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Abstract. Determining the degree to which predation affects prey abundance in natural
communities constitutes a key goal of ecological research. Predators can affect prey through
both consumptive effects (CEs) and nonconsumptive effects (NCEs), although the contribu-
tions of each mechanism to the density of prey populations remain largely hypothetical in most
systems. Common statistical methods applied to time-series data cannot elucidate the mecha-
nisms responsible for hypothesized predator effects on prey density (e.g., differentiate CEs
from NCEs), nor can they provide parameters for predictive models. State-space models
(SSMs) applied to time-series data offer a way to meet these goals. Here, we employ SSMs to
assess effects of an invasive predatory zooplankter, Bythotrephes longimanus, on an important
prey species, Daphnia mendotae, in Lake Michigan. We fit mechanistic models in an SSM
framework to seasonal time series (1994–2012) using a recently developed, maximum-
likelihood–based optimization method, iterated filtering, which can overcome challenges in
ecological data (e.g., nonlinearities, measurement error, and irregular sampling intervals). Our
results indicate that B. longimanus strongly influences D. mendotae dynamics, with mean
annual peak densities of B. longimanus observed in Lake Michigan estimated to cause a 61%
reduction in D. mendotae population growth rate and a 59% reduction in peak biomass den-
sity. Further, the observed B. longimanus effect is most consistent with an NCE via reduced
birth rates. The SSM approach also provided estimates for key biological parameters (e.g.,
demographic rates) and the contribution of dynamic stochasticity and measurement error. Our
study therefore provides evidence derived directly from survey data that the invasive zooplank-
ter B. longimanus is affecting zooplankton demographics and offer parameter estimates needed
to inform predictive models that explore the effect of B. longimanus under different scenarios,
such as climate change.
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INTRODUCTION

Quantification of the effects of predators on prey
abundance is important for understanding ecological
systems. Experiments in the field and laboratory can
offer insights into potential mechanisms through which
predators affect prey, but translating experimental

measurements to field-relevant effects is challenging. For
instance, in addition to consumption (i.e., consumptive
effects, CEs), short-term experimental and observational
studies suggest that nonconsumptive effects (NCEs) of
predators can strongly affect prey density (Nelson et al.
2004, Matassa and Trussell 2011). However, the realized
importance of NCEs in natural systems has recently
been called into question (discussed in Kimbro et al.
2017), and the relative contributions of CEs and NCEs
to large-scale, long-term prey-density patterns remain
largely unknown.
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Existing field time-series data may contain valuable
information regarding the influence of predators on prey
abundance at field-relevant spatial and temporal scales.
In effect, analyzing consecutive points in time series with
variable predator and prey abundances might offer
information about how each is affecting the other as a
function of hypothesized mechanisms. However, there
are challenges involved in gathering this information.
Ecological systems are complex because of, for example,
nonlinearities and stochasticity, and the collection of
ecological data is subject to measurement error and
other constraints, such as irregular sampling intervals
(Turchin and Taylor 1992, Bjornstad and Grenfell 2001,
Scheffer et al. 2001). Furthermore, potentially con-
founding factors (e.g., seasonality, density dependence)
can be difficult to disentangle from predator effects. For-
tunately, recent methodological advancements can con-
front these challenges and provide insights into the
contribution of different hypothesized mechanisms
(Breto et al. 2009, Ionides et al. 2015). Specifically,
mechanistic models of population dynamics can be
implemented as state-space models (SSMs, also known
as partially observed Markov process models or hidden
Markov models). SSMs include both a process model
representing the true population dynamics and a mea-
surement model representing the generation of the data
(Newman et al. 2014). By explicitly accounting for these
sources of variation, SSMs allow for testing of mecha-
nistic hypotheses using time-series data.
There are extensive time-series data collected at multi-

ple trophic levels in the Laurentian Great Lakes for man-
agement purposes, and applying SSMs to these data
could be useful to address major questions, such as the
impact of invasive species. A recent invader to the Great
Lakes believed to be having a major impact on the zoo-
plankton community is the large predatory cladoceran,
Bythotrephes longimanus. For example, Daphnia retro-
curva andD. pulicaria declined rapidly in Lake Michigan
after the introduction of B. longimanus in 1986 (Lehman
and Caceres 1993, Barbiero and Tuchman 2004). Recent
experimental and modeling research suggest that
B. longimanus could further be affecting the abundance
and spatial distribution of current dominant zooplank-
ton species in the Great Lakes. Such effects are of poten-
tial importance to fisheries management, because
B. longimanus effects on zooplankton density and posi-
tion may reduce food availability for common prey fishes,
with potential impacts on growth and recruitment. In
turn, effects on prey fishes may affect key fisheries, such
as Chinook salmon, that depend on those planktivores
(Jacobs et al. 2013, Bunnell et al. 2015).
Simulation and statistical modeling, as well as experi-

mental research, suggest that B. longimanus influences
the composition and density of mesozooplankton
through both CEs and NCEs. Bythotrephes longimanus
is known to prey on zooplankton (Vanderploeg et al.
1993), and bioenergetics models indicate planktivory by
B. longimanus can be substantial (Bunnell et al. 2011).

