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Summary

In this paper, we propose a novel approach to the linear quadratic (LQ) optimal
control of unknown discrete-time linear systems. We first describe an iterative
procedure for minimizing a partially unknown static function. The procedure
is based on simultaneous updates in the estimation of unknown parameters
and in the optimization of controllable inputs. We then use the procedure for
control optimization in unknown discrete-time dynamic systems—we consider
applications to the finite-horizon and the infinite-horizon LQ control of linear
systems in detail. To illustrate the approach, an example of the pitch attitude
control of an aircraft is considered. We also compare our proposed approach
to several other approaches to finite/infinite-horizon LQ control problems with
unknown dynamics from the literature, including extremum seeking and adap-
tive dynamic programming/reinforcement learning. Our proposed approach is
competitive with these approaches in speed of convergence and in implementa-
tion and computational complexity.
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1 INTRODUCTION

An optimal control problem typically involves constructing an open-loop control function or a closed-loop/feedback con-
trol policy that minimizes a specified cost function subject to the dynamics of the system to be controlled.1 A state-space
model of the system in the form of differential or difference equations is typically used to represent the dynamic cou-
pling between control inputs and system outputs, imposed as a constraint when control optimization is performed. Such
a model may be derived based on physics or obtained via system identification.2

In practical applications, the system dynamics may be uncertain or evolve over time, due to, for instance, (i) the sys-
tem operating point changing, such as the trim condition of an aircraft; (ii) some unmodeled factors that influence the
system dynamics changing, such as weather or ambient temperature and humidity for an automotive engine; or (iii) the
system parameters changing, eg, as a result of aging or part-to-part variability. Such evolution in dynamics may cause
the model used in the derivation of the control strategy to become inaccurate and degrade the control performance. In
particular, a control strategy may be designed based on a linearization about an operating point of a nonlinear model.
When the system operating point changes, the original linearization becomes inaccurate, and the original control may no
longer provide satisfactory performance. While gain scheduling/gain interpolation may be used, scheduling on all pos-
sible parameters that can cause variability is often impractical, as these parameters may be numerous and some of them
may not be measured.
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To cope with the lack of accurate models or the changes in dynamics, control techniques such as adaptive control3

and robust optimal control4 can be applied. The goal of adaptive control is, in principle, different from that of optimal
control. On the one hand, adaptive control usually concerns itself with the adaptation of a fixed-form controller to initially
uncertain system parameters to achieve typical control requirements such as stabilization and reference tracking. On the
other hand, the goal of optimal control is to find a control that minimizes a specified cost function, while stabilization
and reference tracking may be achieved through the cost function design. Robust optimal control pursues such a goal for
systems with uncertain parameters: it optimizes the control to minimize the worst cost (in a min-max formulation)5,6 or
the cost expectation (in a probability-weighted-average formulation)7 over an uncertainty set.

An alternative technique is optimal control for unknown systems, which is also referred to as model-free optimal con-
trol, ie, optimal control without the need for prior knowledge of the system dynamics. Differently from the problem setting
of robust optimal control, model-free optimal control typically pursues control optimization to minimize the true cost
associated with a given but unknown system.

Model-free optimal control approaches relying on learning and dynamic programming have been developed, for
example, in the works of Dierks et al,8 Lewis and Vamvoudakis,9 and Wang et al.10 In the work of Dierks et al,8 a neu-
ral network is used to learn the plant dynamics online; then, an adaptive dynamic programming (ADP) algorithm is
exploited to obtain an optimal control law off-line based on the learned neural network model. In the work of Lewis and
Vamvoudakis,9 policy iteration and value iteration reinforcement learning (RL) algorithms are developed to learn an opti-
mal controller off-line from a sufficiently rich set of measured input/output data. In the work of Wang et al,10 three neural
networks are used to identify the plant model, approximate the value function and its derivative, and compute the control,
respectively, based on an actor-critic scheme. The works of Lewis and Vrabie11 and Recht12 provide surveys on the applica-
tion of ADP and RL for feedback control. Such approaches attempt to approximately solve the Hamilton-Jacobi-Bellman
equation and create an optimal feedback policy. Their scalability may be limited due to the “curse of dimensionality.”13

Alternatively, a known low-complexity model that approximates the dynamics of a possibly unknown high-complexity
system with an error may be used to solve for the control, where the low-complexity model and the control solution are
iteratively refined to improve their matches to the original system and the optimal control, respectively.14 A possible option
for the low-complexity model is a linear time-varying model defined in a neighborhood of the current state-and-input
trajectory pair. It can be identified through perturbation-based sensitivity analysis and then used to estimate gradient
information for updating control to decrease cost.15,16

Linear quadratic (LQ) optimal control is one of the most fundamental problems in optimal control theory and prac-
tice. The control of many engineering systems can be formulated as a finite-horizon or an infinite-horizon LQ control
problem.17 For infinite-horizon LQ problems, due to the fact that the optimal solution, as a state-feedback policy, and the
Bellman value,13 as a function of the states, are time invariant, approaches based on model-free policy/value iteration RL
can be effective. This route has been pursued in other works.18-23 On the other hand, many practical tasks, such as space-
craft landing or docking, involve maneuvers over finite-time duration, which lead to optimal control problems defined
over a finite horizon. Fewer results exist for the finite-horizon LQ control of unknown systems. Approaches based on
ADP and RL have recently been investigated in the works of Zhao et al24 and Fong et al25; an approach based on multipa-
rameter extremum seeking (ES)26 has been proposed in the work of Frihauf et al27 and extended to handle measurement
noise in the work of Liu et al.28

In this paper, we also consider the LQ optimal control of unknown discrete-time linear systems. Our contribu-
tions include the following. (i) We propose a novel iterative approach that can be applied to both finite-horizon and
infinite-horizon LQ problems. (ii) Our approach involves simultaneous updates in the estimates of unknown param-
eters of a model, which represents the system dynamics, and in the control. A similar-in-spirit but different-in-detail
strategy based on the interplay between system identification and control optimization is discussed in the works of
Dean et al,29,30 where only infinite-horizon LQ problems are considered. On the other hand, our approach can also be
applied to finite-horizon LQ problems. Furthermore, the updates in our approach rely only on input and cost measure-
ments, ie, our approach does not rely on full-state measurements. (iii) Probing signals are usually needed in model-free
optimal control approaches.8,10,18-25,27,28 On the other hand, our approach can achieve a significant cost decrease even with-
out using probing signals, especially when applied to finite-horizon LQ problems. (iv) Our approach is easy to understand
and implement, and it exhibits fast convergence and low computational complexity.

This paper is organized as follows. In Section 2, we describe a problem of minimizing a partially unknown function and
propose an iterative approach to treat the problem. In Section 3, we apply the approach to the finite-horizon LQ optimal
control of unknown discrete-time linear systems; in addition, we present an algorithm based on ES for comparison. In
Section 4, we apply the approach to the infinite-horizon LQ optimal control of unknown discrete-time linear systems; in
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addition, we present an algorithm based on RL and an algorithm based on ES for comparison. In Section 5, we illustrate
the approach with an example representing the pitch attitude control of an aircraft and compare its performance to the
other algorithms. This paper is concluded in Section 6.

The notations used in this paper are standard. ℝm1×m2 represents the set of m1 × m2 matrices with real entries; ℤ≥m
represents the set of integers that are no less than m. For a scalar twice-continuously-differentiable real-valued function
𝛽(𝛼1, 𝛼2) ∈ 2 (ℝn1 ×ℝn2 ,ℝ), where 𝛼1 ∈ ℝn1 and 𝛼2 ∈ ℝn2 , the operator ∇ is defined as

∇𝛼i𝛽 = 𝜕𝛽

𝜕𝛼i =

[
𝜕𝛽

𝜕𝛼i
1
,
𝜕𝛽

𝜕𝛼i
2

, … ,
𝜕𝛽

𝜕𝛼i
ni

]
∈ ℝ1×ni ,

∇𝛼i,𝛼𝑗 𝛽 = ∇𝛼𝑗 (∇𝛼i𝛽)⊤ =

[
∇⊤

𝛼𝑗

(
𝜕𝛽

𝜕𝛼i
1

)
,∇⊤

𝛼𝑗

(
𝜕𝛽

𝜕𝛼i
2

)
, … ,∇⊤

𝛼𝑗

(
𝜕𝛽

𝜕𝛼i
ni

)]⊤
∈ ℝni×n𝑗 ,

where i ∈ {1, 2}, j ∈ {1, 2}, and 𝛼i
k denotes the kth component of 𝛼i. For a matrix M ∈ ℝm1×m2 , the operator vec(M) is

defined by stacking the columns of M, ie,

vec(M) = vec
([

M1,M2, … ,Mm2

])
=
[

M⊤
1 ,M

⊤
2 , … ,M⊤

m2

]⊤ ∈ ℝm1m2 ,

where Mi denotes the ith column of M. We also define the operator vec−1(·,ℝm1×m2 ) ∶ ℝm1m2 → ℝm1×m2 as the inverse of
vec(·), such that vec−1 (vec(M),ℝm1×m2 ) = M. When without ambiguity, we simply write vec−1(·). For a matrix pair (M,N),
the operator M⊗N is defined as the Kronecker product of M and N.31 For a symmetric matrix with real entries M = M⊤,
𝜆min(M) (or 𝜆max(M)) represents the smallest (or largest) eigenvalue of M. Furthermore, we use || · || to represent the vector
2-norm and its induced matrix norm. In represents the identity matrix of ℝn×n.

2 PROBLEM FORMULATION AND METHODOLOGY

2.1 Problem formulation
We describe our approach to the LQ optimal control of unknown discrete-time linear systems by first considering the
following optimization problem:

min
x
𝑓 (x, v∗), (1)

where the function 𝑓 ∈ 2 (ℝnx ×ℝnv ,ℝ), that is, 𝑓 ∶ ℝnx × ℝnv → ℝ is a twice-continuously-differentiable real-valued
function of the variable x ∈ ℝnx and the parameter v∗ ∈ ℝnv .

We make the following assumptions.

Assumption 1. The true value of v∗ ∈ ℝnv is unknown.

Assumption 2. For each value of x ∈ ℝnx , the value of f (x, v∗) can be measured.

Assumption 3. For each value of v̄ ∈ ℝnv , the minimizer

x̄ ∈ argmin
x

𝑓 (x, v̄) (2)

exists and can be computed. In particular, the minimizer x̄ satisfies the first-order and second-order necessary
conditions for optimality, ie,

∇x𝑓 (x̄, v̄) = 0, ∇x,x𝑓 (x̄, v̄) ⪰ 0. (3)

Assumptions 1, 2, and 3 characterize the function f as a gray-box–type system—only the structure of the system is
known, but the parameters of the system are unknown. Such a problem formulation covers a range of practical situations.
For instance, it may represent the control optimization for an unknown dynamic system, where the variable x represents
the sequence of control inputs or the parameters of a feedback law to be optimized, and the parameter v∗ represents the
parameters of a model that reflects the dynamic coupling between inputs and outputs. Details are discussed in Sections 3
and 4.

