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Summary

In the recent years, image processing techniques are used as a tool to improve

detection and diagnostic capabilities in the medical applications. Among these

techniques, medical image enhancement algorithms play an essential role in

the removal of the noise, which can be produced by medical instruments and

during image transfer. Impulse noise is a major type of noise, which is pro-

duced by medical imaging systems, such as MRI, computed tomography

(CT), and angiography instruments. An embeddable hardware module, which

can denoise medical images before and during surgical operations, could be

very helpful. In this paper, an accurate algorithm is proposed for real‐time

removal of impulse noise in medical images. Our algorithm categorizes all

image blocks into three types of edge, smooth, and disordered areas. A different

reconstruction method is applied to each category of blocks for noise removal.

The proposed method is tested on MR images. Simulation results show accept-

able denoising accuracy for various levels of noise. Also, an field programmable

gate array (FPGA) implementation of our denoising algorithm shows accept-

able hardware resource utilization. Hence, the algorithm is suitable for embed-

ding in medical hardware instruments such as radiosurgery devices.
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1 | INTRODUCTION

Medical images are affected by different types of noise. Presence of impulse noise can produce misleading artifacts in the
visual representation of the interior of human organs. These artifacts could mislead experts in the process of diagnosis
or prognosis. Noise can be produced in different types of medical image instruments such as MR, CT, X‐ray, and ultra-
sound. In medical applications, the probability of noise creation is increased because of the fast scanning process.1 Dif-
ferent types of noises in medical imaging instruments, such as impulse, Gaussian, and speckle can be created during
image capture or transmission.1-4 Numerous research works have been conducted in detection and elimination of noise
in medical images. Sanches et al 5 and Toprak et al 6 studied the problem of impulse noise reduction in medical images.
Balafar proposed an adaptive filter with edge preserving property for Rician noise in MR images.1 In the study of
Pantelic et al,2 for Gaussian and impulse noise detection in tomography images, discriminative bilateral filtering is
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proposed. Sawant et al designed an adaptive median filter for removal of impulse noise in X‐ray images and speckle
noise in ultrasound images.3 In the study of Saini et al,4 medical images, which are used for detecting cancer in different
parts of human body, are considered and different types of noise affecting such images are reviewed. Impulse noise is
investigated in many different medical imaging applications such as MR imaging7,8 and mammogram images.9

Impulse noise is a common type of noise which is randomly distributed throughout the image. Impulse noises are
divided into two main types, according to the range of the injected values. The first type is the fixed‐value impulse noise
(FVIN). As shown in Equation 1, in grayscale images, the randomly injected values could belong to one of the two con-
stant ranges.10 In Equation 1, m is a constant value, xi, jxi, j, and yi, j and xi, jyi, j are the original and noisy values of a
pixel respectively, and p1 and p2 are the probabilities that the pixel gets the noisy value, where p = p1 + p2. Also,
(L − 1) shows the maximum possible intensity value of a pixel.

p yi; j ¼ y′
� �

¼
p1 0 ≤ y′ ≤ m

p2 0 ≤ L − 1ð Þ − y′ ≤ m

1 − p y′ ¼ xi; j

:

8><
>: (1)

If m = 0, then the induced noise is salt and pepper noise. The second type is random value impulse noise (RVIN). As
shown in Equation 2, for gray‐scale images, a pixel may get noisy with a probability of p, where a value in the range of 0
to (L − 1) is randomly chosen to replace the original pixel.10 In Equation 2, r is a random value, xi, jxi, j and yi, j and xi, jyi,
j are the original and new values of the pixel, respectively.

p yi; j ¼ y′
� �

¼ p y′ ¼ r

1 − p y′ ¼ xi; j
:

(
(2)

Impulse noise has been of interest to many research works as a common noise. In the study of Crnojevi'c and
Petrovi'c,11 mixed impulse noises are removed using an iterative method based on an s‐estimator for variance median
of absolute deviations from median (MAD). Noisy pixels are detected using a pixel‐wise s‐estimator and reconstructed
using edge‐preserving regularization (EPR) method. In the study of Deka et al,12 noisy pixels are detected using sparse
representation and reconstructed using an image inpainting method. In the study of Khan et al,13 noisy pixels are
detected using Laplacian based second order of difference. To preserve image details, anisotropic diffusion method is
used for reconstruction. In the study of Wu and Tang,14 partial differential equation (PDE) based method for impulse
noise removal is presented. Two controlling function for PDE model is modified to take difference of edge, noisy,
and interior pixels in to account. In the sutdy of Lin,15 a method based on Dempster‐Shafer evidence theory as an alter-
native of Bayesian theory is used for noise detection. Moreover, Fuzzy averaging filter is employed for restoration of
noise‐corrupted pixels.

