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Determining the degree to which predation affects prey abundance in natural
communitieconstitutes a key goal of ecological research. Predatomsiesm prey through both
consumptiveeffects (CE) and nonconsumptive effeqdCEs), although the contributions of
each mechanism the density of prey populatiomemain largely hypotheticah most systems
Common statisticainethods applied tbme serieslatacannot elucidate the mechanisms
responsite.for hypothesized predateifects on preydensity (e.g.differentiateCEs from
NCEs), norprovide parameters for predictive modstatespace model6SSMs)applied to time
series data offer a way to meet these gotdse, we employSMsto assess effects of an
invasive predatory zooplanktéythotrephes longimanus, on an important prey species,
Daphnia mendetae, in Lake Michigan. Wéit mechanistienodels in &SMframework to
seasonal timesseries (199012) using a recently developed, maximum likelihood-based
optimization method, iterated filteripng/hich canovercome challenges in ecologicata(e.g.
nonlinearities, measurement error, and irregular sampling inter@als resultsindicate thaB.
longimanus strongly influence®. mendotae dynamicswith meanannual peaklensities oB.
longimanusebserved in Lake Michigagstimated to cause6d % reduction irD. mendotae
population‘grewthrateanda 5%b reduction irpeak biomass densitifurther, he observed.
longimanus.effectis most consistent witan NCEvia reducedirth rates. The SSMapproach
also providetestimates for key biological parametéegy.,demographic rat¢s@ndthe
contribution of dynamic stochasticity anteasurement erroQur studythereforeprovides
evidence derived directly frosurvey datdhattheinvasive zooplankteB. longimanus is

affecting zooplankton demographics after parameteestimateseeded to infornpredictive

models that.explore the effect Bflongimanus under different scenarios such as climate change

Keywords
Daphnia mendotae, Bythotrephes longimanus, nonconsumptive effects, iterated filtering,

predatorprey.interactionLaurentian Great Lakes

I ntroduction

Quantiication of the effects of predators on prey abundasmamportant for
understanding ecological systems. Experiments in the field and labaratwifer insights into
potential mechanisms through which predators affect preyrdnglating experimental
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measuremds to fieldrelevanteffectsis challenging. For instance, in addition to consumption
(i.e., consumptive effects, CEsjortterm experimental and observational studies suggest that
nonconsumptive effec(NCEs) of predators can strongly affect pragnsty (Nelson et al. 2004,
Matassa and Trussell 201 However, theealizedimportance oNCEs in natural systems has
recently been,called into question (discussed in Kimbro et al. 2017), aradattine

contributionsof CEs andNCEsto large scale, longermprey densitypatterngemain largely

unknown.

Existing.field time series data may contain valuable information regardingfitnence
of predators on prey abundaratdield-relevant spatial and temporal scaleseffect, analyzig
consecutiye points in time series with variable predator andgtm@ydances migluffer
informationabouthow each is affecting the other as a function of hypothesized mechanisms.
Challenges existhowever, textract this informationEcologicalsystems are complex, e.g., due
to nonlinearities and stochastigignd thecollection of ecological data is subject to measurement
error andotherseonstraints, such as irregular sampling intervals (Turchin and Taylor 1992,
Bjornstad/and Grenfell 2001, Scheffer et al. 2001). Further, potentially confounding f@ctpr
seasonalitydensity dependengean be difficult to disentangfeom predator effects.
Fortunately,recent methodological advancements can confront these challengesided pr
insightsrinto,the, contribution of different hypothesized mechanisms (Breto et al. @0id@sl et
al. 2015). Specifically, mechanistic models of population dynamics can be implemeritge as s
space models«(SSMs, also known as partially observed Markov process models or hidden
Markov models). SSMs include both a process model representing the true pojlylasioncs
and a measurement model representing the generation of ti{dleataan et al. 2014By
explicitly accounting for these sources of variation, SSMs allow for testing dfanestic

hypotheses.using time series data.

Thereareextensive time series data collectdnultiple trophidevels in the Laurentian
Great Lakedor management purposes, and applying SSMs to these data could be useful to
address majoquestionssuch ashe impact oinvasive species. fecent invader to théreat
Lakes believed to be having a major impact on the zooplankton community is the largerpreda
cladoceranBythotrephes longimanus. For example Daphnia retrocurva andD. pulicaria,
declined rapidly in Lake Michigan after the introductiorBofongimanusin 1986 (Lehman and
Caceres 1993, Barbiero and Tuchman 20RéLentexperimental and modeling research
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92 suggest thaB. longimanus could further baffectingthe abundancand spatial distributioof

93 current dominant zooplankt@peciesn the Great LakesSuch effects aref potential

94 importance to fisheries management, bec&usengimanus effects onzooplanktordensityand

95 position may reduce food availability foommonprey fishes, with potential impacts on growth
96 andrecruitment. Irturn, effects on prey fisheway affect key fisheries, such as Chinook salmon,
97 that depend onthose planktivo(dacobs et al. 2013, Boall et al. 2015).

