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Abstract
1.	 Body size determines key ecological and evolutionary processes of organisms. 
Therefore, organisms undergo extensive shifts in resources, competitors, and 
predators as they grow in body size. While empirical and theoretical evidence 
show that these size‐dependent ontogenetic shifts vastly influence the structure 
and dynamics of populations, theory on how those ontogenetic shifts affect the 
structure and dynamics of ecological networks is still virtually absent.

2.	 Here, we expand the Allometric Trophic Network (ATN) theory in the context of 
aquatic food webs to incorporate size‐structure in the population dynamics of fish 
species. We do this by modifying a food web generating algorithm, the niche 
model, to produce food webs where different fish life‐history stages are described 
as separate nodes which are connected through growth and reproduction. Then, 
we apply a bioenergetic model that uses the food webs and the body sizes gener‐
ated by our niche model to evaluate the effect of incorporating life‐history struc‐
ture into food web dynamics.

3.	 We show that the larger the body size of a fish species respective to the body size 
of its preys, the higher the biomass attained by the fish species and the greater the 
ecosystem stability. We also find that the larger the asymptotic body size attained 
by fish species the larger the total ecosystem biomass, a result that holds true for 
both the largest fish in the ecosystem and each fish species in the ecosystem.

4.	 This work provides an expanded ATN theory that generates food webs with life‐
history structure for chosen species. Our work offers a systematic approach for 
disentangling the effects of increasing life‐history complexity in food‐web 
models.

K E Y W O R D S

aquatic ecosystems, bioenergetics model, body size, life histories, niche model

www.ecolevol.org
https://orcid.org/0000-0002-5270-5286
https://orcid.org/0000-0003-1572-5429
mailto:﻿
https://orcid.org/0000-0002-7807-8946
http://creativecommons.org/licenses/by/4.0/
mailto:anna.k.kuparinen@jyu.fi


3652  |     BLAND et al.

1  | INTRODUC TION

Body size determines key ecological and evolutionary processes 
during the ontogeny of organisms (Werner & Gilliam, 1984). 
Ecological interactions, diet breadth, foraging efficiency, repro‐
duction, and mortality, among other processes animating an or‐
ganism's life, strongly depend on the organism's size (De Roos, 
Persson, & McCauley, 2003; Werner & Gilliam, 1984; Yodzis & 
Innes, 1992). Given such dependency, organisms will undergo ex‐
tensive shifts in resources, competitors, and predators as they grow 
(Ramos‐Jiliberto, Valdovinos, Arias, Alcaraz, & Garcia‐Berthou, 
2011; Werner & Gilliam, 1984). These size‐dependent ontogenetic 
shifts vastly influence the structure and dynamics of aquatic pop‐
ulations and communities (De Roos et al., 2003; Werner & Gilliam, 
1984). For example, “juvenile bottlenecks” influences the struc‐
ture and dynamics of fish communities, where prey populations 
compete with the juveniles of their predatory populations exhib‐
iting similar body sizes (Byström, Persson, & Wahlstrom, 1998). 
Moreover, theoretical work has shown that competitive and pred‐
atory (cannibalistic) interactions between different age cohorts 
drive fish population dynamics (Persson, 1988; van den Bosch, 
Roos, & Gabriel, 1988; De Roos et al., 2003). However, despite all 
the empirical and theoretical evidence of the vast impacts of size‐
dependent ontogenetic shifts and stage‐structured populations 
on the population dynamics of interacting species, little theory has 
been developed on the effects of the size‐dependent ontogenetic 
shifts and population structure on the structure and dynamics of 
ecological networks (but see Mougi, 2017). Here, we contribute to 
develop such theory by expanding the Allometric Trophic Network 
(ATN; Yodzis & Innes, 1992; Williams & Martinez, 2004b; Williams, 
Brose, & Martinez, 2007) model to incorporate life‐history struc‐
ture for fishes (to capture changes in body size across different 
ages) and evaluate its effect on the structure and dynamics of 
aquatic food webs.

