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Abstract
1. Body size determines key ecologicabeevolutionary processes of organisms. Therefore,

organisms undergo extensive shifts in resources, competitors and predatorgesvihiay
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body size While empirical and theoretical evidence shtwatthese sizalependent
ontogenetic shifts vastly infance the structure and dynamics of populations, theonpan
thoseontogenetic shiftaffect the structure and dynamics of ecological netwisrksll
virtually absent.

2. Here, weexpand the Allometric Trophic Network (ATN) theory in the context oéigu
food webs'to incorporate size-structure in the population dynamics of fish speeiel® this
by modifyinga food web generating algoriththe niche model, to produce food wetisere
different fighlife-historystages are described as sepamaties which are connected through
growth and.reproduction. Thewe apply aioenergetic model that uses the food webs and
the body sizes generated by our niche modeV#duate the effect of incorporatifife-

history structureiinto food web dynamics.

3. We show that the larger the bodizeof a fish species respective to the body size of its
preys,the highethe biomassattained by the fish speciaad thegreatetthe ecosystem
stability. We also find that the larger the asymptotic body size attainshispeciegshe
larger thetotal ecosystem biomass, a result that holdsftnuboth the largest fish in the
ecosystem.and.each fish species in the ecosystem.

4. This work provides an expandAd@N theorythat generates food webs wiife-history
structue for chosen species. Our warersa systematic approach fdisentangling the

effects of increasing litdistory complexity in foodveb models

Keywor dsgniche model, bioenergetics model, body siife histories aquatic ecosystems
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I ntroduction
Body sizedeterminegkey ecological and evolutionary processes during the ontogeny of
organisms (Werner & Gilliam 1984)cBlogical interactions, diet bréth, foraging
efficiency, reproductionmortality among other processes animatingaganisn's life
strongly depend on the organismsige(Werner & Gilliam 1984 Yodzis & Innes1992;De
Roos et alt 2003Given such dependency, organisms will undergo exterss$iifts in
resources,"competitors and predators as they grow (Werner & Gilliam Ra8#sJiliberto
et al. 201L)These sizalependent ontogenetic shiftastlyinfluencethe structure and
dynamics of aquatipopulatiors and communities (Werner & Gilliam 19893¢ Roos et al.
2003).For ‘examplejjuvenile bottlenecksinfluences the structure and dynamicgisi
communities wherprey populations compete with the juveniles of their predatory
populationgexhibiting similarbodysizes(Bystrom et al. 1998). Moreoveheoretical work
hasshownthatcompetitive angbredatory (cannibalistic) interactions between different age
cohorts drive fish population dynamics (Persson 1988; van den Bosch et alD&38os et
al. 2003. However, e@spiteall the empirical and theoretical evidence of viast impacts of
sizedependent.ontogenetic shifts and stage-structured populations on the population
dynamics of interacting species, little theory has been devetptt effects of theize
dependent ontogenetic shifts and population structure on the structure and dynamics of
ecological networkgbut see Mougi 2017Here, wecontribute to develop such theory by
expanding théllometric Trophic Network (ATN Yodzis and Innes 1992; Williams &
Martinez 2004bWilliams et al 2007) model to incorporatiée-historystructurefor fishes
(to capture changes in body size across different age€valuatdts effecton the structure
and dynamics of aquatfood webs.

The study of ecological networks has recently achieved major breakthroughs by

recognizing that the ecological functionality of species can be largely attributed to their body

sizes (Brose. et al. 2006a; Otto et al. 2007). Specificaligrge predateprey baly size ratio
appears to'bekey to stabilizing the dynamics of complex food webs (Bros2Gaét).
Through sealing by body sizATN models have proven successful in explaining the
stability, struCture and functioning of ecosystemlifams & Martinez 2000Brose et al.
2006h Dunne 2008. Apart from modebased investigations on the role of body size in food
web dynamics, the theory has been further supported by Boit et al. (2012jesked a
remarkably accurate, empirically validated ATNakel by incorporating body size that

explained 8-40% of the variation in the seasonal dynamics of the Lake Constance plankton