98 Simulation and statistical modeling as well as experimental research suggBst that

99 longimanus.influences the composition and density of mesozooplankton througiCBstand
100 NCEs.B. longimanus is known to prey on zooplankton (Vanderploeg et al. 1993) and
101 bioenergetics models indicate planktivoryByongimanus can be substantié@Bunnell et al.
102 2011).NCEs are hypothesized to occur when zooplankton prey perBeleagimanus through
103 chemical cueand adopt anti-predatory behavior in response to higHengimanus densities
104 by migratingterlower depths (Pangle and Peacor 2006, Bourdeau et al.\v#@dith)reduces
105 predationriskout at the cost of reduceplowth rateand reproductiondue to colder water at
106 lower depths (Pangle et al. 200Ryevious research hastimate CEs andNCEs on
107 zooplankton populatiogrowth rates (Pangle et &007). Consumptive rates measured in the
108 Ilaboratory canbe used to estimate consumptive rates theNi@ls can be estimated from
109 known temperature dependent effects on zooplankton birth rate and field meassicrttent
110 effect of B. longimanus on zooplankton position (and hertbetemperatures that those
111 zooplankton-experiengeResults yield an estimate of the relative magnitudd@Es and CEs
112 on demographic rates, and thus serve to highlight potential influence of NCEs through
113 simulationsHowever,this approach cannot determin®iflongimanusis actually affectag the
114 density of'zooplankton in the field; e.there could be feedback mecharssmindirect effects
115 which would. offset the predicted negative effedtsereforewhile we can predict mechanisms
116 by whichB:lengimanus affectszooplankton population growth rate (eags,in Pangle et al.
117 2007), evaluating the extent to whiBhlongimanus affects zooplankton pregensityin the field
118 is a majerchallenge and could benefit from methods that allow for infed&ec#y from field
119 densitydata.This problem is not unique to tli&reat Lakes zoophktonsystem, as we are aware
120 of many studies that examine the influence of NCEs on prey demographic ratesalutfeed.,
121 Peckarsky et al. 2008, Kimbro et al. 2017), fewt that examine if NCEs are affecting prey
122 densitydirectly from preydensitypaterns.
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Heran our approach is taseSSMsto test the hypothesis thatlongimanus influences
the density of an important zooplankton spediegphnia mendotae, in the fieldthroughCEs
andNCEs. We focus oD. mendotae because itomposes eelatively high biomass among
cladocerans in the community (Vanderploeg et al. 2012) and is consumed by planktivorous
fishes(Bunnell.et al. 2015). Mitiple population models dd. mendotae, with different
functional dependence ais predatorB. longimanus, wereimplemented aSSMsand fit to time
series dat&iaarecently developed, maximum likelihood-based optimization method, iterated
filtering. Iterated filteringcan fit nonlinear, non-Gaussian, non-stationary SSMs to data and
handle complexiesassociated with ecological ddiiee irregular sampling intervaldonides et
al. 2006, 2015)Such complexities are intrinsic to complex ecological systems and field survey
data, including‘those available for the Great Lakesated filtering algathms are distinguished
from other state space model methodology by providing statistically efficientiasiom-based,
maximum likelihood inference for general nonlinear state space models @@tide, 2015).
Our approach should allow us to estimate key biological rates (e.g., birth and deatmihtbs)
magnituderof-predataffects,as well as the contribution of stochasticity to dynamics and the
influence of measurement error on variation in the,deltéch are important to account for in
orderto suecessfully address our hypothesis.

Weshadiwo goals:1) Evaluate if and to what extenB. longimanus affectsD. mendotae
densityand, if so, whether such effects are more consistentGfshor NCEs. 2) Estimate key
parameters (e.g., birdnd predation rates) needed to model this systgmch will be valuable

in the future*toypredict dynamics under different scenarios @igate change effects).

M ethods
Data description

D. mendotae andB. longimanus biomass density dataere collectd as part of dong-
term survey. of Lake Michigan zooplankton by the NOAA Great Lakes Environmental &esear
Laboratory(GEERL) at an offshore site near Muskegon, MI (depth = 110 m; 43° 11.99’, 086°
34.19’; located about 20 km offshore). The survey quantified the biomass density of crustacea
zooplankton 7-16 times per year across 16 years (1994-2003, 2007-2012) using whole water
column vertical net tows (details on sampling and biomass density calculatieestptein
Vanderploeg et al. 2012).
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154

155 General process model of population dynamics

156 Theprocessnodel represents dynamics@f mendotae using a stochastic, seasonally
157 forced variant of a logistic population growth modéie state variable 3. mendotae biomass
158 density,V (i.esthe prey zooplankton), and dynamics are represented by the folld@ghgstic
159 differential.equationvith respect to time;

qv = <V B(D) (1 - %) (1- ng(P)) - FV)P — uv) dt + VedW + p(t) (1),

160 wherep(t)’is afunction representing prey birth andsomatic growttrate at low population
161 size andk IS a prey density dependence tegimere affecting prey birtkomaticgrowth rate. The
162 termng(P).determines theanconsumptive effect d&. longimanus onD. mendotae viaa
163 proportionalreduction ibirth rate with P representindd. longimanus biomass density treated as
164 a covariate’(not dynamically modeled).efinctional responsg(V) determines the
165 consumptive effect, andis the background mortality rate Bf mendotae not due to
166 consumption byB. longimanus. TheNCE and CEof B. longimanus are described in more detalil
167 below (seeConsumptive and nonconsumptive predator effects). ThelVedW term allows for
168 randomivariation to occur iD. mendotae dynamics (i.e., process error), which can occur due to
169 factors influencing growth rates not specified in the model, such as variationthrew&he
170 standard deviatioa scaleghe process erra\W, and this process variation is driven by
171 Brownianimotion:

dW ~ Normal (mean = 0,sd = Vdt) (2),
172
173 which is a’common way to represent stochasticity in dynamic population models ZDan).
174 The termp(t) represents thimitiation of D. mendotae dynamicseach year via emergence from
175 resting eggsBriefly, p(t) is modeled as pulse that only contributed to the population on the
176 first day of each year’s dynamiasd is equal to zero on other déyselnitiation of dynamics
177 each year forsmore detail)
178
179 Seasonality in prey birth rate
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We modeled seasonality ih mendotae birth rate given known strong seasonality in
abundance due to factors such as temperature, light levels, and resources that affect birth rate

using the equation:

Ns
B = expd Y Aisi(®) )
i=1
where {s (1), 1 =1, ..., N} is a periodic cubic Bspline basis with 4 bases (N 4), a degree of 3,
and a period of 1 year; {Ai, i =1, ..., N} are parameters that specify the seasonality of the birth
rate.

B (t)isfintended ta@waptureD. mendotae seasonality using aufiction allowing enough
flexibility to capture dynamics while avoiding overly complicating the model| @ading
unnecessary-parameters). A periodgptine with N, > 3 provides a more flexible representation
of seasonalsfercing compared to a sinusoiddich has been used to represent seasonality in
biological parameters. Tests that we performed usiyvwy Nsuggested that additional parameters
result in worse model performance ba#wezl Akaike Information Criterion (AIC), a measure of
model quality, than N= 4. Eq.3 therefore provides a reasonable representation of the

seasonality-if=mendotae dynamics.