Most denoising methods that are proposed for impulse noise in natural images are computationally complex. For
example, fuzzy methods in colored videos,16 evolutionary algorithms,17,18 and an uncertainty based detector with a
weighted fuzzy filter19 can be considered as high complexity denoising methods. Bhadouria and Ghoshal proposed a
genetic programing approach for detection of noisy pixels.17 They avoid the blurring effect by using a modified median
based method using genetic programing. Zhou used genetic programing for the detection phase.19 Also for the restora-
tion phase, genetic programing selects the most similar pixel to the original pixel.

On the other hand, some denoising methods have lower complexity. For example, in previous studies,20-24 a patch
oriented approach based on the image texture is used for noise detection. Turkmen designed a multilayer perceptron
model for detection of noisy pixels.20 To train this model, two features are extracted from the image patches including
rank ordered absolute difference (ROAD) and rank ordered logarithmic difference (ROLD). Edge‐preserving filtering
restores noisy pixels. In the studies of Matsubara et al and Lien et al,21,22 median operation is used for image reconstruc-
tion, and in Srinivasan and Ebenezer,23 a reconstruction method, based on edge directions, is considered. Mandal and
Mukhopadhyay proposed a restoration method in which median operation on nonnoisy pixels is performed for
restoration.24

Enhancing MR images is of importance in the segmentation of the gray matter of the brain. With the advancement
of the image‐guided surgical approaches, segmentation of MR images is becoming an important tool.25 Therefore, MR
image enhancement and denoising play essential roles before and during surgical operations such as radiosurgery.
Many studies have tried to enhance and remove the impulse noise in MR images. Sadri et al26 employed a wavelet
network as a preprocessing stage and a median operation for removal of noisy pixels in medical images. Differences
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between gray‐scale values and the average of the background are fed to a wavelet network. The wavelet network detects
the location of the noise and replaces the noisy pixel with the median of the neighboring pixels. Bharathi and
Govindan27 proposed an impulse noise removal method using a hybrid filtering method based on the structure of each
image block and median operation. In Anisha and Wilscy,7 a fuzzy genetic algorithm is proposed which has relatively
high computation complexity. Fuzzy rules are used to modify the crossover probability, which generates proper
denoising filters by using a genetic algorithm. Although averaging between multiple images reduces the noise in MR
images, it increases image acquisition time. Therefore, in most cases, a filtering method as a postprocessing step is used.
The filtering process may involve image blurring and smoothing.28

Since MR image processing can be a time‐consuming task, hardware implementation of these algorithms can be
beneficial to obtain a better performance.29 The need for real‐time implementation of some enhancement techniques,
such as denoising, makes hardware implementation more appealing. There are numerous studies to accelerate medical
image processing algorithms using hardware accelerators, such as FPGAs and GPUs.29 Chen et al proposed a denoising
method and designed its VLSI architecture.30 In the noise‐detection stage of this method, the maximum and minimum
intensities in a 3 × 3 window are calculated. In the restoration stage, edge directions are considered, and noisy pixels are
restored in the correct edge direction. Hosseini and Hesar proposed a real‐time approach for impulse noise removal.31 In
Lien et al,32 noisy pixels are detected using decision‐tree and amount of similarity between neighboring pixels. In this
method, weighted filtering approach is implemented for the reconstruction of the detected noisy pixels. Similar to the
algorithm of Chen et al,30 the edge‐direction is utilized to restore the noisy pixels. In Bhadouria et al,33 a simple method
for detection and restoration of the noisy pixels is proposed, which is implemented on FPGA. Hosseinkhani et al pro-
posed a hardware architecture for detection and restoration of the random‐valued impulse noise on medical images.34

Image blocks are locally analyzed and divided into four regions including smooth, noisy smooth, edge, and noisy edge.
Pixels detected as noisy ones are restored based on their regions by different filters.

In the denoising process, different factors such as accuracy, scalability, and complexity must be taken into account.
All of the mentioned factors are important but in some applications some of these properties become critical. In real‐
time applications and for embedding an algorithm in a medical imaging instrument, it is essential to decrease complex-
ity and increase the speed of operation.35

In this paper, we are proposing an accurate and real‐time algorithm to detect and remove impulse noises in MR
images. For local image blocks different structures such as edges, smooth, and disordered areas are considered. Different
reconstruction methods are applied for each block depending on its structure. Because of efficient detection and
adaptive reconstruction method, noisy pixels are removed whereas image structures are preserved accurately. This type
of performance is essential in the processing of medical images. All steps of the proposed denoising algorithm are
designed to have low hardware complexity. For each part of the proposed algorithm, a hardware implementation is
designed and optimized, which makes the proposed method suitable for denoising of images in medical imaging
instruments.