The study of ecological networks has recently achieved major 
breakthroughs by recognizing that the ecological functionality of 
species can be largely attributed to their body sizes (Brose, Jonsson 
et al., 2006; Otto, Rall, & Brose, 2007). Specifically, a large pred‐
ator–prey body size ratio appears to be key to stabilizing the dy‐
namics of complex food webs (Brose, Williams, & Martinez, 2006). 
Through scaling by body size, ATN models have proven successful 
in explaining the stability, structure, and functioning of ecosystems 
(Brose, Williams et al., 2006; Dunne, 2006; Williams & Martinez, 
2000). Apart from model‐based investigations on the role of body 
size in food web dynamics, the theory has been further supported 
by Boit, Martinez, Williams, and Gaedke (2012) who created a re‐
markably accurate and empirically validated ATN model by incor‐
porating body size that explained 30%–40% of the variation in the 
seasonal dynamics of the Lake Constance plankton community.

Within the context of food‐web dynamics models in general, 
and ATN models in particular, species of similar body size have 
been traditionally lumped together in a single functional group, 
such that scaling by body size is done with respect to individual 

body size across the species’ lifespan. This approach stemmed 
from a need to develop simple models to address generic ques‐
tions, such as those related to species coexistence (Blondel, 2003). 
However, for some species, an individual's body size can change 
by orders of magnitude throughout its life (e.g., fishes; Wootton, 
1999). As there are strong correlations between body size and key 
functional traits, such as metabolic rate (West, 1999), a species’ 
ecological functionality is likely to change substantially from ju‐
venile to adult life‐history stages. Thus, incorporation of the life‐
history structure of species that experience substantial changes in 
their body size across their lifespan is likely to increase the struc‐
tural realism of food webs and yield more biologically realistic pre‐
dictions about their dynamics.

Fishes constitute ideal study species because of their indetermi‐
nate growth, which causes them to shift through several ecological 
niches as they grow (Wootton, 1999). Their body size, diet, exposure 
to predation, and general ecological functionality changes tremen‐
dously from larvae through adult stages, resulting in many species 
transitioning from the bottom of the food chain to the position of 
apex predator. For example, during their lives, Atlantic cod (Gadus 
morhua) have the potential to change from being planktivores (as 
<10 mm, 1–2 g larvae) to apex carnivores longer than 1 m in length 
and tens of kg in mass within 5–7 years (Brander, 1994; Hutchings 
& Rangeley, 2011). Another aspect that makes fishes and aquatic 
food webs particularly interesting systems for studying the role of 
life‐history structures in food web dynamics is the fact that contem‐
porary life‐history trends toward smaller body sizes and earlier ma‐
turity have been documented in many fish species across the world 
(Audzijonyte, Kuparinen, Gorton, & Fulton, 2013; Hutchings & Baum, 
2005). Understanding the impacts that such life‐history changes can 
have on interacting species, entire ecosystems and sustainable fish‐
eries management warrants for knowledge about the role of fish life 
histories in food web dynamics.

The present study has two primary objectives. The first is to 
expand the ATN modeling approach by incorporating simple life‐
history structure for the fishes in a generic aquatic ecosystem. The 
second objective is to evaluate the effect of life‐history structure 
on food web dynamics. This second objective includes disentan‐
gling the effect of increasing food‐web complexity by adding nodes 
representing the previously ignored life‐history stages from the 
effect of life‐history dynamics, that is, aging from one life‐history 
stage to another and reproduction (linkages between life‐history 
stages). To this end, we use the generic allometrically scaled niche 
model (Williams & Martinez, 2000) adapted to aquatic food webs 
(Martinez et al., 2012) to randomly generate scenarios for food 
webs, within which we introduce life‐history structure to fishes 
and split the species‐level diets among the life‐history stages. 
Through systematic simulations, we disentangle the relative im‐
pacts of life‐history dynamics from adding life‐history stages by 
analyzing three types of models: (a) “original” ATN model not in‐
cluding life‐history stages within species, (b) ATN model with “un‐
linked” life‐history stages that incorporates new nodes but does 
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not connect them via growth and reproduction, and (c) ATN model 
incorporating life‐history stages that are linked together as a spe‐
cies through aging (hereafter referred to as “growth”) and repro‐
duction. These analyses will provide broadly generalizable insights 
into the ways in which fish life histories affect their food webs.