Consumptive and nonconsumptive predator effects

For theCE, weuseda Type | functional respons&)y) = aV, where a is B. longimanus
attack rate oD. mendotae, as a approximatelyinear response is expected at Eheanendotae
densities found'in the survey according to laboratory predation experiments (Pangiaeo P
unpublished.data)Ve also evaluated an alternative version of the model witpa I
functionakrespense (seevaluation of Type Il Functional Response).

Nonconsumptive effects &. longimanus onD. mendotae birth rate are represented by
the proportion reduction in bir rate (ng(P)) according to the equation fg(P):

g(P) = 7.601 + In(P + 0.0005) (4)

We used.a lagarithmic function based on the log-linear relationship of the behaworal (i
vertical migration) response Bf. mendotae to B. longimanus density (e.g., Bourdeau et al.
2015) that leads to an expected reduction in birth rate due to the colder tempéarataeger
water. A correction term (0.0005) was used to account for zero observations equivalent to % the

smallest observation & longimanus. The equation fog(P) includes the negative natural log of
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the correction terng—In(0.0005) = 7.601) to be consistent with a reduction in birth rate (i.e.,
to eliminate the potential for a positive effectBoi ongimanus biomass density on population
growth at lowB. longimanus densities).

Theeffects ofB. longimanus weremodeled as forcing functions in whitte potential
dynamic feedbacks . longimanus densityarenot included in the model for two reasoRgst,
there are likely/other factors thaffectB. longimanus density, including other prey items (e.g.,
copepodsBosmina longirostris, and otheB. longimanus), predation by fish, and physical
factors (e/g.variable water currentsemperaturg(Keeler et al. 2015). Second, treatiBg
longimanus as a state variable would require a substantial increase in the complexity of the
model duestosthe potentially large number of additional parameters needed tdmodel
longimanusidynamics. Adding such additional complexity would substantiatiease the
challenge of fitting the modgtiue to having to estimate multiple additional parametéisa
limited number of available data points (n = 134).

To reduce the influence of measurement error on estimatBs|fawimanus (note: the
measureenterror model in E. and8 below applies only for thB. mendotae state variable)
which could influence our estimates for predator effestg)othing was performed by
calculating-anoving averagéor B. longimanus, P. We used a 4%8lay window for the moving
averagewhich we expected should minimize information lost while reducing the influence of
measurement errofhis windowwas chosebecaus¢he mean gap between observations
(excluding . gaps between yeav&gs 2 days, so that the value for the moving average on each
day was typically influenced by 2-3 observations. We expected that a shorter windbev for t
moving average would be insufficient given the mean time gap between observatioas, whil
longer window could smooth over too myabtentially informativevariationin B. longimanus
given the typical generation time Bf longimanus (7-15 days, Kim and Yan 201jurther, &sts
using a longer.(e.g., 59-day) and shorter (e.g., 7-day) window for the movingeavesatjedn
worse fitsbased ormaximum likelihood estimatean the 45-day windov&imilar tests
comparing.different duratiorfg|ave been usad other system® establish the appropriate
window for‘assessing impacts of other important covariates, sudimasic factorgvan de Pol
et al. 2016)Further, &sts we performed using alternative methods of interpolation and

smoothing (i.e.In(+0.0003 transformatbn of B. longimanus data prior to calculation of a
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moving average or using a moving 45-day median) did not offer improvement in model
performance based &iC, and did not substantially affect our results.

The calculation of the moving averaige B. longimanus biomass densitinvolved two
steps. First, daily estimates of biomass density were interpolated linearly between observations
for gaps between observations, with the exception of the gap between the lastiobseacht
year and the firSt observati@f the subsequent yedmterpolation is necessary, as the model
represents‘continuodsne dynamics, so that a valter each covariates required at each time
step.The gapbetween years was treated differently because data were rarely collected durin
winter and early spring, ari®l longimanus s typically absent from the water column at that
time, whilesthespopulation is maintained as resting eggs. We therefore assunigd that
longimanuswas absent for the first 50 days each year (i.e., we. $etgimanus biomass density
to O for those days), prior to the interpolation.

Second, these interpolated valuBg:{ were then used to calculate addy geometric
mean P). Thecorrection tern{0.0005, as for Eq. 4yas used to calculate the geometriaméo
account forthe 'presence of Os in Baéongimanus data(otherwise the mean would be O for any
time points'with a 0 in the 45-day moving average window).A bevariate for each time (t)

was thus:

1/45

45
P(t) = (ﬂ P (t =23 +1) + 0.0005) —0.0005 (5)

i=1

Initiation of dynamics each year

Becausé. mendotae are effectively absent from the water column in wintezallowed
the populationn.the water colummo go extinct each winter and be reseeded via a pu(s¥ (
representingsthe emergence from resting eggs each spring occurring 7 days pricaricetiie e
observation oD; mendotae in the dataThe size oflte pulse is not well understadd fact, it is
plausible that the abundance of neonates emerging fromgesigs is not strongly dependent
on the previous year's density given that resting eggs can survive for multipléGexaases
1998) and strong variatiarccursin physical processes that promote hatcliitgrfoot et al.
2004) We therefore assumed the size of the pulseraradom and log-normally distributed:

In(p(t)) ~ Normal (¢, ) (6)

¢ and y represent the mean and standard deviation of the natural log of thgulse, respectively.
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Measurement model

A measurement model is used to deschibe observations (i.e., the data, which are
subject to_ measurement error) were generated from the prey biomass state variable, which
represents the true biomass denshgrefore the observed dataetreated aslrawn froma
distribution,around the trugtate of the systenvieasurement error in this sense is general,
including any“differences between samples collected on different days rimftatike to changes
in the true"biomass density (e.g., due to differences between two net tows due-sralaall
spatial variation or potential shedrm fluctuations due to water currents or responses to
variation inslight levels that could affect individual measureme¥is) usel a leftcensored
normal(Normal.ceng distribution (e.g., Martinez-Bakker et al. 2015, in which the probability of
a zero value is treated as a point mass equal to the censored left tail of the normal distribution)
Two parametergo, and op) are specified so that the variance (6°) scalesjuadradtally with
population.size:

Vobsy ~ Normal ;_cens (Vt, 0) (7)

We used adeftensoredlistribution to account for zero observations in the datebanduse
negative observations cannot occlhe left-censored model assumes that the observed biomass
density atiany time point is normally distributed around the true biomass density statidard
deviation that.scales with population size according to Eq. 8, except teensfired model does

not allow ebservations of negative biomass density.

