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Aromatic C@H Bonds with K18F
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Abstract: A Cu-mediated ortho-C@H radiofluorination of
aromatic carboxylic acids that are protected as 8-aminoquino-
line benzamides is described. The method uses K18F and is
compatible with a wide range of functional groups. The
reaction is showcased in the high specific activity automated
synthesis of the RARb2 agonist [18F]AC261066.

Aryl fluorides are widely prevalent in pharmaceuticals,[1,2]

and their 18F isotopologs are important for positron emission
tomography (PET) imaging.[3, 4] As such, there is significant
interest in methods for the late-stage 18F-fluorination of
aromatic scaffolds.[5, 6] The majority of existing methods for
arene radiofluorination require a prefunctionalized starting
material. For instance, hypervalent iodine reagents,[6c] orga-
noborons,[6d–f,j,k] organostannanes,[6g] Ni/Pd complexes,[6a,b] and
phenols[6h,i] have recently been introduced as precursors for
nucleophilic radiofluorination reactions. However, this
requirement for pre-installed functionality at the target site
can be a roadblock for the application of these methods to
complex radiotracer targets.

A complementary approach would involve the direct
radiofluorination of a C@H bond of an arene substrate.
Several strategies have been developed for the radiofluori-
nation of aliphatic[7] and benzylic[8] C@H bonds. However,
analogous transformations of C(sp2)@H substrates have
proven considerably more challenging. While C(sp2)@H
radiofluorination can be accomplished via electrophilic
aromatic substitution (SEAr) with [18F]F2 or [18F]Selectfluor,[9]

the generation and handling of these reagents requires
specialized equipment that is not widely accessible. Addi-
tionally, the site- and chemoselectivities of SEAr reactions are
typically modest, and the final products generally have low
specific activity.[10] In principle, these limitations could be
addressed through the development of nucleophilic (18F@)
C(sp2)@H radiofluorination methods. However, in practice,
realization of this approach has remained elusive due to the

inertness of C(sp2)@H bonds and the electronic mismatch
between nucleophilic 18F@ and most arene substrates.[11]

An attractive strategy to address these challenges would
be to leverage modern advances in transition-metal catalyzed
C(sp2)@H functionalization. For example, recent work by
Daugulis demonstrated that 8-aminoquinoline directing
groups enable Cu-catalyzed ortho-C(sp2)@H activation/nucle-
ophilic fluorination reactions with AgF.[12] The directing
group is easily cleaved, thus providing access to ortho-
fluorinated carboxylic acids. This communication describes
translation of this method to a radiofluorination process.
While AgF was required in DaugulisQ original transformation,
our studies reveal that K18F is optimal for radiofluorination.
This nucleophilic radiofluorination of aromatic C@H bonds is
applied to a variety of carboxylic acid derivatives and
automated to access high specific activity radiotracers.

We initially examined the Cu-catalyzed radiofluorination
of aminoquinoline substrate 1H with Ag18F[13] under condi-
tions closely analogous to those reported by Daugulis[12] (1H
(20 mmol), CuI (5 mmol), N-methylmorpholine N-oxide
(NMO, 90 mmol), K2.2.2 (1.33 mmol), Ag18F (2500–3500 mCi)
in DMF). However, these conditions did not afford detectable
quantities of 118F as determined by radio-TLC and radio-
HPLC analysis (Table 1, entry 1). Notably, the Ag19F likely
serves two roles in the original Daugulis reaction. First, it acts
as the nucleophile to install the C(sp2)@F bond. Second, it
serves as a base to sequester the proton that is generated
during C@H activation. Since Ag19F is present in 3- to 4-fold
excess relative to 1H, there is sufficient fluoride available for

Table 1: Optimization of C@H radiofluorination.[a]

Entry [Cu] M18F NMO DBU RCC (%)[b]

1 CuI Ag18F
p

– nd
2 CuI Ag18F

p p
26:1

3 (MeCN)4CuOTf Ag18F
p p

29:0
4 (MeCN)4CuOTf K18F

p p
33:0

5 (MeCN)4CuOTf K18F –
p

31:13
6[c] (MeCN)4CuOTf K18F –

p
50:2

[a] Conditions: 1H (20 mmol), Cu source (5 mmol), additives [NMO
(90 mmol), K2.2.2 (1.33 mmol), DBU (20 mmol)], M18F (2500–3500 mCi),
DMF (1000 mL). [b] RCC was determined by radio-TLC (n+3); nd = not
detected. The identity of 118F was confirmed by radio-HPLC. [c] NMM
added (90 mmol).
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both of these functions. In contrast, under the radiofluorina-
tion conditions, the Ag18F is the limiting reagent. We
hypothesized that an exogeneous base might be needed to
sequester protons while preserving a reservoir of nucleophilic
fluoride for the desired C(sp2)@F coupling reaction. Consis-
tent with this hypothesis, the addition of 1,8-diazabicyclo-
(5.4.0)undec-7-ene (DBU) (20 mmol, 1 equiv relative to 1H)
led to the formation of the desired product 118F in 26: 1%
RCC as determined by radio-TLC and confirmed by radio-
HPLC (Table 1, entry 2).[14] Further optimization revealed
that switching from CuI to more soluble (MeCN)4CuOTf
resulted in a slightly improved RCC (29: 0%; Table 1,
entry 3). Under these conditions, the [18F]fluoride source
could be changed to readily accessible K18F[3] to afford 33:
0% RCC of 118F (Table 1, entry 4).

