Copper-Mediated Aminoquinoline-Directed Radiofluorination of Aromatic C–H Bonds with K^{18}F

So Jeong Lee, Katarina J. Makaravage, Allen F. Brooks, Peter J. H. Scott,* and Melanie S. Sanford*

Abstract: A Cu-mediated ortho-C–H radiofluorination of aromatic carboxylic acids that are protected as 8-aminoquinoline benzamides is described. The method uses K^{18}F and is compatible with a wide range of functional groups. The reaction is showcased in the high specific activity automated synthesis of the RARβ2 agonist [^{18}F]AC261066.

Aryl fluorides are widely prevalent in pharmaceuticals,[1,2] and their {^{18}F} isotopologs are important for positron emission tomography (PET) imaging. As such, there is significant interest in methods for the late-stage {^{18}F}-fluorination of aromatic scaffolds.[3-5] The majority of existing methods for arene radiofluorination require a prefunctionalized starting material. For instance, hypervalent iodine reagents,[6-14] organoborons,[15-17] organostannanes,[18] Ni/Pd complexes,[18,19] and phenols[20,21] have recently been introduced as precursors for nucleophilic radiofluorination reactions. However, this requirement for pre-installed functionality at the target site can be a roadblock for the application of these methods to complex radiotracer targets.

A complementary approach would involve the direct radiofluorination of a C–H bond of an arene substrate. Several strategies have been developed for the radiofluorination of aliphatic[27] and benzyl[28] C–H bonds. However, analogous transformations of C(sp^2)–H substrates have proven considerably more challenging. While C(sp^2)–H radiofluorination can be accomplished via electrophilic aromatic substitution (S_Ar) with [{^{18}F}F]F; or [{^{18}F}F]Selectfluor,[29] the generation and handling of these reagents requires specialized equipment that is not widely accessible. Additionally, the site- and chemoselectivities of S_Ar reactions are typically modest, and the final products generally have low specific activity.[30] In principle, these limitations could be addressed through the development of nucleophilic (^{18}F) C(sp^2)–H radiofluorination methods. However, in practice, realization of this approach has remained elusive due to the inertness of C(sp^2)–H bonds and the electronic mismatch between nucleophilic {^{18}F}– and most arene substrates.[31]

An attractive strategy to address these challenges would be to leverage modern advances in transition-metal catalyzed C(sp^2)–H functionalization. For example, recent work by Daugulis demonstrated that 8-aminoquinoline directing groups enable Cu-catalyzed ortho-C(sp^2)–H activation/nucleophilic fluorination reactions with Ag{^{18}F}[32] The directing group is easily cleaved, thus providing access to ortho-fluorinated carboxylic acids. This communication describes translation of this method to a radiofluorination process. While Ag{^{18}F} was required in Daugulis’ original transformation, our studies reveal that K^{18}F is optimal for radiofluorination. This nucleophilic radiofluorination of aromatic C–H bonds is applied to a variety of carboxylic acid derivatives and automated to access high specific activity radiotracers.

We initially examined the Cu-catalyzed radiofluorination of aminoquinoline substrate 1H with AgF[13] under conditions closely analogous to those reported by Daugulis[12] (1H (20 μmol), Cul (5 μmol), N-methylmorpholine N-oxide (NMO, 90 μmol), K_{222} (1.33 μmol), Ag^{18}F (2500–3500 μCi) in DMF). However, these conditions did not afford detectable quantities of 1^{18}F as determined by radio-TLC and radio-HPLC analysis (Table 1, entry 1). Notably, the Ag^{18}F likely serves two roles in the original Daugulis reaction. First, it acts as the nucleophile to install the C(sp^2) bond. Second, it serves as a base to sequester the proton that is generated during C–H activation. Since Ag^{18}F is present in 3- to 4-fold excess relative to 1H, there is sufficient fluoride available for

Table 1: Optimization of C–H radiofluorination.[39]

<table>
<thead>
<tr>
<th>Entry</th>
<th>[Cu]</th>
<th>M^{18}F</th>
<th>NMO</th>
<th>DBU</th>
<th>RCC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cul</td>
<td>Ag^{18}F</td>
<td>√</td>
<td>–</td>
<td>nd</td>
</tr>
<tr>
<td>2</td>
<td>Cul</td>
<td>Ag^{18}F</td>
<td>√</td>
<td>√</td>
<td>26 ± 1</td>
</tr>
<tr>
<td>3</td>
<td>(MeCN)_{2}CuOTf</td>
<td>Ag^{18}F</td>
<td>√</td>
<td>√</td>
<td>29 ± 0</td>
</tr>
<tr>
<td>4</td>
<td>(MeCN)_{2}CuOTf</td>
<td>K^{18}F</td>
<td>√</td>
<td>√</td>
<td>33 ± 0</td>
</tr>
<tr>
<td>5</td>
<td>(MeCN)_{2}CuOTf</td>
<td>K^{18}F</td>
<td>–</td>
<td>√</td>
<td>31 ± 13</td>
</tr>
<tr>
<td>6</td>
<td>(MeCN)_{2}CuOTf</td>
<td>K^{18}F</td>
<td>–</td>
<td>√</td>
<td>50 ± 2</td>
</tr>
</tbody>
</table>