2  | MATERIAL S AND METHODS

The theory we develop here consists of generating the topology 
of life‐history structured food webs which determines the trophic 
interactions among nodes (i.e., trophic species and fish life‐his‐
tory stages) and coupling the population dynamics determined by 
those trophic interactions with life‐history dynamics (fish growth 
and reproduction). We first describe how we generate the topol‐
ogy of the food webs and then how we link the population dynam‐
ics of the species and fish life‐history stages with the life‐history 
dynamics.

2.1 | Generation of life‐history structured 
food webs

We expand the niche model (Williams & Martinez, 2000) to generate 
networks that incorporate life‐history structures. The niche model 
uses as inputs the number of species and connectance (i.e., fraction 
of potential feeding interactions that are realized) and randomly as‐
signs a “niche value” (ni) to each species from a uniform distribution. 
This value gives species a hierarchical ranking where they fall relative 
to each other, which we interpret as relative body size. Species with 
a low niche value are generally autotrophs, while species with high 
niche values are more likely to be carnivores. Prey items are assigned 
to each species from a range centered at a lower niche value, where 
a larger range indicates a more varied diet. Range size (ri) is chosen by 
first drawing a random variable, xi, from a beta distribution that has 
been weighted to reflect the desired connectance (C) of the web (see 
Supporting information Appendix  for the derivation of β):

A less connected web will have more specialists, such that the 
distribution will skew more toward smaller range values. The range 
width for each species is then scaled to fall in (0, ni) so that it will 
never exceed the niche index, which is obtained by:

The predation range is then defined as 
[
ci−

ri

2
,ci+

ri

2

]
 Thus, we can 

center their predation range using a uniform distribution, (ci∈U
(
ri

2
,ni

)
), 

where Ci is the center of the species dietary range. Species are consid‐
ered nondiscriminatory beyond this, as in they consume all species 
within their dietary range. We discarded webs failing to satisfy certain 
requirements of biological realism, including the conditions that (a) all 
species are connected to the web either by predating or being predated 
on by other species; (b) every species has an autotroph in its food chain; 
(c) the web is connected, which ensures that our food web is not com‐
posed of several smaller, distinct food webs. We also confirm that (d) 
the generated web exhibits our desired level of connectance.

Once a food web has been created, the species are identified 
as autotrophs, invertebrates, or fishes (Yodzis & Innes, 1992). 
Autotrophs are identified by looking for the species that have no 
prey (i.e., basal species). Invertebrates and fishes are identified de‐
pending on the species trophic position under the assumption that 
herbivores are more likely to be invertebrates, and carnivores are 
more likely to be fishes (Romanuk, Hayward, & Hutchings, 2011). 
In particular, we assume that the three most apex predators are 
fish and that all the remaining species that are not autotrophs are 
invertebrates (following Tonin, 2011 and Martinez et al., 2012). 
Trophic position of each species is calculated using the short‐
weighted trophic position (T; Williams & Martinez, 2000, 2004a), 
which is the average of two other trophic position metrics: the 
shortest trophic level to a basal species (T1) and the prey‐averaged 

(1)
x∼beta(�,�)with

� =1

� =
1−2C

2C

(2)ri=xini

TA B L E  1  Model parameters

Variable Description Value Unit References

S Number of species in original niche web 30 ‐ Martinez et al. (2012)

C Connectance 0.15 ‐ Martinez et al. (2012)