A common approach to treat the above problem involves first identifying the value of v∗ (eg, by sampling inputs x,
measuring outputs f (x, v∗), and exploiting known information about f to estimate v∗) and then solving the optimization
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problem (1) with the identified value of v∗ substituted in. Depending on the application, this sequential identification
and optimization process, when used for control, can have several potential drawbacks. Firstly, both stages of the process
need to be repeated when parameters of the system change due to a change in operating conditions, aging, etc. This can
entail a significant effort and may require the system to be temporarily decommissioned in order to perform the identifi-
cation. Secondly, sampling inputs in the identification phase may not instantly benefit the optimization and performance
improvement until the identification is completed. Thirdly, the inputs used for identification, as well as the conditions
under which the identification is performed, and those occurring during the system online operation may be different.
This can cause situations where the identified v∗ does not translate into good control performance. For these and other
reasons, alternative procedures, including those that perform optimization without the need of knowing v∗26-28 and those
that perform identification and optimization concurrently,10,29,30 are of interest.

2.2 Procedure for minimizing a partially unknown function
In this paper, we propose an iterative procedure to solve problem (1) under Assumptions 1, 2, and 3. Our approach involves
concurrently updating the estimate of x∗ ∈ argminx 𝑓 (x, v∗) and the estimate of v∗.

Let (xk, vk)denote the estimate of (x∗, v∗) at the kth iteration. At the (k+ 1)st iteration, we first minimize f (x, vk) according
to the first-order and second-order necessary conditions for optimality (3), ie, based on the conditions

∇x𝑓
(

xk+1, vk) = 0, ∇x,x𝑓
(

xk+1, vk) ⪰ 0, (4)

to obtain the minimizer xk + 1 as the updated estimate of x∗.
We then update the estimate of v∗. The Taylor expansion of f at (xk + 1, vk) to the second order yields

𝑓
(

xk+1, v∗
)
= 𝑓
(

xk+1, vk) + ∇v𝑓
(

xk+1, vk) (v∗ − vk)
+ 1

2
(

v∗ − vk)⊤∇v,v𝑓
(

xk+1, vk) (v∗ − vk) + H.O.T.,
(5)

𝑓
(

xk, v∗
)
= 𝑓
(

xk+1, vk) + ∇x𝑓
(

xk+1, vk) (xk − xk+1) + ∇v𝑓
(

xk+1, vk) (v∗ − vk)
+ 1

2

[
xk − xk+1

v∗ − vk

]⊤ [∇x,x𝑓
(

xk+1, vk) ∇x,v𝑓
(

xk+1, vk)
∇⊤

x,v𝑓
(

xk+1, vk) ∇v,v𝑓
(

xk+1, vk)
] [

xk − xk+1

v∗ − vk

]
+ H.O.T.,

(6)

where H.O.T. stands for “higher-order terms.”
Combining (4), (5), and (6), we obtain

𝑓
(

xk+1, v∗
)
− 𝑓
(

xk, v∗
)
=
(

xk+1 − xk)⊤∇x,v𝑓
(

xk+1, vk) (v∗ − vk)
− 1

2
(

xk+1 − xk)⊤∇x,x𝑓
(

xk+1, vk) (xk+1 − xk) + H.O.T.
(7)

In particular, the H.O.T. in the Taylor expansions (5), (6), and (7) are characterized by

H.O.T. = O

(‖‖‖‖‖
[

xk+1 − xk

v∗ − vk

]‖‖‖‖‖
3)

. (8)

We now treat the H.O.T. in (7) as some unknown noise wk+1 ∈ ℝ and obtain

𝑓
(

xk+1, v∗
)
− 𝑓
(

xk, v∗
)
=
(

xk+1 − xk)⊤∇x,v𝑓
(

xk+1, vk) (v∗ − vk)
− 1

2
(

xk+1 − xk)⊤∇x,x𝑓
(

xk+1, vk) (xk+1 − xk) + wk+1,
(9)

which is a linear equation in v∗.

Assumption 4. There exists 𝜀 ≥ 0 such that |wk + 1| ≤ 𝜀, for all k ∈ ℤ≥0.

We note that 𝜀 in Assumption 4 is typically a small number. This is reasonable when (i) xk + 1 is sufficiently close to xk,
eg, through a sufficiently small step size value in the update of the estimate of v∗, and (ii) vk is sufficiently close to v∗, eg,
through a sufficiently good initial guess v0. We also note that when f is, at most, quadratically dependent on (x, v∗), 𝜀 = 0.

We write (9) as
𝜁k+1 = 𝜙k+1v∗ + wk+1, (10)
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where
𝜙k+1 =

(
xk+1 − xk)⊤∇x,v𝑓

(
xk+1, vk) ∈ ℝ1×nv , (11)

𝜁k+1 = 𝜁k+1
1 + 𝜁k+1

2 ∈ ℝ, (12)

𝜁k+1
1 = 𝑓

(
xk+1, v∗

)
− 𝑓
(

xk, v∗
)
+ 1

2
(

xk+1 − xk)⊤∇x,x𝑓
(

xk+1, vk) (xk+1 − xk) ∈ ℝ, (13)

𝜁k+1
2 =

(
xk+1 − xk)⊤∇x,v𝑓

(
xk+1, vk) vk = 𝜙k+1vk ∈ ℝ. (14)

Define

Φk+1 =
⎡⎢⎢⎣
𝜙1

⋮

𝜙k+1

⎤⎥⎥⎦ , Zk+1 =
⎡⎢⎢⎣
𝜁1

⋮

𝜁k+1

⎤⎥⎥⎦ , W k+1 =
⎡⎢⎢⎣

w1

⋮

wk+1

⎤⎥⎥⎦ . (15)

The least squares estimate of v∗ is

vk+1 =
((

Φk+1)⊤Φk+1
)−1(

Φk+1)⊤Zk+1, (16)

assuming that (Φk + 1)⊤Φk + 1 is of full rank.
The least squares estimate (16) can be computed recursively using the recursive least squares (RLS) algorithm, ie,

Πk+1 = Πk −
Πk(𝜙k+1)⊤𝜙k+1Πk

1 + 𝜙k+1Πk
(
𝜙k+1
)⊤ , (17)

vk+1 = vk + 𝜆k+1Πk+1(𝜙k+1)⊤ (𝜁k+1 − 𝜙k+1vk) , (18)

where 𝜆k + 1 ∈ [0, 1] is an update step size, and Πk =
(
(Φk)⊤Φk)−1 ∈ ℝnv×nv .

After both the updated estimate of x∗, xk + 1, and the updated estimate of v∗, vk + 1, are obtained, we let k ← k + 1 and
proceed with the next iteration.

We now describe the convergence properties of the iterates {vk}∞k=0.

Proposition 1. Suppose that the update step size 𝜆k + 1 is selected to satisfy

0 ≤ 𝜆k+1 ≤ min
⎛⎜⎜⎝

Γ(1 − 𝛾)k‖‖‖Πk+1
(
𝜙k+1
)⊤‖‖‖ |||𝜁k+1

1
||| , 1
⎞⎟⎟⎠ , (19)

for all k ∈ ℤ≥0, where Γ > 0 and 𝛾 ∈ (0, 1) are design parameters. Then, {vk}∞k=0 converges, ie, there exists v∞ ∈ ℝnv

such that
lim

k→∞
vk = v∞. (20)

Proof. Equation (18) can be written as

vk+1 − vk = 𝜆k+1Πk+1(𝜙k+1)⊤ (𝜁k+1 − 𝜙k+1vk)
= 𝜆k+1Πk+1(𝜙k+1)⊤𝜁k+1

1 .
(21)

By (19), we obtain ‖‖‖vk+1 − vk‖‖‖ ≤ 𝜆k+1 ‖‖‖Πk+1(𝜙k+1)⊤‖‖‖ |||𝜁k+1
1
||| ≤ Γ(1 − 𝛾)k. (22)

Then, the series of nonnegative terms, ie,
∞∑

k=0

‖‖‖vk+1 − vk‖‖‖ ≤ Γ
∞∑

k=0
(1 − 𝛾)k = Γ

𝛾
< ∞, (23)

is convergent, and as a result, for any 𝜖 > 0, there exists k∗ ∈ ℤ≥0 such that
∞∑

k=k∗

‖‖‖vk+1 − vk‖‖‖ ≤ 𝜖. (24)
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Then, by the triangle inequality, for any k1 ∈ ℤ≥k∗ and any k2 ∈ ℤ≥k1 , we have

‖‖‖vk2 − vk1‖‖‖ ≤ k2−1∑
k=k1

‖‖‖vk+1 − vk‖‖‖ ≤ ∞∑
k=k∗

‖‖‖vk+1 − vk‖‖‖ ≤ 𝜖. (25)

That is, we get
lim

k1,k2→∞

‖‖‖vk2 − vk1‖‖‖ = 0. (26)

Therefore, {vk}∞k=0 is a Cauchy sequence in ℝnv and, thus, converges.

Remark 1. In the implementation, a constant update step size 𝜆k + 1 = 𝜆 ∈ [0, 1] for all k ∈ ℤ≥0 is used, which
usually achieves the convergence of the iterates. Note that such a constant step size can satisfy (19) over an arbitrarily
large number of iterations if Γ > 0 is selected to be sufficiently large and 𝛾 ∈ (0, 1) is selected to be sufficiently small.
The feasibility of using a constant update step size is also supported by the analysis of the robustness of our approach
to step size selection through simulations in Section 5.1.

We next provide an error estimate of our approach for the case when the step size is equal to 1.