NCEs are hypothesized to occur when zooplankton prey
perceive B. longimanus through chemical cues and adopt
antipredatory behavior in response to higher B. longi-
manus densities by migrating to lower depths (Pangle
and Peacor 2006, Bourdeau et al. 2011), which reduces
predation risk but at the cost of reduced growth rate and
reproduction because of the colder water at lower depths
(Pangle et al. 2007). Previous research has estimated
CEs and NCEs on zooplankton population growth rates
(Pangle et al. 2007). Consumptive rates measured in the
laboratory can be used to estimate consumptive rates the
field. NCEs can be estimated from known temperature-
dependent effects on zooplankton birth rate and field
measurements of the effect of B. longimanus on zoo-
plankton position (and hence the temperatures that
those zooplankton experience). Results yield an estimate
of the relative magnitude of NCEs and CEs on demo-
graphic rates, and thus serve to highlight potential influ-
ence of NCEs through simulations. However, this
approach cannot determine if B. longimanus is actually
affecting the density of zooplankton in the field; for
example, there could be feedback mechanisms or indi-
rect effects that would offset the predicted negative
effects. Therefore, although we can predict mechanisms
by which B. longimanus affects zooplankton population
growth rate (e.g., as in Pangle et al. 2007), evaluating the
extent to which B. longimanus affects zooplankton prey
density in the field is a major challenge and could benefit
from methods that allow for inference directly from
field-density data. This problem is not unique to the
Great Lakes zooplankton system, as we are aware of
many studies that examine the influence of NCEs on
prey demographic rates in the field (e.g., Peckarsky et al.
2008, Kimbro et al. 2017), but few that examine if NCEs
are affecting prey density directly from prey-density
patterns.
Herein our approach is to use SSMs to test the

hypothesis that B. longimanus influences the density of
an important zooplankton species, D. mendotae, in the
field through CEs and NCEs. We focus on D. mendotae
because it composes a relatively high biomass among
cladocerans in the community (Vanderploeg et al. 2012)
and is consumed by planktivorous fishes (Bunnell et al.
2015). Multiple population models of D. mendotae, with
different functional dependence on its predator, B. longi-
manus, were implemented as SSMs and fit to time-series
data via a recently developed maximum-likelihood–
based optimization method called iterated filtering.
Iterated filtering can fit nonlinear, non-Gaussian, non-
stationary SSMs to data and handle complexities associ-
ated with ecological data like irregular sampling
intervals (Ionides et al. 2006, 2015). Such complexities
are intrinsic to complex ecological systems and field-sur-
vey data, including those available for the Great Lakes.
Iterated filtering algorithms are distinguished from other
state-space model methodology by providing statistically
efficient, simulation-based, maximum-likelihood infer-
ence for general nonlinear SSMs (Ionides et al. 2015).
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Our approach should allow us to estimate key biological
rates (e.g., birth and death rates) and the magnitude of
predator effects, as well as the contribution of stochastic-
ity to dynamics and the influence of measurement error
on variation in the data, which are important to account
for in order to address our hypothesis successfully.
We had two goals: (1) Evaluate if, and to what extent,

B. longimanus affects D. mendotae density and, if so,
whether such effects are more consistent with CEs or
NCEs. (2) Estimate key parameters (e.g., birth and pre-
dation rates) needed to model this system, which will be
valuable in the future to predict dynamics under differ-
ent scenarios (e.g., climate change effects).

METHODS

Data description

Daphnia mendotae and B. longimanus biomass density
data were collected as part of a long-term survey of Lake
Michigan zooplankton by the NOAAGreat Lakes Envi-
ronmental Research Laboratory (GLERL) at an off-
shore site near Muskegon, Michigan (depth = 110 m;
43°11.990 N, 086°34.190 W; located about 20 km off-
shore). The survey quantified the biomass density of
crustacean zooplankton 7–16 times per year across 16 yr
(1994–2003, 2007–2012) using whole water-column verti-
cal net tows (details on sampling and biomass density
calculations presented in Vanderploeg et al. 2012).

General process model of population dynamics

The process model represents dynamics of D. mendo-
tae using a stochastic, seasonally forced variant of a
logistic population growth model. The state variable is
D. mendotae biomass density, V (i.e., the prey zooplank-
ton), and dynamics are represented by the following
stochastic differential equation with respect to time, t:

dV ¼ V b tð Þ 1� V
j

� �
1� gg Pð Þð Þ � f Vð ÞP� lV

� �
dt

þ V�dW þ q tð Þ ð1Þ

where b tð Þ is a function representing prey birth and/or
somatic growth rate at low population size, and j is a
prey-density-dependence term (here affecting prey birth/
somatic growth rate). The term gg Pð Þ determines the
nonconsumptive effect of B. longimanus on D. mendotae
via a proportional reduction in birth rate, with P repre-
senting B. longimanus biomass density treated as a
covariate (not dynamically modeled). The functional
response f Vð Þ determines the consumptive effect, and l
is the background mortality rate of D. mendotae not due
to consumption by B. longimanus. The NCE and CE of
B. longimanus are described in more detail in the follow-
ing sections (see Consumptive and nonconsumptive

predator effects). The V�dW term allows for random
variation to occur in D. mendotae dynamics (i.e., process
error), which can occur because of factors influencing
growth rates not specified in the model, such as variation
in weather. The standard deviation scales the process
error dW, and this process variation is driven by Brown-
ian motion:

dW � Normal mean ¼ 0; SD ¼
ffiffiffiffi
dt

p� �
(2)

which is a common way to represent stochasticity in
dynamic population models (Panik 2017). The term q tð Þ
represents the initiation of D. mendotae dynamics each
year via emergence from resting eggs. Briefly, q tð Þ is
modeled as a pulse that only contributed to the popula-
tion on the first day of each year’s dynamics and is equal
to zero on other days (see Initiation of dynamics each
year for more detail).

Seasonality in prey birth rate

We modeled seasonality in D. mendotae birth rate
given known strong seasonality in abundance because of
factors such as temperature, light levels, and resources
that affect birth rate using the equation

b tð Þ ¼ exp
XNs

i¼1

kisi tð Þ
( )

(3)

where {si (t), i = 1, . . ., Ns} is a periodic cubic B-spline
basis function with four bases (Ns = 4), a degree of 3,
and a period of 1 yr; {ki, i = 1, . . ., Ns} are parameters
that specify the seasonality of the birth rate.
b tð Þ is intended to capture D. mendotae seasonality

using a function allowing enough flexibility to capture
dynamics while avoiding overly complicating the model
(i.e., adding unnecessary parameters). A periodic
b-spline with Ns > 3 provides a more flexible representa-
tion of seasonal forcing compared to a sinusoidal, which
has been used to represent seasonality in biological
parameters. Tests that we performed using Ns > 4 sug-
gested that additional parameters result in worse model
performance based the Akaike Information Criterion
(AIC), a measure of model quality, than Ns = 4. Equa-
tion 3 therefore provides a reasonable representation of
the seasonality in D. mendotae dynamics.

