
This is the author manuscript accepted for publication and has undergone full peer review but has 

not been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/ecy.2583 

This article is protected by copyright. All rights reserved 

 1 

Received Date:  2 

Revised Date:  3 

Accepted Date:  4 

Article Type: Articles 5 

Running Head: Predator effects on prey density 6 

Title: Evaluating consumptive and nonconsumptive predator effects on prey density using 7 

field times series data 8 

 9 

J.A. Marino, Jr.1-4, S.D. Peacor3, D.B. Bunnell5, H.A. Vanderploeg6, S.A. Pothoven7, A.K. 10 

Elgin7, J.R. Bence3, J. Jiao3, and E.L. Ionides

 12 

4 11 

1Corresponding Author: jmarino@fsmail.bradley.edu, (309) 677-2352 13 
2Department of Biology, Bradley University, 101 Olin Hall, 1501 W. Bradley Ave., Peoria, IL 14 

61625. 15 
3

480 Wilson Road, Room 13, East Lansing, Michigan 48824.  17 

Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building 16 

4Department of Statistics, University of Michigan, 311 West Hall, 1085 South University, Ann 18 

Arbor, MI 48109.  19 
5Great Lakes Science Center, U.S. Geological Survey, 1451 Green Road, Ann Arbor, MI 48105.  20 
6 Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric 21 

Administration, 4840 S. State Rd., Ann Arbor, MI 48108.  22 
7

 25 

Lake Michigan Field Station, Great Lakes Environmental Research Laboratory, National 23 

Oceanic and Atmospheric Administration, 1431 Beach St., Muskegon, MI 49441.  24 

 26 

Manuscript received 7 Sep 2018; accepted 13 Nov 2018; final version received 11 Dec 2018. 27 

Corresponding Editor: Caz M. Taylor 28 

Abstract 29 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1002/ecy.2583�
https://doi.org/10.1002/ecy.2583�
https://doi.org/10.1002/ecy.2583�


This article is protected by copyright. All rights reserved 

Determining the degree to which predation affects prey abundance in natural 30 

communities constitutes a key goal of ecological research. Predators can affect prey through both 31 

consumptive effects (CEs) and nonconsumptive effects (NCEs), although the contributions of 32 

each mechanism to the density of prey populations remain largely hypothetical in most systems. 33 

Common statistical methods applied to time series data cannot elucidate the mechanisms 34 

responsible for hypothesized predator effects on prey density (e.g., differentiate CEs from 35 

NCEs), nor provide parameters for predictive models. State space models (SSMs) applied to time 36 

series data offer a way to meet these goals. Here, we employ SSMs to assess effects of an 37 

invasive predatory zooplankter, Bythotrephes longimanus, on an important prey species, 38 

Daphnia mendotae, in Lake Michigan. We fit mechanistic models in a SSM framework to 39 

seasonal time series (1994-2012) using a recently developed, maximum likelihood-based 40 

optimization method, iterated filtering, which can overcome challenges in ecological data (e.g. 41 

nonlinearities, measurement error, and irregular sampling intervals). Our results indicate that B. 42 

longimanus strongly influences D. mendotae dynamics, with mean annual peak densities of B. 43 

longimanus observed in Lake Michigan estimated to cause a 61% reduction in D. mendotae 44 

population growth rate and a 59% reduction in peak biomass density. Further, the observed B. 45 

longimanus effect is most consistent with an NCE via reduced birth rates. The SSM approach 46 

also provided estimates for key biological parameters (e.g., demographic rates) and the 47 

contribution of dynamic stochasticity and measurement error. Our study therefore provides 48 

evidence derived directly from survey data that the invasive zooplankter B. longimanus is 49 

affecting zooplankton demographics and offer parameter estimates needed to inform predictive 50 

models that explore the effect of B. longimanus under different scenarios such as climate change. 51 

 52 
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 56 

Introduction 57 

Quantification of the effects of predators on prey abundance is important for 58 

understanding ecological systems. Experiments in the field and laboratory can offer insights into 59 

potential mechanisms through which predators affect prey, but translating experimental 60 
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measurements to field-relevant effects is challenging. For instance, in addition to consumption 61 

(i.e., consumptive effects, CEs), short-term experimental and observational studies suggest that 62 

nonconsumptive effects (NCEs) of predators can strongly affect prey density (Nelson et al. 2004, 63 

Matassa and Trussell 2011). However, the realized importance of NCEs in natural systems has 64 

recently been called into question (discussed in Kimbro et al. 2017), and the relative 65 

contributions of CEs and NCEs to large-scale, long-term prey density patterns remain largely 66 

unknown. 67 

Existing field time series data may contain valuable information regarding the influence 68 

of predators on prey abundance at field-relevant spatial and temporal scales. In effect, analyzing 69 

consecutive points in time series with variable predator and prey abundances might offer 70 

information about how each is affecting the other as a function of hypothesized mechanisms. 71 

Challenges exist, however, to extract this information. Ecological systems are complex, e.g., due 72 

to nonlinearities and stochasticity, and the collection of ecological data is subject to measurement 73 

error and other constraints, such as irregular sampling intervals (Turchin and Taylor 1992, 74 

Bjornstad and Grenfell 2001, Scheffer et al. 2001). Further, potentially confounding factors (e.g., 75 

seasonality, density dependence) can be difficult to disentangle from predator effects. 76 

Fortunately, recent methodological advancements can confront these challenges and provide 77 

insights into the contribution of different hypothesized mechanisms (Breto et al. 2009, Ionides et 78 

al. 2015). Specifically, mechanistic models of population dynamics can be implemented as state 79 

space models (SSMs, also known as partially observed Markov process models or hidden 80 

Markov models). SSMs include both a process model representing the true population dynamics 81 

and a measurement model representing the generation of the data (Newman et al. 2014). By 82 

explicitly accounting for these sources of variation, SSMs allow for testing of mechanistic 83 

hypotheses using time series data.  84 

There are extensive time series data collected at multiple trophic levels in the Laurentian 85 

Great Lakes for management purposes, and applying SSMs to these data could be useful to 86 

address major questions, such as the impact of invasive species. A recent invader to the Great 87 

Lakes believed to be having a major impact on the zooplankton community is the large predatory 88 

cladoceran, Bythotrephes longimanus. For example, Daphnia retrocurva and D. pulicaria, 89 

declined rapidly in Lake Michigan after the introduction of B. longimanus in 1986 (Lehman and 90 