The rest of this paper is organized as follows. The proposed method for removal of RVIN, composed of software algo-
rithm and hardware architecture, is explained in sections 2 and 3, respectively. Section 4 is dedicated to simulation
results, and in section 5, concluding remarks are presented.
2 | PROPOSED METHOD

In this research, we are considering RVIN which is a more common noise and its removal is more challenging. For
RVIN, it is not easy to label a pixel as being noisy because it could have any grayscale value. To overcome this issue
in the proposed method, we categorize all image blocks into four block types. These categories are called noisy smooth,
edge, noisy edge, and disordered blocks.
2.1 | The general structure of the algorithm

The block diagram of the proposed method, a sample noisy image, and the restored image, are displayed in Figure 1. As
illustrated in Figure 1, for each detected structure of a block, different reconstruction methods are used. Our proposed
method categorizes the image blocks to one of the four different types and applies a proper reconstruction scheme.
These four types are shown by examples in Figure 2. Different stages of the algorithm are as follows.



FIGURE 1 A, General structure of the proposed algorithm; B, example of a noisy image; and C, the denoised image
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2.2 | Block partitioning

Normally, neighboring pixels of an image block have similarities. Similarity diminishes in the presence of noise. We
need to detect abnormal variations in pixel values. Therefore, the neighborhood of each pixel is analyzed to find out
if the pixel is a normal part of that neighborhood. Hence, the proposed method partitions the image into 3 × 3 and
5 × 5 blocks depending on the local structure of the image and the severity of the noise. It is necessary to use variable
block size for better noise detection in different block structures. For example, in edge blocks, the larger block size leads
to better edge detection and better image restoration. In this paper, the nine pixels of the 3 × 3 block are called P1, P2, …,
P9, where P5 is the central pixel. Likewise, in 5 × 5 blocks, the pixels are called as P1, P2, …, P25, where P13 is the central
pixel. As illustrated in row (A) of Figure 2, in order to find a better detection of block categories, pixel intensities are
sorted. In this paper, the sorted pixel values are called F 1, F 2, …, F 9. Partitioning of pixels in different block sizes
can be useful for the next stages discussed in the following subsections.
2.3 | Edge detection

In noisy conditions, edges can be affected by noise; hence, it is necessary to find out whether an edge is noisy or
nonnoisy. Here, edge detection is done in two steps including edge‐detection A and edge‐detection B. In the first step,
using edge‐detection A, it is determined whether a block contains an edge or not. This step is checked for all image
blocks as illustrated in row (B) of Figure 2. In the second step, using a 5 × 5 block, considering the edge directions,
rough and nonnoisy edges are separated from noisy edges. These two steps of edge detection are explained as
follows:
2.3.1 | Edge‐detection A

In this step, edge regions are being detected, which is very useful to better detection and restoration of noisy pixels. So,
the presence of an edge region must be examined at first. In a region containing edges, two different ranges of values
can be observed as two sets of pixels. The difference between two sets of pixels in an image region could lead us to detect
edge regions. In regions containing edges, almost half of the pixels are located in each set. Hence, a difference could be
observed between fourth to fifth and fifth to sixth elements of the sorted pixels. By sorting pixel's values, difference
between two aforementioned sets become more visible. As a result, a 3 × 3 block around each pixel is considered,



FIGURE 2 Example of noise detection and image reconstruction procedure for different image localities [Colour figure can be viewed at

wileyonlinelibrary.com]
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and elements of the block are sorted. The differences between the fifth and fourth sorted elements, (F 5 − F 4), or the
fifth and sixth elements, (F 6 − F 5), represent the edge strength in the block. Then, using a threshold (T1), the central
pixel is labeled as edge based on Equation 3.

http://wileyonlinelibrary.com


HOSSEINKHANI ET AL. 411
P5 ¼
Edge max F5 − F4j j; F6 − F5j jð Þ > T1

Non‐Edge Otherwise

�
: (3)

As illustrated in row (B) of Figure 2, edge‐detection A is performed for all image blocks. In each step in row (B) of
Figure 2, green and red colors indicate that the criterion for this step is met or not, respectively. For those blocks that
this condition is true, the edge‐detection B is also performed, and for blocks that edge‐detection A is false, disorder
analysis is performed. Edge‐detection B and disorder analysis, which are considered as the third step of the proposed
algorithm, are discussed in the following.
2.3.2 | Edge‐detection B