K Autotroph carrying capacity 540 µgC/L Boit et al. (2012); Martinez 
et al. (2012)

r Autotroph intrinsic growth rate r ~ N (09,0.2) 
r∈

(
0.6,1.2

) d−1

yij Maximum consumption rate of predator i for prey j 10 d−1 Boit et al. (2012)

eij Assimilation efficiency for i eating j
{

0.45, j is an autotroph

0.85, otherwise

‐ Brose, Williams et al. (2006)

h Hill Exponent 1.2 ‐

fa Fraction of assimilated carbon that contributes to 
growth

0.4 Boit et al. (2012)

fm Fraction of assimilated carbon lost for maintenance 0.1 Boit et al. (2012)
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trophic position (T2; see Supporting information Appendix  for its 
calculation):

The shortest trophic level (T1) is defined as the shortest path to 
a basal species plus 1:

where aij is a binary element from the species connection matrix.
Prey‐averaged trophic position for species i is 1 plus the average 

trophic position of all its prey:

where Pi is the number of prey that species i consumes. We de‐
scribe a computational shortcut to calculate T2i for each species in 
the Supporting information Appendix . The short‐weighted trophic 
position has been shown to be a better estimator of trophic position 
than T1 or T2 individually (Carscallen, Vandenberg, Lawson, Martinez, 
& Romanuk, 2012; Williams & Martinez, 2004a). Note that autotro‐
phs (basal species) are assigned a trophic position of 1 in every trophic 
position metric which, is reflected in Equations (3) and (4).

2.2 | Coupling life‐history and population dynamics 
in food webs

The first step to define the population dynamics of each species 
within the generated food webs is to determine how efficient species 
are at processing their food. We expand the methods used by Brose, 
Williams et al. (2006) to calculate species consumption rates based on 
species metabolic rates that are approximated by relative body size. 
The body sizes (accounted as body masses) of all species within the 
food web are related to the basal species. Therefore, the relative body 
masses of all the basal species are assigned a value of 1. Then, the 
relative body masses of the invertebrates and fishes are calculated as‐
suming a constant body mass ratio between consumers and resources 
(the so‐called allometric ratio, Z), set to Z = 100 (Brose, Williams et 
al., 2006). Thus, the body mass is a simple function of trophic level 
Mass = ZT−1, where 1 is subtracted from the trophic level to exclude 
basal species from the calculation (Brose, Williams et al., 2006).

Fish body mass is of importance not only because of dietary 
shifts but because metabolic rate per unit mass decreases with size. A 
school of large fish is more efficient at processing food than a school 
of small fish with the same biomass. In theory, this means that an 
ecosystem would be able to support a larger biomass of fish if the 
fish were larger. Kleiber's Law states that metabolic rates increase 
at a slower rate than body mass (Kleiber, 1975). While this law has 
been revised and modified many times, the underlying principle has 
held true (Ballesteros, Martínez, Luque, Lacasa, & Moya, 2014; Smil, 
2000). For instance, a predator may be 100 times larger than its prey, 

but its metabolic rate is only 75 times that of its prey. Yodzis and Innes 
(1992) took advantage of this relationship to approximate how effi‐
cient the hypothetical organisms of this model convert energy from 
their food sources (Brose, 2008; Williams et al., 2007). Their calcu‐
lations resulted in metabolic rate (xi) per unit of body weight (M) as:

We use a deterministic algorithm to find the weight for new life‐
history stages. From their weight, we can approximate their niche 
index so that we can fit them into the food web and their metabolic 
rates. We assign weights to three new, younger life‐history stages 

(3)Ti=
T1i+T2i

2
,∀speciesi.

(4)
T1i =1+ min

j∈{jaij=1}
T1j

(5)

T2i =1+
∑
j∈S

aij
T2j

Pi

=1+
∑

j∈Sprey,i

T2j

Pi
.