Caceres 1993, Barbiero and Tuchman 2004). Recent experimental and modeling research 91 
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suggest that B. longimanus could further be affecting the abundance and spatial distribution of 92 

current dominant zooplankton species in the Great Lakes. Such effects are of potential 93 

importance to fisheries management, because B. longimanus effects on zooplankton density and 94 

position may reduce food availability for common prey fishes, with potential impacts on growth 95 

and recruitment. In turn, effects on prey fishes may affect key fisheries, such as Chinook salmon, 96 

that depend on those planktivores (Jacobs et al. 2013, Bunnell et al. 2015).  97 

Simulation and statistical modeling as well as experimental research suggest that B. 98 

longimanus influences the composition and density of mesozooplankton through both CEs and 99 

NCEs. B. longimanus is known to prey on zooplankton (Vanderploeg et al. 1993) and 100 

bioenergetics models indicate planktivory by B. longimanus can be substantial (Bunnell et al. 101 

2011). NCEs are hypothesized to occur when zooplankton prey perceive B. longimanus through 102 

chemical cues and adopt anti-predatory behavior in response to higher B. longimanus densities 103 

by migrating to lower depths (Pangle and Peacor 2006, Bourdeau et al. 2011), which reduces 104 

predation risk but at the cost of reduced growth rate and reproduction due to colder water at 105 

lower depths (Pangle et al. 2007). Previous research has estimated CEs and NCEs on 106 

zooplankton population growth rates (Pangle et al. 2007). Consumptive rates measured in the 107 

laboratory can be used to estimate consumptive rates the field. NCEs can be estimated from 108 

known temperature dependent effects on zooplankton birth rate and field measurements of the 109 

effect of B. longimanus on zooplankton position (and hence the temperatures that those 110 

zooplankton experience). Results yield an estimate of the relative magnitude of NCEs and CEs 111 

on demographic rates, and thus serve to highlight potential influence of NCEs through 112 

simulations. However, this approach cannot determine if B. longimanus is actually affecting the 113 

density of zooplankton in the field; e.g., there could be feedback mechanisms or indirect effects 114 

which would offset the predicted negative effects. Therefore, while we can predict mechanisms 115 

by which B. longimanus affects zooplankton population growth rate (e.g., as in Pangle et al. 116 

2007), evaluating the extent to which B. longimanus affects zooplankton prey density in the field 117 

is a major challenge and could benefit from methods that allow for inference directly from field 118 

density data. This problem is not unique to the Great Lakes zooplankton system, as we are aware 119 

of many studies that examine the influence of NCEs on prey demographic rates in the field (e.g., 120 

Peckarsky et al. 2008, Kimbro et al. 2017), but few that examine if NCEs are affecting prey 121 

density directly from prey density patterns.  122 
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Herein our approach is to use SSMs to test the hypothesis that B. longimanus influences 123 

the density of an important zooplankton species, Daphnia mendotae, in the field through CEs 124 

and NCEs. We focus on D. mendotae because it composes a relatively high biomass among 125 

cladocerans in the community (Vanderploeg et al. 2012) and is consumed by planktivorous 126 

fishes (Bunnell et al. 2015). Multiple population models of D. mendotae, with different 127 

functional dependence on its predator, B. longimanus, were implemented as SSMs and fit to time 128 

series data via a recently developed, maximum likelihood-based optimization method, iterated 129 

filtering. Iterated filtering can fit nonlinear, non-Gaussian, non-stationary SSMs to data and 130 

handle complexities associated with ecological data like irregular sampling intervals (Ionides et 131 

al. 2006, 2015). Such complexities are intrinsic to complex ecological systems and field survey 132 

data, including those available for the Great Lakes. Iterated filtering algorithms are distinguished 133 

from other state space model methodology by providing statistically efficient, simulation-based, 134 

maximum likelihood inference for general nonlinear state space models (Ionides et al., 2015). 135 

Our approach should allow us to estimate key biological rates (e.g., birth and death rates) and the 136 

magnitude of predator effects, as well as the contribution of stochasticity to dynamics and the 137 

influence of measurement error on variation in the data, which are important to account for in 138 

order to successfully address our hypothesis. 139 

We had two goals: 1) Evaluate if, and to what extent, B. longimanus affects D. mendotae 140 

density and, if so, whether such effects are more consistent with CEs or NCEs. 2) Estimate key 141 

parameters (e.g., birth and predation rates) needed to model this system, which will be valuable 142 

in the future to predict dynamics under different scenarios (e.g., climate change effects).  143 

 144 

Methods 145 

Data description 146 

D. mendotae and B. longimanus biomass density data were collected as part of a long-147 

term survey of Lake Michigan zooplankton by the NOAA Great Lakes Environmental Research 148 

Laboratory (GLERL) at an offshore site near Muskegon, MI (depth = 110 m; 43° 11.99’, 086° 149 

34.19’; located about 20 km offshore). The survey quantified the biomass density of crustacean 150 

zooplankton 7-16 times per year across 16 years (1994-2003, 2007-2012) using whole water 151 

column vertical net tows (details on sampling and biomass density calculations presented in 152 

Vanderploeg et al. 2012).  153 
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 154 

General process model of population dynamics 155 

The process model represents dynamics of D. mendotae using a stochastic, seasonally-156 

forced variant of a logistic population growth model. The state variable is D. mendotae biomass 157 

density, V (i.e., the prey zooplankton), and dynamics are represented by the following stochastic 158 

differential equation with respect to time, t: 159 

 �� = �� �(�) �1 − ��� �1 −  ��(�)� − �(�)� − ����� + ���� + �(�) (1), 

where �(�) is a function representing prey birth and/or somatic growth rate at low population 160 

size, and κ is a prey density dependence term (here affecting prey birth/somatic growth rate). The 161 

term ��(�) determines the nonconsumptive effect of B. longimanus on D. mendotae via a 162 

proportional reduction in birth rate, with P representing B. longimanus biomass density treated as 163 

a covariate (not dynamically modeled). The functional response �(�) determines the 164 

consumptive effect, and � is the background mortality rate of D. mendotae not due to 165 

consumption by B. longimanus. The NCE and CE of B. longimanus are described in more detail 166 

below (see: Consumptive and nonconsumptive predator effects). The ���� term allows for 167 

random variation to occur in D. mendotae dynamics (i.e., process error), which can occur due to 168 

factors influencing growth rates not specified in the model, such as variation in weather. The 169 

standard deviation � scales the process error dW, and this process variation is driven by 170 

Brownian motion:  171 

 �� ∼  ������ (���� =  0, �� =  √�� ) (2), 

 172 

which is a common way to represent stochasticity in dynamic population models (Panik 2017). 173 