For all pixels that are labeled as an edge by the edge‐detection A, the second edge‐detection criterion is also checked. In
edge‐detection A, all edges were detected, but it is not known whether these edges are noisy or not. The difference
between the central pixel and its neighbors on an edge region demonstrates whether a pixel is located on edge or is
noisy. There is a similarity between pixels located on an edge at least in one edge's direction. In edge‐detection B, pres-
ence of this similarity at least in one direction is examined. As a result, noisy pixels are detected by considering major
edge directions in a 5 × 5 block. To do so, as shown in Figure 3, four main directions of horizontal, vertical, diagonal,
and antidiagonal are considered. In each of the four directions, the weighted sum of absolute differences, Di|i = 1, …, 4,
between the central pixel and the other pixels located on a particular direction is calculated based on Equation 4:

Diji¼1;…;4 ¼ ∑
j¼−2; −1; 1; 2

Ic −WjIj
�� ��; (4)

where Ic is the central pixel, I±1 are the two pixels that are closest to the central pixel in each direction. Also, I±2 are
the two farthest pixels from the central pixel, in each direction. For the two farthest pixels of I±2, a weight coefficient
of ½ is considered which means Wj = ½|j = ± 2. For the two nearest pixels of I±1, a weight coefficient of 1 is
considered which means Wj = 1|j = ± 1. This operation is done in all four main directions. The minimum value in
all four directions, Dmin = min (Di|i = 1, …, 4), shows the most probable edge direction. If Dmin was to be less than a
threshold (T2), there is a high similarity between the central and the edge pixels, and the central pixel is considered
as an edge pixel. However, if Dmin > T2, it would be labeled as a noisy edge pixel. In Figure 2, two examples of edge
and noisy edge blocks are shown in columns (A) and (C) of row (C), respectively. According to edge‐detection B, in noisy
edge blocks (in column (C) of row (C)) Dmin is greater than T2, where T2 is equal to 150. This situation of noisy
edge block is shown by a red‐colored block. Noisy edge blocks are labeled to be fed into edge‐preserved filtering B step,
which is discussed later. On the other hand, non‐noisy edge occurs (in column (A) of row (C)) if Dmin ≤ T2. This
FIGURE 3 Pixel numbers and edge directions in edge‐detection B window
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situation is colored by green. Non‐noisy edge blocks are labeled and are fed into the similarity‐checking step, which
is discussed in section 2.6.
2.4 | Disorder analysis

When edge‐detection A labels a pixel as non‐edge, it is important to know whether the pixel is in a smooth area or a
disordered area. In the disorder‐analysis step, those nonsmooth blocks, and blocks that their central pixels have different
values from their surrounding pixels, are considered as disordered blocks. In edge and smooth areas, there are similarity
between the central pixel and its neighbors. This similarity can be observed between the central pixel and almost half of
its neighbors. The central pixel's value should be at least similar to fourth, fifth, or sixth elements of the sorted pixels
around it. In other words, if minimum differences between the central pixel and fourth, fifth, and sixth elements of
the sorted pixels are greater than a threshold, it is different from the others. In this case, pixel under consideration is
identified as a central pixel located in a disordered area.

The sorted pixels of the 3 × 3 window are referred and pixels F 4, F 5, and F 6 are considered. Absolute difference
between the central pixel with F 4, F 5, and F 6 is a measure of disorder within the 3 × 3 neighborhood.

P5 ¼
Disordered minð F6 − P5j j; P5 − F4j j; P5 − F5j j Þ > T3

smooth Otherwise

8<
: (5)

where T3 is a threshold value. Details of the disorder analysis procedure are visually represented in columns (B) and (D)
of row (C) of Figure 2. The fourth, fifth, and sixth sorted elements are considered in Figure 2, and their differences with
the central pixel is compared with a threshold T3. If all three absolute differences are greater than T3, the image block is
considered to be disordered. Since the disordered blocks are potentially expected to be noisy, the noisy‐pixel‐checking
procedure is applied as the next step. As illustrated in Figure 2, in column (B) of row (C), for disordered blocks, the
central pixel as well as three sorted pixels (F 4,F 5, and F 6) are highlighted with green. If the condition of Equation 5
is not met, then the mentioned pixels are highlighted as red (in Figure 2, in column (D) of row (C)).
2.5 | Noisy‐pixel‐checking

In the disorder analysis, blocks which were detected as smooth may contain some noisy pixels. Such a block may con-
tain a noisy pixel which is surrounded by smooth neighboring pixels. Hence, in a smooth area those pixels which have
different intensity values from their background are determined as noisy pixels. If a central pixel is not a noisy pixel in a
smooth area, its difference between at least one of the smallest or highest values in a neighborhood area should not be
significant. As shown by Equation 6, differences between the central pixel P5 and the maximum or minimum pixels,
inside the 3 × 3 window, are used for detection of a noisy pixel.