community.
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83 Within the context of food-web dynamics models in general, and ATN models in
84  particular, species of similar body stzave been traditionally lumped together in a single
85  functional group, such that scaling by body size is done with respect to individual body size
86  across the species’ lifespan. This approach stemmed from a need to developsidgbéeto
87  addressigeneric questions, such as those related to species coexaéteniet 2003.
88 However, for some species, an individual’s body size can change by orders of magnitude
89 throughoutits'ife(e.g., fishes; Wootton 1998s there are strong correlations between body
90 size and key functional traits, such as metabalte (WestL999, a species’ ecological
91 functionality.is likely to change substantially from juvenile to adulthifgtory stages. Thus,
92 incorporation of/'the lifdristory structure of species that experiesglstantial changes in
93 their bodysizeé across their lifespan is likely to increase the structural realism of food webs
94  and yield more'biologically realistic predictions about their dynamics.
95 Fishes constitute ideal study species because of their indedéengrowth, which
96 causes them to shift through several ecologicdlasi@s they grow (Wootton 199Fheir
97  body size, diet, exposure to predation, and general ecological functionafiyesha
98 tremendously.from larvae through adult stages, resultingaimy species transitioning from
99 the bottom efithe food chain to the position of apex predator. For example, during their lives,
100 Atlanticieed Gadus morhua) have the potential to change from being ktevores (as
101 <10mm, 1-2gdarvae) to apex carnivores longer than 1m in length and tens of kg in mass
102  within 5-7 yeargBrander 1994; Hutchings & Rangeley 201Ahother aspect that makes
103 fishes and aquatic food webs particularly interesting systems to stuaydlud life-history
104  structures in food web dynarsics the fact that contemporary Hfistory trends towards
105 smaller body sizes and earlier maturity have been documented in many fish species across the
106  world (Hutchings &Baum 2005; Audzijonyte et al. 2013). Understanding the impacts that
107  suchlife-history changes can have orteracting speciegntire ecosystemand sustainable
108 fisheries.managememniarrants for knowledge about the role of fish life-histories in food web
109  dynamics.
110 Thespresent study has two primary objectives. The first is to expandrtie A
111  modelling.approach by incorporating simple life-history structure for #e$i in a generic
112  aquatic ecosystem. The second objective e/aduate the effect dife-history structure on
113  food web dynamics. This second objective includes disemgtbke effect ofincreasing
114 food-webcomplexity byadding nodes representing the previously ignéfechistorystages
115 from the effect of lifehistory dyramics that is ageing from one liféhistory stage to another

116  and reproduction (linkages between lifistbry stagels To this end, we ushie generic
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allometrically scaled niche model (Williams Martinez 2000) adapted to aquatic food webs
(Martinezet al.2012) to randomly generate scenarios for food webs, within which we
introduce lifehistory structureo fishes and split the specikesel diets among the life

history stages. Through systematic simulations, we disentangle the relative impacts of life
history dynamiesrbm addinglife-historystagesy analyzinghree types of models:

‘original’ ATN model not includingife-history stagesvithin species, ii) ATN model with
‘unlinked' lifethistory stagethat incorporates new nodes but does not connect them via
growth and reproductigrand iii) ATN model incorporating liflaistory stages that are lintke
together as.a specidwough agmg (hereafter referred to as ‘growtldhd reproduction

These analyses will provide broadly generalizable insights into theiwaysch fish life-

histories affect their food webs.

Materials and methods

The theory.wealevelop here consists of generating the topology of life-history structured food
webs which,determines the trophic interactions among nodes (i.e., trophic specieh and fi
life-historysstages) and coupling the population dynamics determined by those trophi
interactions'with' lifehistory dynamics (fish growth and reproductione first describe how

we generate the topology of the food webs and then how we link the population dynamics of
the species.and fidle-historystages with the litdistory dynamis.