Proposition 2. Suppose that (i) 𝜆k + 1 = 1 for all k ∈ ℤ≥0 and (ii) Assumption 4 holds. Then, (I) the estimation error of
v∗ at the kth iteration is bounded by ‖‖‖vk − v∗‖‖‖ ≤

√√√√ k

𝜆min

((
Φk
)⊤Φk
) 𝜀, (27)

where the right-hand side is unbounded if (Φk)⊤Φk is not of full rank.
Suppose further that (iii) in the Taylor expansion of ∇x f at (xk + 1, vk) to the first order,

∇⊤
x 𝑓 (x∗, v∗) = ∇⊤

x 𝑓
(

xk+1, vk) + ∇x,x𝑓
(

xk+1, vk) (x∗ − xk+1) + ∇x,v𝑓
(

xk+1, vk) (v∗ − vk) + w̃k+1, (28)

where w̃k+1 ∈ ℝnx and is characterized by w̃k+1 = O

(‖‖‖‖‖
[

x∗ − xk+1

v∗ − vk

]‖‖‖‖‖
2)

, it holds that ||w̃k+1|| ≤ 𝛿, for all k ∈ ℤ≥0. Then,

(II) the estimation error of x∗ at the (k + 1)st iteration is bounded by‖‖‖xk+1 − x∗‖‖‖ ≤ ‖‖‖(∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) Πk (Φk)⊤‖‖‖ √k𝜀 + ‖‖‖(∇x,x𝑓
(

xk+1, vk))−1‖‖‖ 𝛿, (29)

where the right-hand side is unbounded if ∇x,x f (xk + 1, vk) is not of full rank.
Suppose further that (iv) there exists 𝜉 > 0, such that | f (x1, v∗) − f (x2, v∗)| ≤ 𝜉||x1 − x2||, for all x1, x2 ∈ ℝnx .

Then, (III) |||𝑓(xk+1, v∗
)
− 𝑓(x∗, v∗)||| ≤

𝜉

(‖‖‖(∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) Πk (Φk)⊤‖‖‖ √k𝜀 + ‖‖‖(∇x,x𝑓
(

xk+1, vk))−1‖‖‖ 𝛿) . (30)

Proof. (I) vk and v∗ respectively satisfy ((
Φk)⊤Φk

)
vk =
(
Φk)⊤Zk, (31)((

Φk)⊤Φk
)

v∗ =
(
Φk)⊤ (Zk − W k) . (32)

Then, we have ((
Φk)⊤Φk

) (
vk − v∗

)
=
(
Φk)⊤W k. (33)

Multiply by (vk − v∗)⊤ on both sides to obtain‖‖‖Φk (vk − v∗
)‖‖‖2

=
(
Φk (vk − v∗

))⊤W k. (34)

By the Cauchy-Schwarz inequality, we have‖‖‖Φk (vk − v∗
)‖‖‖2

=
(
Φk (vk − v∗

))⊤W k ≤
‖‖‖Φk (vk − v∗

)‖‖‖ ‖‖‖W k‖‖‖ . (35)
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Then, by Assumption 4, we obtain

‖‖‖Φk (vk − v∗
)‖‖‖ ≤ ‖‖‖W k‖‖‖ =

√√√√ k∑
t=1

(wt)2
≤
√

k𝜀2 =
√

k𝜀. (36)

The left-hand side can be bounded by√
𝜆min

((
Φk
)⊤Φk
) ‖‖‖vk − v∗‖‖‖ ≤ ‖‖‖Φk (vk − v∗

)‖‖‖ . (37)

Therefore, we get ‖‖‖vk − v∗‖‖‖ ≤
√√√√ k

𝜆min

((
Φk
)⊤Φk
) 𝜀. (38)

(II) By the first-order necessary conditions for optimality (3) and (4) and Equations (28) and (33), we have

∇x,x𝑓
(

xk+1, vk) (xk+1 − x∗
)
= −∇x,v𝑓

(
xk+1, vk) (vk − v∗

)
+ w̃k+1

= −∇x,v𝑓
(

xk+1, vk) ((Φk)⊤Φk
)−1(

Φk)⊤W k + w̃k+1

= −∇x,v𝑓
(

xk+1, vk) Πk (Φk)⊤W k + w̃k+1.

(39)

Assume that ∇x,x f (xk + 1, vk) is of full rank, then

xk+1 − x∗ = −
(
∇x,x𝑓
(

xk+1, vk))−1 (∇x,v𝑓
(

xk+1, vk) Πk (Φk)⊤W k − w̃k+1
)
. (40)

By (ii) and (iii), we obtain‖‖‖xk+1 − x∗‖‖‖ ≤ ‖‖‖(∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) Πk (Φk)⊤‖‖‖ ‖‖‖W k‖‖‖ + ‖‖‖(∇x,x𝑓
(

xk+1, vk))−1‖‖‖ ‖‖‖w̃k+1‖‖‖
≤
‖‖‖(∇x,x𝑓

(
xk+1, vk))−1∇x,v𝑓

(
xk+1, vk) Πk (Φk)⊤‖‖‖ √k𝜀 + ‖‖‖(∇x,x𝑓

(
xk+1, vk))−1‖‖‖ 𝛿. (41)

Then, (III) follows from (II) and (iv).

Remark 2. As the number of data points, k, increases in the RLS algorithm, it usually holds that 𝜆min((Φk)⊤Φk)
increases and goes to infinity, whereas ||Πk|| decreases and goes to zero. If k∕λmin((Φk)⊤Φk) decreases as k increases,
the error bound (27) shrinks, which can be monitored at run time. Similarly, the growth or decrease of the error
bounds (29) and (30) can be monitored at run time. The bounds (27), (29), and (30) can be used to define the crite-
ria to terminate the iterations. For instance, if there exists k∗ ∈ ℤ≥0 such that ||vk∗ − v∗|| ≤ 𝜂1, or ||xk∗ − x∗|| ≤ 𝜂2,
or |𝑓 (xk∗

, v∗) − 𝑓 (x∗, v∗)| ≤ 𝜂3, where 𝜂1, 𝜂2, 𝜂3 > 0 are user specified, then iterations terminate at k∗. Otherwise,
iterations terminate after the maximum number of iterations is reached.

Sometimes, a monotone nonincrease in the cost values
{
𝑓 (xk+1, v∗)

}
k∈ℤ≥0

during the iterations is desired. For the case
of control, this may facilitate maintenance of stability, supposing the initial control is stabilizing. In what follows, we
provide a guideline for selecting the update step size so that the cost does not increase after the current iteration, which
can be checked before the iteration is performed.

The guideline is developed based on several approximations. In particular, we make the following assumptions.

Assumption 5.

1. In (9), wk + 1 = 0.
2. In the following equation obtained based on the Taylor expansion of f at (xk + 1, vk) to the second order,

𝑓
(

xk+2, v∗
)
− 𝑓
(

xk+1, v∗
)
=
(

xk+2 − xk+1)⊤∇x,v𝑓
(

xk+1, vk) (v∗ − vk)
+ 1

2
(

xk+2 − xk+1)⊤∇x,x𝑓
(

xk+1, vk) (xk+2 − xk+1) + w̄k+1,
(42)

the higher-order terms w̄k+1 = 0.



272 LI ET AL.

3. In the Taylor expansion of ∇x f at (xk + 1, vk) to the first order,

∇⊤
x 𝑓
(

xk+2, vk+1) = ∇⊤
x 𝑓
(

xk+1, vk) + ∇x,x𝑓
(

xk+1, vk) (xk+2 − xk+1) + ∇x,v𝑓
(

xk+1, vk) (vk+1 − vk) + ŵk+1, (43)

the higher-order terms ŵk+1 = 0.

Proposition 3. Suppose that Assumption 5 holds. Then, if the update step size 𝜆k + 1 ∈ [0, 1] is selected such that

Σk+1
1 − 𝜆k+1Σk+1

2 ⪰ 0, (44)

where
Σk+1

1 =
(
∇⊤

x,v𝑓
(

xk+1, vk) (xk+1 − xk) (xk+1 − xk)⊤∇x,v𝑓
(

xk+1, vk) Πk+1∇⊤
x,v𝑓
(

xk+1, vk)(
∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk)) + (∇⊤
x,v𝑓
(

xk+1, vk) (xk+1 − xk) (xk+1 − xk)⊤
∇x,v𝑓
(

xk+1, vk) Πk+1∇⊤
x,v𝑓
(

xk+1, vk) (∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk))⊤,
(45)

Σk+1
2 =

(
∇⊤

x,v𝑓
(

xk+1, vk) (xk+1 − xk) (xk+1 − xk)⊤∇x,v𝑓
(

xk+1, vk))(Πk+1∇⊤
x,v𝑓
(

xk+1, vk)(
∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) Πk+1
)(

∇⊤
x,v𝑓
(

xk+1, vk) (xk+1 − xk) (xk+1 − xk)⊤∇x,v𝑓
(

xk+1, vk)) , (46)

then the cost does not increase after the (k + 1)st iteration, ie,

𝑓
(

xk+2, v∗
)
≤ 𝑓
(

xk+1, v∗
)
. (47)

Proof. By the first-order necessary conditions for optimality ∇x f (xk + 2, vk + 1) = ∇x f (xk + 1, vk) = 0, (43) yields

xk+2 − xk+1 = −
(
∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) (vk+1 − vk) . (48)

Substituting (48) into (42), we get

𝑓
(

xk+2, v∗
)
− 𝑓
(

xk+1, v∗
)
= −
(

vk+1 − vk)⊤∇⊤
x,v𝑓
(

xk+1, vk) (∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) (v∗ − vk)
+ 1

2
(

vk+1 − vk)⊤∇⊤
x,v𝑓
(

xk+1, vk) (∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) (vk+1 − vk) . (49)

The update law (18) yields

vk+1 − vk = 𝜆k+1Πk+1∇⊤
x,v𝑓
(

xk+1, vk) (xk+1 − xk)(
𝑓
(

xk+1, v∗
)
− 𝑓
(

xk, v∗
)
+ 1

2
(

xk+1 − xk)⊤∇x,x𝑓
(

xk+1, vk) (xk+1 − xk)) . (50)

Substituting (9) with wk + 1 = 0 into (50) yields

vk+1 − vk = 𝜆k+1Πk+1∇⊤
x,v𝑓
(

xk+1, vk) (xk+1 − xk) (xk+1 − xk)⊤∇x,v𝑓
(

xk+1, vk) (v∗ − vk) . (51)

Substituting (51) into (49), we obtain

𝑓
(

xk+2, v∗
)
− 𝑓
(

xk+1, v∗
)

= − 𝜆k+1(v∗ − vk)⊤∇⊤
x,v𝑓
(

xk+1, vk) (xk+1 − xk) (xk+1 − xk)⊤∇x,v𝑓
(

xk+1, vk) Πk+1

∇⊤
x,v𝑓
(

xk+1, vk) (∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) (v∗ − vk) + (𝜆k+1)2
2
(

v∗ − vk)⊤
∇⊤

x,v𝑓
(

xk+1, vk) (xk+1 − xk) (xk+1 − xk)⊤∇x,v𝑓
(

xk+1, vk) Πk+1∇⊤
x,v𝑓
(

xk+1, vk)(
∇x,x𝑓
(

xk+1, vk))−1∇x,v𝑓
(

xk+1, vk) Πk+1∇⊤
x,v𝑓
(

xk+1, vk) (xk+1 − xk) (xk+1 − xk)⊤
∇x,v𝑓
(

xk+1, vk) (v∗ − vk)
= − 𝜆k+1

2
(

v∗ − vk)⊤ (Σk+1
1 − 𝜆k+1Σk+1

2
) (

v∗ − vk) ,

(52)

where Σk+1
1 and Σk+1

2 are defined in (45) and (46).
If Σk+1

1 − 𝜆k+1Σk+1
2 ⪰ 0, then f (xk + 2, v∗) − f (xk + 1, v∗) ≤ 0 for any v∗ ∈ ℝnv .
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Note that in expression (52), all parameter values, except for the unknown v∗ and the controllable update step size 𝜆k + 1,
are already known before the update of vk + 1 at the (k + 1)st iteration. Therefore, if 𝜆k + 1 is selected such that (44) holds,
which can be checked before the (k + 1)st iteration is performed, then, under Assumption 5, the cost is guaranteed to not
increase after the (k + 1)st iteration.