P5 ¼
noisy min F9 − P5; P5 − F1ð Þ < T4

not noisy otherwise

:

8><
>: (6)

If either (F 9 − P5) or (P5 − F 1) is less than a threshold T4, then the pixel is considered as a noisy pixel in a smooth area.
In some conditions, all non‐noisy block pixels may have nearly maximum or minimum values. In such a case, they are
wrongly considered as noisy pixels based on Equation 6. To prevent this wrong decision, the similarity between a noisy
pixel and its neighbors is checked by the similarity‐checking step.
2.6 | Similarity checking

Checking out the block similarity is necessary for two situations. First, when we want to leave the pixel without any
modification. In row (D) of column (A) in Figure 2, nonnoisy an edge‐pixel is left without any modification. Second sit-
uation is when the pixel's intensity indicates that pixel is noisy as illustrated in row (E) of column (D) in Figure 2.
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Hence, in Figure 2, similarity must be checked when edge‐detection B and noisy‐pixel‐checking have true conditions.
Similar pixels can be recognized via comparing them with their neighbors. So absolute differences between the central
pixel and its eight neighbors are calculated to determine the similarity amount. Using threshold T4, these absolute dif-
ferences determine similarity or nonsimilarity among these eight pairs in 3 × 3 windows. If the number of the similar
pixel around a pixel becomes less than a threshold (T5), then it is considered to be a noisy pixel. In Figure 2, if central
pixel is similar to its 3 × 3 neighbors, all blocks are colored with green (row (D) of column (A)) otherwise, they are col-
ored with red (row (E) of column (D)).
2.7 | Restoration

The restoration mechanisms are different for different block types. Three methods for restoring the original pixel
value are proposed including averaging on fourth, fifth, and sixth elements of sorted results (the average method),
edge‐preserved filtering A and edge‐preserved filtering B. Type of the restoration method depends on the block in which
the pixel is located. Three restoration methods are as follows.
2.7.1 | Average

In smooth blocks as well as in blocks that a pixel has a similar value to its neighbors, restoration is performed by aver-
aging on fourth, fifth, and sixth elements of the sorted 3 × 3 block as depicted in Figure 2 (row (F)) of column (D).
2.7.2 | Edge‐preserved filtering A

In this step, the noisy pixels are restored using the direction of the edge. To have an efficient reconstruction method
which takes edge areas into consideration we employed edge preserving filtering, proposed in the study of Lien
et al32 as edge‐preserved filtering A. As illustrated in Figure 2 (row (E), column (B)), in edge‐preserved filtering A, for
disorder blocks two pixels that are used in the averaging process are colored with green.
2.7.3 | Edge‐preserved filtering B

Noisy pixels detected in edge areas are restored with edge‐preserved filtering B. To have better view on the neighboring
pixels and provide better restoration for high‐density noises, a 5 × 5 block around the central pixel is considered. Since
there are four main directions of the edge, four directions including horizontal, vertical, diagonal, and antidiagonal are
considered. All pixels corresponding to each direction are considered. Sum of absolute differences between each pixel
and their corresponding average are calculated. In this step, central pixel is not considered in final results because this
pixel is a noisy pixel. Next, to determine the possible direction of the edge the minimum value in four directions is com-
puted. Finally, restoring is performed by taking a median operation on directions, which was determined in the previ-
ous step. As illustrated in Figure 2 (row (D) of column (C)), pixels on the possible direction of the edge, which are used
for median restoration, are colored green.
2.8 | Image formation

Noise‐free pixels detected in the previous steps as well as restored pixels are placed back to form the noise‐free image.
3 | HARDWARE ARCHITECTURE

The proposed noise removal algorithm is designed to be suitable for hardware implementation. As illustrated in
Figure 4, a 3 × 3 window around each pixel is considered, and a sorting module sorts its elements. Results of the sorting
module are fed to four computational modules, including disorder analyzer, edge‐detection A, noisy‐pixel‐checker, and a
module which performs averaging of the three medians of sorted elements (the average method). Different parts of the
hardware structure of the proposed algorithm are explained in the following:



FIGURE 4 Sorter module and modules

that feed on it
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3.1 | Edge‐detection module a

Two subtractor modules, two comparator units and a logical OR gate form the circuit which can be used as the edge‐
detection A module as shown in Figure 5. It could be used for implementation of Equation 6 as a noisy‐pixel‐checking
module by changing the inputs of the circuit.
3.2 | Edge‐detection module B

