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Abstract13

The first long-term comparison of day-to-day variability (i.e., weather) in the ther-14

mospheric winds between a first-principles model and data is presented. The definition of15

weather adopted here is the difference between daily observations and long-term averages16

at the same UT. A year-long run of the Global Ionosphere Thermosphere Model (GITM)17

is evaluated against a nighttime neutral wind dataset compiled from six Fabry-Perot in-18

terferometers (FPIs) at mid and low latitudes. First, the temporal persistence of quiet-19

time fluctuations above the background climate is evaluated, and the decorrelation time20

(the time lag at which the autocorrelation function drops to e−1) is found to be in good21

agreement between the data (1.8 hours) and the model (1.9 hours). Next, comparisons be-22

tween sites are made to determine the decorrelation distance (the distance at which the23

cross-correlation drops to e−1). Larger FPI networks are needed to conclusively deter-24

mine the decorrelation distance, but the current dataset suggests it is ~1000 km. In the25

model the decorrelation distance is much larger, indicating that the model results con-26

tain too little spatial structure. The measured decorrelation time and distance are shorter27

than the scales expected if tidal forcing were responsible for the variability, suggesting that28

some other source is dominating the weather. Finally, the model-data correlation is poor29

(−0.07 < ρ < 0.36), and the magnitude of the weather is underestimated in the model by30

65%.31

1 Introduction32

A critical barrier to prediction of the thermosphere-ionosphere system is an under-33

standing of the day-to-day variability of the thermosphere, which we refer to as thermo-34

spheric weather. Recent advances in the development of first-principles numerical ionosphere-35

thermosphere models and specification of the lower and upper boundary variability have36

enabled the possibility of capturing the weather, and the recent expansion of ground-based37

wind networks have enabled the validation of these models.38

While models are still not perfectly representing the climate, progress has been39

made, as reported in long-term model-data comparisons [Meriwether et al., 2013]. In con-40

trast, comparisons of the weather are largely confined to case studies. For example, Sut-41

ton et al. [2007] compared eight days of cross-track wind estimates from the Challeng-42

ing Minisatellite Payload (CHAMP) with the thermosphere-ionosphere-electrodynamics43

general circulation model (TIEGCM), finding a mean absolute difference of 64.1 m/s,44

slightly better than the comparison with the climatological horizontal wind model 201445

(HWM14). Wu et al. [2015] found that using the high-latitude variability prescribed by46

Super Dual Auroral Radar Network (SuperDARN) to drive the TIEGCM yielded better47

results than using the Heelis or Weimer models, in comparisons with ground-based wind48

measurements for a single storm period in Dec 2006. Wu et al. [2008] compared 10 days49

of TIEGCM runs from each of several years with ground-based wind observations in the50

polar cap, concluding that the TIEGCM overpredicted diurnal and semidiurnal oscillations.51

Emmert et al. [2001] developed an empirical model of daytime disturbance winds from52

Wind Imaging Interferometer (WINDII) data and compared it with the TIEGCM, finding53

important differences attributed mostly to high-latitude electric field variability. However,54

the Emmert et al. [2001] study averages data at a given local-time, latitude, season, solar55

flux, and Kp, focusing on the effect of geomagnetic disturbances on the background cir-56

culation. This differs from true weather due to the influence of tidal variability and waves57

propagating from high latitudes.58

In this paper we take a long-term approach to evaluating thermospheric weather,59

comparing a year-long run of the Global Ionosphere Thermosphere Model (GITM) with60

observations. We focus particularly on the wind because not only is it a critical param-61

eter in thermosphere-ionosphere coupling, but it also offers an extensive ground-based62

data source, namely networks of Fabry-Perot interferometers (FPIs). Previous studies have63
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compared GITM to space-based observations [Deng and Ridley, 2006; Mehta et al., 2017],64

but in this study we utilize ground-based data sources because a long time series from a65

single location allows for accurate removal of background climate. The disadvantage of66

ground-based wind data is that observations are restricted to nighttime. The only previ-67

ous study to compare GITM to ground-based thermospheric data sources is Liuzzo et al.68

[2015], which analyzed a case study of the 24 November 2012 substorm using different69

high-latitude drivers, comparing with the wind observed by Scanning Doppler Imagers at70

high latitudes. In this paper, we focus on mid and low latitudes. We also restrict our at-71

tention to quiet time weather (Kp ≤ 3) as it is understudied relative to storm time, and72

quiet conditions dominate the database.73

GITM was run using inputs from 2013, and as such this paper discusses weather74

during a weak solar maximum. The solar cycle effect on climatological thermospheric75

winds at mid and low latitudes has been found to be small (0-50 m/s) [Fisher et al., 2015;76