In practice, a monotone nonincrease in the cost values
{
𝑓 (xk+1, v∗)

}
k∈ℤ≥0

can be achieved by solving the following
linear matrix inequality problem32:

maximize: 𝜆 ∈ [0, 1],
subject to: Σk+1

1 − 𝜆Σk+1
2 ⪰ 0,

(53)

and set 𝜆 = 0 if the constraint is infeasible, to select the update step size 𝜆k + 1, for each k ∈ ℤ≥0.

Remark 3. If the update step sizes 𝜆k + 1 are selected by solving (53) for all k ∈ ℤ≥0, then, under Assumption 5, the
sequence

{
𝑓 (xk+1, v∗)

}
k∈ℤ≥0

is monotone nonincreasing. Since
{
𝑓 (xk+1, v∗)

}
k∈ℤ≥0

is also lower bounded by f(x∗, v∗), by
the monotone convergence theorem,

{
𝑓 (xk+1, v∗)

}
k∈ℤ≥0

converges. This provides another sufficient condition, aside
from Proposition 1, for the convergence of the iterates.

Remark 4. In the iterative procedure, at the (k + 1)st iteration, k ∈ ℤ≥0, on the one hand, xk + 1 is required to satisfy the
necessary conditions for optimality (4); on the other hand, xk can be arbitrary. Therefore, (i) to initialize the iterative
procedure, k = 0, we start from an initial guess v0, compute x1 ∈ argminx𝑓 (x, v0), and then create x0 by adding a small
perturbation to x1. (ii) At the (k + 1)st iteration, k ∈ ℤ≥1, we may add a small random perturbation ek ∈ ℝnx to the xk

obtained from the kth iteration and use the perturbed xk ← xk + ek at the (k + 1)st iteration. Such perturbations play
the role of probing signals and generate a persistency of excitation33 to the RLS algorithm, to promote the RLS estimate
to approach v∗.34,35 We have found that such perturbations are not necessary in the application of our approach to
finite-horizon LQ problems, but can benefit the application of our approach to infinite-horizon LQ problems. Further
details can be found in Sections 3 and 4.

2.3 Examples
2.3.1 Minimization of an unknown quadratic function
Consider the minimization of the following function:

𝑓 (x, v∗) = ax2 + bx + 1, v∗ = (a, b) = (1,−2). (54)

Clearly, the minimizer is x∗ = 1, and the corresponding function value is f (x∗, v∗) = 0.
Suppose we do not know v∗ = (a, b). We can use our proposed approach to treat this problem. In particular, we start

from an initial guess v0 = (a0, b0) = (2, 4). At the (k + 1)st iteration, the minimizer xk + 1 is computed from xk + 1 =
−bk∕(2ak); the update step size 𝜆k + 1 is selected by solving the linear matrix inequality problem (53). The evolutions of
xk + 1 and f (xk + 1, v∗) over the iterations are plotted in Figure 1A,B. It can be observed that xk + 1 converges to x∗ = 1 and
f (xk + 1, v∗) converges to f (x∗, v∗) = 0. Furthermore, we plot the history of 𝜆k + 1 and the history of the smallest eigenvalue
of Σk+1

1 − 𝜆k+1Σk+1
2 over the iterations in Figure 1C. In this example, the solution to (53) is 1 for all k ∈ ℤ≥0, which can be

observed from Figure 1C.1, and the matrix Σk+1
1 −𝜆k+1Σk+1

2 is positive semidefinite for all k ∈ ℤ≥0, which can be observed
from Figure 1C.2. This guarantees the monotone nonincrease in the cost values

{
𝑓 (xk+1, v∗)

}
k∈Z≥0

, which is verified in
Figure 1B.

2.3.2 Minimization of the Rosenbrock function with unknown parameters
The second example we consider is minimizing the Rosenbrock function, ie,

𝑓 (x, v∗) = (a − x1)2 + b
(

x2 − x2
1
)2
, x = (x1, x2), v∗ = (a, b) = (1, 100). (55)

The Rosenbrock function is often used as a benchmark problem to test optimization algorithms.36 Note that it is non-
convex and admits a global minimum at (x∗1 , x

∗
2) = (a, a2). We use the Rosenbrock function to show that the procedure

described in Section 2.2 can be successful for functions that are not quadratic.
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FIGURE 1 Quadratic function minimization. A, The plot of
(

k, xk+1); B, The plot of
(

k, 𝑓 (xk+1, v∗)
)
; C, The plots of

(
k, 1 − 𝜆k+1) and(

k, 𝜆min(Σk+1
1 − 𝜆k+1Σk+1

2 )
)

[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Rosenbrock function minimization. A, The plot of
(

k, xk+1
1
)
; B, The contour of f (x, v∗) and the evolution of xk + 1. The red cross

indicates x1 = (a0, (a0)2), and the green cross indicates the solution after 25 iterations [Colour figure can be viewed at wileyonlinelibrary.com]

Suppose we do not know (a, b) and start from an initial guess (a0, b0) = (0.5, 200). At the (k + 1)st iteration, the
minimizer is computed from xk+1 =

(
xk+1

1 , xk+1
2
)
=
(

ak, (ak)2); the update step size is selected as a constant 𝜆k + 1 = 0.25
for all k ∈ ℤ≥0. The evolutions of xk+1

1 and f (xk + 1, v∗) over the iterations are plotted in Figure 2A,B. It can be observed
that xk+1

1 converges to the minimizer at x∗1 = a = 1 and f (xk + 1, v∗) converges to f (x∗, v∗) = 0.

3 FINITE-HORIZON LQ CONTROL OF UNKNOWN DISCRETE-TIME
LINEAR SYSTEMS

In Section 2, we have introduced an optimization problem where the objective function f is of a known form but depends
on an unknown parameter v∗. We have presented an iterative approach to address this problem and discussed its theoreti-
cal properties. In this section, we exploit the proposed approach to treat the finite-horizon LQ optimal control problem for
unknown discrete-time systems. Our iterative approach requires multiple evaluations of the cost as a function of control;
thus, it is applicable to situations where the cost can be evaluated through simulations subject to the same initial condi-
tion, or to batch processes where experiments with the same initial condition can be repeated.37,38 Such a setting is the
same as in the application of ES to the finite-horizon LQ control.27,28 Therefore, we choose to compare the performance
of our approach to that of the ES approach.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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3.1 Iterative approach to finite-horizon LQ control of unknown systems
A finite-horizon discrete-time optimal control problem may be stated as

min
ui, i=0,… ,N−1

𝑓(u0,u1, … ,uN−1, 𝑦1, 𝑦2, … , 𝑦N) , (56)

subject to the dynamic equation
𝑦i+1 =  (𝑦i,ui) (57)

and an initial condition y0, where ui ∈ ℝnu , i ∈ {0, 1, … ,N − 1}, denotes the input sequence; 𝑦i ∈ ℝn𝑦 , i ∈ {0, 1, … ,N},
denotes the state sequence; and N is the prediction horizon.

Given an initial condition y0, the subsequent states, yi, i ∈ {1, 2, … ,N}, are determined by the input sequence
{u0,u1, … ,uN− 1}.

If the dynamic equation (57) is parameterizable, problem (56) may be converted into the following form:

min
x
𝑓 (x, v∗), (58)

where x = [u⊤0 ,u
⊤
1 , … ,u⊤N−1]

⊤, and v∗ represents the parameters of a model that reflects the dynamic coupling between
{u0,u1, … ,uN− 1} and {y0, y1, … , yN} through (57). Then, the iterative approach presented in Section 2 may be used to
solve problem (58).

Now, we discuss the approach to achieve the conversion from (56) and (57) into (58) for the finite-horizon LQ control
of discrete-time linear systems.

A discrete-time finite-horizon LQ problem involves minimizing a cost function, ie,

min
ui, i=0,… ,N−1

𝑓 =
N−1∑
i=0

(
𝑦⊤i+1Q𝑦i+1 + u⊤i Rui

)
, (59)

subject to
𝑦i+1 = A𝑦i + Bui, (60)

where Q = Q⊤ ⪰ 0 and R = R⊤ ≻ 0.
The dynamic equation (60) yields

𝑦i = Ai 𝑦0 +
i−1∑
𝑗=0

Ai−𝑗−1Bu𝑗 . (61)

Substituting (61) into the objective function (59), we obtain

𝑓 =
N−1∑
i=0

⎛⎜⎜⎝
(

Ai+1𝑦0 +
i∑

𝑗=0
Ai−𝑗Bu𝑗

)⊤
Q

(
Ai+1𝑦0 +

i∑
𝑗=0

Ai−𝑗Bu𝑗

)
+ u⊤i Rui

⎞⎟⎟⎠
=

N−1∑
i=0

⎛⎜⎜⎝𝑦⊤0
(

Ai+1)⊤QAi+1𝑦0 + 2𝑦⊤0
(

Ai+1)⊤Q

( i∑
𝑗=0

Ai−𝑗Bu𝑗

)

+

( i∑
𝑗=0

Ai−𝑗Bu𝑗

)⊤
Q

( i∑
𝑗=0

Ai−𝑗Bu𝑗

)
+ u⊤i Rui

⎞⎟⎟⎠ .
(62)

Suppose the matrix pair (A,B) is unknown*; we can list the unknown entries in some order and define an unknown
parameter vector, eg,

v∗ =
[
vec⊤(A), vec⊤(B)

]⊤ =
[
a11, a21, … , an𝑦n𝑦 , b11, b21, … , bn𝑦nu

]⊤
, (63)

where apq denotes the ( p, q)-entry ( pth row, qth column) of matrix A and bp′q′ denotes the ( p′, q′)-entry of matrix B. Then,
problem (59) and (60) is converted into the following form:

min
x
𝑓 (x, v∗), (64)

where f is given by (62), x =
[
u⊤0 ,u

⊤
1 , … ,u⊤N−1

]⊤, and v∗ is given by (63). Therefore, we can use the approach in Section 2
to update the estimate of v∗ while improving the control sequence x =

[
u⊤0 ,u

⊤
1 , … ,u⊤N−1

]⊤.