In Figure 6, the hardware structure of this module is illustrated. In edge‐detection B, absolute differences of the central
pixel with corresponding pixels located on the edge direction is calculated, and weighted sum of them is computed.
Weighted results are produced by 16 absolute difference calculation modules (ABS‐DIF) and eight shift registers. After
that, an adder and a comparator are utilized to detect the edge direction.
FIGURE 5 Hardware realization of

edge‐detection A module



FIGURE 6 Edge‐detection B module
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3.3 | Similarity‐checker module

In Figure 7, we are using eight ABS‐DIF to calculate the absolute differences between the central pixel and its
eight neighbors. Afterwards, the results are compared with the threshold T4, by using eight comparator units. A
positive result from each comparator indicates the similarity of that pixel with the central pixel. Finally, sum of similar
pixels is added by an adder unit. The output of the adder is compared with a threshold T5 to produce the similarity
output.
3.4 | Disorder‐analysis module

In Figure 8, disorder‐analysis module is shown. Three ABS‐DIF are used for calculation of the absolute difference
between the central pixel and three medians of the sorted elements. Then, these values are compared with threshold
(T3) using comparator module. Final result is provided by logical AND operation of the comparator outputs.
3.5 | Edge preserved filtering B

In the variance‐calculation‐module (VAR), four ABS‐DIF units are used for each main direction. These four units are
for calculating the absolute difference between each edge pixel and the average value of the pixels in that direction.
An adder module adds these four differences. Figure 9 shows one VAR unit for the antidiagonal direction. At the next



FIGURE 7 Similarity‐checker module

FIGURE 8 Hardware realization of disorder‐analysis module
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step, as illustrated in Figure 10, the minimum of the four variances selects one of the four inputs of a multiplexer.
Multiplexer inputs are the medians of the four directions. Hence, the direction with least variance is selected, and
the median of that direction replaces the noisy pixel.
3.6 | Sorting and restoration blocks

For the sorting module, a simple structure of Fahmy et al36 is employed. Also, for the edge‐preserved filtering
A, we use the hardware architecture of Lien et al.32 In the image formation step, the restored and nonnoisy pixels



FIGURE 9 Hardware realization for one of the four VAR modules

FIGURE 10 Hardware realization of

edge‐preserved filtering B module
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are replaced in proper locations based on the type of pixel. Pixel value replacement can be performed by a
multiplexer or by simple wiring.
4 | EXPERIMENTAL RESULTS

We perform software simulation to verify the accuracy of the proposed method and then we perform FPGA implemen-
tation to show the low complexity the algorithm.
4.1 | Software simulation

Natural and MR images are used to validate the performance of the proposed methods. Experiments are performed and
verified with MATLAB, and source code is available in https://www.researchgate.net/profile/Zohreh_Hosseinkhan.37 In



TABLE 1 Comparison between results of different denoising algorithms using peak signal‐to‐noise ratio (dB) for different noise densities

Noise Density 5% 10% 15% 20% 30% 40%

Median 3 × 3 34.27 33.17 31.14 28.40 22.89 18.41

Median 5 × 5 30.18 29.97 29.66 29.28 27.76 23.77

Matsubara et al21 38.27 35.65 32.18 28.65 22.67 18.13

Lien et al32 36.18 34.93 33.78 32.48 29.62 26.18

Hosseinkhani et al34 38.65 37.07 35.43 33.52 28.43 22.86

Proposed method 38.11 36.61 35.27 33.96 30.90 26.44

Note. The best results marked bold.

FIGURE 11 Four sample original images and their noisy versions. Peak signal‐to‐noise ratio (dB) values mentioned for noisy images

FIGURE 12 Denoising of images of Figure 11 using standard median filters. Peak signal‐to‐noise ratio (dB) values are indicated for

denoised images

418 HOSSEINKHANI ET AL.
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this study, 124 standard eight‐bit gray‐scale MR images with the size of 256 × 256 are used.38 Noise densities between 5%
and 40% are uniformly injected. Objective testing of peak signal‐to‐noise ratio (PSNR) is used to assess the quality of the
restored images. In our proposed method, we set the thresholds T1 = 20, T2=150, T3=30, T4=10, and T5=6, and in
order to achieve better results, the algorithm was repeated twice. In the first iteration, because of high noise levels,
no similarity can be observed by the similarity‐checking stage. Hence, the noisy‐pixel‐checking module does not function.
Two hardware architectures, proposed in the previous studies,21,32,34 are used for removal of the impulse noises. Also,
3 × 3 and 5 × 5 median filters are used for comparison. As shown in Table 1, the proposed method has better results
than the compared methods for all noise densities.