Consumptive and nonconsumptive predator effects

For the CE, we used a Type-I functional response, f
(V) = aV, where a is B. longimanus attack rate on
D. mendotae, as an approximately linear response is
expected at the D. mendotae densities found in the sur-
vey according to laboratory predation experiments
(K. L. Pangle and S. D. Peacor, unpublished data). We
also evaluated an alternative version of the model with a
Type-II functional response (see Evaluation of Type-II
functional response).
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Nonconsumptive effects of B. longimanus on D. men-
dotae birth rate are represented by the proportion
reduction in birth rate (gg(P)) according to the equa-
tion for g(P):

g Pð Þ ¼ 7:601þ ln Pþ 0:0005ð Þ (4)

We used a logarithmic function based on the
log-linear relationship of the behavioral (i.e., vertical
migration) response of D. mendotae to B. longimanus
density (e.g., Bourdeau et al. 2015) that leads to an
expected reduction in birth rate due to the colder tem-
peratures in deeper water. A correction term (0.0005)
was used to account for zero observations equivalent to
one- half the smallest observation of B. longimanus. The
equation for g(P) includes the negative natural log of the
correction term ð�ln 0:0005ð Þ ¼ 7:601) to be consistent
with a reduction in birth rate (i.e., to eliminate the
potential for a positive effect of B. longimanus biomass
density on population growth at low B. longimanus
densities).
The effects of B. longimanus were modeled as forcing

functions in which the potential dynamic feedbacks to
B. longimanus density are not included in the model for
two reasons. First, there are likely other factors that affect
B. longimanus density, including other prey items (e.g.,
copepods, Bosmina longirostris, and other B. longi-
manus), predation by fish, and physical factors (e.g., vari-
able water currents, temperature; Keeler et al. 2015).
Second, treating B. longimanus as a state variable would
require a substantial increase in the complexity of the
model because of the potentially large number of addi-
tional parameters needed to model B. longimanus
dynamics. Adding such additional complexity would sub-
stantially increase the challenge of fitting the model,
because of the necessity of estimating multiple additional
parameters with a limited number of available data points
(n = 134).
To reduce the influence of measurement error on esti-

mates for B. longimanus (note: the measurement error
model in Eqs. 7 and 8 below applies only for the D. men-
dotae state variable), which could influence our estimates
for predator effects, smoothing was performed by calcu-
lating a moving average for B. longimanus, P. We used a
45-d window for the moving average, which we expected
should minimize information lost and reduce the influ-
ence of measurement error. This window was chosen
because the mean gap between observations (excluding
gaps between years) was 21 d, so that the value for the
moving average on each day was typically influenced by
2–3 observations. We expected that a shorter window for
the moving average would be insufficient given the mean
time gap between observations, while a longer window
could smooth over too much potentially informative
variation in B. longimanus given the typical generation
time of B. longimanus (7–15 d; Kim and Yan 2010). Fur-
ther, tests using a longer (e.g., 59-d) and shorter (e.g., 7-
d) window for the moving average resulted in worse fits

based on maximum-likelihood estimates than the 45-d
window. Similar tests comparing different durations
have been used in other systems to establish the appro-
priate window for assessing impacts of other important
covariates, such as climatic factors (van de Pol et al.
2016). Further, tests we performed using alternative
methods of interpolation and smoothing (i.e., ln
(+0.0005) transformation of B. longimanus data prior to
calculation of a moving average or using a moving 45-d
median) did not offer improvement in model perfor-
mance based on AIC, and did not substantially affect
our results.
The calculation of the moving average for B. longi-

manus biomass density involved two steps. First, daily
estimates of biomass density were interpolated linearly
between observations for gaps between observations,
with the exception of the gap between the last observa-
tion each year and the first observation of the subse-
quent year. Interpolation is necessary, as the model
represents continuous-time dynamics, so that a value for
each covariate is required at each time step. The gap
between years was treated differently because data were
rarely collected during winter and early spring, and
B. longimanus is typically absent from the water column
at that time, while the population is maintained as rest-
ing eggs. We therefore assumed that B. longimanus was
absent for the first 50 d each year (i.e., we set B. longi-
manus biomass density to 0 for those days), prior to the
interpolation.
Second, these interpolated values (Pint) were then used

to calculate a 45-d geometric mean (P). The correction
term (0.0005, as for Eq. 4) was used to calculate the geo-
metric mean to account for the presence of zeros in the
B. longimanus data (otherwise the mean would be 0 for
any time points with a 0 in the 45-d moving average win-
dow). The P covariate for each time (t) was thus

P tð Þ ¼
Y45
i¼1

Pint t� 23þ ið Þ þ 0:0005

 !1=45

� 0:0005

(5)

Initiation of dynamics each year

Because D. mendotae are effectively absent from the
water column in late winter and early spring, we allowed
the population in the water column to go extinct each
winter and be reseeded via a pulse (q tð Þ) representing the
emergence from resting eggs each spring occurring 7 d
prior to the earliest observation of D. mendotae in the
data. The size of the pulse is not well understood. In
fact, it is plausible that the abundance of neonates
emerging from resting eggs is not strongly dependent on
the previous year’s density, given that resting eggs can
survive for multiple years (Caceres 1998) and strong vari-
ation occurs in physical processes that promote hatching
(Kerfoot et al. 2004). We therefore assumed the size of
the pulse was random and log-normally distributed:
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ln q tð Þð Þ�Normal /;wð Þ (6)

φ and w represent the mean and standard deviation of
the natural log of the pulse, respectively.

