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Abstract The first long-term comparison of day-to-day variability (i.e., weather) in the thermospheric
winds between a first-principles model and data is presented. The definition of weather adopted here is the
difference between daily observations and long-term averages at the same UT. A year-long run of the Global
Ionosphere Thermosphere Model is evaluated against a nighttime neutral wind data set compiled from
six Fabry-Perot interferometers at middle and low latitudes. First, the temporal persistence of quiet-time
fluctuations above the background climate is evaluated, and the decorrelation time (the time lag at which
the autocorrelation function drops to e−1) is found to be in good agreement between the data (1.8 hr) and
the model (1.9 hr). Next, comparisons between sites are made to determine the decorrelation distance
(the distance at which the cross-correlation drops to e−1). Larger Fabry-Perot interferometer networks
are needed to conclusively determine the decorrelation distance, but the current data set suggests that it
is ∼1,000 km. In the model the decorrelation distance is much larger, indicating that the model results
contain too little spatial structure. The measured decorrelation time and distance are useful to tune
assimilative models and are notably shorter than the scales expected if tidal forcing were responsible
for the variability, suggesting that some other source is dominating the weather. Finally, the model-data
correlation is poor (−0.07 < 𝜌 < 0.36), and the magnitude of the weather is underestimated in the model
by 65%.

Plain Language Summary Much like in the lower atmosphere, weather in the upper
atmosphere is harder to predict than climate. Physics-based models are becoming sophisticated enough
that they can in principle predict the weather, and we present the first long-term evaluation of how well a
particular model, Global Ionosphere Thermosphere Model, performs. To evaluate the model, we compare
it with a year of data from six ground-based sites that measure the thermospheric wind. First, we calculate
statistics of the weather, such as the decorrelation time, which characterizes how long weather fluctuations
persist (1.8 hr in the data and 1.9 hr in the model). We also characterize the spatial decorrelation by
comparing weather at different sites. The model predicts that the weather is much more widespread than
the data indicates; sites that are 790 km apart have a measured correlation of 0.4, while the modeled
correlation is 0.8. In terms of being able to actually predict a weather fluctuation on a particular day, the
model performs poorly, with a correlation that is near zero at the low latitude sites, but reaches an average
of 0.19 at the midlatitude sites, which are closer to the source that most likely dominates the weather:
heating in the auroral zone.

1. Introduction
A critical barrier to prediction of the thermosphere-ionosphere system is an understanding of the day-to-day
variability of the thermosphere, which we refer to as thermospheric weather. Recent advances in the devel-
opment of first-principles numerical ionosphere-thermosphere models and specification of the lower and
upper boundary variability have enabled the possibility of capturing the weather, and the recent expansion
of ground-based wind networks has enabled the validation of these models.

While models are still not perfectly representing the climate, progress has been made, as reported in
long-term model-data comparisons (Meriwether et al., 2013). In contrast, comparisons of the weather are
largely confined to case studies. For example, Sutton et al. (2007) compared 8 days of cross-track wind
estimates from the Challenging Minisatellite Payload with the thermosphere-ionosphere-electrodynamics
general circulation model (TIEGCM), finding a mean absolute difference of 64.1 m/s, slightly better than
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the comparison with the climatological Horizontal Wind Model 2014 (Drob et al., 2015). Wu et al. (2015)
found that using the high-latitude variability prescribed by Super Dual Auroral Radar Network to drive the
TIEGCM yielded better results than using the Heelis or Weimer models, in comparisons with ground-based
wind measurements for a single storm period in December 2006. Wu et al. (2008) compared 10 days of
TIEGCM runs from each of several years with ground-based wind observations in the polar cap, conclud-
ing that the TIEGCM overpredicted diurnal and semidiurnal oscillations. Emmert et al. (2001) developed
an empirical model of daytime disturbance winds from Wind Imaging Interferometer data and compared it
with the TIEGCM, finding important differences attributed mostly to high-latitude electric field variability.
However, the Emmert et al. (2001) study averages data at a given local time, latitude, season, solar flux, and
Kp, focusing on the effect of geomagnetic disturbances on the background circulation. This differs from true
weather due to the influence of tidal variability and waves propagating from high latitudes.