To show some visual results of the proposed method, in Figure 11, four original MR images and their noisy versions
with the presence of 20% impulse noise are shown. In Figure 12, a median filter is used for noise removal, and PSNR
(dB) values are reported for each image. In Figure 13, comparison of the proposed method with the previous stud-
ies21,32,34 are shown. Simulation results, as shown in Figure 13, indicate that the proposed method produces better
image qualities based on PSNR values. Lena, GoldHill, and Peppers are used for more validation of our method and
comparison with other methods. All employed images are 256 × 256 in TIF format. In Figure 14, three images above
and their noisy versions with the presence of 40% impulse noise are shown. In Figure 15, a median filter is used for
noise removal, and PSNR (dB) values are reported for each image.
FIGURE 13 Visual quality comparison of the proposed method with Matsubara et al,21 Lien et al,32 and Hosseinkhani et al.34 Peak signal‐

to‐noise ratio (dB) values are shown for denoised images
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In Figure 16, comparisons of the proposed method with the previous studies21,32,34 are shown. For better visualiza-
tion of denoising in different methods, in Figure 17, a part of Peppers image is cropped, and results of denoising are
illustrated. Noise density of 40% is injected on experimented image in Figure 17. It can be observed that median
3 × 3 and denoising method in the study of Matsubara et al21 are not able to proper denoising and Median 5 × 5 creates
FIGURE 14 Three sample original images and their noisy versions. Peak signal‐to‐noise ratio (dB) values are mentioned for noisy images

FIGURE 15 Denoising of images of Figure 14 using standard median filters. Peak signal‐to‐noise ratio (dB) values are indicated for

denoised images
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some blurring effects. Visual results of our denoising method and the study of Lien et al32 are better than the method in
Hosseinkhani et al.34 . Visual results show that our denoising algorithm can remove noises in natural images with
proper visual quality.

For evaluation of edge‐detection methods, utilized in the proposed algorithm, results of edge‐detection A and
edge‐detection B are illustrated in Figure 18. Edge‐detection methods are used in two iterations on 20% noisy Lena
image. In Figure 18, it can be observed that in edge‐detection A and edge‐detection B, edges are detected in the first
iteration. In the first iteration of the algorithm, because of the high density of noise, some noisy pixels are
wrongly detected as edge, which are reduced in the second iteration. Results of edge‐detection B in Figure 18
show noisy edges, which are detected. Detection of these noisy edge pixels leads to better denoising and edge
preserving.

For quantitative evaluation in Tables 2, 3, and 4, proposed method is compared with related methods. It is
important to note that only in the previous studies21,32,33 and our method, hardware complexity has been consid-
ered. Noise densities of 10% to 50% are tested in case of these three images. In Tables 2, noise density of 10% and
20%, in Tables 3, noise density of 30% and 40%, and in Tables 4, noise density of 50% are used. Although from
Tables 2–4, in some cases, better results are observed, the proposed method has generally suitable denoising effi-
ciency in different noise densities. Simulations show our medical application intensive method can denoise natural
images properly.
FIGURE 16 Visual quality comparison of the proposed method with Matsubara et al,21 Lien et al,32 and Hosseinkhani et al.34 Peak signal‐

to‐noise ratio (dB) values are also shown
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4.2 | Complexity analysis

Software simulation is conducted using a PC equipped with an Intel(R) Core (TM) i5‐480 CPU 2.67 GHz and 4GB of
RAM. Denoising algorithm is run on 10 images including Lena, Peppers, Goldhill, Boat, Barbara, Cameraman,
Jetplane, Bridge, House, and Mandrill with size of 512 × 512 and TIFF format. Denoising algorithm is repeated 10
FIGURE 17 Visual result details of

different denoising methods on Peppers

image



FIGURE 18 Visual results of edge‐

detection A and of edge‐detection B on

Lena image

TABLE 2 Comparison between denoised results in terms of peak signal‐to‐noise ratio (dB) for different images in 10% and 20% noise

density

10% 20%

Method Lena Goldhill Peppers Lena Goldhill Peppers

Bhadouria et al17 32.92 30.04 – – – –

Bhadouria et al33 37.89 35.20 – 33.48 31.72 –

Turkmen20 – – – 33.84 31.55 –

Javed et al18 36.45 – 35.68 34.06 – 33.03

Lien et al32 36.49 33.23 35.91 33.58 31.73 33.59

Hosseinkhani et al34 37.81 34.62 36.96 34.89 32.48 33.99

Deka et al12 37.75 – – 34.46 – –

Khan et al13 33.86 – – 32.88 – –

Lin15 – – – 34.27 – 33.81

Wu et al14 32.8 – 32.4 31.4 – 31.4

Proposed method 37.89 34.58 36.67 35.01 32.48 34.13

Note. The best results marked bold.
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times, and average processing time for each 512 × 512 tested image is 95s. All operations required for denoising are
conducted for each image's pixel in a 3 × 3 or 5 × 5 region. The number of operations in each region is not increased
with growing image's size and is a constant value. For a sample image with N pixels, the number of all conducted



