぶ aﾐd disease outIoﾏeざ is ﾐot a IoﾐIlusioﾐ. 

Authors instead need to state implications for research and / or clinical practice. For 

instance, a conclusion section might call for research to determine whether the 

association between BMI is causal or make a recommendation for more aggressive 

treatment of patients with higher BMI. 

6.2. A┗oid usiﾐg ┘ords suIh as さﾏayざ or さﾏightざ. A conclusion such as that a novel 

tヴeatﾏeﾐt さﾏa┞ざ He of Heﾐefit ┘ould oﾐl┞ He uﾐtヴue if it had been proven that the 

treatment was ineffective. Indeed, that the treatment may help would have been the 

rationale for the study in the first place. Using words such as may in the conclusion is 

eケui┗aleﾐt to statiﾐg, さ┘e kﾐo┘ ﾐo ﾏoヴe at the eﾐd of this stud┞ thaﾐ ┘e kﾐe┘ at the 

Hegiﾐﾐiﾐgざ, reason enough to reject a paper for publication.  

6.3. A statistically significant p-value does not imply clinical significance. A small p-value 

means only that the null hypothesis has been rejected. This may or may not have 

implications for clinical practice. For instance, that a marker is a statistically significant 

predictor of outcome does not imply that treatment decisions should be made on the 

basis of that marker. Similarly, a statistically significant difference between two 

treatments does not necessarily mean that the former should be preferred to the 

latter. Authors need to justify any clinical recommendations by carefully analyzing the 

clinical implications of their findings. 

6.4. Avoid pseudo-limitations suIh as さsﾏall saﾏple sizeざ aﾐd さretrospeIti┗e aﾐalysisざ, 

consider instead sources of potential bias and the mechanism for their effect on 

findings. Authors commonly describe study limitations in a rather superficial way, such 

as, さsﾏall saﾏple size aﾐd ヴetヴospeIti┗e aﾐal┞sis aヴe liﾏitatioﾐsざ. But a sﾏall saﾏple 
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size may be immaterial if the results of the study are clear. For instance, if a treatment 

or predictor is associated with a very large odds ratio, a large sample size might be 

unnecessary. Similarly, a retrospective design might be entirely appropriate, as in the 

case of a marker study with very long-term follow-up, and have no discernible 

disadvantages compared to a prospective study. Discussion of limitations should 

include both the likelihood and effect size of possible bias. 

6.5. Consider the impact of missing data and patient selection. It is rare that complete data 

is obtained from all patients in a study. A typical paper might report, for instance, that 

of 200 patients, 8 had data missing on important baseline variables and 34 did not 

complete the end of study questionnaire, leading to a final data set of 158. Similarly, 

many studies include a relatively narrow subset of patients, such as 50 patients 

referred for imaging before surgery, out of the 500 treated surgically during that 

timeframe. In both cases, it is worth considering analyses to investigate whether 

patients with missing data or who were not selected for treatment were different in 

some way from those who were included in the analyses. Although statistical 

adjustment for missing data is complex and is warranted only in a limited set of 

circumstances, basic analyses to understand the characteristics of patients with missing 

data are relatively straightforward and are often helpful.  

6.6. Consider the possibility and impact of ascertainment bias Ascertainment bias occurs 

when an outcome depends on a test, and the propensity for a patient to be tested is 

associated with the predictor. PSA screening provides a classic example: prostate 

cancer is found by biopsy, but the main reason why men are biopsied is because of an 

elevated PSA. A study in a population subject to PSA screening will therefore 

overestimate the association between PSA and prostate cancer. Ascertainment bias can 

also be caused by the timing of assessments. For instance, frequency of biopsy in 

prostate cancer active surveillance will depend on prior biopsy results and PSA level, 

and this induces an association between those predictors and time to progression.  

6.7. Do not confuse outcome with response among subgroups of patients undergoing the 

same treatment: patients with poorer outcomes may still be good candidates for that 
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treatment. Investigators often compare outcomes in different subgroups of patients all 

receiving the same treatment. A common error is to conclude that patients with poor 

outcome are not good candidates for that treatment and should receive an alternative 

approach. This is to confuse differences between patients for differences between 

treatments. As a simple example, patients with large tumors are more likely to recur 

after surgery than patients with small tumors, but that cannot be taken to suggest that 

resection is not indicated for patients with tumors greater than a certain size. Indeed, 

surgery is generally more strongly indicated for patients with aggressive (but localized) 

disease and such patients are unlikely to do well on surveillance. 

6.8. Be cautious about causal attribution: correlation does not imply causation. It is well-

kﾐo┘ﾐ that さIoヴヴelatioﾐ does ﾐot iﾏpl┞ Iausatioﾐざ Hut authoヴs ofteﾐ slip iﾐto this eヴヴoヴ 

in making conclusions. The introduction and methods section might insist that the 

purpose of the study is merely to determine whether there is an association between, 

say, treatment frequency and treatment response, but the conclusions may imply that, 

for instance, more frequent treatment would improve response rates. 

 

Use and interpretation of p-values 

That p-values are widely misused and misunderstood is apparent from even the most cursory 

reading of the medical literature. One of the most common errors is accepting the null 

hypothesis, for instance, concluding from a p-value of 0.07 that a drug is ineffective or that two 

surgical techniques are equivalent. This particular error is described in detail in guideline 3.1. 

The more general problem, which we address here, is that p-values are often given excessive 

weight in the interpretation of a study. Indeed, studies are often classed by investigators into 

さpositi┗eざ oヴ さﾐegati┗eざ Hased oﾐ statistiIal sigﾐifiIaﾐIe. Gヴoss ﾏisuse of p-values has led some 

to advocate banning the use of p-values completely[4].  

 

We follow the American Statistical Association statement on p-values and encourage all 

researchers to read either the full statement[5] or the summary[6]. In particular, we emphasize 

that the p-value is just one statistic that helps interpret a study, it does not determine our 
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interpretations. Drawing conclusions for research or clinical practice from a clinical research 

study requires evaluation of the strengths and weakness of study methodology, the results of 

other pertinent data published in the literature, biological plausibility and effect size.  Sound 

and nuanced scientific judgment cannot be replaced by just checking whether one of the many 

statistics in a paper is or is not less than 0.05.     

 

Concluding remarks 

 

These guidelines are not intended to cover all medical statistics but rather the statistical 

approaches most commonly used in clinical research papers in urology. It is quite possible for a 

paper to follow all of the guidelines yet be statistically flawed or to break numerous guidelines 

and still be statistically sound. On balance, however, the analysis, reporting and interpretation 

of clinical urologic research will be improved by adherence to these guidelines. 
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