(6)xi=

⎧
⎪⎪⎨⎪⎪⎩

0, forautotrophs

0.314M−0.15, for invertebrates

0.88M−0.11, forfish

F I G U R E  1  The half saturation constants (B0ij) and competition 
coefficients (cij) for predator i eating prey j. Figure and constants are 
reproduced from Tonin (2011) and Martinez et al. (2012)
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(t = 0,1,2) with a von Bertalanffy isometric growth curve (Pauly, 
1980). Adults retain the original weight (Wmax) we assigned to each 
species, and we assume that is the life‐history stage (tmax = 3) and 
weight of maximum yield per recruit. The curvature of the von 
Bertalanffy curve is set as K=

3

tmax

 (Froese & Binohlan, 2000), and we 

assume the adults reach Wmax

Winf

=0.9 of their asymptotic weight.

The population dynamics of each species and life‐history stages 
within the food web can be described with ordinary differential 
equations (ODEs), which we use to simulate the biomass of each 
species. We modified the ATN model (Williams et al., 2007; Williams 
& Martinez, 2004b) to accommodate life‐history structure. The fol‐
lowing equations from the ATN model show the growth for autotro‐
phs (Equation (8) and consumers (Equation (9) during the growing 
season:

where ri is the intrinsic growth rate for autotroph i, K is the 
carrying capacity, xi is the metabolic rate (Equation 6), yij is pred‐
ator i's maximum consumption rate for prey j, eij is the assimi‐
lation efficiency for i eating j, fm is the fraction of assimilated 
carbon lost for maintenance, and fa is the fraction of assimilated 
carbon that contributes to growth. Fij is the normalized func‐
tional response:

where �ij=1∕Pi is the relative preference of species i on its prey 
j, Pi is the total number of species i's prey, h is the Hill exponent, B0kj 
is the half saturation density for k eating j, ckj is the predator inter‐
ference of species k eating j, and pik is the fraction of i's resources 
that it shares in common with k. The values for these parameters are 
described in Table 1 and Figure 1.

At the end of each growth season, the ODEs (Equations 8 and 
9 are paused so that fish may grow and reproduce. The biomass (Bi) 
shifts between life‐history stages according to the following Leslie 
matrix:

Essentially, this means that 90% of biomass grows to the next 
life‐history stage, while 10% remains in the previous stage. This 
choice was made to allow realistic phenotypic variability within the 
species, that is, most individuals grow from one age‐specific average 
size to the next age‐specific average size but a few individuals re‐
main at the lower developmental stage (size) than expected based on 
their age. The highest (4th) life‐history stage reproduces and 90% of 
its biomass is transferred to the first life‐history stage as newborns. 
Notably, our formulation of the Leslie matrix allows the model to 
be applied to a broad range of ontogenetic developments, not only 
the most obvious application, which is aging from one age‐class to 
another (100% biomass transfer from one stage to another).

2.3 | Simulation design and analyses

We investigated the model through systematic simulations to de‐
termine how inclusion of fish life‐history stages affects the food 
web, its structure, dynamics, and stability. The addition of life‐his‐
tory structure for fishes changes multiple features of the food web. 
Introduction of life‐history stages involves the addition of new 
nodes and feeding links to the web; life‐history dynamics (growth 
from one life‐history stage to the next) alters the ways in which bio‐
mass is transferred within the food web.

To tease apart the relative roles of these components involved 
with the life‐history structures, we run 3 sets of simulations 

(7)Wt=W∞(1−e−K(t−t0))3

(8)
Ḃi=

Intrinsic Growth

�����������������������������������

ri

(
1−

∑
j∈Autotrophs

Bj

K

)
Bi −

Loss to Grazing

�������������������������

∑
j∈Consumers

xjyjiBj
Fji

eji

(9)
Ḃi= −fmxiBi

���
Metabolic Loss

+
∑

j∈Resources

faxiyijBiFij

�������������������������
Dietary Intake

−
∑

j∈Consumers

xjyjiBj
Fji

eji

�������������������������
Loss to Predation

(10)Fij=
�ijB

h
j

Bh
0ij
+
∑

k∈consumer (ckjpikBkB
h

0kj
)+

∑
l∈resources (�ilB

h
l
)

(11)