Measurement model

A measurement model is used to describe how obser-
vations (i.e., the data, which are subject to measurement
error) were generated from the prey biomass state vari-
able, which represents the true biomass density; there-
fore, the observed data are treated as drawn from a
distribution around the true state of the system. Mea-
surement error in this sense is general, including any dif-
ferences between samples collected on different days not
attributable to changes in the true biomass density (e.g.,
due to differences between two net tows due to small-
scale spatial variation or potential short-term fluctua-
tions due to water currents or responses to variation in
light levels that could affect individual measurements).
We used a left-censored normal (Normall-cens) distribu-
tion (e.g., Martinez-Bakker et al. 2015, in which the
probability of a zero value is treated as a point mass
equal to the censored left tail of the normal distribution).
Two parameters (ra and rb) are specified so that the
variance (r2) scales quadratically with population size:

Vobs tð Þ �Normal l�cens: VðtÞ;r
� �

(7)

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
aV tð Þ þ r2

bV
2
tð Þ

q
(8)

We used a left-censored distribution to account for zero
observations in the data and because negative observa-
tions cannot occur. The left-censored model assumes
that the observed biomass density at any time point is
normally distributed around the true biomass density,
with a standard deviation that scales with population size
according to Eq. 8, except the left-censored model does
not allow observations of negative biomass density.

Model modifications to assess dynamic drivers

To examine the influence of B. longimanus, we fit four
versions of the model to the data: model a, a null model
(i.e., excluding any B. longimanus effect by fixing a and g
at 0); model b, a model including only the NCE (i.e., fix-
ing a at 0); model c, a model including only the CE (i.e.,
fixing g at 0); and model d, a model including both the
CE and NCE.

Benchmark statistical models

A reasonable mechanistic model should perform bet-
ter than a simple, nonmechanistic benchmark model
(King et al. 2008). We therefore compared our mecha-
nistic models to two straightforward benchmark models.
First, we used a model assuming observed D. mendotae

biomass density is independently and identically dis-
tributed around a seasonal (monthly) average (model e):

Vobs tð Þ �Normal l�cens: Dm;rð Þ (9)

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
aDm þ r2

bD
2
m

q
(10)

Dm represents mean biomass densities for each month
that observations were made, and observations are
assumed to follow a left-censored normal distribution, as
for models a–d (although model e does not differentiate
between measurement and process error). Second, we fit
an autoregressive (AR) model (AR(2)) with measurement
error to our time series (model f), in which the observed
D. mendotae biomass density depends linearly on the pre-
vious two observations. We used the same measurement
model (Eqs. 7 and 8) for model f as for models (a–d), so
as to allow for zero but no negative observations.

Model fitting

Analyses were implemented using the pomp package
in R v.3.3.3 (R Core Team 2018), and annotated code is
included in Appendix S1. SSMs (including all models
except model e, which was fit using the Roptim function)
were fit to time-series data using iterated filtering via the
mif2 algorithm, which is a recently developed algorithm
for estimating model parameters via maximum-likeli-
hood estimation that offers substantial improvement
over other SSM fitting methods (Ionides et al. 2015,
King et al. 2016). For each model fit using iterated filter-
ing, we performed 100 runs in which a search through
parameter space was initiated using a random set of
starting values for each parameter. Starting values were
generated from a uniform distribution bounded by broad
plausible values for each parameter. The fit of different
models was compared based on the AIC calculated using
the maximum-likelihood estimate, which provides a mea-
sure of model performance that weighs both model com-
plexity based on the number of parameters and fit based
on the likelihood (Akaike 1974). A difference of two AIC
units indicates a substantial improvement in model per-
formance (Burnham and Anderson 2002).

Magnitude of Bythotrephes longimanus effect

To quantify effects of B. longimanus on D. mendotae
biomass density, we used simulations from the fitted
model (model b, the best model based on AIC; see
Results). We compared biomass densities of D. mendotae
in 10,000 simulated 1-yr data sets including or excluding
the effect of B. longimanus by setting g to the maximum-
likelihood estimated value or 0, whereas all other param-
eters were fixed at their maximum-likelihood estimated
values. The simulations used an across-year seasonal
mean of smoothed B. longimanus biomass density for
predator biomass density. We note that these simulations
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necessarily do not reflect the full range of actual varia-
tion in the system (e.g., due to uncertainty in parameter
estimates) but provide a straightforward way to quantify
and visualize reductions in D. mendotae biomass density
caused by estimated effects of B. longimanus.

Parameter estimates and confidence intervals

To gain further insight into the influence of B. longi-
manus and density dependence on dynamics, we developed
confidence intervals for the model estimates of the NCE
(g) and density- dependence (j) parameters with the use
of profile likelihood (Hilborn and Mangel 1997). In pro-
file likelihood, the likelihood is maximized and all other
parameters are estimated across a fixed plausible range
of values of the focal parameter (i.e., g or j in our case).
The result is a profile that shows how the maximum like-
lihood changes depending on that focal parameter value.
The 95% confidence intervals are determined as the
range of parameter values for which the log-likelihood is
within 1.92 units of the maximum log likelihood (Hil-
born andMangel 1997).

Evaluation of potential influence of seasonality

We were concerned that seasonality may confound
results for two reasons. First, because B. longimanus and
D. mendotae densities vary seasonally, we were con-
cerned that a detected effect of B. longimanus was actu-
ally due to other seasonal factors that co-vary with
B. longimanus but are not included in the model. Sec-
ond, the NCE in the model is part of an expression that
includes a seasonality term (b(t)), but the CE is part of
an expression without seasonality, so that a difference in
the influence of the NCE and CE could potentially be
influenced by the difference in their relationship with
seasonality in the model. We therefore performed three
additional analyses to examine the influence of
seasonality.
First, we wanted to compare the performance of our

model using B. longimanus as the predator to another
species that we would not expect to affect D. mendotae.
We therefore examined the fit of the best-performing
model (model b; see Results) substituting the biomass
density data for another species, Limnocalanus macrurus,
as an alternative predator instead of B. longimanus
(model g). As L. macrurus mostly occurs in the hypolim-
nion and would have limited spatial overlap with
D. mendotae, we would not expect it to have a detectable
effect on D. mendotae. However, L. macrurus also exhi-
bits strong seasonality in its dynamics (Vanderploeg
et al. 2012), so that treating it in the same manner as
B. longimanus (i.e., as a predator) in the model provides
a useful comparison to evaluate if seasonality itself
could be responsible for any detected predatory effect of
B. longimanus. A test using L. macrurus thereby directly
addresses whether the methods would have identified a
spurious relationship for this particular species.