In this paper we take a long-term approach to evaluating thermospheric weather, comparing a year-long
run of the Global Ionosphere Thermosphere Model (GITM) with observations. We focus particularly on
the wind because not only is it a critical parameter in thermosphere-ionosphere coupling, but it also offers
an extensive ground-based data source, namely, networks of Fabry-Perot interferometers (FPIs). Previous
studies have compared GITM to space-based observations (Deng & Ridley, 2006; Mehta et al., 2017), but in
this study we utilize ground-based data sources because a long time series from a single location allows for
accurate removal of background climate. The disadvantage of ground-based wind data is that observations
are restricted to nighttime. The only previous study to compare GITM to ground-based thermospheric data
sources is Liuzzo et al. (2015), which analyzed a case study of the 24 November 2012 substorm using different
high-latitude drivers, comparing with the wind observed by Scanning Doppler Imagers at high latitudes.
In this paper, we focus on middle and low latitudes. We also restrict our attention to quiet time weather
(Kp ≤ 3) as it is understudied relative to storm time, and quiet conditions dominate the database.

GITM was run using inputs from 2013, and as such, this paper discusses weather during a weak solar max-
imum. The solar cycle effect on climatological thermospheric winds at middle and low latitudes has been
found to be small (0–50 m/s; Dandenault, 2018; Emmert et al., 2006; Fisher et al., 2015). The solar cycle
effect on thermospheric weather is not known.

In the following sections, we describe the year-long GITM run, the instrumentation and observations, and
our method of calculating the weather. Next, we investigate characteristics of the weather in the model and
in the data, and we quantify how well the model is capturing the observed weather.

2. Model
GITM is a global model that describes the upper atmosphere of the Earth and its coupling to the ionosphere
from 100-km altitude to approximately 500–600-km altitude, depending on solar activity (Ridley et al., 2006).
GITM solves the Navier-Stokes equations for the thermosphere, broken into vertical and horizontal direc-
tions. In the vertical direction, a momentum and continuity equation is solved for each species. Coupling
terms tie together the constituents in the lower thermosphere, and a bulk vertical wind is calculated given
the mass-weighted average of the individual vertical winds. In the horizontal direction, only a bulk momen-
tum equation is solved for, with each species being advected with the bulk wind. For both the horizontal
and vertical directions, ion drag, Coriolis, gradient in pressure, and geometric terms are considered. In the
horizontal direction, vertical shears are reduced with viscosity. In the vertical momentum equation, viscos-
ity is not considered at this time due to the large horizontal scales for shear in the vertical wind, but gravity
is considered.

GITM was run with 4.0◦ longitude by 2.5◦ latitude by roughly 0.3 scale height resolution. The altitude spac-
ing in GITM was based on scale heights determined from NRLMSISE-00 (Picone et al., 2002) temperature
and mean major mass results for the dayside equator at the start time of each simulation. The time step
in GITM was roughly 2 to 3 s and was dynamically set based on the speed of sound, ion and neutral wind
speeds, and the size of each cell in all three dimensions. In the majority of cases, the time step was limited
due to the smallest altitude spacing and the speed of sound.

The GITM runs were driven by NRLMSISE-00 and Horizontal Wind Model 2014 (Drob et al., 2015) at
the lower boundary and Weimer (2005) electric potential patterns and Newell et al. (2014) auroral precip-
itation patterns at the upper boundary. Both the potential and the aurora were driven by interplanetary
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Table 1
Global Ionosphere Thermosphere Model Parameters for the Simulations Presented
in This Study