⎛⎜⎜⎜⎜⎜⎜⎝

Ḃi

Ḃi+1

Ḃi+2

Ḃi+3

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

0.1 0 0 0.9

0.9 0.1 0 0

0 0.9 0.1 0

0 0 0.9 0.1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

Bi

Bi+1

Bi+2

Bi+3

⎞⎟⎟⎟⎟⎟⎟⎠

F I G U R E  2  Von Bertalanffy growth curves for surviving fish in 
several simulated food webs. Each line type represents a different 
food web simulation. Each species has four life stages
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(hereafter denoted as “model types”). The first model type com‐
prises an “original” or baseline web that does not include life‐his‐
tory stages within species. That is, each species, including fish, is 
described through one single node in the food web. Model type 2 in‐
corporates unlinked life‐history stages within each fish species. That 
is, each fish species is partitioned into life‐history stages, but these 
stages are not linked with one another through Leslie matrices. The 
new fish life stages are independent of each other, and biomass does 
not transfer through aging from one life‐history stage to another. 
In the ATN modeling sense, they can be considered as new species. 
While this model type is not biologically realistic, it is crucial for dis‐
entangling the effects of adding new nodes to the food web from the 
effect of life‐history dynamics. Model type 3 is an ATN model that 
incorporates life‐history stages that are linked to one another within 
each species using Equation (11).

To compare the three model types, we begin the simulations 
(500 for each model type) with the same initial conditions. In each 

simulation, the food web is allowed to stabilize for 200 years, after 
which the food web is either accepted or rejected, based on the rules 
detailed below. The dynamics of the food webs are then investigated 
across another 100‐year period. The burn‐in time and the investi‐
gated simulation period were chosen such that the node biomasses 
reached dynamic equilibriums and to allow sufficient temporal rep‐
lication of the food web dynamics to capture short‐ and long‐term 
oscillations. Each year consists of 100 simulation time steps, repre‐
senting a 100‐day growing season. Because our objective is to study 
the impact of fish life‐history stages, we choose among the stabi‐
lized food webs only those that contain at least one fish species or at 
least one fish life‐history stage (in model type 2). Life stages become 
extinct if their biomass is lower than 10−6 μg C/L, although fish spe‐
cies can be revitalized through aging, as biomass shifts from younger 
to older age classes. Thus, the final analyzed food webs contained 
from one to three fish species or, in the case of model 2, at least one 
fish life‐history stage.

F I G U R E  3  Boxplots of the coefficient 
of variation (CV) of the (a) total ecosystem 
biomass and (b) total fish biomass for each 
model type (CV's greater than 100 are not 
shown for clarity)
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We initially conducted a preliminary analysis on the probability 
of fish extinctions for each model type. For this preliminary anal‐
ysis, we discarded only those food webs for which all fish became 
extinct. The remaining analyses were subjected to a more stringent 
constraint; at least one fish species must have persisted in every 
simulation run for a given model type for the web to be included. 
The robustness of the results to the choice of Z = 100 was explored 
by replicating the analyses with the values of Z generated randomly 
from lognormal distributions. The main difference was seen in the 
increased frequency of stable food webs when Z = 100, as compared 
to the scenario, where Z was randomly drawn from the lognormal 
distribution (results not shown). We used R version 3.3.2 (R Core 
Team, 2016) for all analyses, and the R library tidyverse (Wickham, 
2017). We run the dynamic model with MATLAB version 2016 (The 
MathWorks).

3  | RESULTS

One means of assessing the biological realism of the model was 
to examine the degree to which the model produced biologically 
realistic results. In this regard, our model produced realistic von 
Bertalanffy growth curves: mass is incomparable across simula‐
tions, but fish species within a single simulation tended to be in the 
same size range, as the weight ranges for fish species often overlap 
(Figure 2). The youngest life stage of the largest fish species was 
smaller than the oldest life stage of the smallest fish in 75.8% per‐
cent of the simulations.