Second, we calculated a B. longimanus biomass den-
sity anomaly (deviations from the average seasonal trend
across years, i.e., with the seasonal trend removed) and
compared how the model performed when using the
anomaly compared to the null model (model h; see
Appendix S1 for details). Because the anomaly excluded
the seasonal trend, we would expect that including the
anomaly should substantially improve the model AIC
over a null model if there is an effect of B. longimanus
distinct from a seasonal effect.
Third, we examined two additional models to address

alternative hypotheses for how seasonality influences
D. mendotae dynamics: model i, a modified version of
the null model (model a) that includes seasonal back-
ground mortality, l; and model j, a modified version of
the model with only CEs (model c) that allows seasonal
change in B. longimanus attack rate, a. In both models,
each parameter was allowed to vary seasonally using
periodic b-splines in the same manner as birth rate
(b; Eq. 3). We performed these analyses to ensure that
our finding of an NCE of B. longimanus (see Results)
could not be explained by seasonality in background
mortality or B. longimanus consumption.

Evaluation of Type-II functional response

In addition, to ensure that our results did not depend
on the choice of functional response used in our model,
we modified model c to include a Type-II functional
response for f(V):

f Vð Þ ¼ aV
1þ ahV

(11)

where h represents B. longimanus handling time for
D. mendotae (model k).

RESULTS

The mechanistic SSMs performed substantially better
than the benchmark models based on AIC (Table 1).
The models including the NCE of B. longimanus on

D. mendotae outperformed the alternative models based
on a comparison of AIC values. In contrast, including
the CE did not improve the model performance in the
absence or inclusion of the NCE. Only the model with
both the CE and NCE was within two AIC units of the
best-fit model that included the NCE but not the CE
(model b). Because the former model included an addi-
tional parameter and offered no improvement over the
latter model, we moved forward with model b as the best
model.
To visualize the fit of the best model, we generated

10,000 simulated data sets (including the contribution of
both process and measurement errors) from the fitted
model using the parameter values at the maximum-like-
lihood estimate (Table 2). Quantiles of the resulting sim-
ulations are shown to represent the median and 95%
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simulation intervals (Fig. 1). The clear seasonality of the
simulation median suggests strong, predictable seasonal-
ity of D. mendotae dynamics. In contrast, differences
between years are subtler and less predictable. The rela-
tively broad 95% simulation intervals reflect relatively
high levels of variation among simulations, attributable
to dynamic stochasticity and measurement error. All but
four observations fall within the simulation intervals,
with the two most notable exceptions being the espe-
cially high peaks in the D. mendotae data in 2011 and
2012. In these years, B. longimanus had especially high
density earlier in the season, for which the model would
predict lower D. mendotae densities than observed those
years.
The maximum-likelihood parameter estimates indi-

cate B. longimanus can have a profound influence on
D. mendotae density. Based on the fitted model estimate
for g, D. mendotae birth rates are reduced by 61% at the
mean peak B. longimanus across years (Fig. 2a). Simula-
tions from the model generated using the maximum-like-
lihood estimate compared to simulations generated
using the same values for other parameters but excluding
the effect of B. longimanus (i.e., setting g equal to 0)

suggest that the nonconsumptive effect on population
growth rate results in as large as a 59% reduction in
D. mendotae biomass density (difference between height
of peaks in Fig. 2b). The likelihood profile for g reveals
our level of confidence in our parameter estimate
(Fig. 3a, showing 95% confidence intervals). When the
lowest and highest values of eta (at confidence-interval
bounds) are used at the mean annual peak of B. longi-
manus, the NCE reflects a 28–82% reduction in growth
rate.
The fitted SSM also provides estimates for the con-

tribution of seasonality to D. mendotae dynamics. The
fitted seasonal function for D. mendotae birth rates
suggests a peak in late summer on day 229 (16
August). In the presence of B. longimanus at its mean
biomass density, the peak shifts in timing (10 d earlier
to day 219) and is reduced because of the NCE
(Fig. 2a).
Density dependence also influences D. mendotae

dynamics, based on parameter estimate and its confi-
dence interval (Table 2, Fig. 3b). The parameter esti-
mate for j (33 mg/m3) was within the range of observed
D. mendotae biomass density (0–74 mg/m3), with six

TABLE 1. Model ΔAIC values relative to best model (lowest AIC).

Model Maximum log- likelihood Parameters AIC ΔAIC

a, no B. longimanus effect �213.3 11 448.6 6.9
b, B. longimanus nonconsumptive effect �208.9 12 441.7 0.0
c, B. longimanus consumption �212.5 12 449.1 7.3
d, consumption and nonconsumptive effect �208.7 13 443.4 1.7
e, monthly average, independently and identically distributed �336.3 13 698.5 256.8
f, Autoregressive (AR(2)) with measurement error �369.4 6 750.7 309.0
g, Limnocalanus nonconsumptive effect �212.5 12 449.1 7.3
h, B. longimanus anomaly �210.2 12 444.4 2.6
i, seasonal birth and background death �210.4 14 448.9 7.2
j, seasonal birth and attack rate �210.1 15 450.3 8.5
k, Type-II functional response �212.0 13 450.0 8.9

TABLE 2. Values of model terms at maximum-likelihood estimate for best-fit model (b).