The term �(�) represents the initiation of D. mendotae dynamics each year via emergence from 174 

resting eggs. Briefly, �(�) is modeled as a pulse that only contributed to the population on the 175 

first day of each year’s dynamics and is equal to zero on other days (see Initiation of dynamics 176 

each year for more detail). 177 

 178 

Seasonality in prey birth rate 179 
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We modeled seasonality in D. mendotae birth rate given known strong seasonality in 180 

abundance due to factors such as temperature, light levels, and resources that affect birth rate 181 

using the equation: 182 

 �(�) =  ��� ������(�)��
�=1 � (3), 

where {si (t), i = 1, ..., Ns} is a periodic cubic B-spline basis with 4 bases (Ns = 4), a degree of 3, 183 

and a period of 1 year; {λ i , i = 1, ..., Ns

�(�) is intended to capture D. mendotae seasonality using a function allowing enough 186 

flexibility to capture dynamics while avoiding overly complicating the model (i.e., adding 187 

unnecessary parameters). A periodic b-spline with N

} are parameters that specify the seasonality of the birth 184 

rate.  185 

s > 3 provides a more flexible representation 188 

of seasonal forcing compared to a sinusoidal, which has been used to represent seasonality in 189 

biological parameters. Tests that we performed using Ns > 4 suggested that additional parameters 190 

result in worse model performance based the Akaike Information Criterion (AIC), a measure of 191 

model quality, than Ns

 194 

 = 4. Eq. 3 therefore provides a reasonable representation of the 192 

seasonality in D. mendotae dynamics. 193 

Consumptive and nonconsumptive predator effects 195 

For the CE, we used a Type I functional response, f(V) = αV, where α is B. longimanus 196 

attack rate on D. mendotae, as an approximately linear response is expected at the D. mendotae 197 

densities found in the survey according to laboratory predation experiments (Pangle and Peacor, 198 

unpublished data). We also evaluated an alternative version of the model with a Type II 199 

functional response (see: Evaluation of Type II Functional Response).  200 

Nonconsumptive effects of B. longimanus on D. mendotae birth rate are represented by 201 

the proportion reduction in birth rate (ηg(P)) according to the equation for g(P): 202 �(�) = 7.601 +  ln(� + 0.0005) (4) 

We used a logarithmic function based on the log-linear relationship of the behavioral (i.e. 203 

vertical migration) response of D. mendotae to B. longimanus density (e.g., Bourdeau et al. 204 

2015) that leads to an expected reduction in birth rate due to the colder temperatures in deeper 205 

water. A correction term (0.0005) was used to account for zero observations equivalent to ½ the 206 

smallest observation of B. longimanus. The equation for g(P) includes the negative natural log of 207 
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the correction term (−ln(0.0005)  =  7.601) to be consistent with a reduction in birth rate (i.e., 208 

to eliminate the potential for a positive effect of B. longimanus biomass density on population 209 

growth at low B. longimanus densities). 210 

The effects of B. longimanus were modeled as forcing functions in which the potential 211 

dynamic feedbacks to B. longimanus density are not included in the model for two reasons. First, 212 

there are likely other factors that affect B. longimanus density, including other prey items (e.g., 213 

copepods, Bosmina longirostris, and other B. longimanus), predation by fish, and physical 214 

factors (e.g., variable water currents, temperature) (Keeler et al. 2015). Second, treating B. 215 

longimanus as a state variable would require a substantial increase in the complexity of the 216 

model due to the potentially large number of additional parameters needed to model B. 217 

longimanus dynamics. Adding such additional complexity would substantially increase the 218 

challenge of fitting the model, due to having to estimate multiple additional parameters with a 219 

limited number of available data points (n = 134).  220 

To reduce the influence of measurement error on estimates for B. longimanus (note: the 221 

measurement error model in Eq. 7 and 8 below applies only for the D. mendotae state variable), 222 

which could influence our estimates for predator effects, smoothing was performed by 223 

calculating a moving average for B. longimanus, P. We used a 45-day window for the moving 224 

average, which we expected should minimize information lost while reducing the influence of 225 

measurement error. This window was chosen because the mean gap between observations 226 

(excluding gaps between years) was 21 days, so that the value for the moving average on each 227 

day was typically influenced by 2-3 observations. We expected that a shorter window for the 228 

moving average would be insufficient given the mean time gap between observations, while a 229 

longer window could smooth over too much potentially informative variation in B. longimanus 230 

given the typical generation time of B. longimanus (7-15 days, Kim and Yan 2010). Further, tests 231 

using a longer (e.g., 59-day) and shorter (e.g., 7-day) window for the moving average resulted in 232 

worse fits based on maximum likelihood estimates than the 45-day window. Similar tests 233 

comparing different durations have been used in other systems to establish the appropriate 234 

window for assessing impacts of other important covariates, such as climatic factors (van de Pol 235 

et al. 2016). Further, tests we performed using alternative methods of interpolation and 236 

smoothing (i.e., ln(+0.0005) transformation of B. longimanus data prior to calculation of a 237 
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moving average or using a moving 45-day median) did not offer improvement in model 238 

performance based on AIC, and did not substantially affect our results. 239 

The calculation of the moving average for B. longimanus biomass density involved two 240 

steps. First, daily estimates of biomass density were interpolated linearly between observations 241 

for gaps between observations, with the exception of the gap between the last observation each 242 

year and the first observation of the subsequent year. Interpolation is necessary, as the model 243 

represents continuous-time dynamics, so that a value for each covariate is required at each time 244 

step. The gap between years was treated differently because data were rarely collected during 245 

winter and early spring, and B. longimanus is typically absent from the water column at that 246 

time, while the population is maintained as resting eggs. We therefore assumed that B. 247 

longimanus was absent for the first 50 days each year (i.e., we set B. longimanus biomass density 248 

to 0 for those days), prior to the interpolation. 249 

Second, these interpolated values (P int

 

) were then used to calculate a 45-day geometric 250 

mean (P). The correction term (0.0005, as for Eq. 4) was used to calculate the geometric mean to 251 

account for the presence of 0s in the B. longimanus data (otherwise the mean would be 0 for any 252 

time points with a 0 in the 45-day moving average window). The P covariate for each time (t) 253 

was thus: 254 

�(�) = ������(� − 23 + �) + 0.0005

45
�=1 �1/45 − 0.0005 (5) 