[a] Conditions: 1H (20 μmol), Cu source (5 μmol), additives [NMO (90 μmol), K_{222} (1.33 μmol), DBU (20 μmol)], M^{18}F (2500–3500 μCi), DMF (1000 μL). [b] RCC was determined by radio-TLC (n ≥ 3); nd = not detected. The identity of 1^{18}F was confirmed by radio-HPLC. [c] NMM added (90 μmol).
both of these functions. In contrast, under the radiofluorination conditions, the Ag\(^{18}\)F is the limiting reagent. We hypothesized that an exogenous base might be needed to sequester protons while preserving a reservoir of nucleophilic fluoride for the desired C(sp\(^2\))–F coupling reaction. Consistent with this hypothesis, the addition of 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) (20 \(\mu\)mol, 1 equiv relative to 1H) led to the formation of the desired product 1\(^{18}\)F in 26 ± 1 % RCC as determined by radio-TLC and confirmed by radio-HPLC (Table 1, entry 2). Further optimization revealed that switching from CuI to more soluble (MeCN),CuOTf resulted in a slightly improved RCC (29 ± 0 %; Table 1, entry 3). Under these conditions, the \(^{18}\)Ffluoride source could be changed to readily accessible K\(^{18}\)F\(^{3}\) to afford 33 ± 0 % RCC of 1\(^{18}\)F (Table 1, entry 4).

We next examined whether NMO is necessary for this transformation. In the Ag\(^{18}\)F reaction (which is conducted under inert atmosphere), NMO acts as the terminal oxidant for Cu. However, the radiochemical reactions are conducted under ambient air, which could directly oxidize the Cu. Indeed, excluding NMO from the Ag\(^{18}\)F reaction under otherwise identical conditions resulted in a comparable RCC (31 ± 13 %, entry 5),\(^{[3]}\) although it did negatively impact the run-to-run reproducibility. We evaluated a number of additives to address this latter issue and found that the use of 90 \(\mu\)mol of N-methylmorpholine (NMM), the base counterpart of NMO, resulted in enhanced reproducibility as well as an improved RCC of 50 ± 2 % (Table 1, entry 6).

The scope of this reaction was examined using aminoquinolines derived from a variety of substituted benzoic acids.\(^{[4]}\) As shown in Figure 1, electron-neutral (1\(^{18}\)F–4\(^{18}\)F), -withdrawing (5\(^{18}\)F–10\(^{18}\)F),\(^{[5]}\) and -donating (11\(^{18}\)F) substituents were tolerated on the arene ring. Many functional groups, including benzylic C–H bonds, trifluoromethyl, cyano, nitro, ester, amide, and sulfonylamine substituents, were compatible. This C(sp\(^2\))–H radiofluorination was also effective on pyridine- and indole-derived substrates, providing 12\(^{18}\)F and 13\(^{18}\)F in moderate RCC. A substrate containing a fluorine substituent at the activated 4-position on the quinoline reacted to afford the ortho-\(^{18}\)F-labelled product 14\(^{18}\)F in 50 % RCC.\(^{[6]}\) This method was applied to the late-stage radiofluorination of a series of biologically relevant molecules. Four carboxylic acid-containing drugs, probenecid, ataluren, tamibarotene, and AC261066, were converted to the corresponding 8-aminoquinoline benzamides and then subjected to the optimal conditions. The \(^{18}\)Ffluorinated analogues (15\(^{18}\)F–18\(^{18}\)F, respectively) were obtained in 13–37 % RCC.\(^{[7]}\)

A final set of experiments involved automation of this reaction on a TRACERLab FX\(_{\text{T}}\) synthesis module and hydrolysis of the aminoquinoline protecting group (Scheme 1). Initial automated studies were conducted with 1H, and afforded 1\(^{19}\)F in 28 ± 6 % (n = 6) automated RCC or, by incorporating semi-preparative HPLC purification, 9 ± 4 % (n = 6) isolated decay-corrected radiochemical yield (RCY) and > 98 % radiochemical purity (RCP). Starting with 1.7 Ci of \(^{18}\)Ffluoride 1\(^{19}\)F was obtained in 42 ± 3 mCi (n = 3) with high specific activity (6 ± 1 Ci\(\mu\)mol\(^{-1}\)). Hydrolysis of the aminoquinoline protecting group was then achieved with 4 M NaOH to afford 19\(^{19}\)F in 90 ± 2 % RCC from 1\(^{19}\)F (n = 3) and 21 ± 2 % RCC based upon starting \(^{18}\)Ffluoride.