Model modifications to assess dynamic drivers
To examine the influence & longimanus, we fit four versions of the model to the data:
model a) a null.model (i.e., excluding aBylongimanus effect by fixinga andn at 0); model b)
a model including onlyhe NCE (i.e., fixinga at 0);model c) a model including ontihe CE
(i.e., fixingm.at 0); and model d) a model including btile CE andNCE.

Benchmark Satistical Models
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A reasonable méanistic model should perforbretter than @imple,nonmechanistic
benchmark model (King et al. 2008Ye thereforeeompared our mechanistic modelsv
straightforwardoenchmark models:irst, we used a model assuming obsemedendotae
biomass density is independently and identically distributed around a seasonalyraugtdge
(model e):

Vobsy ~ Normal ;_cens (Ds, 0) (9)

o~ \/agDm + oZD%, (10)

Dmrepresents medsiomass densitie®r eachmonth that observations werede and
observations are assumed to follaweftcensored normal distributipas for models-a
(although'model does not differentiate between measurement and process 8aoondyve fit
anAR (2) autoregressive modeith measurement error to our time sei®del f), in which
the observe®. mendotae biomassdensity depends linearly on thesvioustwo observations.
We used the sammeasurement modétq. 7 and8) for modelf as formodelsa-d, so as to allow

for zero but.ne.negative observations.

Mode fitting

Analyses were implementeding the pomp package in R v.3.3.3 (R Core Team 2018)
and annotated code is included in Appendix&3Ms(including all models except model e,
which wasi fit using the R optim functionjere fit to time series data usirigrated filtering via
the mif2 algerithm, which is a recently developed algorithm for estimating modehgtes via
maximum'likelihood e@mationthat offers substantial improvement over oth8M fitting
methods (lonides et al. 2015, King et al. 2016). For each rfibdsing iterated filteringwe
performed 100 runs in which a search through parameter space was initiated using aeandom s
of starting values for each parameter. Starting values were generated frdorra distribution
bounded by broad plausibkalues for each parameter. The fit of different models was compared
based on thesAkaike Information CriteriphlC) calculated using the maximum likelihood
estimatewhich provides a measure of model performance that weighs both model complexity
based on the number of parameters and fit based on the likelihood (AkaikeA giffgrence
of 2 AIC unitsindicatesa substantial improvement in model performance (Burnham and
Anderson 2002).
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322  Magnitude of B. longimanus effect

323 To quantify effects oB. longimanus on D. mendotae biomass density, we used

324 simulationsfrom thefitted model (model b, the best model based on AK& results)We

325 compared biemass densitigsD. mendotae in 10,000 simulated §eardata sets including or
326 excluding the effect dB. longimanus by setting 1 to the maximum likelihood estimated value or
327 0, while"all'other paameters were fixed at their maximum likelihood estimated valures.

328 simulations use@nacrossyear seasonal mearf smoothed. longimanus biomass density for
329 predator hiomass densitWe note thathese simulations necessarily do not reflect the faljea
330 of actual variation in the system (e.g., due to uncertainty in parameter es}imstprovide a
331 straightforward 'way to quantify and visualize reductiond.imendotae biomass density caused
332 Dby estimated effects &. longimanus.

333

334 Parameter estimates and confidence intervals

335 To gainsfurther insight into the influence Bflongimanus and density dependence on
336 dynamics, werdeveloped confidence intervals for the model estimatesSNEEh@) and density
337 dependenced parametersising profilelikelihood (Hilborn and Mangel 1997). In profile

338 likelihoadgthe likelihood is maximized amdl other parameters are estimated acrdssed

339 plausible range of values of thecal parametefi.e., n or x in our case)The result is a profile
340 that shows how the maximum likelihood changes depending ofott@parameter valuélhe
341 95% confidenee intervals are determined as the range of parameter values fohevlogh t
342 likelihood isswithin 1.92 units of the maximurmg-likelihood (Hilborn and Mangel 1997).

343

344  Evaluation.of potential influence of seasonality

345 We were concerned that seasonality may confound results for two reasons. First, because
346 B. longimanus.andD. mendotae densitiesvary seasonallywe were concernethat adetected
347 effect of B.lengimanus was actuallydue toother seasonal factors that covary vigth

348 longimanusbut.are not included in the model. Second NG in the models part of an

349 expression that includes a seasonality tg)), but theCE is part of an expression without

350 seasonalityso that aifference in the influence of tidCE andCE could potential be influenced
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by the difference in their relationship with seasonality in the mdtfel therefore performed
three additional analyses@aamine the influence of seasonality.

First, wewanted to compare the performance of our model W&ihgngimanus as the
predator to another species that we would not expect to Bffeendotae. We therefore
examined the.fit of thbestperforming mode(model h see Resuljsubdituting the biomass
density data foanother speciesjmnocalanus macrurus, as an alternative predator insteadof
longimanus(model g) As L. macrurus mostly occurs irthe hypolimnionand would have limited
spatial overlap'witlb. mendotae, we would not expect it to have a detectable effed.on
mendotae. [ However L. macrurus also exhibits strong seasonality in its dynamics (Vanderploeg
et al. 2012)serthat treating it in the same mm&r asB. longimanus (i.e., as a predator) in the
model provides a useful comparison to evaluate if seasonality itself coulsijomsele for any
detectedpredatary effect oB. longimanus. A test usingd-. macrurus thereby directhaddresses
whetherthe methodsvould have identified a spurious relationshiptfus particular species.