 255 

Initiation of dynamics each year 256 

Because D. mendotae are effectively absent from the water column in winter, we allowed 257 

the population in the water column to go extinct each winter and be reseeded via a pulse (�(�)) 258 

representing the emergence from resting eggs each spring occurring 7 days prior to the earliest 259 

observation of D. mendotae in the data. The size of the pulse is not well understood. In fact, it is 260 

plausible that the abundance of neonates emerging from resting eggs is not strongly dependent 261 

on the previous year's density given that resting eggs can survive for multiple years (Caceres 262 

1998) and strong variation occurs in physical processes that promote hatching (Kerfoot et al. 263 

2004). We therefore assumed the size of the pulse was random and log-normally distributed: 264 

 ln(�(�)) ∼ Normal (�,�) (6) 

φ and ψ represent the mean and standard deviation of the natural log of the pulse, respectively.  265 
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 266 

Measurement model 267 

A measurement model is used to describe how observations (i.e., the data, which are 268 

subject to measurement error) were generated from the prey biomass state variable, which 269 

represents the true biomass density; therefore, the observed data are treated as drawn from a 270 

distribution around the true state of the system. Measurement error in this sense is general, 271 

including any differences between samples collected on different days not attributable to changes 272 

in the true biomass density (e.g., due to differences between two net tows due to small-scale 273 

spatial variation or potential short-term fluctuations due to water currents or responses to 274 

variation in light levels that could affect individual measurements). We used a left-censored 275 

normal (Normall-cens) distribution (e.g., Martinez-Bakker et al. 2015, in which the probability of 276 

a zero value is treated as a point mass equal to the censored left tail of the normal distribution). 277 

Two parameters (σa and σb) are specified so that the variance (σ2

 

) scales quadradically with 278 

population size: 279 ����(�) ∼ Normal �−����.(�� ,�) (7) 

 � ∼  ���2�(�) +  ��2�(�)
2  (8) 

We used a left-censored distribution to account for zero observations in the data and because 280 

negative observations cannot occur. The left-censored model assumes that the observed biomass 281 

density at any time point is normally distributed around the true biomass density, with a standard 282 

deviation that scales with population size according to Eq. 8, except the left-censored model does 283 

not allow observations of negative biomass density.  284 

 285 

Model modifications to assess dynamic drivers 286 

To examine the influence of B. longimanus, we fit four versions of the model to the data: 287 

model a) a null model (i.e., excluding any B. longimanus effect by fixing α and η at 0); model b) 288 

a model including only the NCE (i.e., fixing α at 0); model c) a model including only the CE 289 

(i.e., fixing η at 0); and model d) a model including both the CE and NCE. 290 

 291 

Benchmark Statistical Models 292 
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A reasonable mechanistic model should perform better than a simple, non-mechanistic 293 

benchmark model (King et al. 2008). We therefore compared our mechanistic models to two 294 

straightforward benchmark models. First, we used a model assuming observed D. mendotae 295 

biomass density is independently and identically distributed around a seasonal (monthly) average 296 

(model e):  297 ����(�) ∼ Normal �−����.(D�,�) (9) � ∼  ���2D� + ��2��2   (10) 

Dm 

 305 

represents mean biomass densities for each month that observations were made, and 298 

observations are assumed to follow a left-censored normal distribution, as for models a-d 299 

(although model e does not differentiate between measurement and process error). Second, we fit 300 

an AR (2) autoregressive model with measurement error to our time series (model f), in which 301 

the observed D. mendotae biomass density depends linearly on the previous two observations. 302 

We used the same measurement model (Eq. 7 and 8) for model f as for models a-d, so as to allow 303 

for zero but no negative observations.  304 

Model fitting 306 

Analyses were implemented using the pomp package in R v.3.3.3 (R Core Team 2018), 307 

and annotated code is included in Appendix S1. SSMs (including all models except model e, 308 

which was fit using the R optim function) were fit to time series data using iterated filtering via 309 

the mif2 algorithm, which is a recently developed algorithm for estimating model parameters via 310 

maximum likelihood estimation that offers substantial improvement over other SSM fitting 311 

methods (Ionides et al. 2015, King et al. 2016). For each model fit using iterated filtering, we 312 

performed 100 runs in which a search through parameter space was initiated using a random set 313 

of starting values for each parameter. Starting values were generated from a uniform distribution 314 

bounded by broad plausible values for each parameter. The fit of different models was compared 315 

based on the Akaike Information Criterion (AIC) calculated using the maximum likelihood 316 

estimate, which provides a measure of model performance that weighs both model complexity 317 

based on the number of parameters and fit based on the likelihood (Akaike 1974). A difference 318 

of 2 AIC units indicates a substantial improvement in model performance (Burnham and 319 

Anderson 2002). 320 
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 321 

Magnitude of B. longimanus effect 322 

To quantify effects of B. longimanus on D. mendotae biomass density, we used 323 

simulations from the fitted model (model b, the best model based on AIC, see results). We 324 

compared biomass densities of D. mendotae in 10,000 simulated 1-year data sets including or 325 

excluding the effect of B. longimanus by setting η to the maximum likelihood estimated value or 326 

0, while all other parameters were fixed at their maximum likelihood estimated values. The 327 

simulations used an across-year seasonal mean of smoothed B. longimanus biomass density for 328 

predator biomass density. We note that these simulations necessarily do not reflect the full range 329 

of actual variation in the system (e.g., due to uncertainty in parameter estimates) but provide a 330 

straightforward way to quantify and visualize reductions in D. mendotae biomass density caused 331 

by estimated effects of B. longimanus.  332 

 333 

Parameter estimates and confidence intervals 334 

To gain further insight into the influence of B. longimanus and density dependence on 335 

dynamics, we developed confidence intervals for the model estimates of the NCE (η) and density 336 

dependence (κ) parameters using profile likelihood (Hilborn and Mangel 1997). In profile 337 

likelihood, the likelihood is maximized and all other parameters are estimated across a fixed 338 

plausible range of values of the focal parameter (i.e., η or κ in our case). The result is a profile 339 

that shows how the maximum likelihood changes depending on that focal parameter value. The 340 

95% confidence intervals are determined as the range of parameter values for which the log-341 

likelihood is within 1.92 units of the maximum log-likelihood (Hilborn and Mangel 1997). 342 

 343 

Evaluation of potential influence of seasonality 344 

We were concerned that seasonality may confound results for two reasons. First, because 345 