Generation.of life-history structured food webs

We expandhe niche model (William& Martinez 2000) taenerate networks that
incorporatdife-historystructurs. The nichemodel uses as inputise number of species and
connectancex(ize. fraction of potential feeding interactions that are rearmdandomly
assigns.aniche value’(n;) to each specieBom a uniform distributionThis valuegives
species arhierarchicednkingwhere they fall relative to each othamichwe interpret as
relative body sizeSpecies with a low niche value are generally autotrophs, while species
with high niche values are more likely to be carnivoresy Remsare assigned to each
speciesrom a range centeret a lower niche value, where a larger range indicates a more
varied diet. Range siZe;) is chosen by first drawing a random variabig from a beta
distribution that has been weighted to reflect the desired connec@nuketlie web (see

Appendixfor the derivation of3):
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a =1
x ~ betda, f) with g = 1-2C Q)

2C

A less connected web will have more specialigtshghatthe distribution will skew
more towards smaller range values. The range width for each species is then scaled to fall in
(0,n;) sasthat-it-will never exceed the niche index, whgbbtainedoy:

= Xn 2)
The predation range is theefined a{ci — % ci + %] Thus,we can centetheir
predation range using a uniform distribution, limited only by the above assumpgti@ns (
U (%,ni)), wherec; is the cergr of the species dietary range. Species are considered non

discriminatory eyond thigs inthey consume all species within their dietary ravge

discarded webs failg to satisfy certain requiremert$ biological realismincludingthe

conditions thaft).all species are connected to the web either by predating or being predated

on by other'speciegii) every species ham autotroph in its food chaifiii) the web is

connected, which ensures that our food web is not composed of several smaller, distinct food

webs. We also confirm thét) the generated wedxhibitsour desired level of connectance.
Once a food web has been creatbdspecies are identified asitotrophs,

invertebrates,,or figks (Yodzis & Innes 1992). Autotrophs are identified bykiog for the

species that have no préye. basal speciesihvertebrates and fishase identified depending

on the speecies:trophic position under the assumption that herbarerasre likely to be

invertebrates andarnivores aremore likely to be fisas(Romanuk et al. 2011). In particular,

we assume that:the three most apex predators are fish and that all the remaining species that

are not autotrophs are invertebrates (following Tonin 2011 and Martinez et al. 2012). Trophic

postion of eaech species is calculatesing the short-weighted trophic positidn WVilliams

& Martinez 2000; 2004a), which is the average of two other trophic positincs the

shortest trophic leveb a basal speci€31) and the prey-averaged trophic positidg;(see

electronic appendix for its calculatipn

_ T1+T2;
T, =

,V species.i (3)

The shortest'trophic level (T1) is defined as the shortest path to a basal phecies

whereaq;; is a binary elerant from the species connection matrix.
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Preyaveraged trophic position for specias 1 plus the average trophic position of

all its prey:

5
=1+ Z = ©
JESpreyi Py

whereP; is the number of prey that speciesonsumes. We describe a computational shortcut
to calculatel2; for each species in the Appendix. The short-weighted trophic pokamn

been shown to be a better estimator of trophic positionThan T2 individually (Williams

and Martinez 2004a; Carallen et al. 2012). Note that autotrophs (basal species) are assigned
a trophic position of 1 in every trophic position metric which is reflected in Eqgs. 3 and 4.

Coupling life-history and population dynamics in food webs

Thefirst stepto define the population dynamics of each species within the generated food
websis to determindiow efficient specieare at processing their food. We expand the
methods used:bBrose et al(2006b) to calculate species consumption rates bassplecies
metabolic rate that are approximated bglativebody sizeThe body sizes (accounted as
body masses)of all species within the food web are related to the basal species. Therefore,
the relativebody masesof all the basal species are assignedlaeof 1. Then the relative
body masses of the invertebrates and fishes are cattak#eming a constahbdymass

ratio betweerconsumers ancesourcs (the so callecllometric ratiq Z), set toZ=100(Brose

et al. 2006b). Thushebody mass is a simpfanction of trophic leveMass= Z7~1, where

1 issubtracted,from the trophic level to exclude basal species from the calc(iBatise et

al. 2006b).

Fishboedy'mass is of importance not only because of dietary shifts but because
metaboliesratesper unihass decreases with size. A school of large fish is more efficient at
processingfood than a school of small fish with the same biomass. In tieongeans that
an ecosystem would be able to support a larger biomass of fish if theefeslharger.