*The case where only some entries of (A,B) are unknown can be treated similarly.
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We note that the needed derivatives can be explicitly computed. Specifically, we have

∇um𝑓 = 2
N−1∑
i=m

⎛⎜⎜⎝𝑦⊤0
(

Ai+1)⊤Q
(

Ai−mB
)
+

( i∑
𝑗=0

Ai−𝑗Bu𝑗

)⊤
Q
(

Ai−mB
)⎞⎟⎟⎠ + 2u⊤mR, (65)

∇um,un𝑓 =

⎧⎪⎪⎨⎪⎪⎩
2
∑N−1

i=m

((
Ai−mB

)⊤Q
(

Ai−nB
))
, if n < m,

2
∑N−1

i=m

((
Ai−mB

)⊤Q
(

Ai−mB
))

+ 2R, if n = m,

2
∑N−1

i=n

((
Ai−mB

)⊤Q
(

Ai−nB
))
, if n > m,

(66)

∇um,apq𝑓 = 2
N−1∑
i=m

((
Ai−mB

)⊤QĀ{i+1,pq}𝑦0 +
(

Ā{i−m,pq}B
)⊤QAi+1𝑦0

+
(

Ai−mB
)⊤Q

( i∑
𝑗=0

Ā{i−𝑗,pq}Bu𝑗

)
+
(

Ā{i−m,pq}B
)⊤Q

( i∑
𝑗=0

Ai−𝑗Bu𝑗

))
,

(67)

where Ā{𝜃,pq} is a matrix given by

Ā{𝜃,pq} =
𝜃−1∑
r=0

Ar[1pq
]

AA𝜃−r−1, (68)

in which [1pq]A is a matrix of size(A), where the ( p, q)-entry is 1 and all other entries are 0. We can obtain a similar
expression for ∇um,bp′q′𝑓 , ie,

∇um,bp′q′𝑓 = 2
N−1∑
i=m

((
Ai−m[1p′q′ ]B

)⊤QAi+1𝑦0 +
(

Ai−m[1p′q′ ]B
)⊤Q

( i∑
𝑗=0

Ai−𝑗Bu𝑗

)
(69)

+
(

Ai−mB
)⊤Q

( i∑
𝑗=0

Ai−𝑗[1p′q′ ]Bu𝑗

))
,

in which [1p′q′ ]B is a matrix of size(B), where the ( p′, q′)-entry is 1 and all other entries are 0.
Then, we can formulate the matrices in (9) as

∇x,x𝑓
(

xk+1, vk) = [∇um,un𝑓
]
=
⎡⎢⎢⎢⎣

∇u0,u0𝑓 ∇u0,u1𝑓 · · · ∇u0,uN−1𝑓
∇u1,u0𝑓 ∇u1,u1𝑓 · · · ∇u1,uN−1𝑓

⋮ ⋮ ⋱ ⋮
∇uN−1,u0𝑓 ∇uN−1,u1𝑓 · · · ∇uN−1,uN−1𝑓

⎤⎥⎥⎥⎦ , (70)

∇x,v𝑓
(

xk+1, vk) = [∇um,apq𝑓,∇um,bp′q′𝑓
]
=
⎡⎢⎢⎣

∇u0,a11𝑓 ∇u0,a21𝑓 · · · ∇u0,an𝑦n𝑦
𝑓 ∇u0,b11𝑓 · · · ∇u0,bn𝑦nu

𝑓

⋮ ⋮ ⋱ ⋱ ⋱ ⋮
∇uN−1,a11𝑓 ∇uN−1,a21𝑓 · · · ∇uN−1,an𝑦n𝑦

𝑓 ∇uN−1,b11𝑓 · · · ∇uN−1,bn𝑦nu
𝑓

⎤⎥⎥⎦ .
The minimizer xk+1 = [(uk+1

0 )⊤, (uk+1
1 )⊤, … , (uk+1

N−1)
⊤]⊤ at the (k + 1)st iteration can be analytically computed by, at first,

performing the backward-in-time calculations, ie,

F{k+1}
i−1 = −

(
R + (B{k})⊤S{k+1}

i B{k}
)−1

(B{k})⊤S{k+1}
i A{k}, (71)

S{k+1}
i−1 = Q + (A{k})⊤S{k+1}

i A{k} + (A{k})⊤S{k+1}
i B{k}F{k+1}

i−1 ,

where S{k+1}
N = Q and the matrix pair (A{k},B{k}) is constructed from vk, and, then, performing the forward-in-time

calculations, ie,

uk+1
i = F{k+1}

i 𝑦k+1
i , (72)

𝑦k+1
i+1 = A{k}𝑦k+1

i + B{k}uk+1
i ,

where 𝑦k+1
0 = 𝑦0. Note that in the above expressions, the superscripts k + 1 and {k + 1} indicate the iteration index, not

the matrix power.
We remark that we treat the finite-horizon LQ control as an open-loop control problem, that is, at the (k + 1)st iteration,

we use the computed input sequence {uk+1
i } to control the system.
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Our iterative algorithm for the finite-horizon LQ control of unknown discrete-time linear systems is formally presented
as Algorithm 1.

In the algorithm, ei ∈ ℝnu , i = 0, … ,N − 1, are small perturbations.
By Assumption 2, the value of f (xk, v∗) can be measured for each k ∈ ℤ≥0. In the case of state measurement, the cost

evaluation function Cost(·) takes the form of Algorithm 2.

The  (·, ·, v∗) represents the true system (60).

3.2 Finite-horizon LQ control via ES
ES is a non–model-based method for real-time optimization.26 In the work of Frihauf et al,27 an algorithm based on mul-
tiparameter ES for the finite-horizon LQ control of unknown discrete-time linear systems is proposed. The approach is
extended to handle measurement noise in the work of Liu et al.28 To estimate gradients of the cost function, sinusoidal
probing signals are added to the nominal control inputs. In this section, we review the algorithm and will later compare
the performance of our iterative algorithm to that of ES.

The control input sequence x = [u⊤0 ,u
⊤
1 , … ,u⊤N−1]

⊤ is updated according to Algorithm 3.
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In the algorithm, 𝜖 > 0 is a small parameter, K is a positive diagonal matrix, h > 0 and 𝛼 > 0 are design parameters,
and

Mk =

[ cos(k𝜔1 − 𝜓1)
⋮

cos(k𝜔nuN − 𝜓nuN)

]
, Sk =

[ cos(k𝜔1)
⋮

cos(k𝜔nuN)

]
, (73)

where 𝜔i = bi𝜋; bi is a rational number such that 𝜔i ≠ 𝜔j for all distinct i, j ∈ {1, 2, … ,nuN}; and 𝜓 i = −𝜔i.
The ES algorithm uses the sinusoidal perturbations Mk and Sk to estimate, and drive to zero, the gradient of the cost

function f (·, v∗). Thus, if xk converges to x∞, x∞ satisfies the first-order necessary condition for optimality, ie,

∇x𝑓 (x∞, v∗) = 0. (74)

The convergence of xk to x∞ is discussed in the works of Frihauf et al27 and Liu et al.28 If f is (locally) convex, x∞ is a (local)
minimizer.

4 INFINITE-HORIZON LQ CONTROL OF UNKNOWN DISCRETE-TIME
LINEAR SYSTEMS

In this section, we describe how to exploit our proposed approach to treat the infinite-horizon LQ optimal control problem
for unknown discrete-time systems. Similar to the finite-horizon case, our iterative approach is applicable to situations
where the cost can be evaluated through simulations, or to batch processes.

4.1 Iterative approach to infinite-horizon LQ control of unknown systems
A discrete-time infinite-horizon LQ problem involves minimizing a cost function, ie,

min
ui, i=0,1,…

𝑓 =
∞∑

i=0

(
𝑦⊤i Q𝑦i + u⊤i Rui

)
, (75)

subject to
𝑦i+1 = A𝑦i + Bui, (76)

where Q = Q⊤ ⪰ 0 and R = R⊤ ≻ 0.
It is known that, under the standard stabilizability and detectability assumptions,17 the optimal solution to the above

problem is a time-invariant feedback law, ie,
ui = F 𝑦i. (77)

Substituting (77) into (75) and (76), we obtain an “equivalent” problem as follows:

min
F
𝑓 =

∞∑
i=0
𝑦⊤i (Q + F⊤RF)𝑦i, (78)

subject to
𝑦i+1 = (A + BF)𝑦i. (79)

Note that the “equivalence” here is in a sense that the optimal solution to (75) and (76) takes the form of ui = Fyi,
where F is the global optimal solution to (78) and (79).

The dynamic equation (79) yields
𝑦i = (A + BF)i 𝑦0. (80)

Substituting (80) into (78), we get

𝑓 = 𝑦⊤0

∞∑
i=0

((
(A + BF)i)⊤ (Q + F⊤RF

) (
(A + BF)i)) 𝑦0. (81)
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If we list the entries of F to optimize in some order and define a vector, eg,

x = vec(F) =
[
𝔣11, 𝔣21, … , 𝔣nun𝑦

]⊤
, (82)

where 𝔣mn denotes the (m,n)-entry of matrix F, and list the unknown entries of (A,B) in some order and define an
unknown parameter vector, eg,

v∗ =
[
vec⊤(A), vec⊤(B)

]⊤ =
[
a11, a21, … , an𝑦n𝑦 , b11, b21, … , bn𝑦nu

]⊤
, (83)

then problem (78) and (79) is converted into the following form:

min
x
𝑓 (x, v∗), (84)

where f is given by (81), x is given by (82), and v∗ is given by (83). Therefore, we can use the approach in Section 2 to
update the estimate of v∗ while improving the feedback gain F = vec−1(x).