B. longimanus and D. mendotae densities vary seasonally, we were concerned that a detected 346 

effect of B. longimanus was actually due to other seasonal factors that covary with B. 347 

longimanus but are not included in the model. Second, the NCE in the model is part of an 348 

expression that includes a seasonality term (β(t)), but the CE is part of an expression without 349 

seasonality, so that a difference in the influence of the NCE and CE could potential be influenced 350 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

by the difference in their relationship with seasonality in the model. We therefore performed 351 

three additional analyses to examine the influence of seasonality. 352 

 First, we wanted to compare the performance of our model using B. longimanus as the 353 

predator to another species that we would not expect to affect D. mendotae. We therefore 354 

examined the fit of the best performing model (model b, see Results) substituting the biomass 355 

density data for another species, Limnocalanus macrurus, as an alternative predator instead of B. 356 

longimanus (model g). As L. macrurus mostly occurs in the hypolimnion and would have limited 357 

spatial overlap with D. mendotae, we would not expect it to have a detectable effect on D. 358 

mendotae. However, L. macrurus also exhibits strong seasonality in its dynamics (Vanderploeg 359 

et al. 2012), so that treating it in the same manner as B. longimanus (i.e., as a predator) in the 360 

model provides a useful comparison to evaluate if seasonality itself could be responsible for any 361 

detected predatory effect of B. longimanus. A test using L. macrurus thereby directly addresses 362 

whether the methods would have identified a spurious relationship for this particular species. 363 

Second, we calculated a B. longimanus biomass density anomaly (deviations from the 364 

average seasonal trend across years, i.e., with the seasonal trend removed) and compared how the 365 

model performed when using the anomaly compared to the null model (model h; see Appendix 366 

S1 for details). Because the anomaly excluded the seasonal trend, we would expect that including 367 

the anomaly should substantially improve the model AIC over a null model if there is an effect 368 

of B. longimanus distinct from a seasonal effect.  369 

Third, we examined two additional models to address alternative hypotheses for how 370 

seasonality influences D. mendotae dynamics: model i) a modified version of the null model 371 

(model a) that includes seasonal background mortality, μ; and model j) a modified version of the 372 

model with only CEs (model c) that allows seasonal change in B. longimanus attack rate, α. In 373 

both models, each parameter was allowed to vary seasonally using periodic b-splines in the same 374 

manner as birth rate (β) (Eq. 3). We performed these analyses to ensure that our finding of an 375 

NCE of B. longimanus (see Results) could not be explained by seasonality in background 376 

mortality or B. longimanus consumption. 377 

Evaluation of Type II Functional Response 378 

In addition, to ensure that our results did not depend on the choice of functional response 379 

used in our model, we modified model c to include a Type II functional response for f(V): 380 
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�(�) =
αV

1 + αhV 
 (11), 

where h represents B. longimanus handling time for D. mendotae (model k). 381 

 382 

Results 383 

The mechanistic SSMs performed substantially better than the benchmark models based 384 

on AIC (Table 1).  385 

The models including the NCE of B. longimanus on D. mendotae outperformed the 386 

alternative models based on a comparison of AIC values. In contrast, including the CE did not 387 

improve the model performance either in the absence or inclusion of the NCE. Only the model 388 

with both the CE and NCE was within 2 AIC units of the best fit model that included the NCE 389 

but not the CE (model b). Because the former model included an additional parameter and 390 

offered no improvement over the latter model, we moved forward with model b as the best 391 

model.  392 

To visualize the fit of the best model, we generated 10,000 simulated data sets (including 393 

the contribution of both process and measurement errors) from the fitted model using the 394 

parameter values at the maximum likelihood estimate (Table 2). Quantiles of the resulting 395 

simulations are shown to represent the median and 95% simulation intervals (Fig. 1). The clear 396 

seasonality of the simulation median suggests strong, predictable seasonality of D. mendotae 397 

dynamics. In contrast, differences between years are subtler and less predictable. The relatively 398 

broad 95% simulation intervals reflect relatively high levels of variation among simulations, 399 

attributable to dynamic stochasticity and measurement error. All but four observations fall within 400 

the simulation intervals, with the two most notable exceptions being the especially high peaks in 401 

the D. mendotae data in 2011 and 2012. In these years, B. longimanus had especially high 402 

density earlier in the season, for which the model would predict lower D. mendotae densities 403 

than observed those years.  404 

The maximum-likelihood parameter estimates indicate B. longimanus can have a 405 

profound influence on D. mendotae density. Based on the fitted model estimate for η, D. 406 

mendotae birth rates are reduced by 61% at the mean peak B. longimanus across years (Fig. 2a). 407 

Simulations from the model generated using the maximum-likelihood estimate compared to 408 

simulations generated using the same values for other parameters but excluding the effect of B. 409 
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longimanus (i.e., setting η equal to 0) suggests that the nonconsumptive effect on population 410 

growth rate results in as large as a 59% reduction in D. mendotae biomass density (difference 411 

between height of peaks in Fig. 2b). The likelihood profile for η reveals our level of confidence 412 

in our parameter estimate (Fig. 3a, showing 95% confidence intervals). Using the lowest and 413 

highest value of eta (at confidence interval bounds), at the mean annual peak of B. longimanus, 414 

the NCE ranges from a 28% to 82% reduction in growth rate.  415 

The fitted SSM also provides estimates for the contribution of seasonality to D. mendotae 416 

dynamics. The fitted seasonal function for D. mendotae birth rates suggests a peak on Julian day 417 

229 (August 16) in late summer. In the presence of B. longimanus at its mean biomass density, 418 

the peak both shifts in timing (10 days earlier to Julian day 219) and is reduced due to the NCE 419 

(Fig. 2a). 420 

Density dependence also influences D. mendotae dynamics, based on parameter estimate 421 

and its confidence interval (Table 2, Fig. 3b). The parameter estimate for κ (33 mg x m-3) was 422 

within the range of observed D. mendotae biomass density (0- 74 mg x m-3

Other parameter estimates provide insights into the contribution of measurement error 427 

and process stochasticity. Based on Eq. 7 and 8, the estimates for σ

), with 6 observations 423 

of D. mendotae biomass density exceeding the estimated value for κ, suggesting that high 424 

conspecific densities may almost entirely suppress positive D. mendotae growth under realized 425 

conditions in Lake Michigan. 426 

a and σb

 435 

 indicate that the 428 

standard deviation of observed biomass at mean D. mendotae biomass was approximately 40% 429 

of mean, indicating a substantial impact of measurement error. The estimate for the standard 430 

deviation of D. mendotae growth rate (ϵ) is also large (126% of the maximum seasonal growth 431 

rate when at low population size, β(t)), suggesting the importance of process stochasticity as 432 

well. Both process stochasticity and measurement error thus contribute to the high levels of 433 

variation in the data (Fig. 1). 434 

Evaluation of potential influence of seasonality 436 

The three tests indicate that the result that B. longimanus affected D. mendotae through 437 