Parameter Value
Eddy diffusion coefficient 300
Eddy pressure lower 0.005
Eddy pressure upper 0.0005
Photoelectron heating efficiency 0.00
Neutral heating efficiency 0.05
Thermal conduction (molecular) 5.6e-4
Thermal conduction (atomic) 7.6e-4
Thermal conduction power 0.72
AUSMSolver True
CFL 0.80
Limiter MC, 2.0
Dynamo high lat. boundary 45.0
Improved ion advection True
Nighttime ion B.C.s True
Minimum TEC for Ion B.C.s 2.0
UseTestViscosity True
TestViscosityFactor 1.0

Note. CFL = Courant-Friedrichs-Lewy condition; B. C. = boundary condition;
TEC = total electron content; MC = monitized central—symmetric (van Leer,
1977).

magnetic field and solar wind data. Daily averaged solar irradiance specifications from Flare Irradiance
Spectral Model were used. Table 1 specifies the inputs that were used for the simulation. GITM is freely
available for download on GitHub.

Because of the time step in GITM and some of the complexities in the chemistry and advection schemes,
GITM typically runs roughly 10 times faster than real time at this resolution. This means that in order to run
a full year continuously, it would take roughly 37 days. To mitigate this, each month was run individually.
This means that GITM was started on the first day of each month and was run for the complete month. The
run was allowed to continue into the next month for about 3 days, and the first 3 days of the simulation were
swapped for the last 3 days of the previous month's run. For example, for March, the first 3 days of March
were deleted for the March run and first 3 days of March were used from the last days of the February run.

A second large run was performed, spanning most of 2013, with higher resolution in the latitudinal direction
(1.0◦ instead of 2.5◦). While there were differences in the results, the main conclusions of the study reported
here were not altered. We use the lower resolution model here because it covers all of 2013.

3. Instrumentation and Observations
This study uses data from six ground-based Fabry-Perot interferometers (FPIs) at middle and low latitudes in
the American sector, as shown in Figure 1. The FPIs make narrow-field-of-view measurements of naturally
occurring 630.0-nm airglow, which is emitted in a layer around 250-km altitude. Estimates of the Doppler
shift and width of this emission are a measure of the line-of-sight (LoS) thermospheric wind and tempera-
ture. The instrument design is described in detail by Meriwether et al. (2011). The six FPIs are organized into
two networks: the North American Thermosphere-Ionosphere Observing Network (NATION), described by
Makela et al. (2014), and the Remote Equatorial Night-time Observatory of Ionospheric Regions (RENOIR),
described by Makela et al. (2013). Although the database includes many years of data, in this paper we use
2013 to match GITM.

These FPIs operate by cycling through a variety of look directions, including occasional observations of a
frequency-stabilized laser for calibration. A variety of operating modes were used in 2013, including cardinal
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Figure 1. Locations, three-letter site codes, and network names for the six Fabry-Perot interferometer sites used in this
study. Magnetic latitude (MLAT) is also shown. NATION = North American Thermosphere-Ionosphere Observing
Network; RENOIR = Remote Equatorial Night-time Observatory of Ionospheric Regions

mode (which cycles through north, east, south, and west, at a 45◦ zenith angle, followed by zenith) and
common-volume mode (which optimizes look directions to observe the same location from different sites);
see Makela et al. (2013) for more details. In this work, each instrument is analyzed for winds independently.
The data set also includes an operational mode with a constant exposure time (usually set to 180, 210, or
300 s) as well as a mode that adjusts the exposure time to maintain a constant measurement uncertainty.

3.1. Analysis
Each observation's raw data are analyzed using the algorithm described by Harding et al. (2014) to obtain LoS
wind estimates, which are ascribed to an altitude of 250 km. To convert the various LoS wind observations
from a single instrument into an estimate of the zonal and meridional winds, the LoS data are first collected
in half hour bins. Half hour bins were chosen to match the GITM samples. The zonal and meridional direc-
tions refer to a geographic coordinate system. The unknown zonal wind, u, meridional wind, v, and Doppler
reference, 𝛥d, in each bin are fit in the least-squares sense (accounting for measurement uncertainties) to
the following observation model:

di = u sin 𝜃isinφi + v cos 𝜃isinφi + Δd, (1)