Kleiber's Law states that metabolic rates increase at a slower rate than body mass (Kleibe
1975). While this law has been revised and modified many times, the underlying principl
has heldrue (Smil 2000; Ballesteros et al. 2014). For instance, a predator may be 100 times
larger than its prey, but its metabolic rate is only 75 times that of itsYoelgis & Innes

(1992) took advantage of this relationship to approximate how effitiehtypothetical
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organisms of this modebnvert energy frm their food source@Villiams et al. 2007Brose

2008). The calculations resulted imetabolic ratex;) per unit of body weight\{) as

0, for autotrophs
x; =140.314M~9%15  for invertebrates (5)
0.88M 011, for fish

We use a deterministic algorithim find the weight for new life-history stages. From
their weightywe can approximate their niche indethsdwe can fit them into the food web
and their metabolic rate¥/e assign weights to three new, younger life-hisstages
(t = 0,1,2)'with a von Bertalanffy isometric growth curve (Pauly 1980). Adults retain the
original weight W,.x) We assigned to easipecis, and we assume that is the-lifistory

stage(t,qx = 3)@and weight of maximum yield per recruit. The curvature of the von
3

Bertalanffy curve is set d6 = (Froese and Binohlan 2000), and we assume the adults

max

reach% =:0:9.0f their asymptotic weight.
inf

W, = Wi (1 — eKt)? (6)
The populatiordynamics of each species difd-histay stage within the food web
can be described with ordinary differential equati@BESs) which we use to simulate the
biomass of each species. We modifiedAi& model WVilliams & Martinez 2004b
Williams et-al:2007) to accommodate Hiestory structure. The following equatiofiom the
ATN modelshow the growth for autotrophBd.7) and consumers (Eg. 8) during the girayv

season:
Intrinsic Growth

Loss to Grazing

B=r|1- & B: — X Bi #(7)
1 i K L ]y]l ]e]l

Jj€Autotrophs j€eConsumers

F:.

. Ji

Bp=d—fnx;B; + E faxiyijBiFi; — x;yjiB;—#(8)

ml L €ji
Metabolic Loss jeResources .

jeConsumers

Dietary Intake -
y Loss to Predation

wherer; is the intrinsic growth rate for autotropfK is the carrying capacity; is the
metabolic rat§Eq. 5),y;; is predatot's maximum consumption rate for prgy;; is the

assimilation efficiency foi eatingj, f;, is the fraction of assimilated carbon lost for
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maintenance, anf}, is the fraction of assimilated carbon that contributes to grawtis the

normalized functional response:

h
a)ijB]-

Fij =

Béll,j +Xkeconsumer (ijpikBkB('}kj)+Zleresource§wi13[1)

)
wherew;; = 1/Pi is the relative preferenad specieg on its preyj, P; is thetotal number of
specieg’s prey.h is the Hill exponentB,, is the half saturation density fareatingj, cy; is

the predator.interference of speciegatingj, andp;; is the fraction of's resources that it

shares in common witkk The values for these parameters are deschib&dble landFig. 1

At the end of each growth seastite ODEs (Eqs #8) arepaused so that fish may
grow and reproduce. The biomagg)(shifts between liféhistory stages according tioe

following Leslie matrix:

L 01 0 0 09\ /B
Byil _[09 01 0 0 |[Bin
Biss | »\ 0 09 01 0 [\Bi (19
Bl 0 0 09 01/ \Bus

Essentially, thissmeans that 90% of biomass grows to the nekidifery stage, while 10%
remains’in.the previous stageis choice was made to allow realistic phenotypic variability
within the species, that is, most individuals growth from one agefisp@eerage size to the

next agespecific.average size but a few individuals remain at the lower developmental stage
(size) thanfexpected based on their d¢pe highest (4th) lifdnistory stage reproduces and

90% of its biemass isansferredo the first lifehistory stageas newborns. Notably, our
formulation of the Leslie matrix allows the model to be applied to a broad range of
ontogenetic developments, not only the most obvious application, which is ageing from one
ageclass to anothgl00% biomass transfer from one stage to another).

Smulation design'and analyses

Weiinvestigated the model through systematic simulations to determine how inclusion
of fish life-historystagesaffects the food web, its structure, dynamics, and stability. The
addition of life-history structure for fishes changes multiple featurésediood web.