an NCE was not confounded by seasonality. First, using L. macrurus biomass density as the 438 

predator (model g) had the opposite effect than using B. longimanus as it performed worse than 439 

the model with no predator effect (model a) based on AIC (Table 1). Second, using the B. 440 
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longimanus anomaly (model h) substantially improved the model fit compared to the model 441 

without effects of B. longimanus, despite the removal of the across-year seasonal trend, thereby 442 

providing further evidence for an effect of B. longimanus independent of seasonal factors. If the 443 

observed effect of B. longimanus was due to other seasonal confounding factors, no 444 

improvement would be expected by only using the anomaly. Notably, however, the model using 445 

the anomaly did not perform as well as the model using the actual B. longimanus biomass 446 

density data (model b), suggesting both anomalous and seasonal variation in B. longimanus 447 

contribute to D. mendotae dynamics. Third, if our detection of the NCE was caused by a 448 

confounding factor associated with the seasonal nature of the birth rate term, we would expect 449 

that adding seasonality to the mortality or attack rate (models i or j) would have a similar 450 

influence to including the NCE. However, models i and j performed substantially worse than 451 

model b (Table 1), supporting the importance of the NCE. 452 

Evaluation of Type II Functional Response 453 

Finally, tests using an alternative (Type II) functional response (model k) revealed that 454 

our findings were not sensitive to the assumed functional response for the CE. 455 

 456 

Discussion 457 

Our analysis provides evidence that B. longimanus has strong negative effects on D. 458 

mendotae population growth rate and density in offshore Lake Michigan and supports the 459 

hypothesis that an NCE is the underlying mechanism. Further, our analysis quantifies key 460 

demographic rates for D. mendotae, including birth and death rates, which can be used in models 461 

that forecast the effects of future changes, such as climate change or changes in nutrient 462 

concentrations, with implications for overall Lake Michigan food web dynamics and fisheries. 463 

Our results demonstrate the utility of developing SSMs and fitting them to field time series data 464 

to assess mechanisms by which predators affect prey, despite the challenges intrinsic to 465 

ecological systems and data. 466 

Our findings provide evidence of and, for the first time to our knowledge, quantify NCEs 467 

derived from field-based time series data in a mechanistic framework. The observed negative 468 

effect of B. longimanus on D. mendotae population growth rate resulted from an NCE in which 469 

B. longimanus reduced D. mendotae birth/somatic growth rates. Of the mechanistic models 470 

compared, the model including NCEs but not CEs provided the best fit relative to the number of 471 
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parameters based on AIC, and greatly reduced AIC relative to the addition of CEs alone. 472 

Whereas, NCEs have received considerable attention, most studies have been performed in a 473 

laboratory setting, mesocosms, and enclosures. Further, whereas there is an increasing number of 474 

studies performed in the field, very few studies examine the influence on density based on field 475 

data (Sheriff et al. in review). For example, previous studies evaluating NCEs of B. longimanus 476 

on D. mendotae (Pangle et al. 2007, Bourdeau et al. 2013) combined laboratory studies that 477 

elucidate the behavioral response of D. mendotae to B. longimanus with field survey data of D. 478 

mendotae vertical position at different densities of B. longimanus. Using temperature-dependent 479 

growth models, these studies predicted a large reduction in fitness of D. mendotae due to lower 480 

temperatures experienced at the lower depths occupied as a result of the anti-predator response to 481 

B. longimanus. Similarly, other studies that have examined NCEs in the field, have, for example, 482 

combined knowledge of predation rates and induced changes in prey behavior to explain 483 

hypothesized nonconsumptive effects on spatial variation in prey abundance (e.g., wolf 484 

avoidance by elk in Yellowstone, Creel et al. 2005, shark avoidance by marine vertebrates, 485 

Heithaus et al. 2009). Our approach to documenting NCEs from field data here is qualitatively 486 

different, in that evidence was derived directly from changes in density of prey in relation to 487 

changes in predator density, linked through mechanistic models. 488 

We examined the time series data, and the model fits, to interpret why the inclusion of the 489 

NCE in the model leads to a large improvement in model performance, but adding the CE does 490 

not. Importantly, because D. mendotae birth rates peak earlier than peak B. longimanus density, 491 

the NCE exerts its major influence earlier than when CE effects are maximized. Thus, the model 492 

estimates the strongest B. longimanus effects in years when B. longimanus biomass density 493 

reaches high levels early, when D. mendotae birth rates would otherwise be high. This contrasts 494 

with a CE, which as modeled in Eq. 1 increases mortality the same amount whenever B. 495 

longimanus density is high, regardless of time of year. This aspect of the NCE is seen in the 496 

temporal patterns in the data. For example, we can calculate a 45-day moving average of D. 497 

mendotae biomass density (Davg(t)) as we did for B. longimanus (Eq. 5, using a modified 498 

correction factor equal to one half the lowest observation for D. mendotae) and then estimate the 499 

rate of D. mendotae population change (rest

���� = ln(����(225)/����(175)) 

) early in the growing season (days 175-225) each 500 

year: 501 

(12) 
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Consistent with the NCE detected by the model, the rate of D. mendotae population change 502 

between days 175 and 225 was negatively related to B. longimanus biomass density during that 503 

same period (geometric mean of smoothed B. longimanus biomass density + 0.0005 over days 504 

175-225) in the same year (Fig. 4). While it is impossible to entirely rule out that consumption of 505 

D. mendotae by B. longimanus partly contributed to this pattern, model performance including 506 

only the CE was substantially poorer than the NCE model, even when we relaxed the assumption 507 

of a fixed attack rate by allowing it to vary seasonally (model j). The NCE therefore provides the 508 

most parsimonious explanation. 509 

The large magnitude of the estimated effects of B. longimanus on D. mendotae biomass 510 

density here likely have important consequences for the Lake Michigan food web and are also 511 

likely relevant for the other four Great Lakes where B. longimanus and D. mendotae co-occur. 512 

For example, planktivorous fishes in Lakes Michigan and Huron have undergone declines in 513 

biomass since the 1990s, and these fish are key prey to Chinook salmon Oncorhynchus 514 

tshawytscha and lake trout Salvelinus namaycush that are the foundation of a multi-million dollar 515 

recreational fishery (Bunnell et al. 2014). Given that survival of larval planktivorous fish in the 516 

first few weeks of life can depend on overlap with zooplankton prey (Beaugrand et al. 2003), 517 

understanding the mechanisms that regulate zooplankton densities is critical to improved 518 

understanding and prediction of planktivorous fish recruitment. Our model estimates of D. 519 

mendotae vital rates can also be applied to future decision-support tools that explore how future 520 

climate or nutrient concentrations (perhaps modeled through modifications to carrying capacity, 521 