where di is the ith LoS wind in the bin, 𝜃i is the azimuth angle of that measurement, and 𝜑i is the zenith
angle. On average, eight LoS observations contribute to each estimate of u, v, and 𝛥d, though it ranges from
3 to 27. The assumption is that the vertical wind is zero. This differs from the procedure used in previous
studies, which allowed for the estimation of time-dependent vertical winds, but which also required an
assumption that the average vertical wind over a night is zero (e.g., Makela et al., 2013). In this study, we
assume that the instantaneous vertical wind is zero, as this allows 𝛥d to vary. Ideally, the time dependence
of 𝛥d is accounted for by frequent laser calibration observations, but allowing 𝛥d to vary better handles
nonideal cases such as laser drift, instrument fluctuations that are more rapid than the calibration cadence,
and most importantly, contamination by emission lines such as OH which are not addressed by the quality
control algorithm (described below). The binned least-squares procedure is general enough to handle data
from both cardinal and common-volume modes of operation.

We multiply all horizontal winds by 1.10 to correct for the scattering of airglow in the troposphere, as
recommended by Harding et al. (2017). This does not affect any reported correlations, but it reduces the
normalized standard deviations in Figure 5. This simple correction is appropriate for cases with no hori-
zontal airglow gradients. In the data set used here, the variation of airglow brightness measured in different
directions is on average 28%, so the correction should likely be larger and depend on direction. However, it
cannot be evaluated without colocated all-sky imagers at each site and prohibitively expensive computation.
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Figure 2. Meridional wind during an interval surrounding 15 April 2013.
Thin, colored lines denote the wind from individual nights in the data (top)
and model (bottom). An interval of 60 days is shown for the data, while
10 days are shown for the model. The thick black line is the computed
background climate. Statistical errors in the data range from 4 to 40 m/s,
averaging 12 m/s. FPI = Fabry-Perot interferometer; GITM = Global
Ionosphere Thermosphere Model

3.2. Quality Control
The quality control algorithm first removes all LoS measurements with
temperatures less than 150 K or uncertainties greater than 100 m/s or
100 K, as these indicate poor raw data quality or poor fringe fitting. Sam-
ples for which the continuum background spectrum contribution is more
than 0.4 counts per second are considered to be contaminated by moon-
light and are removed. It is well known that when the 630.0-nm emission
is dim, the nearby OH emissions at 629.8 and 630.7 nm have a contami-
nating effect upon the winds (Hernandez, 1974; Ronksley, 2016), and the
effect depends upon the characteristics of the instrument's interference
filter. We remove samples for which the measured brightness is below a
predetermined instrument-dependent threshold, chosen by binning his-
torical zenith observations by brightness, and choosing the brightness for
which the measured wind deviates from zero by more than 20 m/s.

A second quality control step is implemented after the binning and con-
version from LoS to horizontal winds. Bins for which the least-squares
the least-squares fit to equation (1) is deemed untrustworthy (matrix con-
dition number greater than 10, root-mean-square [RMS] residual greater
than 50 m/s, or propagated uncertainty greater than 50 m/s) are removed.
To focus on quiet times, bins for which the maximum value of Kp in the
previous 24 hr is greater than 3 are eliminated. Bins which contain any
samples deemed cloudy are removed. Cloud detection is implemented
using a colocated Boltwood cloud sensor, which measures the ambient
temperature and the infrared sky temperature. When the infrared tem-

perature minus the ambient temperature is greater than a threshold, cloudy conditions are indicated. The
best choice for this threshold is not obvious, and some analyses (not shown) have suggested that it may
depend on site and season. In the absence of any justification for which functions to use, in this work we use
a scalar threshold of −22 ◦ C. Although the manufacturer recommends a threshold of −25 ◦ C, we find that
this results in nearly all summer days at UAO and PAR to be considered cloudy. Although many of the qual-
ity control parameters listed above are somewhat arbitrarily chosen, the same qualitative conclusions are
reached when other reasonable parameters are used. After quality control, 490–790 hr of data are available
per instrument, which represents about 25% of the raw data set.