A key criterion for the initial part of the analysis was to have the 
generic model achieve stability in overall fish biomass. Most (81.0%) 
of the simulations met this criterion, insofar as fish biomass stabi‐
lized in at least one of the experiments. A secondary criterion was 
that at least one fish species must achieve stability in each of the 
specific models; 24.4% of the simulations met this second criterion. 
Given that most simulations stabilized within 200 years, the initial 
200 years were discarded and the remaining 100 years used for 
analysis.

Neither the CV for total ecosystem biomass or total fish biomass 
(Figure 3) differed between the three model types. This result is sup‐
ported by the frequency of the consecutive number of surviving fish 
species in each model (Figure 4). The model types that included new 
life stages were more likely to have at least one fish species survive, 
as well as having every fish species survive. There does not appear 
to be a difference between the linked model (model type 3) and un‐
linked model (model type 2). The unlinked model seems to have a 
more intermediate outcome, while linking the life histories seems to 
steepen the probability of consecutive extinctions.

Simulation outputs are illustrated for the fully linked model 
(model type 3) (Figure 5; but see Supporting information figures  
and  in the electronic supporting materials for the analogous figures 
for model 1 and model 2). There is no correlation between fish size 
and mean total ecosystem biomass (t = 0.61, df = 1980, p = 0.544; 
Figure 5a) or mean fish biomass (t = 1.64, df = 1980, p = 0.102; 

Figure 5b). However, larger fish species are correlated with a 
higher CV for both the total ecosystem biomass (t = 5.67, df = 1980, 
p < 0.001; Figure 5c), and the CV of fish biomass (t = 3.13, df = 1980, 
p = 0.002; Figure 5d). Normality for each variable was confirmed 
using qqplots.

4  | DISCUSSION

The present study opens new avenues of research in food web ecol‐
ogy by proposing a general framework to integrate life histories into 
the analysis of complex food webs. This framework extends the 
existing allometric trophic network (ATN) theory by incorporating 
life‐history structure. Using Williams and Martinez's (2000) niche 
model and the bioenergetics model (Yodzis & Innes, 1992) as starting 
points, we created life‐history structured ATN models. Firstly, we 
added additional life‐history stages, that is nodes, to each species. 
Secondly, we linked these stages together, such that juveniles grow 
into adults and then produce offspring. Through these additional 
biological mechanisms, we are able to evaluate the effect of life‐his‐
tory dynamics on the function and stability of food webs. While we 
chose aquatic ecosystems, where fish species exhibit the life‐history 
dynamics, our theory can easily accommodate other types of sys‐
tems and species exhibiting the life‐history dynamics through the 

F I G U R E  4  The frequency of simulations with 0, 1, 2, or 3 
surviving fish species in each model. The different shapes indicate 
each model type: (1) the original ATN model (triangle), (2) extended 
unlinked model (square), and (3) the linked model (circle)
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broadly applicable Leslie matrix. Furthermore, our framework offers 
a systematic approach for disentangling the effects of increasing 
life‐history complexity in food‐wed models.

Here, we find that the addition of life‐history structure com‐
plexity significantly influences model outcomes, but that the link‐
ing of the stages within each fish species through a Leslie matrix 
alters the output of the unlinked model only marginally. For exam‐
ple, the addition of life‐history stages reduces variability in total 
ecosystem biomass, which we interpret as reflecting increased sta‐
bility. Given that new, unlinked life‐history stages can be treated 
as new individual species, this finding is essentially equivalent to 
the conclusion that ecosystems which support greater numbers of 
fish species are more stable than ecosystems that support fewer 
fish species.

One potential pathway leading to the increased stability is via link‐
ing multiple size‐varying life‐history stages, which makes each spe‐
cies more dependent on a broader range of prey. In a sense, we are 
creating a scenario for increased species generalism by linking all the 
life stages and by making them less dependent on any one particular 

prey. On the other hand, we might also increase the extinction prob‐
ability of a predator species if any one of its life‐history stages goes 
extinct. These nonviable life‐history stages may be partly responsible 
for why we failed to find a strong effect of linking the life stages to‐
gether. Perhaps, if we ensured life‐history stage viability by assigning 
broader diets to each stage, we might have observed a larger effect of 
stage linkage. The linking of life‐history stages might also alleviate the 
predator‐induced mortality of certain prey species. If a fish predator is 
comprised of a wide variation of cohort sizes in its life‐history stages, 
the prey of any given stage may go through phases of intense preda‐
tion when it is targeted by the largest cohort followed by a recovery 
period when the largest cohort is no longer preying on it.