κ) would affect the dynamics of D. mendotae, the most important herbivorous cladoceran in 522 

terms of biomass (Vanderploeg et al. 2012).  523 

Perhaps surprisingly, including CEs of B. longimanus did not substantially improve 524 

model fit either alone or in combination with nonconsumptive effects. Experiments demonstrate 525 

that B. longimanus predation rates on D. mendotae can be high (Vanderploeg et al. 1993, Pangle 526 

and Peacor 2009), and thus one might expect high CEs in the field. Migration in response to B. 527 

longimanus chemical cues (Pangle et al 2006) could be expected to reduce B. longimanus 528 

consumption, although some studies still show spatial overlap between B. longimanus and D. 529 

mendotae for at least a portion of the D. mendotae population (Bourdeau et al. 2015, Nowicki et 530 

al. 2017). Nevertheless, we found little evidence for a substantial effect of consumption here. 531 

One possible explanation is that our model for B. longimanus predation (i.e., Type I functional 532 
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response) may exclude key biological realism; for example, explicitly incorporating potentially 533 

critical covariates that can influence predation rates, such as light levels (Pangle and Peacor 534 

2009) and temperature (Yurista et al. 2010), could be explored in future models and may allow 535 

for improved estimation of CEs.  536 

Distinguishing between CEs and NCEs from observational data, as we have done here, 537 

depends on assumed functional relationships. However, an advantage of SSMs is that 538 

assumptions are made explicit in the equations and can be further tested in future work or 539 

compared to experimental findings. For instance, a key difference between how CEs and NCEs 540 

are modeled here is that we assume that the NCE affects birth rate or somatic growth rate, which 541 

we model with a seasonal functional form, given known seasonal effects of temperature and food 542 

resources on birth rate. Thus, the per capita NCE of B. longimanus, (ηg(P)), varies seasonally in 543 

magnitude in proportion to D. mendotae birth rate as modeled, unlike the CE, which contributes 544 

additively to mortality (i.e., proportional to B. longimanus). These different functional forms 545 

thereby allowed us to at least partially differentiate between a CE and an NCE. Evidence for the 546 

latter was then strengthened by additional tests under different assumptions (e.g., allowing 547 

seasonal variation in consumptive effects in model j) and comparisons to prior work that also 548 

suggest the importance of NCEs (e.g., Pangle and Peacor 2006). 549 

Fish predation is also an important consideration for D. mendotae-B. longimanus 550 

dynamics, although we do not expect fish effects to confound our results. In fact, B. longimanus 551 

is susceptible to fish predation from alewife (Alosa pseudoharengus) and other species (Bunnell 552 

et al. 2015), and so more B. longimanus may be associated with overall lower fish predation on 553 

zooplankton. That we saw declines in D. mendotae biomass density associated with higher B. 554 

longimanus despite potentially reduced risk from planktivorous fish at these times thus provides 555 

further support that effects of B. longimanus are important for D. mendotae dynamics, and that 556 

B. longimanus may be an important competitor with fish for zooplankton prey. 557 

Another concern with analyses of field data relevant to our study is disentangling the 558 

influence of seasonality from other dynamical drivers, such as the effects of B. longimanus. We 559 

chose a flexible approach to incorporate seasonality in the system (periodic b-splines), and the 560 

additional tests we performed (i.e., using L. macrurus, the anomaly, or allowing other terms to 561 

vary seasonally) offered further support that other seasonal factors were not responsible for the 562 

observed effect of B. longimanus. Similar rigorous tests should be a broadly useful approach to 563 
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disentangle seasonality from other drivers in many systems using SSMs. By using these tests, our 564 

approach here was conservative in attempting to rule out a confounding effect of seasonality; in 565 

fact, beyond the NCE we detected, it is plausible that B. longimanus effects on D. mendotae may 566 

also actually contribute to the estimated effect of seasonal forcing. We may therefore be 567 

underestimating a CE or an NCE if they are attributed to and therefore subsumed by the seasonal 568 

model terms; explicitly considering some seasonal factors (e.g., temperature, resources) in future 569 

may allow better resolution of these effects. In particular, future models including additional data 570 

for spatial variation in D. mendotae, B. longimanus, resources, and temperature may allow better 571 

resolution of the relative contribution of seasonality, CEs, and NCEs, as water column structure 572 

likely plays an important role in mediating B. longimanus effects. 573 

Our approach was also useful to quantify the influence of other drivers of D. mendotae 574 

dynamics, including seasonality and density dependence. Model results reflect how D. mendotae 575 

birth rates and biomass density change with Julian day (Fig. 3), likely due to seasonal variation 576 

in temperature, food resources, water column structure, or other factors. Similarly, the estimated 577 

density dependence term (κ) and its confidence interval indicate that D. mendotae population 578 

growth is substantially density dependent under field conditions in Lake Michigan, potentially 579 

due to competition for food resources. Further, estimates of density dependence will be vital for 580 

predicting impacts of ongoing changes in the lower food web (Fahnenstiel et al. 2010). Our 581 

findings thus motivate future work to investigate the underlying mechanisms driving seasonality 582 

and density dependence and implications to other parts of the food web. 583 

Our findings also provide estimates for the substantial contribution of both measurement 584 

error (i.e., variation introduced during measurement) and process error (i.e., uncertainty in the 585 

actual dynamics that cannot be explained by the deterministic components of the current model) 586 

to variation in the data. Estimates of these sources of variation are critical to quantify uncertainty 587 

for prediction of ecological dynamics and design sampling efforts (e.g., frequency of sampling 588 

within and across years) to maximize the information gained. Explicit inclusion of measurement 589 

error (represented by σ in Eq. 7 and 8) and process error (here in both birth rate represented by ϵ 590 

and the seasonal pulse represented by Ψ) allowed us to quantify the amount of variation among 591 

observations that is attributable to these sources of error. Simulations illustrate that, based on our 592 

model, process and measurement variation can lead to a wide range of possible observed values 593 

under the conditions of any given year. Although incorporating additional covariates or added 594 
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realism into the model in future may offer some reduction in the breadth of the simulation 595 

intervals, much of this uncertainty may be irreducible given available information. Nevertheless, 596 

our results indicate that the data contain important information about predictable changes in the 597 

dynamics of the populations, such as the effects of B. longimanus, seasonal forcing, and density 598 

dependence. 599 

The models fit to time series here are relatively simple and yet have provided new 600 

insights into interactions among zooplankton in Lake Michigan. Nevertheless, additional realism 601 

could likely improve model fit (e.g., better capture the outlier observations in 2011 and 2012) 602 

and the strength of inferences gained from the model. For instance, our models only included one 603 

prey species, while future models may attempt to incorporate multiple prey species 604 

simultaneously and potential interspecific competition or apparent competition mediated by B. 605 

longimanus. Our ability to distinguish between increasingly complex models is limited by 606 

available data (i.e., number of observations and years included), although continuing data 607 

collection may allow for inference using more complex models. Future work should endeavor to 608 

examine the limits to our SSM fitting approach to provide insights under different limitations 609 

that are at play in this and many other systems (e.g., sampling frequency, number of data points, 610 

levels of measurement error). Additional data collected as a part of the NOAA GLERL Long 611 