4. Results and Discussion
We take the modeled and observed horizontal winds for 2013 and first calculate the weather. For the model,
the weather at a particular time is defined by subtracting the average wind at the same time of day in ±5-day
window. Bins which do not contain at least seven samples for defining the climate are removed. For the data,
a ±30-day window is used. Although ideally the same window length would be used, a shorter window than
±30 days is not supported by the data density, and if a longer window is used for the model, the resulting
weather is dominated by a monthly artifact arising from the model restart, not the true day-to-day variability.
The underlying cause of the artifact is unknown but under investigation. Different quantitative results are
obtained for different definitions of climate (e.g., a ±10-day instead of ±5-day window), but the qualitative
conclusions are unchanged.

Figure 2 shows observed and modeled meridional winds from an interval surrounding 15 April 2013. Each
thin colored line contains data from one night, and the thick black line is the calculated background climate.
The weather is defined as the difference. We emphasize that features such as unvarying tidal structures (e.g.,
diurnal and semidiurnal) would not be included in the following analysis, since they would be subtracted as
part of the climate. It is only the day-to-day variations in these tides that would be considered weather in this
study. In the following sections, we answer the questions: when there is a disturbance from the background
climate, how long does it last, how widespread is it, and how well does the model capture the disturbance?

4.1. Decorrelation Time
To quantify the temporal persistence of the weather, we calculate its autocorrelation function. An example
for the CAR zonal wind is shown in the left panel of Figure 3. The correlation decreases with increasing
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Figure 3. (Left) The measured time-lagged autocorrelation function for the CAR zonal wind weather, with the
computed decorrelation time. (Right) The decorrelation time at all sites in both the zonal and meridional wind for the
data (top) and model (bottom). FPI = Fabry-Perot interferometer; GITM = Global Ionosphere Thermosphere Model

time lag, and the time lag at which the correlation drops to e−1 is 1.9 hr. We refer to this as the decorrelation
time. Past this time delay, the fluctuations about the background climate can be considered uncorrelated.

The right panel of Figure 3 displays the decorrelation times for the zonal and meridional winds at all sites, in
both the data and the model. On average, the model and the data agree remarkably well, with decorrelation
times of 1.9 and 1.8 hr, respectively. In the model, at midlatitudes (PAR, EKU, UAO, and ANN), zonal and
meridional decorrelation times are nearly identical, yet at low latitudes (CAR and CAJ), the zonal decor-
relation time is much shorter. No evidence for this is seen in the data, for which the zonal and meridional
decorrelation times are similar at all sites, except for the PAR and ANN zonal wind, which are larger. ANN
and PAR are the northernmost and southernmost sites in the midlatitude network, so there does not appear
to be any physical reason why their decorrelation times are the longest.

4.2. Decorrelation Distance
To quantify the spatial scale spanned by structures in the weather, we compute the cross-correlation between
sites. In comparing the model results with the data, we must take care to account for noise in the data. For
example, if two sites observe exactly the same weather but encounter different noise, the correlation is less
than one. Assuming the propagated uncertainties are correctly estimated, this effect can be corrected by
using a modified cross-correlation. The standard Pearson correlation coefficient between two measurements
y1 and y2 can be written as

𝜌 =
⟨𝑦1𝑦2⟩√⟨
𝑦2

1
⟩√⟨

𝑦2
2

⟩ , (2)

where ⟨·⟩ denotes ensemble or temporal average. In the case where the measurement is a combination of
signal and noise (y = s + n), the noise is uncorrelated with the signal, the noise is uncorrelated between
sites, and the noise power

⟨
n2⟩ is known, the modified correlation coefficient can be calculated as

𝜌′ =
⟨𝑦1𝑦2⟩√⟨

𝑦2
1
⟩
−
⟨

n2
1
⟩√⟨

𝑦2
2

⟩
−
⟨

n2
2

⟩ . (3)

For this data set, 𝜌′ is larger than 𝜌 by about 10–20%.