Parameter Description Estimate Units

k1 seasonal birth rate �10.0 ln(d�1)
k2 seasonal birth rate �3.4 ln(d�1)
k3 seasonal birth rate �1.2 ln(d�1)
k4 seasonal birth rate 0.32 ln(d�1)
j density-dependence term 32.5 mg/m3

l background mortality 0.048 d�1

a attack rate NA (mg B. longimanus)�1 � d�1

g induced proportional birth reduction 0.089 (ln(mg B. longimanus))�1

e standard deviation of growth rate 0.26 d�1

φ ln(spring pulse mean) �3.2 mg/m3

Ψ standard deviation of ln(spring pulse) 1.7 mg/m3

ra measurement error (scales with V(t)) 0.22 mg/m3

rb measurement error (scales with V(t)
2) 0.39 mg/m3
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observations of D. mendotae biomass density exceeding
the estimated value for j, suggesting that high conspeci-
fic densities may almost entirely suppress positive
D. mendotae growth under realized conditions in Lake
Michigan.
Other parameter estimates provide insights into the

contribution of measurement error and process stochas-
ticity. Based on Eqs. 7 and 8, the estimates for ra and rb

indicate that the standard deviation of observed biomass
at mean D. mendotae biomass was approximately 40%
of mean, indicating a substantial impact of measurement
error. The estimate for the standard deviation of D. men-
dotae growth rate (e) is also large (126% of the maximum
seasonal growth rate when at low population size, b(t)),
suggesting the importance of process stochasticity as
well. Both process stochasticity and measurement error

thus contribute to the high levels of variation in the data
(Fig. 1).

Evaluation of potential influence of seasonality

The three tests indicate that the result that B. longi-
manus affected D. mendotae through an NCE was not
confounded by seasonality. First, using L. macrurus bio-
mass density as the predator (model g) had the opposite
effect than using B. longimanus, as it performed worse
than the model with no predator effect (model a) based
on AIC (Table 1). Second, using the B. longimanus
anomaly (model h) substantially improved the model fit
compared to the model without effects of B. longimanus,
despite the removal of the across-year seasonal trend,
thereby providing further evidence for an effect of

FIG. 1. Simulated Daphnia mendotae biomass density (mg/m3) from fitted model compared to D. mendotae and Bythotrephes
longimanus time-series data in Lake Michigan from 1994 to 2012. Median and 95% simulation intervals for the model that only
includes nonconsumptive effects (model b). Black solid line: D. mendotae; red dashed line: B. longimanus; blue dashed line: median
simulated D. mendotae biomass density; dark blue dotted line: 95% simulation intervals. The first observations in 2007 and 2012
and the D. mendotae peak in 2011 are cut off from the plot. For day of year, 1 = 1 January.
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B. longimanus independent of seasonal factors. If the
observed effect of B. longimanus was due to other sea-
sonal confounding factors, no improvement would be
expected by only using the anomaly. Notably, however,
the model using the anomaly did not perform as well
as the model using the actual B. longimanus biomass
density data (model b), suggesting both anomalous and
seasonal variation in B. longimanus contribute to
D. mendotae dynamics. Third, if our detection of the
NCE was caused by a confounding factor associated
with the seasonal nature of the birth rate term, we would
expect that adding seasonality to the mortality or attack
rate (models i or j) would have a similar influence to
including the NCE. However, models i and j performed
substantially worse than model b (Table 1), supporting
the importance of the NCE.

Evaluation of Type-II functional response

Finally, tests using an alternative (Type-II) functional
response (model k) revealed that our findings were not

sensitive to the assumed functional response for the
CE.

DISCUSSION

Our analysis provides evidence that B. longimanus has
strong negative effects on D. mendotae population
growth rate and density in offshore Lake Michigan and
supports the hypothesis that an NCE is the underlying
mechanism. Further, our analysis quantifies key demo-
graphic rates for D. mendotae, including birth and death
rates, which can be used in models that forecast the
effects of future changes, such as climate change or
changes in nutrient concentrations, with implications for
overall Lake Michigan food web dynamics and fisheries.
Our results demonstrate the utility of developing SSMs
and fitting them to field time-series data to assess mech-
anisms by which predators affect prey, despite the chal-
lenges intrinsic to ecological systems and data.
Our findings provide evidence of (and, for the first

time to our knowledge, quantify) NCEs derived from

FIG. 2. For the fitted model (model b, which only includes nonconsumptive effects): (a) estimated seasonal birth rate and (b)
simulated biomass density (from 10,000 simulations) of Daphnia mendotae in the presence (green dashed line) or absence (black
solid line) of Bythotrephes longimanus. Growth rates and simulated density were determined using across-year averages of smoothed
B. longimanus biomass density (red dashed line in b) for each Julian day. Estimated background mortality rate is indicated by the
blue dotted line in a.
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field-based time-series data in a mechanistic framework.
The observed negative effect of B. longimanus on D. men-
dotae population growth rate resulted from an NCE in
which B. longimanus reduced D. mendotae birth/somatic
growth rates. Of the mechanistic models compared, the
model including NCEs but not CEs provided the best fit
relative to the number of parameters based on AIC, and
greatly reduced AIC relative to the addition of CEs alone.
Whereas NCEs have received considerable attention,
most studies have been performed in a laboratory setting,
mesocosms, and enclosures. Further, whereas there is an
increasing number of studies performed in the field, very
few studies examine the influence on density based on
field data (M. J. Sheriff, S. D. Peacor, D. Hawlena, and
M. Thaker, in review). For example, previous studies eval-
uating NCEs of B. longimanus on D. mendotae (Pangle
et al. 2007, Bourdeau et al. 2013) combined laboratory
studies that elucidate the behavioral response of D. men-
dotae to B. longimanus with field survey data of D. men-
dotae vertical position at different densities of
B. longimanus. Using temperature-dependent growth

FIG. 3. Likelihood profiles for (a) g (reduction in Daphnia mendotae birth rate in response to Bythotrephes longimanus) and (b)
j (density-dependence) parameters. Black vertical lines indicate 95% confidence intervals (g: 0.038–0.11 (ln(mg B. longimanus))�1;
j: 22.5–55.6 mg D. mendotae per cubic meter). Black points show the two highest maximum-likelihood estimates from the searches
performed at each parameter value for each profile, blue lines show a LOESS smoothed curve fit to those points, and gray shading
(approximately the width of the points) indicates confidence intervals for the LOESS fit.