Second, we calculatedBalongimanus biomass density anomaly (deviations from the
average seasonal trend across years with the seasonal trend remoyadd compared how the
model perfermed when using the anomaly compared to the null model (msdelppendix
Sifor detailg. Because the anomaéxcluded the seasonal tremee would expect that including
the anomaly should substantially improve the m@d€él over a null modeif there is an effect
of B. longimanus distinct from a seasonal effect

Third, we examined two additional models to address alternative hypotheses for how
seasonalitysinfluencds. mendotae dynamics model i) a modified version of the ihmodel
(model a) thatincludes seasonal background mortality, p; and model j) a modified version of the
model with onlyCEs (model c) that allows seasonal changB.itongimanus attack rate, a. In
both models, each parameter was allowed to vary sefsasig periodic bsplines in the same
manner as birth rai@) (Eqg. 3). We performedhese analyse® ensure thabur finding of an
NCE of B. longimanus (see Resul)scould not be explained by seasonality in background
mortality orBrTongimanus consumption.

Evaluation of Type |1 Functional Response
In addition, to ensure that our results did not depend on the choice of functional response

used in our model, we modified model c to incladeype Il functional response f&fV):
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oV
fv) = TT oV (11),

381 where h represeni& longimanus handling time foD. mendotae (model k).
382

383 Results

384 The mechanisti&SMsperformed substantially better than the benchmark models based
385 on AIC (Table 1).

386 The models includinghe NCE of B. longimanus on D. mendotae outperformed the

387 alternative'modelbased on a comparison of AIC valubscontrastincludingthe CE did not
388 improve the modgberformance either in the absencénatusion of theNCE. Only the model
389 with both theCE andNCE was within 2 AIC units of the best fit model that includeeNCE
390 but nottheCE(model b).Because the formenodel included aadditional parameter and

391 offered nosimprovement ovéne latter modelwe moved forward with model b as the best
392 model.

393 To visualize the fit of the begtodel, we generated 10,000 simulated data sets (including
394 the contribution of both process and measurement efroms}he fitted model using the

395 parameterwvalues at the maximum likelihood estimate (Tab@u2ntiles of the resulting

396 simuldions are sbwn to represerthe medianand 95% simulation intervals (Figj). Theclear
397 seasonality of the simulation median suggests strong, predictable seasoialityendotae

398 dynamics.In contrastlifferences between years awgotlerand less predictable. The relatively
399 broad 95% simulation intervals reflect relatively high levelsasfation among simulations,
400 attributable tadynamic stochasticity and measurement error. All but four observations fah wit
401 the simulatienintervals,with the two most notable exceptions beingedbkpecially higlpeaks in
402 theD. mendotaedatain 2011 and 2014dn these yeardB. longimanus had especially high

403 density earlierin the seasdar which the model would predict low&. mendotae densities

404 than observed those years.

405 Themaximumlikelihood parameter estimates indicd&elongimanus can have a

406 profoundiinfluence o®. mendotae density. Based on tHited modelestimate for n, D.

407 mendotae birth rates are reduced by % at the meapeakB. longimanus across years (Fi@a).
408 Simulationsfrom the model generated using the maximiiketihood estimate compared to

409 simulations generated using the same vdloiesther parameters bakcluding theeffectof B.
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longimanus (i.e., settingn equal to ) suggests thdahe nonconsumptiveffect onpopulation
growth rateresulsin as large aa 59% reduction iD. mendotae biomass densit{difference
between height of peaks in Fig. 2Ibhe likelihood profile for 1) reveals our level of confidence

in our parameter estimate (FBp, showing 95% confidence intervals). Using the lowest and
highest value.of eta (at confidence interval bounds), at the mean annual Bekdngimanus,
the NCE rangedrom a 28% to82% reduction in growth rate

Thefitted SSM also provides estimatestfar contribution of seasonality B mendotae
dynamics*Thefitted seasonal function Bormendotae birth rates suggests a peak Julian day
229 (August 16)n late summer. In the presenceBofongimanus at its mean biomass density
the peak bethrshifts in timing (10 days earlier to Julian day 219sarducediue to theNCE
(Fig. 2a).

Density dependence also influen&snendotae dynamicsbased on parameter estimate
and its confidence interval (Tableg. 3b).The parameter estimate fof33 mg x m°) was
within the range of observe®l mendotae biomass densit{0- 74 mg x nit), with 6 observations
of D. mendetaelbiomass density exceeding the estimated value, &uggesting thatigh
conspecific'densitiesay almost entirely suppress positivemendotae growth underealized
conditionss«in Lake Michigan.

Other parameter estimates provide insights into the contribution of measurement error
andprocesstochasticityBased orkEq. 7 and 8, thestimaes for 6, and o indicate that the
standard deviation of observed biomass at nieanendotae biomass was approximated)%
of mean indicating a substantial impact of measurement errore$timate fothe standard
deviation ofD=mendotae growth rate €) is also large (126% of the maximwgeasonagrowth
ratewhenat low population size, (t)), suggesting the importance of process stochasticity as
well. Bothprocessstochasticity and measurement error thus contribute to the high levels of

variationin,the datgFig. 1).