The effects of increasing life‐history complexity on ecosys‐
tems were recently explored by Mougi (2017), who evaluated the 
effect of two life‐history stages on food webs that were randomly 
generated and whose dynamics were described by Lotka–Volterra 
population dynamics with linear functional responses. The author 
found that inclusion of two stages (rather than only one stage 
per species) increased the probability of persistence of complex 

F I G U R E  5  Mean and CV of biomass 
as a function of the asymptotic individual 
body mass for each surviving fish 
species. Panels (a) and (b) show the mean 
ecosystem biomass and mean biomass of 
the 1982 fish species, respectively. Panels 
(c) and (d) show their respective CV's. The 
blue lines represent linear regressions. 
These are significant for the CV of the 
total ecosystem biomass (panel c; t = 5.67, 
df = 1980, p < 0.001) and the CV of the 
fish biomass (panel d; t = 3.13, df = 1980, 
p = 0.002). Outliers with a mass larger 
than 1010 or CV greater than 800 were 
removed from the analysis
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food webs, while it decreased persistence for simpler food webs 
(Mougi, 2017). Based on the findings of the present study, we hy‐
pothesize that most of the effects that Mougi (2017) documented 
when adding life‐history structure might be attributable to an in‐
crease in food web size resulting from the addition of nonrandom 
nodes, rather than any intrinsic effect of life‐history structure. That 
said, our methods were quite different. The structure of our food 
webs was randomly generated by the niche model which has been 
demonstrated to generate realistic structures when compared with 
empirical food webs (Williams & Martinez, 2000). Moreover, the 
parameters used in our population dynamics come from allome‐
tric relations well supported by empirical studies (Brown, Gillooly, 
Allen, Savage, & West, 2004; Enquist, West, Charnov, & Brown, 
1999). Additionally, the functional responses used in our model 
incorporate consumption saturation that has been demonstrated 
to be much more biologically meaningful than linear functional re‐
sponses (Holling, 1959). Therefore, we think our theory is a sub‐
stantial advance after the contribution of Mougi's (2017) work 
given that our theory is better supported empirically. Finally, we 
applied an annual Leslie matrix to model growth from one life stage 
to the next, while Mougi (2017) incorporated a continuous growth 
model directly into the differential equations. We used four life 
stages for three species, while he used two life stages for various 
proportions of the community.

Future research should deal with some of the limitations of the 
theory we present here. Our application of the von Bertalanffy 
growth model lends increased biological realism in terms of body 
mass and consequently metabolic rate. However, the species 
all have identical life histories (exactly four life stages, identical 
age‐specific probabilities of maturity, and the same age‐specific 
fecundity). It might be worth exploring alternative life spans and 
life‐history strategies in future model formulations. Moreover, our 
results suggest that it would be instructive to increase life‐history 
complexity in the models that explore the impacts of fishing on 
the target ecosystems (e.g., Kuparinen, Boit, Valdovinos, Lassaux, & 
Martinez, 2016). From an ecosystem‐based management perspec‐
tive, it would be important to examine how size‐selective fishing 
mortality, which would differentially affect some species and life‐
history stages more than others, influences species persistence 
and ecosystem functionality.

While the focus of our study was on aquatic food webs, several other 
applied questions leveraging the relevance of life‐history dynamics in 
food webs and ecological networks in general can benefit from the the‐
ory developed here. Such applications of the theory might include bio‐
logical control, ecosystems services such as pollination, and responses 
of ecosystems to various types of anthropogenic perturbations.
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