Introduction of life-history stages involves the addition of new nodes and feedingdlitites
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web; life-history dynamics (growth from one lif@story stage to the next) alters the ways in
which biomass is transferred within the food web.

To tease apart the relative roles of these components involved with the lifg-histor
structures, we run 3 sets of simulations (hereafter denoted as ‘model.typesfiyst model
type comprises/an ‘original’ or baseline web that does not includei$ifery stages within
species. That is; easpecies, including fish, is described through one single node in the food
web.Model'type 2'incorporates unlinked liféstory stages withieach fish species. That is,
eachfish speciess partitionednto life-history stages, but these stages are not linked with
one another, tlmughLeslie matrices. The new fish life stages are independent of tah o
and biomass does nimansfer throughgeang from onelife-historystage to aother. In the
ATN modelling sensgethey can be considered as new species. Whilentbit! type is not
biologically realistic, it is crucial for disentangling the effects of adding new nodes to the
food web from theféect of life-history dynamicsModel type 3 is an ATN model that
incorporates lifedistory stages that are linked to one another within each spsiEsEq.
10.

To cempare the three model types, we begin the simulations (500 for each model
type) with the same initial conditions. In each simulation, the foelol i& allowed to stabilize
for 200 years, after which the food web is either accepted or rejected, based on the rules
detailed belowsThe dynamics of the food webs are then investigated across Hdoear
period. The chosen burn-in time and the investigated simulation period were chosen such that
the node hiomasses reached dynamic equilibriums and to allow sufficient temporal
replication of the food web dynamics to capture short and long term oscill&exisyea
consists of 100 simulation time steps, representing a 100-day growing seasuseBaar
objective is to study the impact of fish lfestory stages, we choose amongst the stabilized
food webs only those that contain at least one fish species ostabtesfish lifehistory
stage (in.model.type 2). Life stages become extinct if their biomass is lower tharC10Q
although fishespecies can be revitalized through ageing, as biomass shify®inoger to
older age classes$hus, the final analyzed food webs contained from one to three fish species
or, in the case of model 2, at least one fish life-history stage.

We nitially conducted a preliminary analysis on the probability of fismetitins for
each model type. For this preliminary analysis, we discarded only those food wefhséctor
all fish became extinct. The remaining analyses were subjected to a more stringent constraint;
at least one fish species must have persisted in every simulation run for a gdariype

for the web to be included. The robustness of the results to the choice of Z=100 were
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explored by replicating the analyses with the values of Z generated rgrfdamm lognormal
distributions. The main difference was seen in the increased frequency effetabivebs

when Z=100, asompared to the scenario, where Z was randomly drawn from the lognormal
distribution (results not shown)Ve used R versio8.3.2 R Core Team 2036or all
analysesyantheR library tidyverse(Wickham 2017). We ruthe dynamic modekith

MATLAB version 2016b (The MathWorks

Results
One meansrofrassessing the biological realism of the model was to examine the degree to
which the medel produced biologically realistic results. In this regard, our madiiqad
realistc von Bertalarfiy growth curves: rass is incomparable across simulatjdngfish
species within a single simulation tended to be in the same size range, as the weight ranges
for fish species often overlapi. 2). The youngest life stage of the largest fish species was
smaller than.the.oldest life stage of the smafisktin 75.8% percent of the simulations.
A key. criterion for the initial part of the analysis was to have the gemerde|
achieve stability iroverall fish biomass. Most {8%6) of the simulations met this criterion,
insofar as fish:biomass stabilized in at least one of the experiments. A sgaottdaon
was that at.least one fish species must achieve stability in each of the specific Bbdils
of the simulations met this second criterion. Given that most simulations stabilized within
200 years, the Initial 200 years were discarded and the remainirygd@0used for analysis.
Neither the CV fototal ecosystem biomass or total fishrhbass Fig. 3) differed
between the three model types. This result is supported by the frequency of tlatoanse
number of surviving §h species in each mod€lid. 4). The model types that included new
life stages were.more likely to have at least one fish species survive, as well as having every
fish species,survive. There does not appear todiiéeaence between the linked model
(model type=3)-and unlinked model (model type 2). The unlinked model seems to have a
more intermediate outcome, while linking the life histories seems to steepen the probability
of consecutive extinctions.
Simulation outputs are illustrated for the fuliiyked model (modetype 3) Fig. 5;
but see Fig. STvand S2 in the electronic supporting materials for the analggoesfior
model 1 and model 2J.here is no correlation betweaslf sizeandmeantotal ecosystem
biomass (t=0.61, df=1980, p=0.544g. 5a) or meanfish biomass (t=1.64, df=1980,
p=0.102 Fig. 5b). However, larger fish species are correlated with a higieior both the
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327 total ecosystem biomass5.67, df=1980, p<0.00Eig. &), and the CV of fish biomass