An analogous method was applied to the synthesis of \(^{18}\)FAC261066 (20\(^{18}\)F), a RAR\(_{\beta}\) agonist (Scheme 1).\(^{[8]}\) Subjecting 18\(_{\text{H}}\) to the C–H radiofluorination conditions afforded 18\(^{19}\)F in 12 ± 2 % automated RCC (n = 3). Starting with 1.7 Ci of \(^{18}\)Ffluoride, 18\(^{19}\)F was obtained in 36 ± 8 mCi (n = 3) after sep-pak purification, corresponding to 3 ± 1 % isolated decay-corrected RCY. Manual hydrolysis of the amide with 4 M NaOH formed \(^{18}\)Ffluoride AC261066 (20\(^{18}\)F) in 98 ± 1 % RCC from 18\(^{19}\)F (n = 5, determined by radio-TLC). Overall, the isolated decay-corrected RCY of 20\(^{18}\)F was 9 ± 7 mCi (2 ± 1 % based upon starting \(^{18}\)Ffluoride, n = 3). The product was obtained in high chemical and radiochemical (> 98 %) purity and high specific activity (0.80 ± 0.25 Ci\(\mu\)mol\(^{-1}\)).\(^{[9]}\)

Figure 1. Substrate scope. Reported values indicate radiochemical conversion (RCC) determined by radio-TLC for \(n \geq 4\) runs. The identity of all products was confirmed by radio-HPLC. General conditions: Substrate (20 \(\mu\)mol), (MeCN),CuOTf (5 \(\mu\)mol), NMM (90 \(\mu\)mol), K\(_{2}\)CO\(_{3}\) (1.33 \(\mu\)mol), DBU (20 \(\mu\)mol), K\(^{3}\)F (2500–3500 \(\mu\)Ci), DMF (1000 \(\mu\)L), 90–110°C, 30 min. [a] in cases where other products were observed by radio-HPLC analysis, RCCs from radio-TLC analysis were corrected as described in the Supporting Information.\(^{[10]}\)
In summary, we describe the Cu-catalyzed, aminquinoline-directed C(sp²)–H radiofluorination of arene C(sp²)–H bonds with K[18F][2]. The method has been applied to a variety of substrates, including the active pharmaceutical ingredients of probenecid, ataluren, and tamibarotene. In addition, it has been translated to an automated synthesis of high specific activity doses of RARP2 agonist [18F]AC261066. We note that the automated radiochemical yields and directing group cleavage procedures will require additional optimization before they can be applied in routine radio syntheses. In addition, future work should target the use of more practical directing groups as well as non-directed approaches to C–H radiofluorination. However, overall this operationally simple procedure demonstrates proof-of-concept that metal-catalyzed nucleophilic C(sp²)–H radiofluorination is feasible, and that this approach shows promise for the late-stage radiofluorination of bioactive molecules.

Acknowledgements

This work was supported by NIH (R01EB021155) and DOE (DE-SC0012484).

Conflict of interest

The authors declare no conflict of interest.

Keywords: C–H fluorination · C–H functionalization · fluorine-18 · late-stage fluorination · PET radiochemistry

How to cite: Angew. Chem. Int. Ed. 2019, 58, 3119–3122

Angew. Chem. 2019, 131, 3151–3154

Other bases were also compatible (e.g. comparable RCCs could be obtained using 1,5-diazabicyclo[4.3.0]non-5-ene; see Supporting Information).

When Table 1, entry 5 was set up in a glovebox and kept under an inert atmosphere the RCC dropped prohibitively (to 6 ± 4%), further consistent with the role of air as the oxidant.

Product identities were confirmed by radio-HPLC. To further confirm that radiofluorination occurred at the expected ortho-site (rather than on the quinoline ring) we conducted control experiments and demonstrated baseline separation of regiosomeric products by HPLC (see Supporting Information).

Some arenes bearing electron-withdrawing substituents give rise to minor side products. We ruled out the formation of side products derived from competing S_N_Ar reactions (see Supporting Information), but have not been able to positively identify the side products to date.

Compounds 15–18 contain functional groups that could potentially direct C–H fluorination elsewhere in the molecule (e.g. 17H contains 2 amide groups). Small impurity peaks were detected in the crude radio-HPLC traces of these products; however, 15^18F–18^18F were the major products in each case, and they appear to be readily separable from the side products formed in the reaction.

These unoptimized automation results demonstrate that this method can be used to prepare sufficient amounts of radiotracers for pre-clinical evaluation in rodents and non-human primates. We expect that yields can be further improved through careful optimization of the automated method. This work is currently underway, along with qualification of a synthesis and formulation of 20^18F for preclinical use.

Radioiodination of this scaffold has been reported. See: L. W. Deady, J. Desneves, L. M. A. Tilley, J. Labelled Compd. Radiopharm. 2000, 43, 977.