Suppose the closed-loop system (79) is asymptotically stable. Then, the series

T ∶=
∞∑

i=0

((
(A + BF)i)⊤ (Q + F⊤RF

) (
(A + BF)i)) (85)

converges, and T satisfies

(Q + F⊤RF) + (A + BF)⊤T(A + BF) = T, (86)

which is in the form of a discrete-time Lyapunov equation.
The analytic solution to (86) is given by

vec(T) = Λ−1 vec(Q + F⊤RF), (87)

where

Λ ∶= In2
𝑦
− (A + BF)⊤ ⊗ (A + BF)⊤. (88)

The objective function (81) can be written as

𝑓 = vec(𝑓 ) = vec
(
𝑦⊤0 T𝑦0

)
= (𝑦0 ⊗ 𝑦0)⊤vec(T). (89)

The first-order partial derivatives have the following form:

∇𝔣mn𝑓 = (𝑦0 ⊗ 𝑦0)⊤
(
−Λ−1 (∇𝔣mnΛ

)
Λ−1 vec(Q + F⊤RF) + Λ−1∇𝔣mn

(
vec(Q + F⊤RF)

))
(90)

= (𝑦0 ⊗ 𝑦0)⊤
(
Λ−1ΩmnΛ−1 vec(Q + F⊤RF) + Λ−1 vec(Ξmn)

)
,

where

Ωmn ∶= −
(
∇𝔣mnΛ

)
= (B[1mn]F)⊤ ⊗ (A + BF)⊤ + (A + BF)⊤ ⊗ (B[1mn]F)⊤,

Ξmn ∶= ∇𝔣mn(Q + F⊤RF) = [1mn]⊤F RF + F⊤R[1mn]F ,

and [1mn]F is a matrix of size(F), where the (m,n)-entry is 1 and all other entries are 0.
The second-order partial derivatives have the following forms:

∇𝔣mn,𝔣m′n′𝑓 = (𝑦0 ⊗ 𝑦0)⊤
(
−Λ−1 (∇𝔣m′n′ Λ

)
Λ−1ΩmnΛ−1 vec(Q + F⊤RF) + Λ−1 (∇𝔣m′n′ Ωmn

)
Λ−1 vec(Q + F⊤RF)

− Λ−1ΩmnΛ−1 (∇𝔣m′n′ Λ
)
Λ−1 vec(Q + F⊤RF) + Λ−1ΩmnΛ−1∇𝔣m′n′

(
vec(Q + F⊤RF)

)
−Λ−1 (∇𝔣m′n′ Λ

)
Λ−1 vec(Ξmn) + Λ−1∇𝔣m′n′ (vec(Ξmn))

)
= (𝑦0 ⊗ 𝑦0)⊤

(
Λ−1 (Ωm′n′ Λ−1Ωmn + ∇𝔣m′n′ Ωmn + ΩmnΛ−1Ωm′n′

)
Λ−1 vec(Q + F⊤RF) (91)

+Λ−1ΩmnΛ−1 vec(Ξm′n′ ) + Λ−1Ωm′n′ Λ−1 vec(Ξmn) + Λ−1 vec
(
∇𝔣m′n′ Ξmn

))
,
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where

∇𝔣m′n′ Ωmn = (B[1mn]F)⊤ ⊗ (B[1m′n′ ]F)⊤ + (B[1m′n′ ]F)⊤ ⊗ (B[1mn]F)⊤,

∇𝔣m′n′ Ξmn = [1mn]⊤F R[1m′n′ ]F + [1m′n′ ]⊤F R[1mn]F ;

∇𝔣mn,apq𝑓 = (𝑦0 ⊗ 𝑦0)⊤
(
−Λ−1 ((∇apqΛ)Λ

−1Ωmn − ∇apqΩmn + ΩmnΛ−1(∇apqΛ)
)

(92)

Λ−1 vec(Q + F⊤RF) − Λ−1(∇apqΛ)Λ
−1 vec(Ξmn)

)
,

where

∇apqΛ = −
(
[1pq]A

)⊤
⊗ (A + BF)⊤ − (A + BF)⊤ ⊗

(
[1pq]A

)⊤
,

∇apqΩmn = (B[1mn]F)⊤ ⊗
(
[1pq]A

)⊤ +
(
[1pq]A

)⊤
⊗ (B[1mn]F)⊤;

and

∇𝔣mn,bp′q′𝑓 = (𝑦0 ⊗ 𝑦0)⊤
(
−Λ−1 ((∇bp′q′ Λ)Λ

−1Ωmn − ∇bp′q′ Ωmn + ΩmnΛ−1(∇bp′q′ Λ)
)

(93)

Λ−1 vec(Q + F⊤RF) − Λ−1(∇bp′q′ Λ)Λ
−1 vec(Ξmn)

)
,

where

∇bp′q′ Λ = −
(
[1p′q′ ]BF

)⊤
⊗ (A + BF)⊤ − (A + BF)⊤ ⊗

(
[1p′q′ ]BF

)⊤
,

∇bp′q′ Ωmn = (B[1mn]F)⊤ ⊗
(
[1p′q′ ]BF

)⊤ +
(
[1p′q′ ]BF

)⊤
⊗ (B[1mn]F)⊤

+
(
[1p′q′ ]B[1mn]F

)⊤
⊗ (A + BF)⊤ + (A + BF)⊤ ⊗

(
[1p′q′ ]B[1mn]F

)⊤
.

Then, we can formulate the matrices in (9) as

∇x,x𝑓
(

xk+1, vk) = [∇𝔣mn,𝔣m′n′𝑓
]
=

⎡⎢⎢⎢⎢⎢⎣

∇𝔣11,𝔣11𝑓 ∇𝔣11,𝔣21𝑓 · · · ∇𝔣11,𝔣nun𝑦
𝑓

∇𝔣21,𝔣11𝑓 ∇𝔣21,𝔣21𝑓 · · · ∇𝔣21,𝔣nun𝑦
𝑓

⋮ ⋮ ⋱ ⋮

∇𝔣nun𝑦 ,𝔣11𝑓 ∇𝔣nun𝑦 ,𝔣21𝑓 · · · ∇𝔣nun𝑦 ,𝔣nun𝑦
𝑓

⎤⎥⎥⎥⎥⎥⎦
, (94)

∇x,v𝑓
(

xk+1, vk) = [∇𝔣mn,apq𝑓,∇𝔣mn,bp′q′𝑓
]
=
⎡⎢⎢⎢⎣
∇𝔣11,a11𝑓 ∇𝔣11,a21𝑓 · · · ∇𝔣11,an𝑦n𝑦

𝑓 ∇𝔣11,b11𝑓 · · · ∇𝔣11,bn𝑦nu
𝑓

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

∇𝔣nun𝑦 ,a11𝑓 ∇𝔣nun𝑦 ,a21𝑓 · · · ∇𝔣nun𝑦 ,an𝑦n𝑦
𝑓 ∇𝔣nun𝑦 ,b11𝑓 · · · ∇𝔣nun𝑦 ,bn𝑦nu

𝑓

⎤⎥⎥⎥⎦ .
The minimizer xk + 1 = vec(F{k + 1}) at the (k + 1)st iteration can be analytically computed by solving the discrete-time

algebraic Riccati equation, ie,

T{k+1} = Q + (A{k})⊤T{k+1}A{k} − (A{k})⊤T{k+1}B{k}(R + (B{k})⊤T{k+1}B{k})−1(B{k})⊤T{k+1}A{k},

F{k+1} = −
(

R + (B{k})⊤T{k+1}B{k})−1(B{k})⊤T{k+1}A{k}. (95)

Note that the superscript {k + 1} indicates the iteration index, not the matrix power.
We remark that in the infinite-horizon LQ control case, we apply our methodology to search for an optimal feedback

matrix F, whereas in the finite-horizon LQ control case considered in Section 3, we apply our methodology to search for
an optimal open-loop control sequence.
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Our iterative algorithm for the infinite-horizon LQ control of unknown discrete-time linear systems is formally
presented as Algorithm 4.

In the algorithm, e{k} ∈ ℝnun𝑦 , with e{k} → 0 as k → ∞, are small perturbations. When Perturbation=True, perturbations
are added, playing the role of probing signals, to generate persistent excitations to the RLS algorithm. It will be shown
in the example in Section 5 that adding perturbations in the algorithm can effectively help the algorithm escape local
minima, at the cost of slower convergence.

By Assumption 2, the value of f (xk, v∗) can be measured for each k ∈ ℤ≥0. In the case of state measurement, the cost
evaluation function Cost(·) takes the form of Algorithm 5, with imax ∈ ℤ≥0 being sufficiently large.

4.2 Infinite-horizon LQ control via RL
As discussed in Section 1, approaches based on RL have also been proposed for the infinite-horizon LQ control problem of
unknown dynamic systems. In particular, an RL algorithm that exploits -learning can be used, which is now reviewed.
We will then compare the performance of our iterative algorithm to that of RL.

The -learning algorithm presented here is based on the works of Lewis and Vrabie11 and Bradtke.18

The Bellman value function13 of the infinite-horizon LQ control problem (75) and (76) is known to be (𝑦) = 𝑦⊤T𝑦,
where T is the unique stabilizing solution to the discrete-time algebraic Riccati equation, ie,

T = Q + A⊤TA − A⊤TB(R + B⊤TB)−1B⊤TA. (96)



282 LI ET AL.

The -value of the state-control pair (y,u) is defined as

(𝑦,u) = 𝑦⊤Q𝑦 + u⊤Ru + (A𝑦 + Bu) =
[
𝑦
u

]⊤ [H𝑦𝑦 H𝑦u

H⊤
𝑦u Huu

] [
𝑦
u

]
, (97)

where

H𝑦𝑦 = Q + A⊤TA, H𝑦u = A⊤TB, Huu = R + B⊤TB. (98)

On the basis of the Bellman optimality condition,13 the optimal control at state y is

u∗(𝑦) = argmin
u

(𝑦,u). (99)

Since (𝑦,u) is convex and differentiable in u, u∗(y) can be solved using the first-order necessary condition

∇u(𝑦,u) = 2𝑦⊤H𝑦u + 2u∗(𝑦)⊤Huu = 0, u∗(𝑦) = −(Huu)−1H⊤
𝑦u 𝑦. (100)

That is, the optimal feedback matrix, ie, the optimal solution to (78) and (79), is

F = −(Huu)−1H⊤
𝑦u. (101)

Equation (97) can be written as

(𝑦,u) = 𝜐⊤H, (102)

where

𝜐 =
[
𝑦
u

]
⊗

[
𝑦
u

]
, H = vec

([H𝑦𝑦 H𝑦u

H⊤
𝑦u Huu

])
. (103)

Suppose k samples of (𝑦i,ui,(𝑦i,ui)), i = 1, … , k, are collected, the least squares estimate of H is

H
k
=
(
(Υk)⊤Υk)−1(Υk)⊤Qk, (104)

where

Υk =
[
𝜐1, … , 𝜐k

]⊤
, Qk =

[
(𝑦1,u1), … , (𝑦k,uk)

]⊤
. (105)

The true -values are unknown but can be estimated, where the estimate is updated after each update of the H
estimation, based on

k+1(𝑦k,uk) = (1 − 𝜆k+1)k(𝑦k,uk) + 𝜆k+1
⎛⎜⎜⎝(𝑦k)⊤Q𝑦k + (uk)⊤Ruk (106)

+

[
𝑦k+1

−
(

Hk
uu
)−1(Hk

𝑦u
)⊤
𝑦k+1

]⊤ [ Hk
𝑦𝑦 Hk

𝑦u(
Hk
𝑦u
)⊤ Hk

uu

] [
𝑦k+1

−
(

Hk
uu
)−1(Hk

𝑦u
)⊤
𝑦k+1

]⎞⎟⎟⎠ ,
where yk + 1 = Ayk + Buk is the next state, obtained via a simulation/experiment on the true system (76) with (yk,uk)
as the current state-control pair when (A,B) are unknown, 𝜆k + 1 ∈ [0, 1] is a learning rate, and Hk

𝑦𝑦, Hk
𝑦u, and Hk

uu are

reconstructed using H
k
.
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The convergence of k+1 to  and the convergence of H
k

to H are discussed in the work of Lewis and Vrabie.11 The
-learning algorithm used in this paper is formally presented as Algorithm 6.