328 (t=3.13, df=1980, p=0.00ZFig. 5d). Normality for each variable was confirmed using

329 qgplots.

330

331 Discussion

332  The present study opens new avenues of research in food web ecology by proposirg a gener
333 framework to integrate life histories into the analysis of complex food websfratiswork
334  extends the existingllometric trophic network (ATNbheoryby incorporating lifehistory

335  structure Using:Williams& Martinez’s (2000) niche model and the bioenergetics model
336 (Yodzis & Innes 1992) as starting pointge createdife-history structured ATN models.

337  Firstly, we'added additionéfe-historystagesi.e. nodes, to each spes. &condly, we

338 linked thesestages togethesuch that juveniles grow into adults and then produce offspring.
339 Through these additional biological mechanisme are able to evaluate the effectifef-

340 historydynamieson the function and stability of food weghile we chose aquatic

341 ecosystemswvhere fish species exhibit the hfestory dynamics, our theory can easily

342 accommodate ather types of systems and species exhibiting thissidey dynamicshrough
343 the broadlysapplicable Leslie matrix. Furthermore, our framework offers a systematic
344  approach:for disentangling the effects of increasinghlié¢ory complexity in foodved

345 models.

346 Here, we find that the addition dife-historystructurecomplexity significantly

347 influencesymodel outcomes, but that the linking ofsiages within each fish spectbsough
348 a Leslie matrpalters the output of the unlinked model only marginally. For example, the
349 addition oflife-historystages reduces variability in total ecosystem biomass, which we
350 interpret as.reflecting increased stability. Given that new, unlilileetlistorystages can be
351 treated as.new.individual species, this finding is essentially equivalent torttiesionthat
352 ecosystems:which support greatambers of fish species are more stable than ecosystems
353 that support fewer fish species.

354 One potential pathway leading to the increased stability is via limkudgple size

355  varyinglifeshistory stages, whicimakes each species more dependent on a broadge of
356 prey. In a sense; we are creating a scenario for increased species gebgriatikimg all the
357 life stages and by making them less dependent on any one patrticular prey. On tharather
358 we might alsancreasehe extinction probability of arpdator species if any one of life-

359 historystagegoes extinctThese nomndablelife-historystages may be partly responsible for
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why we failed to find a strong effeof linking the life stages together. Perhaps if we ensured
life-history stage viability by assigning broader diets to each stage, we migldliserved a
larger effect otage linkage. The linking dife-historystages might also alleviate the
predator-induced mortality of certain prey species. If a fish predator is isetof a wie
variationsef'eohort sizes in itde-historystagesthe prey of any given stage may go through
phases of intense predatiahen it istargeted by the largest cohort followed by a recovery
period whénthe largest cohort is no longer preying on it.