FIG. 4. Estimated rate of change in Daphnia mendotae pop-
ulation early in growing season (days 175–225, calculated via
Eq. 12) vs. smoothed Bythotrephes longimanus biomass density
(geometric mean of smoothed B. longimanus + 0.005 mg/m3

over days 175–225) each year. Points are shown as two-digit
numbers representing each year.
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models, these studies predicted a large reduction in fitness
of D. mendotae because of lower temperatures experi-
enced at the lower depths occupied as a result of the
antipredator response to B. longimanus. Similarly, other
studies that have examined NCEs in the field, have, for
example, combined knowledge of predation rates and
induced changes in prey behavior to explain hypothesized
nonconsumptive effects on spatial variation in prey abun-
dance (e.g., wolf avoidance by elk in Yellowstone [Creel
et al. 2005]; shark avoidance by marine vertebrates [Hei-
thaus et al. 2009]). Our approach to documenting NCEs
from field data here is qualitatively different, in that evi-
dence was derived directly from changes in density of prey
in relation to changes in predator density, linked through
mechanistic models.
We examined the time-series data, and the model fits,

to interpret why the inclusion of the NCE in the model
leads to a large improvement in model performance, but
adding the CE does not. Importantly, because D. men-
dotae birth rates peak earlier than peak B. longimanus
density, the NCE exerts its major influence earlier than
when CE effects are maximized. Thus, the model esti-
mates the strongest B. longimanus effects in years when
B. longimanus biomass density reaches high levels early,
when D. mendotae birth rates would otherwise be high.
This contrasts with a CE, which as modeled in Eq. 1
increases mortality the same amount whenever B. longi-
manus density is high, regardless of time of year. This
aspect of the NCE is seen in the temporal patterns in the
data. For example, we can calculate a 45-d moving aver-
age of D. mendotae biomass density (Davg(t)) as we did
for B. longimanus (Eq. 5, using a modified correction
factor equal to one-half the lowest observation for
D. mendotae) and then estimate the rate of D. mendotae
population change (rest) early in the growing season
(days 175–225) each year:

rest ¼ lnðDavg 225ð Þ=Davg 175ð ÞÞ (12)

Consistent with the NCE detected by the model, the rate
of D. mendotae population change between days 175
and 225 was negatively related to B. longimanus biomass
density during that same period (geometric mean of
smoothed B. longimanus biomass density + 0.0005 over
days 175–225) in the same year (Fig. 4). Although it is
impossible to rule out entirely that consumption of
D. mendotae by B. longimanus partly contributed to this
pattern, model performance including only the CE was
substantially poorer than the NCE model, even when we
relaxed the assumption of a fixed attack rate by allowing
it to vary seasonally (model j). The NCE therefore pro-
vides the most parsimonious explanation.
The large magnitude of the estimated effects of

B. longimanus onD. mendotae biomass density here likely
could have important consequences for the Lake Michi-
gan food web and are also likely relevant for the other
four Great Lakes where B. longimanus and D. mendotae
co-occur. For example, planktivorous fishes in Lakes

Michigan and Huron have undergone declines in biomass
since the 1990s, and these fish are key prey to Chinook
salmon Oncorhynchus tshawytscha and lake trout Salveli-
nus namaycush, which are the foundation of a multimil-
lion dollar recreational fishery (Bunnell et al. 2014).
Given that survival of larval planktivorous fish in the first
few weeks of life can depend on overlap with zooplank-
ton prey (Beaugrand et al. 2003), understanding the
mechanisms that regulate zooplankton densities is critical
to improved understanding and prediction of planktivo-
rous fish recruitment. Our model estimates of D. mendo-
tae vital rates can also be applied to future decision-
support tools that explore how future climate or nutrient
concentrations (perhaps modeled through modifications
to carrying capacity, j) would affect the dynamics of
D. mendotae, the most important herbivorous cladoceran
in terms of biomass (Vanderploeg et al. 2012).
Perhaps surprisingly, including CEs of B. longimanus

did not substantially improve model fit either alone or in
combination with nonconsumptive effects. Experiments
demonstrate that B. longimanus predation rates on
D. mendotae can be high (Vanderploeg et al. 1993, Pan-
gle and Peacor 2009), and thus one might expect high
CEs in the field. Migration in response to B. longimanus
chemical cues (Pangle et al. 2007) could be expected to
reduce B. longimanus consumption, although some stud-
ies still show spatial overlap between B. longimanus and
D. mendotae for at least a portion of the D. mendotae
population (Bourdeau et al. 2015, Nowicki et al. 2017).
Nevertheless, we found little evidence for a substantial
effect of consumption here. One possible explanation is
that our model for B. longimanus predation (i.e., Type-I
functional response) may exclude key biological realism;
for example, explicitly incorporating potentially critical
covariates that can influence predation rates, such as
light levels (Pangle and Peacor 2009) and temperature
(Yurista et al. 2010), could be explored in future models
and may allow for improved estimation of CEs.
Distinguishing between CEs and NCEs from observa-

tional data, as we have done here, depends on assumed
functional relationships. However, an advantage of
SSMs is that assumptions are made explicit in the equa-
tions and can be further tested in future work or com-
pared to experimental findings. For instance, a key
difference between how CEs and NCEs are modeled
here is that we assume that the NCE affects birth rate or
somatic growth rate, which we model with a seasonal
functional form, given known seasonal effects of temper-
ature and food resources on birth rate. Thus, the per
capita NCE of B. longimanus (gg(P)) varies seasonally
in magnitude in proportion to D. mendotae birth rate as
modeled, unlike the CE, which contributes additively to
mortality (i.e., proportional to B. longimanus). These
different functional forms thereby allowed us to at least
partially differentiate between a CE and an NCE. Evi-
dence for the latter was then strengthened by additional
tests under different assumptions (e.g., allowing seasonal
variation in consumptive effects in model j) and
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comparisons to prior work that also suggest the impor-
tance of NCEs (e.g., Pangle et al. 2007).
Fish predation is also an important consideration for