Algorithm 6 corresponds to updating the estimate of H every imax samples using a mini-batch RLS algorithm. The
e{k}

i ∈ ℝnu , with e{k}
i → 0 as k → ∞, are probing signals that have to be added to let the -function estimate converge.

4.3 Infinite-horizon LQ control via ES
Multiparameter ES26 can also be used for the infinite-horizon LQ control of unknown discrete-time linear systems,
specifically, to solve optimization problem (78) and (79).

The feedback gain parameters x = vec(F) are updated according to Algorithm 7.

In the algorithm, the parameters 𝜖, h, and 𝛼 and the matrices K, Mk, and Sk are defined similarly to those in the ES
algorithm for finite-horizon LQ control in Section 3.2.

5 PITCH ATTITUDE FLIGHT CONTROL

In this section, we use a dynamic model representing the short-period pitch attitude dynamics of an AFTI/F-16 aircraft
to illustrate our approach discussed in Sections 3 and 4 (see Figure 3).
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FIGURE 3 Longitudinal kinematics of an aircraft [Colour figure can be viewed at wileyonlinelibrary.com]

Conventional approaches to developing flight control algorithms rely on first identifying aircraft linear time-invariant
(LTI) models corresponding to different aircraft internal states and external operating conditions† (off-line), designing
feedback control laws at these states (off-line), and then implementing a control corresponding to the current state based
on gain scheduling/gain interpolation (online).39-41 Our iterative approach, in contrast, optimizes the control correspond-
ing to the current state without relying on pre-identified LTI models. This could be an advantage when aircraft parameters
change, eg, due to aging, when storing large gain tables is impractical, which could be the case in unmanned aerial
vehicle–type aircraft, or when the aircraft operates at unanticipated conditions, eg, aircraft icing or in loss-of-control
situations, where we may not have enough time to identify a new LTI model first, but need to control the aircraft
immediately.

In the implementation, the cost f (xk + 1, v∗) at each iteration k + 1 can be evaluated via a simulation using an
onboard-stored high-fidelity flight dynamics model, such as the F-16 model,42 the National Aeronautics and Space Admin-
istration generic models,43-45 and the flexible aircraft model,46 subject to the current state as the initial condition. In
this paper, we do not use a high-fidelity model for cost evaluation but assume an underlying LTI model that represents
the true aircraft pitch attitude dynamics of the current operating condition, which is unknown to the algorithms. The
continuous-time model is taken from the work of Sobel and Shapiro,39 corresponding to an altitude of 3000 ft and a
Mach number of 0.6. We discretize the continuous-time model with sampling time Δt = 0.1 s and use the MATLAB c2d
function47 to obtain the discrete-time model, ie,

𝑦i+1 = A𝑦i + Bui, (107)

where

𝑦 =

⎡⎢⎢⎢⎢⎢⎣

𝜃

q
𝛼

𝛿e

𝛿𝑓

⎤⎥⎥⎥⎥⎥⎦

– pitch attitude (deg),
– pitch rate (deg/s),

– angle of attack (deg),
– elevator deflection (deg),
– flaperon deflection (deg),

u =
[
𝛿ec

𝛿𝑓c

] – elevator deflection command (deg),
– flaperon deflection command (deg)

(108)

and

A =

⎡⎢⎢⎢⎢⎢⎣

1.0000 0.1025 0.2080 −0.0502 −0.0057
0 1.1175 4.1534 −0.8000 −0.1010
0 0.0955 1.0722 −0.0541 −0.0153
0 0 0 0.1353 0
0 0 0 0 0.1353

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

−0.0377 −0.0040
−1.0042 −0.1131
−0.0453 −0.0175
0.8647 0

0 0.8647

⎤⎥⎥⎥⎥⎥⎦
. (109)

†These include aircraft weight, trim condition, etc, and are uniformly referred to as the aircraft “state.”
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5.1 Finite-horizon LQ
Assume that the true model (109) is unknown. Instead, we have initial estimates of the matrices (A,B) that have some
errors. At first, we consider the initial estimate to be (Case 1)

A0 =

⎡⎢⎢⎢⎢⎢⎣

1.0000 0.0992 0.1918 −0.0512 −0.0055
0 1.1090 3.9431 −0.8356 −0.1025
0 0.0978 1.0704 −0.0575 −0.0168
0 0 0 0.1319 0
0 0 0 0 0.1523

⎤⎥⎥⎥⎥⎥⎦
, B0 =

⎡⎢⎢⎢⎢⎢⎣

−0.0357 −0.0038
−0.9759 −0.1112
−0.0441 −0.0188
0.7927 0

0 0.8852

⎤⎥⎥⎥⎥⎥⎦
. (110)

We create this initial estimate by first adding [ −10%, 10%] randomly generated multiplicative error to each entry of the
true continuous-time model and then using c2d to obtain the corresponding discrete-time model.

Secondly, we consider the initial estimate to be (Case 2)

A0 =

⎡⎢⎢⎢⎢⎢⎣

1.0000 0.0901 0.2195 −0.0559 −0.0055
0 1.1271 5.0308 −1.0556 −0.1172
0 0.0836 1.1022 −0.0588 −0.0168
0 0 0 0.1954 0
0 0 0 0 0.1721

⎤⎥⎥⎥⎥⎥⎦
, B0 =

⎡⎢⎢⎢⎢⎢⎣

−0.0395 −0.0035
−1.2248 −0.1142
−0.0454 −0.0172
0.9464 0

0 0.8565

⎤⎥⎥⎥⎥⎥⎦
. (111)

We create this estimate by first adding [ −20%, 20%] randomly generated multiplicative error to each entry of the true
continuous-time model and then using c2d to obtain the corresponding discrete-time model. We test the robustness of
our proposed approach to this inaccurate initial estimation.

We consider the initial condition 𝑦0 = [2, 0, 1, 0, 0]⊤ and the objective function (59) with

Q = diag(1, 1, 1, 1, 1), R = diag(1, 1), N = 10. (112)

We implement our Algorithm 1 for both Case 1 and Case 2, ie, initializing v0 = vec([A0,B0]) using, respectively, (110)
and (111). We initialize Π0 = 102 In2

𝑦
+n𝑦nu

and set 𝜆k + 1 = 1, k ∈ ℤ≥0, in both cases. We also implement the ES algorithm,
Algorithm 3, for both cases to compare the performance. To have a relatively fair comparison, in Algorithm 3, we initialize
x̂0 = vec([û0

0, … ,û0
N−1]) as the solution to (71) and (72), where (A0,B0) are using (110) in Case 1 and (111) in Case 2,

and initialize 𝜉0 = 0 in both cases. Moreover, we set 𝜖 = 10−5, h = 10−1, 𝛼 = 10−3,K = InuN , and bi = i∕(nuN + 1),
i = 1, … ,nuN. These parameters have been tuned to generate the best results that we can get.

In Figures 4A and 5A, we plot the (𝜃, q) trajectories. The black dashed curve represents the trajectory if one applies
the LQ control sequence obtained based on the model (110) or (111) to the true system (109); the red dash-dotted curve
represents the trajectory when using the true system (109) to compute the LQ control (referred to as “LQ-true”). We can
observe that there is a significant mismatch between the black curve and the red curve—the initial control sequence com-
puted using (110) or (111) fails to satisfactorily control the system. The blue solid curve represents the trajectory obtained
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FIGURE 4 Finite-horizon pitch attitude control Case 1. A, The initial (black dashed), final (blue solid), and intermediate (cyan) trajectories
on the (𝜃, q)-plane of Algorithm 1 iterations versus the linear quadratic (LQ)-true trajectory (red dash-dotted); B, The cost evolution over
Algorithm 1 iterations (k, f(xk + 1, v∗)) (blue) versus the LQ-true cost (red) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Finite-horizon pitch attitude control Case 2. A, The initial (black dashed), final (blue solid), and intermediate (cyan) trajectories
on the (𝜃, q)-plane of Algorithm 1 iterations versus the linear quadratic (LQ)-true trajectory (red dash-dotted); B, The cost evolution over
Algorithm 1 iterations (k, f(xk + 1, v∗)) (blue) versus the LQ-true cost (red) [Colour figure can be viewed at wileyonlinelibrary.com]

using our proposed approach after convergence. It matches the red curve well. The cyan curves show the trajectory evo-
lution over the iterations. Figures 4B and 5B show the cost evolution over the iterations. We can observe that (i) the initial
control sequence obtained based on the model (110) or (111) leads to a large cost, (ii) the final control sequence obtained
using our proposed approach has a cost very close to the optimal value, and (iii) the cost decreases and converges very
fast—it gets close to the optimal value after only two iterations in Case 1 and after only five iterations in Case 2.