Theeffects of increasing litdistory complexity on exsystems was recently explored
by Mougi (2017), whavaluated the effect of two |Heistory stages on food webs that were
randomly generated and which dynamics were described by Lotka-Volterratgopula
dynamics with linear functional responses. The author found that inclusion of tyes sta
(rather tharonly one stage per species) increased the probability of persistence of complex
food webswhile it decreased persistence for simpdexd webs (Mougi 2017). Based on the
findings of the present study, we hypothesize that most of the effects that o1ig) (
documented when adding life-history structure might be attributable to aasecmn food
web size resulting from the addition of non-random nodeler than any intrinsic effect of
life-history:structure. That said, our methods were quite different. The structuwie folbd
webs were randomly generated by the niche model which has been demonstratedt® genera
realistic structures when compdrwith empirical food webs (William& Martinez 2000.
Moreover, the parameteused in our population dynamics come from allometric relations
well supparted by empirical studies (Enquist et al 1999; Brown et al 2004). Addigiahall
functional responses used in our model incorporates consumption saturation that has been
demonstrated to be much more biologically meaningful than linear functional response
(Holling 1959). Therefore, we think our thedsya substantisddvance after the contribution
of Mougi's(2017) work given that our theory is better suppoetegirically. Finally, we
applied an'annual Leslie matrix to model growth from one life stage to the next, while Mougi
(2017) incorporated a continuous growth model directly into the differential equatiens. W
used four lifesstages for three species, while he used two life stages for yaapagions of
the community.

Future research should deal with some of the limitations of the theory we present
here.Our application of the von Bertalanffy growtiodel lends increased biological realism
in terms of body mass and consequently metabolic rate. However, the species all have
identical life histories (exactlipur life stages, identicagespecificprobabilities of maturity

andthe samegespecificfecundity). t might be worth exploring alternative life spaarl
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394 life-history strategies future model formulations. Moreovenjioresults suggest that it

395 would be instructive to increase lifestory complexity in thenodels thaexplore the

396 impacts éfishing on the target ecosystelfesg, Kuparinen et al. 2016lr-rom an ecosystem
397 based management perspectiveyauld be important to examine how si@ective fishing
398 mortalityywhiehwould differentially affect sonspecies antife-historystages more than
399 others, influences species persistence and ecosystem functionality

400 While the focus of our study was on aquatic food webs, several other applied
401 questionsieveraging the relevance of-history dynamics in food webs and ecological
402 networks ingeneral can benefitom the theory developed here. Such applications of the
403 theory might include biological control, ecosystems services such as pollination, a

404 responses/of ecosystems to various types of anthropogenic perturbations.
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S Number of specie{ 30 - Martinezet
in original niche al. 2012
web

C Connectance 0.15 - Martinezet

al. 2012

K Autotroph 540 pngC /L Boit et al.

carrying capacity 2012;
Martinezet
al. 2012

r Autotroph r ~ N(09,0.2) d-1
intrinsic growth r € (0.6,1.2)
rate

Vij Maximum 10 d~! | Boitetal.
consumption rate 2012
of predatoii for
preyj

e;j Assimilation {0.45, j is an autotropl - Broseet al.
efficiency fori 0.85, otherwise 2006b
eating|

h Hill Exponent 1.2 -

fa fraction of 0.4 Boit et al.
assimilated carbon 2012
that contributes to
growth

fm fraction of 0.1 Boit et al.
assimilated carbon 2012
lost for
maintenance

526
527
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Figurelegends

Figure 1. The half saturation constanBO(].) and competition coefficients;() for predator

eating prey. Figure and constants amproduced from Tonin (2011) and Martinez et al.
(2012).

Figure 2. Von Bertalanffy growth curves for surviving fish in several simulated food .webs

Each colour represents a different food web simulation. Each species hate fsiages.

Figure 3. Boxplots of the coefficient of variation (CV) of the (a) total ecosystem déssmnand
(b) total fish biomass for each model type (CV’s greater than 100 are not shovarifg).c

Figure 4. The frequency of simulations with 0, 1, 2, or 3 surviving fish species in each
model. Thedifferent shapes indicate each model type: 1) The original ATN maueilé),
2) Extended,unlinked model (square), and 3) the linked model (circle).

Figure 5. Meansand CV of biomass as a function of the asymptotic individual body mass for
each surviving fish species. Panels (a) and (b) show the mean ecosystem aiahmasan
biomass of.the 1982 fidpecies, respectivelianels (c) and (d) show their respective CV’s.
The blue lines represent linear regress. These are significant for the CV of the total
ecosystem biomass (panel c; t=5.67, df=1980, p<0.001) and the CV of the fish biomass
(panel d; t=3.13, df=1980, p=0.00D)utliers with a mass larger than'16r CV greater than
800were removed from thanalysis.
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