We next examined whether NMO is necessary for this
transformation. In the Ag19F reaction (which is conducted
under inert atmosphere), NMO acts as the terminal oxidant
for Cu. However, the radiochemical reactions are conducted
under ambient air, which could directly oxidize the Cu.
Indeed, excluding NMO from the Ag18F reaction under
otherwise identical conditions resulted in a comparable RCC
(31: 13%, entry 5),[15] although it did negatively impact the
run-to-run reproducibility. We evaluated a number of addi-
tives to address this latter issue and found that the use of
90 mmol of N-methylmorpholine (NMM), the base counter-
part of NMO, resulted in enhanced reproducibility as well as
an improved RCC of 50: 2% (Table 1, entry 6).

The scope of this reaction was examined using amino-
quinolines derived from a variety of substituted benzoic
acids.[16] As shown in Figure 1, electron-neutral (118F–418F),
-withdrawing (518F–1018F),[17] and -donating (1118F) substitu-
ents were tolerated on the arene ring. Many functional
groups, including benzylic C@H bonds, trifluoromethyl,
cyano, nitro, ester, amide, and sulfonamide substituents,
were compatible. This C(sp2)@H radiofluorination was also
effective on pyridine- and indole-derived substrates, provid-
ing 1218F and 1318F in moderate RCC. A substrate containing

a fluorine substituent at the activated 4-position on the
quinoline reacted to afford the ortho-18F-labelled product
1418F in 50 % RCC.[18] This method was applied to the late-
stage radiofluorination of a series of biologically relevant
molecules. Four carboxylic acid-containing drugs, probenecid,
ataluren, tamibarotene, and AC261066, were converted to the
corresponding 8-aminoquinoline benzamides and then sub-
jected to the optimal conditions. The [18F]fluorinated ana-
logues (1518F–1818F, respectively) were obtained in 13–37%
RCC.[19]

A final set of experiments involved automation of this
reaction on a TRACERLab FXFN synthesis module and
hydrolysis of the aminoquinoline protecting group
(Scheme 1). Initial automated studies were conducted with
1H, and afforded 118F in 28: 6% (n = 6) automated RCC or,
by incorporating semi-preparative HPLC purification, 9:
4% (n = 6) isolated decay-corrected radiochemical yield
(RCY) and > 98% radiochemical purity (RCP). Starting
with 1.7 Ci of [18F]fluoride 118F was obtained in 42: 3 mCi
(n = 3) with high specific activity (6: 1 Cimmol@1). Hydrolysis
of the aminoquinoline protecting group was then achieved
with 4m NaOH to afford 1918F in 90: 2% RCC from 118F
(n = 3) and 21: 2% RCC based upon starting [18F]fluoride.

An analogous method was applied to the synthesis of
[18F]AC261066 (2018F), a RARb2 agonist (Scheme 1).[20]

Subjecting 18H to the C@H radiofluorination conditions
afforded 1818F in 12: 2 % automated RCC (n = 3). Starting
with 1.7 Ci of [18F]fluoride, 1818F was obtained in 36: 8 mCi
(n = 3) after sep-pak purification, corresponding to 3: 1%
isolated decay-corrected RCY. Manual hydrolysis of the
amide with 4m NaOH formed [18F]AC261066 (2018F) in 98:
1% RCC from 1818F (n = 5, determined by radio-TLC).
Overall, the isolated decay-corrected RCY of 2018F was 9:
7 mCi (2: 1% based upon starting [18F]fluoride, n = 3). The
product was obtained in high chemical and radiochemical
(> 98%) purity and high specific activity (0.80:
0.25 Ci mmol@1).[21]

Figure 1. Substrate scope. Reported values indicate radiochemical conversion (RCC) determined by radio-TLC for n+4 runs. The identity of all
products was confirmed by radio-HPLC. General conditions: Substrate (20 mmol), (MeCN)4Cu(OTf) (5 mmol), NMM (90 mmol), K2.2.2 (1.33 mmol),
DBU (20 mmol), K18F (2500–3500 mCi), DMF (1000 mL), 90–110 88C, 30 min. [a] in cases where other products were observed by radio-HPLC
analysis, RCCs from radio-TLC analysis were corrected as described in the Supporting Information.[17]
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In summary, we describe the Cu-catalyzed, aminoquino-
line-directed C(sp2)@H radiofluorination of arene C(sp2)@H
bonds with K18F.[22] The method has been applied to a variety
of substrates, including the active pharmaceutical ingredients
of probenecid, ataluren, and tamibarotene. In addition, it has
been translated to an automated synthesis of high specific
activity doses of RARb2 agonist [18F]AC261066. We note that
the automated radiochemical yields and directing group
cleavage procedures will require additional optimization
before they can be applied in routine radiosyntheses. In
addition, future work should target the use of more practical
directing groups as well as non-directed approaches to C@H
radiofluorination. However, overall this operationally simple
procedure demonstrates proof-of-concept that metal-cata-
lyzed nucleophilic C(sp2)@H radiofluorination is feasible, and
that this approach shows promise for the late-stage radio-
fluorination of bioactive molecules.
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