Term Research program should also provide the opportunity to confirm estimated effects here 612 

and test additional drivers of dynamics.  613 

Our application of mechanistic models here thus demonstrates how SSMs can provide 614 

useful insights into classic questions in ecology, such as the contribution of predators and other 615 

drivers to animal population dynamics, which for many systems remains largely hypothetical. In 616 

some cases, time series analysis of field data may be the only approach to address such questions 617 

at the relevant spatial scale. Fitting of models to data, as we have done here, allows for more 618 

direct tests of such fundamental ecological questions in spite of the complex factors involved, 619 

including nonlinearities, measurement error, seasonal forcing, and irregular measurement 620 

(Bjornstad and Grenfell 2001), which are seldom considered simultaneously. Our findings thus 621 

demonstrate the utility of using SSMs and provide a framework for advancing ecological 622 

understanding in a mechanistic framework. Further, our results provide novel and valuable 623 

example of quantifying NCEs over long timescales at a field scale, providing further evidence 624 

for their importance in ecological systems. 625 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Finally, the insights gained from testing these hypotheses are vital to understanding and 626 

predicting consequences of ongoing large-scale environmental changes, such as the ecosystem-627 

scale shifts caused by invasive species in the Great Lakes. In light of the suite of challenges 628 

facing key natural resources globally, advancing understanding of mechanisms for invasive 629 

species impacts in the field represents an important step forward. 630 
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DATA AVAILABILITY  764 

Data are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.bh688ft 765 

Table 1: Model ∆AIC values relative to best model (lowest AIC).  766 

Model  

Maximum 

Log-

Likelihood 

Parameters AIC ∆AIC  

a. No B. longimanus effect -213.3 11 448.6 6.9 

b. B. longimanus nonconsumptive effect  -208.9 12 441.7 0.0 

c. B. longimanus consumption  -212.5 12 449.1 7.3 

d. Consumption and nonconsumptive 

effect  
-208.7 13 

443.4 
1.7 

e Monthly average I.I.D. -336.3 13 698.5 256.8 

f. AR (2) with measurement error  -369.4 6 750.7 309.0 

g. Limnocalanus nonconsumptive effect -212.5 12 449.1 7.3 

h. B. longimanus anomaly -210.2 12 444.4 2.6 
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i. Seasonal birth and background death -210.4 14 448.9 7.2 

j. Seasonal birth and attack rate -210.1 15 450.3 8.5 

k. Type II functional response -212.0 13 450.0 8.9 

 767 

Table 2: Values of model terms at maximum likelihood estimate for best fit model (b). 768 

Parameter Description Estimate Units 

λ Seasonal birth rate 1 -10.0 ln(day-1) 

λ Seasonal birth rate 2 -3.4 ln(day-1) 

λ Seasonal birth rate 3 -1.2 ln(day-1) 

λ Seasonal birth rate 4 0.32 ln(day-1) 

κ Density dependence term 32.5 mg x m-3 � Background mortality 0.048 day-1 

α Attack rate NA (mg B. longimanus)-1 x day-1 � Induced proportional birth reduction  0.089 (ln (mg B. longimanus))-1 

ϵ Standard deviation of growth rate 0.26 day-1 

φ  ln (Spring pulse mean)  -3.2 mg x m-3 

Ψ Standard deviation of ln (Spring pulse)  1.7 mg x m-3 

σa Measurement error (scales with V  (T) 0.22 ) mg x m-3 

σ Measurement error (scales with Vb (T)
2 0.39 )  mg x m-3 

 769 

Figure Legends 770 

Figure 1: Simulated Daphnia mendotae biomass density (mg/m3

 778 

) from fitted model compared to 771 

D. mendotae and Bythotrephes longimanus time series data in Lake Michigan from 1994-2012. 772 

Median and 95% simulation intervals for the model that only includes nonconsumptive effects 773 

(model b); Black solid line: D. mendotae; Red dashed line: B. longimanus; blue dashed line: 774 

median simulated D. mendotae biomass density; dark blue dotted line: 95% simulation intervals. 775 

The first observations in 2007 and 2012 and the D. mendotae peak in 2011 are cut off from the 776 

plot. 777 

Figure 2: For the fitted model (model b, which only includes nonconsumptive effects): a) 779 

estimated seasonal birth rate and b) simulated biomass density (from 10,000 simulations) of 780 
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Daphnia mendotae in the presence (green dashed line) or absence (black solid line) of 781 

Bythotrephes longimanus. Growth rates and simulated density were determined using across-782 

year averages of smoothed B. longimanus biomass density (red dashed line in plot b) for each 783 

Julian day. Estimated background mortality rate is indicated by the blue dotted line in (a).  784 

 785 

Figure 3: Likelihood profiles for a) η (reduction in Daphnia mendotae birth rate in response to 786 

Bythotrephes longimanus) and b) κ (density dependence) parameters. Black vertical lines 787 

indicate 95% confidence intervals (η: 0.038-0.11 (ln (mg B. longimanus))-1; κ: 22.5-55.6 mg D. 788 

mendotae per m3

 793 

). Black points show the two highest maximum likelihood estimates from the 789 

searches performed at each parameter value for each profile, blue lines show a loess smoothed 790 

curve fit to those points, and gray shading (approximately the width of the points) indicates 791 

confidence intervals for the loess fit.  792 

Figure 4: Estimated rate of change in Daphnia mendotae population early in growing season 794 

(days 175-225, calculated via Eq. 12) vs. smoothed Bythotrephes longimanus biomass density 795 

(geometric mean of smoothed B. longimanus + 0.005 over days 175-225) each year. Points are 796 

shown as 2-digit numbers representing each year.  797 
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