Figure 4 shows the modified cross-correlations for all pairs of sites, as a function of baseline (i.e., great-circle
distance between the sites). In general, the trend is smaller correlations for longer baselines, with correla-
tions over the long distances between NATION and RENOIR near zero. The modeled weather has much
higher correlation than the data, suggesting that the model is smoothing over spatial structure that is
observed in real weather.
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Figure 4. Cross-correlations for all pairs of sites, for both the zonal and
meridional wind in the data and the model. FPI = Fabry-Perot
interferometer; GITM = Global Ionosphere Thermosphere Model

Without longer baselines than those available within RENOIR or within
NATION, it is impossible to conclusively evaluate the decorrelation dis-
tance (the baseline at which the cross-correlation drops to e−1). Never-
theless, upon extrapolation, the data suggest a decorrelation distance of
roughly 1,000 km.

The closest baseline is CAJ-CAR at 232 km. While the CAJ-CAR merid-
ional correlation (0.73) fits the general trend well, the low zonal correla-
tion (0.50) appears to be an outlier. Despite much effort, no explanation
is apparent, but we suspect that this is caused by a cloud detection prob-
lem. This would explain why the zonal wind is affected more than the
meridional wind. The zonal wind is generally larger, and the presence of
clouds brings the measured wind toward zero. Cloud cover at CAJ but
not CAR would cause large differences in the zonal wind. However, the
correlation is low for a variety of cloud detection thresholds, as well as sea-
sonally dependent thresholds, so the cause of this low correlation remains
unknown.

If the weather were dominated by day-to-day tidal variability, the decorrelation distance would be expected
to take on global scales larger than 1,000 km. Combined with the relatively short decorrelation times
reported above, this suggests that the weather in the thermosphere is dominated by some other source than
tidal variability, possibly large-scale gravity waves generated by high-latitude heating (often called traveling
atmospheric disturbances).

It should be noted that the estimates of
⟨

n2
1
⟩

and
⟨

n2
2

⟩
used in (3) contain statistical noise only. Systematic

errors can arise as a consequence of OH contamination, atmospheric scattering, rapid ambient temperature
changes, and uncertainty in the layer altitude, among other sources. However, the quantification of these
errors is too uncertain to include in this analysis. If they were included, they would increase the correlations
shown in Figure 4, but it is unlikely they would change the conclusion that the decorrelation distance is less
than tidal scales.

A caveat of this analysis is that the wind estimate uses oblique measurements, which sample the thermo-
sphere at locations horizontally removed from the site location. For example, in cardinal mode, the pierce
points of the north-, east-, south-, and west-observing directions are 250 km away. Because of this, the true
cross-correlations for baselines less than about 500 km are likely lower than reported here.

One might expect that given the relatively short decorrelation times and distances, weather may arrive
at different sites at different times. To address this, we performed a time-lag analysis. The time-lagged
cross-correlation functions are broad (1–3 hr) and peaked at or near zero, so adding a time lag does not
significantly change the results shown in Figure 4.

4.3. Model-Data Correlation
The previous two subsections compared the statistics of the modeled weather with the statistics of the
observed weather. This section quantifies how well the weather compares on a day-to-day basis. To evaluate
GITM's performance in capturing the weather, we use Taylor diagrams (Taylor, 2001), which have previ-
ously been applied to space physics by Elvidge et al. (2014). Taylor diagrams combine two commonly used
metrics for model performance, correlation and RMS error, using the fact that their relationship resembles
the law of cosines.

The Taylor diagrams for GITM's zonal and meridional weather are shown in Figure 5. Each is a polar plot
where the angle is arccosine of the model-data correlation, which is calculated including a modification like
in (3) to account for noise in the data. The radius is the standard deviation of the modeled weather, divided
by the standard deviation of the observed weather. Again, a correction is included to remove the noise power.
The dashed contours are RMS error, normalized to the standard deviation of the observed weather. A perfect
model with zero error is located at the lower right corner, with a correlation of 1.0 and a normalized standard
deviation of 1.0.