Eval uation.efpotential influence of seasonality

Thethreetests indicate that thesultthatB. longimanus affectedD. mendotae through
anNCE was not confounded tseasonalityFirst, uisingL. macrurus biomass density as the
predator(model g) had the opposite effect than udnfpngimanus as itperformed worse than
the model with no predator effeghodel a)pased on AlICTable ). Second, using thg.
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longimanus anomaly (model h) substantially improved the model fit compared to the model
without effects ofB. longimanus, despitethe removal of thacrossyear seasonal trenthereby
providing further evidence for an effect®flongimanusindependent of seasonal factdfshe
observed effeabf B. longimanus was due to other seasonal confounding factors, no
improvement.would be expected by only using the anomaly. Notably, howle@nodel using
the anomaly did not perform as well as the model usingc¢helB. longimanus biomass
densitydata(model b), suggesting both anomalamsl seasonalariation inB. longimanus
contribute"taD>"mendotae dynamics.Third, if our detection of the NCE as caused by a
confounding factor associated with the seasonal nature of the birth rate éewouidexpect
that adding: seasonality to the mortalityattackrate (models i or j) would have a similar
influence to‘includinghe NCE. Howevennodels i and j performed substantially worse than
model b (Tablel), supporting the importance ofNIGE.
Evaluation of Type Il Functional Response

Finally, tests using an alternative (Type II) functional response (model k) revealed that

our findingswere not sensitive to the assumed functional response @¥.the

Discussion

Quranalysisprovidesevidence thtB. longimanus has strong negative effects Dn
mendotae population growth ratanddensityin offshoreLake Michiganand supports the
hypothesis.thaanNCE is the underlyingnechanismFurther, ouanalysisquantifies key
demographicrates f@. mendotae, including birth and death rates, which can be used in models
that forecast.the effects of future changes, such as climateecbhananges in nutrient
concentrations, with implications for overall Lake Michigan food web dynaamddisheries
Our results demonstrate the utility of developing SSMs and fitting them to field time series data
to assess mechanisms by which predators affect prey, despite the challenges intrinsic to
ecological systems and data.

Ourfindings provideevidence ofand, for the first time to our knowledge, quaniiZEs
derived fromfield-based time series ddataa mechanistic frameworRhe observedegative
effect of B. longimanus on D. mendotae population growth rateesulted froman NCEin which
B. longimanus reduced. mendotae birth/somatic growth rate©f the mechanistic models
compared, the model includiddCEs but notCEs provided the best fit relative to the number of
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parameters based on Alénd greatly reduced AIC relative to the additiol€&t alone.
WhereasNCEs have received considerable attention, most studies have been performed in a
laboratory setting, mesocosms, amtlosuresFurtherwhereas there is an increasing number of
studies performed in the field, very few studies examine the influencensitydgased on field
data(Sheriff.et.al. in review)For example, previous studies evaluatN@Es of B. longimanus
onD. mendetae(Pangle et al. 2007, Bourdeau et al. 26&8hbined laboratory studies that
elucidate the"behavioral responsddofmendotae to B. longimanus with field survey data db.
mendotae vertical position at differerdensitiesof B. longimanus. Usingtemperaturalependent
growth madelsthese studiepredicteda largereduction in fitness db. mendotae due to lower
temperaturegxpeienced athe lower depths occupies a result afhe antipredator response to
B. longimanus. Similarly, other studies th&iave examinedlCEs in the field, have, for example,
combined knowledge of predation rates and induced changes in prey behavior to explain
hypothesized nonconsumptive effeatsspatial variation in prey abundar(eeg., wolf
avoidance by elk in Yellowstone, Creel et al. 20§hark avoidance by marine vertebrates,
Heithaus et-alw2009). Our approach to documemiGgs from field datahereis qualitatively
different, in"thatevidencevasderived directly from changes in density of prey in relation to
changes‘in.predator detys linked through mechanistic models.

We-examined the time series data, and the model fits, to interpret why the inclusien of
NCEin the model leads to a large improvement in model performance, but add®ig does
not. Importantly, becaud®. mendotae birth rates peak earlier than péakongimanus density,
the NCE exertsiits major influencearlier tharwhen CE effects are maximizethus, the model
estimates thesstrongeBtlongimanus effects in years whel. longimanus biomass density
reades high levels early, whéh mendotae birth rates would otherwise be high. This contrasts
with aCE, which as modeled in Eq.idcreass mortality the same amount wheneBer
longimanus density is high, regardless of time of yeHmnis aspect of thBICE is seen in the
temporal patterns in the data. For example, we can calculatday4foving average @.
mendotae biemass density (Rq(t)) as we did foB. longimanus (Eg. 5, using a modified
correction factoequal to one half the lowest observationdomendotae) and then estimate the
rate ofD. mendotae population change {&) early in the growing season (days 175-225) each

year:
Vest = ln(Davg(zzs)/ Davg(175)) (12)
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Consistent with th&lCE detected by the model, the rateDofmendotae population change

between days 175 and 225 was negatively relatBdltimgimanus biomass density during that

same period (geometric mean of smootBelbngimanus biomass density + 0.0005 over days
175-225) in the same year (Fig. While itis impossble to entirelyrule out that consumption of

D. mendotaeby.B. longimanus partly contributed to this pattern, model performance including

only the CEwas substantially poorer than the NCE model, even when we relaxed the assumption
of a fixed attack rate by allowirigto vary seasonally (model jyhe NCE thereforeprovides the

most parsimonious explanation.

The large magnitude of the estimated effect8.ddngimanus on D. mendotae biomass
density here likely have important consequences for the Lake Michigan food web alsd are a
likely relevant for the other four Great Lakes whBréongimanus andD. mendotae co-occur.

For example, planktivorous fishes in Lakes Michigan and Huron have undergone declines in
biomass since the 1990s, and these fish are key prey to Chinook Satoaohynchus
tshawytscha.and lake trougalvelinus namaycush that are the foundation of a muttidlion dollar
recreationalffisheryBunnell et al. 2014). Given that survivallafval planktivorous fish in the
first few weeks‘of life can depend on overlap with zooplankton prey (Beaugrand et al. 2003),
understanding the mechanisms that regulate zooplankton densities is oritigatdved
understanding and prediction of planktigas fish recruitmenOur model estimates @f.

mendotae vital rates can also be applied to future decisiopport tools that explore how future
climate or'nutrient concentrations (perhaps modeled through modificationsyiog&apacity,

k) would affeetithe dynamics @. mendotae, the most important herbivorous cladoceran in
terms of biemassanderploeg et al. 2012).