TABLE 3 Comparison between denoised results in terms of peak signal‐to‐noise ratio (dB) for different images in 30% and 40% noise

density

30% 40%

Method Lena Goldhill Peppers Lena Goldhill Peppers

Bhadouria et al17 31.25 29.24 – – – –

Bhadouria et al33 – – – – – –

Turkmen20 – – – 31.79 29.46 –

Javed et al18 32.01 – 31.59 30.01 – 29.26

Lien et al32 31.16 30.16 31.08 29.00 28.29 28.69

Hosseinkhani et al34 31.61 30.00 30.91 27.90 26.67 27.17

Deka et al12 32.20 – – 29.39 – –

Khan et al13 30.74 – – 29.52 – –

Lin15 32.16 – 31.61 29.16 – 28.59

Wu et al14 29.9 – 29.9 28.35 – 28.89

Proposed method 32.12 30.56 31.59 29.35 28.23 28.79

TABLE 4 Comparison between denoised results in terms of peak signal‐to‐noise ratio (dB) for different images in 50% noise density

Method Lena Goldhill Peppers

Bhadouria et al17 28.69 27.76

Bhadouria et al33 – –

Turkmen20 – –

Javed et al18 27.87 27.43

Lien et al32 26.37 26.22 25.75

Hosseinkhani et al34 24.08 23.53 23.29

Deka et al12 26.16

Khan et al13 27.96

Lin15 25.63 24.76

Wu et al14 26.39 27.02

Proposed method 26.18 25.58 25.53
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operations is a fixed‐coefficient production of N, hence, denoising algorithm is with O(N) computational complexity.
For complexity analysis of the proposed method on the hardware platform, FPGA implementation is investigated. The
proposed architecture is described in VHDL and is implemented on XILINX virtex4 family xc4vfx12‐12‐sf363
device. Implementation specifications as well as average PSNR, for noise densities of 5%, 10%, 15%, and 20% are
reported and compared with the other studies in Table 5 (MR images). It can be clearly seen that the proposed
method has better image quality, and acceptable hardware implementation performance. As illustrated in Table 5,
2761 number of slices are consumed from the total 5472 number of available slices. No memory modules (BRAM)
are used from the total 648Kb available BRAM. Available BRAM can be used to save intermediate denoising results
and improve performance of the algorithm. Also, available logic slices provide an opportunity to parallel implemen-
tation of denoising.

Moreover, techniques such as pipeline can be used to enhance overall processing time. For a 512 × 512 image,
12.91 ms is required for denoising the entire image at 40 MHz clock frequency. Also, average resulted PSNR in
Table 5. shows that the proposed system has acceptable denoising performance.



TABLE 5 Comparison of implementation specifications between proposed method and methods of Matsubara et al,21 Lien et al,32 and

Bhadouria et al33

Method Target device Area Delay, ms
Average PSNR in 5%,
10%, 15%, and 20% noise

Matsubara et al21 Altera cyclone II EP2C20F484C7N 513 (logic cell) 7.72 33.68 dB

Lien et al32 Altera FLEX10KE EPF10K200‐
SRC240‐1

2166 (logic cell) 14.90 34.34 dB

Bhadouria et al33 Xilinx virtex7 XC7K325T ~10500(LUT) 7520 (FF) 1.22 –

Proposed method Xilinx virtex4 xc4vfx12‐12‐sf363 2761 (slice) 12.91 35.98 dB

Abbreviation: PSNR, peak signal‐to‐noise ratio.
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5 | CONCLUSION

In this paper, a low complexity noise removal system for MR images was implemented. This method was proved to be
suitable for hardware implementation. We can implement our proposed method as a part of a medical image capturing
instruments for enhancement of MR images used before and during of surgical operations. Our proposed method
contains two steps of detection and restoration. Highly accurate noisy‐pixel detection in the first stage and proper
removal of noisy pixels in the next stage led to a better restoration of noisy images. Simulation results using MATLAB,
performed on MR images, demonstrated that the proposed approach removed RVIN with high accuracy. Also, FPGA
implementation of the proposed method resulted in low hardware resource utilization and produced high‐quality
denoised images.
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