Immediately evident in Figure 5 is the large RMS error of ∼1.0, indicating that the model error is of the
same magnitude as the observed weather. The model error is understood in terms of two sources. First,
the modeled weather is too small, with a normalized standard deviation of 0.35 on average, indicating that
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Figure 5. Taylor diagrams evaluating the model performance in the zonal (top) and meridional (bottom) weather. The
angular coordinate represents model-data correlation, and the radial coordinate represents modeled weather standard
deviation divided by observed weather standard deviation. The root-mean-square error can be calculated from these
two values and is shown in dashed contours

the magnitude of the weather is underestimated by 65% in the model. The low latitude meridional wind
fluctuations are particularly underestimated in the model (0.16). Second, the correlations are low, ranging
from −0.07 to 0.36. The uncertainty in the reported correlations is ∼0.03. In general, for both the zonal
and meridional wind, the low latitude correlations (insignificantly different from zero) are less than the
midlatitude correlations (0.19 on average). The midlatitude correlations are small yet statistically significant,
indicating that while GITM's performance in capturing the weather is quite poor, it is at least representing
some of the relevant physics at midlatitudes. This is perhaps surprising given the relative simplicity of the
lower-boundary and high-latitude forcing in the model. Especially at low latitudes, the performance may
be improved by including data-driven lower boundary tidal variability, but the short decorrelation distances
and times in the data suggest this would not address the dominant type of weather.

Unlike the previous results, which were based on correlations, the standard deviations are sensitive to the
assumed emission altitude of 250 km. A sensitivity test was performed in which the winds were extracted
from the model at two other altitudes, 210 and 290 km. The normalized standard deviations were 25–50%
lower at 210 km compared to 290 km, indicating that the magnitude of the weather is larger at higher alti-
tudes. However, using a different altitude than 250 km does not change the conclusion that the magnitude
of the weather is underestimated in the model.

5. Conclusion
We have presented the first long-term comparison of thermospheric weather between a first-principles
numerical model and data. Using nighttime thermospheric wind data from 2013 at six FPI sites at middle
and low latitudes, we have characterized fluctuations about the climate during quiet times, focusing on three
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questions: how long do fluctuations last, how widespread are they, and how well does the model reproduce
the observed weather? The data indicate an average decorrelation time of 1.8 hr and suggest a decorrelation
distance of about 1,000 km. The weather in the model (GITM) has a remarkably similar decorrelation time
of 1.9 hr, but nearby sites are much more correlated than in the data, suggesting that the modeled weather
is too smooth spatially but has the correct temporal persistence. The short decorrelation time and distance
in the data suggest that the dominant mode of variability is not tidal.

The model's ability to capture day-to-day variations in the weather is poor. It underestimates the magnitude
of the weather by 65%. Averaged between the zonal and meridional winds, model-data correlations are near
zero at low latitudes and 0.19 at midlatitudes. Clearly, much work remains to model thermospheric weather,
and our work suggests that focusing on high-latitude drivers is likely to be more successful than improving
lower boundary tidal forcing.

These results could be useful for assimilative models, at least for the regions studied here (middle and
low latitudes in the American sector). Most assimilative models have a notion of model covariance, which
characterizes the temporal and spatial scales over which incoming measurements should inform the next
estimate. The reported decorrelation time and distance could help tune model covariance, as there is a clear
analogy between our definition of weather and the innovation sequence used in Kalman filters.

The site-to-site cross-correlations in Figure 4 reveal a significant gap in our understanding of the weather
on scale sizes between 790 km (the longest baseline in NATION) and ∼7,000 km (the distance between
NATION and RENOIR). They also suggest that the NATION FPIs are not optimally distributed. For example,
the EKU-PAR correlation (baseline 311 km) is 0.78, so most of the information would have been captured
by just one site. If the goal is to maximize the observability of fluctuations in the thermospheric wind, future
deployments should target longer baselines.
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