On the other hand, in Figure 6A,B, we plot the cost evolution over the iterations using the ES algorithm. It can be
observed that although the costs converge to the optimal value in both Case 1 and Case 2, it takes thousands of iterations
to achieve this, which, in real implementation, corresponds to thousands of high-fidelity simulations or experiments. We
note that our implementation of ES is comparable to the implementation in the works of Frihauf et al27 and Liu et al,28

which also takes thousands of iterations to converge in a lower-dimensional system.
Note that our Algorithm 1 is robust to step size selection, as shown in Figure 7A, and, importantly, does not need to

use probing signals, which are necessary in the ES algorithm. To show the advantage of not using probing signals, we
analyze the sensitivity of Algorithm 3 to probing signals. In particular, we plot the cost evolution over the iterations with
different 𝜖 selections, which reflects the probing signal magnitude, while keeping the other parameter values unchanged,
in Figure 7B. It can be observed that when the magnitude of probing signals is too small, 𝜖 = 0.2 × 10−5, the convergence
of the cost significantly slows down because of insufficient excitation, and when the magnitude of probing signals is too
large, 𝜖 = 5 × 10−5, although the cost decreases faster at the beginning, it increases instead of decreasing over the later
iterations, which implies a failure in convergence. Furthermore, when the magnitude of probing signals is larger, the
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FIGURE 6 Finite-horizon pitch attitude control Case 1 and Case 2 using Algorithm 3. A, The cost evolution over Algorithm 3 iterations
(k, f (xk + 1, v∗)) of Case 1 (blue) versus the linear quadratic (LQ)-true cost (red); B, The cost evolution over Algorithm 3 iterations (k, f (xk + 1, v∗))
of Case 2 (blue) versus the LQ-true cost (red). ES, extremum seeking [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Sensitivity to parameters. A, The cost evolutions over Algorithm 1 iterations (k, f (xk + 1, v∗)) of Case 2 corresponding to different
step size selections versus the linear quadratic (LQ)-true cost (red); B, The cost evolutions over Algorithm 3 iterations (k, f (xk + 1, v∗)) of Case 2
corresponding to different 𝜖 selections versus the LQ-true cost (red) [Colour figure can be viewed at wileyonlinelibrary.com]

overshoot of the cost becomes larger (from 3000 for 𝜀 = 1 × 10−5 to 10 000 for 𝜀 = 5 × 10−5 at the beginning of the
iterations). This significant overshoot may imply a danger of destabilization or a damage to the system, when the iterations
are performed through hardware experiments. As a result, a careful design of the probing signals may be needed, which
may not be straightforward due to the lack of physical interpretations of probing signal parameters. On the other hand,
our Algorithm 1 does not have this problem since probing signals are not necessary in our approach. Without using any
probing signals, the cost can converge to a satisfactory value, as shown in both Case 1 and Case 2.

On the basis of the above results, our iterative approach is superior to the ES approach, in terms of speed of convergence
and implementation complexity, to the reported finite-horizon LQ control problem of the F-16 aircraft pitch attitude
dynamics. We note that one of the major advantages of the ES approach is that it is a non–model-based method and does
not even need to know the order of the system, which our iterative approach needs to know.

5.2 Infinite-horizon LQ
We consider the same model (109) and the same weights (112), but now, the cost function is defined over an infinite pre-
diction horizon. Instead of searching for an optimal input sequence {u0,u1, … ,uN− 1}, we search for an optimal feedback
matrix F and feedback control ui = Fyi.

Because feedback control usually has better robustness against model uncertainties compared to open-loop control, we
may be able to handle even more inaccurate initial estimates: we consider the initial estimate of (A,B) to be (Case 3)

A0 =

⎡⎢⎢⎢⎢⎢⎣

1.0000 0.1131 0.2447 −0.0670 −0.0067
0 1.1987 4.6131 −1.0086 −0.1112
0 0.1217 1.1459 −0.0804 −0.0160
0 0 0 0.1251 0
0 0 0 0 0.1214

⎤⎥⎥⎥⎥⎥⎦
, B0 =

⎡⎢⎢⎢⎢⎢⎣

−0.0626 −0.0060
−1.5574 −0.1549
−0.0817 −0.0214

1.0496 0
0 1.0294

⎤⎥⎥⎥⎥⎥⎦
. (113)

We create this estimate by first adding [ −25%, 25%] randomly generated multiplicative error to each entry of the true
continuous-time model and then using c2d to obtain the corresponding discrete-time model. We check that the gain
matrix F1 computed based on the pair (A0,B0) can stabilize the true open-loop system (109) (although it is not optimal),
which is a necessary condition for operating our proposed approach.

We implement our Algorithm 4 for Case 3 by initializing v0 = vec([A0,B0]) using (113) and Π0 = 102 In2
𝑦
+n𝑦nu

and
setting 𝜆k + 1 = 1, k ∈ ℤ≥0, and imax = 100 in the cost evaluation function, Algorithm 5. We also implement the RL
algorithm, Algorithm 6, and the ES algorithm, Algorithm 7, to compare the performance. To have a relatively fair com-

parison, in Algorithm 6, we initialize H
0
= vec

([ H0
𝑦𝑦 H0

𝑦u

(H0
𝑦u)⊤ H0

uu

])
based on (96) and (98), where (A0,B0) are using (113),

initialize Θ0 = 102 I(n𝑦+nu)2 , set 𝜆k + 1 = 1, k ∈ ℤ≥0, and set imax = 100 in the inner for-loop; in Algorithm 7, we ini-
tialize x̂0 = vec(F̂{0}) as the solution to (95), where (A0,B0) are using (113), and initialize 𝜉0 = 0. Furthermore, in
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FIGURE 8 Infinite-horizon pitch attitude control Case 3. A, The initial (black dashed), final (blue solid), and intermediate (cyan)
trajectories on the (𝜃, q)-plane of Algorithm 4 iterations with perturbations versus the linear quadratic (LQ)-true trajectory (red dash-dotted);
B, The cost evolutions over Algorithm 4 iterations without perturbations (black dash-dotted), over Algorithm 4 iterations with perturbations
(blue solid), and over Algorithm 6 iterations (green dashed) versus the LQ-true cost (red). RL, reinforcement learning [Colour figure can be
viewed at wileyonlinelibrary.com]

Algorithm 4, we set e{k} = 0.99k ê{k}, where êk ∼  [−10−2, 10−2]nun𝑦 ‡ ; in Algorithm 6, we set e{k}
i = 0.99k ẽ{k}

i , where
ẽ{k}

i ∼  [−5 × 10−2, 5 × 10−2]nu ; and in Algorithm 7, we set 𝜀 = 10−4, h = 10−1, 𝛼 = 10−4,K = Inun𝑦 , and bi = i∕(nuny + 1),
i = 1, … ,nuny. These parameters have been tuned to generate the best results that we can get.

In Figure 8A, we plot the (𝜃, q) trajectories. The black dashed curve represents the trajectory if one uses model (113)
to compute the feedback gain and applies it to the true system (109); the red dash-dotted curve represents the trajectory
if one uses the true system (109) to compute the feedback gain (referred to as “LQ-true”). We can observe that there is a
significant mismatch between the black curve and the red curve—the performance of the feedback gain computed using
(113) may not be satisfactory as the LQ-true trajectory represents the user-desired response. The blue solid curve repre-
sents the trajectory obtained using our proposed approach with perturbations added after convergence. It matches the red
curve well. The cyan curves show the trajectory evolution over the iterations. In Figure 8B, we plot the cost evolution over
the iterations corresponding to different implementations—the black dash-dotted curve corresponds to the implementa-
tion of Algorithm 4 without adding perturbations; the blue solid curve corresponds to the implementation of Algorithm 4
with perturbations added; the green dashed curve corresponds to the implementation of the RL algorithm, Algorithm 6.
It can be observed that (i) although the feedback gain obtained based on (113) also stabilizes the system, its performance
is not satisfactory in terms of the cost, which represents a measure of the control performance defined by the user. This is
verified by the value of the initial point of the cost evolution curves. (ii) The implementation of our algorithm with pertur-
bations added exhibits a similar speed of cost decrease and convergence to that of our implementation of the RL algorithm.
(iii) Our algorithm converges and achieves a significant amount of cost decrease within the first 10 iterations, even with-
out adding perturbations. On the other hand, probing signals are necessary to the RL algorithm—without adding probing
signals, ie, setting e{k}

i = 0 in Algorithm 6, the iterations diverge. Its plot is omitted as it provides no additional informa-
tion. (iv) Without adding perturbations, our algorithm converges to a local minimum; the addition of perturbations in
the algorithm can effectively help the algorithm escape local minima and ultimately converge to a solution very close to
the optimal, at the cost of slower convergence.

In Figure 9, we plot the cost evolution over the iterations using the ES algorithm, Algorithm 7. We can observe that
it takes thousands of iterations for the cost to converge to a local minimum. We remark that (i) probing signals are also
necessary to the ES algorithm and that (ii) the ES algorithm is non–model based and does not need to know the order of
the system, which our iterative algorithm and the RL algorithm both need to know.

On the basis of the above results, our iterative approach, with perturbations added, is competitive with the RL approach
and is superior to the ES approach, in terms of speed of convergence, to the reported infinite-horizon LQ control problem
of the F-16 aircraft pitch attitude dynamics. Furthermore, our approach can achieve convergence and cost decrease even
without using perturbations, which neither the RL approach nor the ES approach can.

‡e ∼  [𝜎1, 𝜎2]n represents that e is randomly created according to a uniform distribution over the box [𝜎1, 𝜎2]n.
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FIGURE 9 Infinite-horizon pitch attitude control Case 3. The cost evolution over Algorithm 7 iterations (k, f (xk + 1, v∗)) (blue) versus the
linear quadratic (LQ)-true cost (red). ES, extremum seeking [Colour figure can be viewed at wileyonlinelibrary.com]

Furthermore, we remark that our iterations are cheap in terms of computational time: the average CPU time for one
iteration is 2.4 ms, performed on the MATLAB R2016a platform using an Intel Core i7-4790 3.60-GHz PC with Windows 10
and 16.0 GB of RAM, calculated by using the MATLAB tic-toc command, which is also competitive with the RL approach
(8.2 ms per iteration).

6 CONCLUSION

In this paper, we have proposed a novel iterative approach to the finite-horizon and infinite-horizon LQ optimal control
of unknown discrete-time linear systems. The iterative approach was applicable to situations where the cost could be
evaluated through simulations, or to batch processes, as it required multiple evaluations of the cost as a function of the
control subject to the same initial condition.

We compared the performance of the proposed approach to the application of ES in the case of finite-horizon LQ control
and to the applications of RL and ES in the case of infinite-horizon LQ control, by considering an example of the pitch
attitude control of an AFTI/F-16 aircraft. It was shown that (i) our approach was superior to the ES approach in terms of
speed of convergence and implementation complexity in the finite-horizon case and that (ii) our approach was competitive
with the RL approach in terms of speed of convergence and computational complexity and was superior to the ES approach
in terms of speed of convergence, in the infinite-horizon case.

The cornerstone of our approach to treat optimal control problems is in parameterizing the dynamics to obtain a static
parameter-dependent function to minimize. In this paper, we have achieved such a parameterization for a discrete-time
linear system by taking advantage of the superposition property. In a future work, the approach may be extended to
nonlinear systems exploiting other parameterization techniques. Furthermore, extensions to incorporate state and/or
control constraints and to the receding-horizon optimal control for “black box”-type systems will be explored.
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