Perhaps surprisingly, includin@Es of B. longimanus did not substantially improve
model fit either alone or in combination with nonconsumptive effects. Experiments deatens
thatB. longimanus predatiorrateson D. mendotae can behigh (Vanderploeg et al. 1993, Pangle
and Peacor,2009and thus onenight expect highCEs in the field. Migrationin response t&.
longimanus.ehemical cues (Pangle et al 2006) cdutdexpected to redu&: longimanus
consumption,,althougsome studies still show spatial overlap betwBdiongimanus andD.
mendotae for at least a portion of tHe. mendotae population(Bourdeau et al. 2015, Nawki et
al. 2017) Nevertheless, we fourldtle evidence for a substantial effect of consumptiere.

One possible explanation is tlair model forB. longimanus predation (i.e., Type | functional
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responsejnayexclude key biological realisnfior exampé, explicitly incorporating potentially
critical covariates that can influence predation ratesh as light level@angle and Peacor
2009) and temperature (Yurista et al. 2010), could be explored in future randetsay allow
for improved estimation ofEs.

DistinguishingbetweenCEs and NCEs from observational data, as we have done here,
depends on assumed functional relationships. Howeverheantage of SSMs is that
assumptionsare made explicit in #guationsand can béurthertested in future workr
comparedto'experimental findings. For instandeadifferencebetween howCEs andNCEs
are modeledhere isthatwe assume that tHeCE affectsbirth rate orsomaticgrowthrate which
we model witha.seasonal functional forngiven known seasonal effects of temperature and food
resources on birth rat&hus, the per capitdCE of B. longimanus, (ng(P)), varies seasonally in
magnitude in proportion tD. mendotae birth rateas modeled, unlike theE, which contributes
additively to mortality(i.e., proportional t@®. longimanus). These different functional forms
therebyallowed us tat least partiallylifferentiate betweea CE and arNCE. Evidence for the
latter was thengstrengthened by additideatsunder different assumptions (e.g., allowing
seasonal variation in consumptive effects in modahgl comparisons farior work that also
suggest the importance BCEs (e.g., Pangle and Peacor 2006).

Fishpredations also an important consideration for mendotae-B. longimanus
dynamics, although we do not expect fish effects to confound our résuéist, B. longimanus
is susceptible to fish predatidmom alewife @Alosa pseudoharengus) and other species (Bunnell
et al. 2015)"and so moBe longimanus may beassociated with overall lower fish predatiom
zooplanktonThat we saw declines [D. mendotae biomass densitgssociated with highds.
longimanus despitepotentiallyreduced risk from planktivorodsh at these times thus provides
further support that effects 8f longimanus are important foD. mendotae dynamics, and that
B. longimanus.may be an important competitor with fish for zooplankton prey.

Anogtherconcern with analyses of field data relet/to our study is disentangling the
influence ofsseasonality from other dynamical drivers, such as the efféktiongimanus. We
chose a flexible approat¢bincorporate seasonality in the syst@rariodic bsplines) and the
additional testsve performed (i.e., using macrurus, the anomalypr allowing other terms to
vary seasonallyffered further support that other seasonal factors were not responsible for the
observed effect dB. longimanus. Similar rigorous tests should be a broaddgful approach to

This article is protected by copyright. All rights reserved



564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

disentangle seasonality from other drivers in many systems using BgMsing these tests, our
approach here was conservative in attempting to rule out a confounding effect of siyagonali
fact, beyond theNCE we detectedt is plawsible thatB. longimanus effects orD. mendotae may
also actually contribute to thestimated effect aeasonal forcing. We may therefore be
underestimatin@ CE or anNCE if they are attributed tand therefore subsumed thye seasonal
model termsexplicitly considering some seasonal factors (e.g., temperagis@urcesin future
may allow better resolution of these effects. In particulduré models including additional data
for spatial*variation iD. mendotae, B. longimanus, resourcesand emperature may allow better
resolution of the relative contribution séasonatly, CEs, andNCEs, aswater column structure
likely playssamsimportant role in mediatimy longimanus effects

Our-approach was also useful to quantify the influenaehadr drivers oD. mendotae
dynamics, including seasonaléynd density dependemcModel results reflediow D. mendotae
birth ratesandbiomass densitghange with Julian day (Fig. 3), likely due to seasonal variation
in temperature, food resources, gratolumn structure, or other facto®milarly, theestimated
density dependence terr) @nd its confidence intervaldicatethatD. mendotae population
growth issubstantiallydensity dependent under field conditions in Lake Michigan, potentially
due to competition for food resources. Further, estimates of density dependencevitéll foe
predictingsmpacts of ongoing changes in the lower food web (Fahnenstiel et al. 2010). Our
findings thus motivate future work to investigate the underlying mechanisms driving $#yasona
and density dependence anplications to other parts of the food web.

Ourfindings alsgrovide estimates for theibstantial contribution of botheasurement
error (i.e., variation introduced during measurement) pratesserrar (i.e., uncertainty in the
actual dynamics that cannot be explained by the deterministic components of the codedht m
to variation in the daté&stimates of these sources of variation are critical to quantify uncertainty
for prediction.of ecological dynamics and design sampling efforts (e.g., frequency of sampling
within and.across years) to maximize the information gained. Explicit inclusimeadurement
error (represented by o in Eq. 7 and 8) and processrror (here in both birth rate representgd
and the seasenal pulse representet}bgilowed us to quantify the amountwariationamong
observationshat is attributable tthesesources oérror. Simulations illustrate thabased on our
model,process and measuremeatiation can lead ta wide range of possible observed values
under the conditions of any given year. Although incorporating additional covariates or added
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realism into the modeh future may offer some reduction in the breadth ofstheulation
intervals, much of this uncertainty mayibeducible given available informatioNevertheless
our resultsndicatethatthe datacontain important information aboptedictable changes in the
dynamics of the populations, such as the effecB hgimanus, seasonal forcingand density
dependence:

The.models fit to time series here are relatively simple and yet have provided new
insightsiinto‘interactions among zooplankton in Lake Michigan. Neverthelessomaldiealism
could likely‘improve model fit (e.g., better capture thelier observations 2011 and 2012
and the strength of inferences gained from the model. For instance, our modelslodidinne
prey speciesgwhile future models may attempt to incorporate multiple pregsspec
simultaneously and potential interspecific competition or apparent coimpetiediated bys.
longimanus. Ounability to distinguish between increasingly complex models is limited by
available datdi.e., number of observations and years included), although continuing data
collection may allev for inferenceusing more complex models. Future work should endeavor to
examine theglimits to ouBSMfitting approach to provide insights under different limitations
that are at'play‘in this and many other systems (e.g., sampling frequency, numbepofrdaf
levels of measurement error). Additional data colleeted part of the NOAA GLERL Long
Term Research prograshould also provide the opportunity to confirm estimated effects here
and test additional drivers of dynamics.

Our.application of mdtanistic models herhius demonstrates hd@EMscan provide
useful insightsuinto classic questions in ecology, such as the contribution obpsetat other
drivers to animal population dynamics, which for many systems remains largely hydttetic
some cases, time series analysis of field data may be the only approach to address such questions
at the relevant spatial scale. Fitting of models to data, as we have done here, allows for more
direct tests.of such fundamental ecological questions in dgite complex factors involved,
including nonlinearities, measurement error, seasonahfprand irregular measurement
(Bjornstad.and Grenfell 2001), which are seldom considered simultaneously. Our findings thus
demonstrate the utility afsingSSMsand provide a framework for advancing ecological
understanding in a mechanistic framewadtlrther, our resultgrovide novel and valuable
example of quantifyin@lCEs over long timescalest a field scalgproviding further evidence
for their importance ircological systems.
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626 Finally, the insights gained from testing these hypotheses are vital to understanding and
627 predicting consequences of ongolagge scaleenvironmental changes, such as the ecosystem-
628 scale shifts caused by invasive species in the Gaedatd. In light of the suite of challenges

629 facing key natural resources globally, advancing understanflimgchanism$or invasive

630 species impact® the fieldrepresents an important step forward.

631
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Table 1: Model AAIC values relative to best model (lowest AIC).

Maximum
M odel L og- Parameters | AIC AAIC
Likelihood
a. NoB. longimanus effect -213.3 11| 448.6 6.9
b. B. longimanus nonconsumptive effect -208.9 12| 441.7 0.0
c. B. longimanus consumption -212.5 12| 449.1 7.3
d. Consumption and nonconsumptive
effect 2087 4434 L
e Monthly average 1.1.D. -336.3 13| 698.5 256.8
f. AR (2) with measurement error -369.4 6| 750.7 309.0
g. Limnocalanus nonconsumptive effect -212.5 12| 449.1 7.3
h. B. longimanus anomaly -210.2 12| 444 .4 2.6
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I. Seasonal birth and background death -210.4 14| 448.9 7.2

J. Seasonal birth and attack rate -210.1 15| 450.3 8.5

k. Type Il functional response -212.0 13| 450.0 8.9

768 Table2: Values of model terms at mamum likelihood estimate for best fit model (b).

769
770
771
772
773
774
775
776
777
778
779
780

Parametel Description Estimate Units
A Seasonal birth rate -10.0 In(day™)
A2 Seasonal birth rate -3.4 In(day?)
A3 Seasonal birth rate -1.2 In(day™)
Aa Seasonabirth rate 0.32 In(day™)
K Density dependence term 32.5 mg x m°
M Background mortality 0.048 day”
Attack rate NA | (mgB. longimanus)™ x day"
n Induced proportional birth reduction]  0.089| (In (mg B. longimanus))™
€ Standard deviation of growtiate 0.26 day’
® In (Spring pulse mean) -3.2 mg x mi°
'd Standard deviation of In (Spring puls 1.7 mg x m°
Oa Measurement error (scales withry 0.22 mg x m°
ob Measurement error (scales withr)?) 0.39 mg x m°

Figure Legends
Figure 1: SimulatedDaphnia mendotae biomass density (mg/hfrom fitted model compared to
D. mendotae andBythotrephes longimanus time series daten Lake Michigan from 1994-2012.
Median and*95% simulation intervdits themodelthatonly includes nonconsumptive effects
(model b) Black solid line:D. mendotae; Red dashed lind3. longimanus; blue dashed line:
median simulate®. mendotae biomass density; datiue dotted line: 95% simulation intervals.
Thefirstiobservations in 2007 and 2012 andEhenendotae peak in 2011 are cut off from the

plot.

Figure 2: For the fitted model (model b, which only includes nonconsumptive effagts):
estimated seasonal bintate andd) simulated biomass density (from 10,000 simulations) of
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782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

Daphnia mendotae in the presencegfeen dashed liner absenceb{ack solid ling of
Bythotrephes longimanus. Growth rates andimulateddensity were determined using across
yearaverage®f smoothed. longimanus biomass densitgreddashed lineén plot b) for each

Julian dayEstimated bckground mortality rate is indicated by tilae dotted line in (a).

Figure 3: Likelihood profilesfor a)n (reduction in Daphnia mendotae birth rate in response to
Bythotrephestongimanus) and b)k (density dependence) parameters. Black vertical lines
indicate 95%"€onfidence intervaig 0.038-0.11 (Inrhg B. longimanus))™; k: 22.555.6 mgD.
mendotae per nT). Black points show the two highest maximum likelihood estinfapes the
searches perfermed at each parametkre foreachprofile, blue lines show lmesssmoothed
curve fit to'those points, and gray shading (approximately the width of the poditgtes

confidence intervalfor theloess fit.

Figure 4: Estimated rate offange inDaphnia mendotae population early in growing season
(days 175-225y calculated \iay. 12) vs. smootheBythotrephes longimanus biomass density
(geometric'meanf smoothed. longimanus + 0.0050ver days 175-225) each year. Points are

shown as=iigit numbers representing each year.
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