D. mendotae–B. longimanus dynamics, although we do
not expect fish effects to confound our results. In fact,
B. longimanus is susceptible to fish predation from ale-
wife (Alosa pseudoharengus) and other species (Bunnell
et al. 2015), and so more B. longimanus may be associ-
ated with overall lower fish predation on zooplankton.
That we saw declines in D. mendotae biomass density
associated with higher B. longimanus despite potentially
reduced risk from planktivorous fish at these times thus
provides further support that effects of B. longimanus
are important for D. mendotae dynamics, and that
B. longimanus may be an important competitor with fish
for zooplankton prey.
Another concern with analyses of field data relevant

to our study is disentangling the influence of seasonality
from other dynamical drivers, such as the effects of
B. longimanus. We chose a flexible approach to incorpo-
rate seasonality in the system (periodic b-splines), and
the additional tests we performed (i.e., using L. macru-
rus, the anomaly, or allowing other terms to vary season-
ally) offered further support that other seasonal factors
were not responsible for the observed effect of B. longi-
manus. Similar rigorous tests should be a broadly useful
approach to disentangle seasonality from other drivers
in many systems using SSMs. By using these tests, our
approach here was conservative in attempting to rule
out a confounding effect of seasonality; in fact, beyond
the NCE we detected, it is plausible that B. longimanus
effects on D. mendotae may also actually contribute to
the estimated effect of seasonal forcing. We may there-
fore be underestimating a CE or an NCE if they are
attributed to and therefore subsumed by the seasonal
model terms; explicitly considering some seasonal fac-
tors (e.g., temperature, resources) in the future may
allow better resolution of these effects. In particular,
future models including additional data for spatial varia-
tion in D. mendotae, B. longimanus, resources, and tem-
perature may allow better resolution of the relative
contribution of seasonality, CEs, and NCEs, as water-
column structure likely plays an important role in medi-
ating B. longimanus effects.
Our approach was also useful to quantify the influ-

ence of other drivers of D. mendotae dynamics, includ-
ing seasonality and density dependence. Model results
reflect how D. mendotae birth rates and biomass density
change with day of year (Fig. 3), likely due to seasonal
variation in temperature, food resources, water-column
structure, or other factors. Similarly, the estimated den-
sity-dependence term (j) and its confidence interval
indicate that D. mendotae population growth is substan-
tially density dependent under field conditions in Lake
Michigan, potentially because of competition for food
resources. Further, estimates of density dependence will
be vital for predicting impacts of ongoing changes
in the lower food web (Fahnenstiel et al. 2010). Our

findings thus motivate future work to investigate the
underlying mechanisms driving seasonality and density
dependence and implications to other parts of the food
web.
Our findings also provide estimates for the substantial

contribution of both measurement error (i.e., variation
introduced during measurement) and process error (i.e.,
uncertainty in the actual dynamics that cannot be
explained by the deterministic components of the cur-
rent model) to variation in the data. Estimates of these
sources of variation are critical to quantify uncertainty
for prediction of ecological dynamics and design sam-
pling efforts (e.g., frequency of sampling within and
across years) to maximize the information gained. Expli-
cit inclusion of measurement error (represented by r in
Eqs. 7 and 8) and process error (herein both birth rate
represented by e and the seasonal pulse represented by
Ψ) allowed us to quantify the amount of variation
among observations that is attributable to these sources
of error. Simulations illustrate that, based on our model,
process and measurement variation can lead to a wide
range of possible observed values under the conditions
of any given year. Although incorporating additional
covariates or added realism into the model in the future
may offer some reduction in the breadth of the simula-
tion intervals, much of this uncertainty may be irre-
ducible given available information. Nevertheless, our
results indicate that the data contain important informa-
tion about predictable changes in the dynamics of the
populations, such as the effects of B. longimanus, sea-
sonal forcing, and density dependence.
The models fit to time series here are relatively simple

and yet have provided new insights into interactions
among zooplankton in Lake Michigan. Nevertheless,
additional realism could likely improve model fit (e.g.,
improved capture of the outlier observations in 2011 and
2012) and the strength of inferences gained from the
model. For instance, our models only included one prey
species, whereas future models may attempt to incorpo-
rate multiple prey species simultaneously and potential
interspecific competition or apparent competition medi-
ated by B. longimanus. Our ability to distinguish
between increasingly complex models is limited by avail-
able data (i.e., number of observations and years
included), although continuing data collection may
allow for inference using more complex models. Future
work should endeavor to examine the limits to our SSM
fitting approach to provide insights under different limi-
tations that are at play in this and many other systems
(e.g., sampling frequency, number of data points, levels
of measurement error). Additional data collected as a
part of the NOAAGreat Lakes Environmental Research
Laboratory (GLERL) long-term research program
should also provide the opportunity to confirm estimated
effects here and test additional drivers of dynamics.
Our application of mechanistic models here thus

demonstrates how SSMs can provide useful insights into
classic questions in ecology, such as the contribution of
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predators and other drivers to animal population
dynamics, which for many systems remains largely hypo-
thetical. In some cases, time-series analysis of field data
may be the only approach to address such questions at
the relevant spatial scale. Fitting of models to data, as
we have done here, allows for more direct tests of such
fundamental ecological questions in spite of the complex
factors involved, including nonlinearities, measurement
error, seasonal forcing, and irregular measurement
(Bjornstad and Grenfell 2001), which are seldom consid-
ered simultaneously. Our findings thus demonstrate the
utility of using SSMs and provide a framework for
advancing ecological understanding in a mechanistic
framework. Further, our results provide novel and valu-
able example of quantifying NCEs over long timescales
at a field scale, providing further evidence for their
importance in ecological systems.
Finally, the insights gained from testing these

hypotheses are vital to understanding and predicting
consequences of ongoing large-scale environmental
changes, such as the ecosystem-scale shifts caused by
invasive species in the Great Lakes. In light of the suite
of challenges facing key natural resources globally,
advancing understanding of mechanisms for invasive
species impacts in the field represents an important step
forward.
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