Dandenault, 2018; Emmert et al., 2006]. The solar cycle effect on thermospheric weather77

is not known.78

In the following sections, we describe the year-long GITM run, the instrumentation79

and observations, and our method of calculating the weather. Next, we investigate charac-80

teristics of the weather in the model and in the data, and we quantify how well the model81

is capturing the observed weather.82

2 Model83

GITM is a global model that describes the upper atmosphere of the Earth and its84

coupling to the ionosphere from 100 km altitude to approximately 500-600 km altitude,85

depending on solar activity [Ridley et al., 2006]. GITM solves the Navier-Stokes equations86

for the thermosphere, broken into vertical and horizontal directions. In the vertical direc-87

tion, a momentum and continuity equation is solved for each species. Coupling terms tie88

together the constituents in the lower thermosphere, and a bulk vertical wind is calculated89

given the mass-weighted average of the individual vertical winds. In the horizontal direc-90

tion, only a bulk momentum equation is solved for, with each species being advected with91

the bulk wind. For both the horizontal and vertical directions, ion drag, Coriolis, gradi-92

ent in pressure, and geometric terms are considered. In the horizontal direction, vertical93

shears are reduced with viscosity. Horizontal shears of the vertical winds are not consid-94

ered at this time because the scales are large in the horizontal direction and the vertical95

winds are often significantly smaller than the horizontal winds. In the vertical direction,96

gravity is considered.97

GITM was run with 4.0◦ longitude by 2.5◦ latitude by roughly 0.3 scale height res-98

olution. The altitude spacing in GITM was based on scale heights determined from MSIS99

temperature and mean major mass results for the dayside equator at the start time of each100

simulation. The time step in GITM was roughly two to three seconds and was dynami-101

cally set based on the speed of sound, ion and neutral wind speeds and the size of each102

cell in all three dimensions. In the majority of cases, the timestep was limited due to the103

smallest altitude spacing and the speed of sound.104

The GITM runs were driven by NRLMSISE-00 [Picone et al., 2002] and HWM14105

[Drob et al., 2015] at the lower boundary, and Weimer [2005] electric potential patterns106

and Newell et al. [2014] auroral precipitation patterns at the upper boundary. Both the po-107

tential and the aurora were driven by interplanetary magnetic field and solar wind data.108

Daily averaged solar irradiance specifications from FISM were used. Table 1 specifies109

the inputs that were used for the simulation. GITM is freely available for download on110

GitHub.111

Because of the time-step in GITM and some of the complexities in the chemistry112

and advection schemes, GITM typically runs roughly ten times faster than real time at this113
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Table 1. GITM parameters for the simulations presented in this study125

Parameter Value

Eddy Diffusion Coefficient 300

Eddy Pressure Lower 0.005

Eddy Pressure Upper 0.0005

Photoelectron Heating Efficiency 0.00

Neutral Heating Efficiency 0.05

Thermal Conduction (Molecular) 5.6e-4

Thermal Conduction (Atomic) 7.6e-4

Thermal Conduction Power 0.72

AUSMSolver True

CFL 0.80

Limiter MC, 2.0

Dynamo High Lat. Boundary 45.0

Improved Ion Advection True

Nighttime Ion B.C.s True

Minimum TEC for Ion B.C.s 2.0

UseTestViscosity True

TestViscosityFactor 1.0

resolution. This means that in order to run a full year continuously, it would take roughly114

37 days. To mitigate this, each month was run individually. This means that GITM was115

started on the first day of each month, and was run for the complete month. The run was116

allowed to continue into the next month for about three days, and the first three days of117

the simulation were swapped for the last three days of the previous month’s run. For ex-118

ample, for March, the first three days of March were deleted for the March run and first119

three days of March were used from the last days of the February run.120

A second large run was performed, spanning most of 2013, with higher resolution121

in the latitudinal direction (1.0◦ instead of 2.5◦). While there were differences in the re-122

sults, the main conclusions of the study reported here were not altered. We use the lower123

resolution model here because it covers all of 2013.124

3 Instrumentation and Observations126

This study uses data from six ground-based (FPIs) at mid and low latitudes in the127

American sector, as shown in Figure 1. The FPIs make narrow-field-of-view measure-128

ments of naturally occurring 630.0 nm airglow, which is emitted in a layer around 250129

km altitude. Estimates of the Doppler shift and width of this emission are a measure of130

the line-of-sight (LoS) thermospheric wind and temperature. The instrument design is131

described in detail by Meriwether et al. [2011]. The six FPIs are organized into two net-132

works: the North American Thermosphere-Ionosphere Observing Network (NATION),133

described by Makela et al. [2014], and the Remote Equatorial Night-time Observatory of134
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Ionospheric Regions (RENOIR), described by Makela et al. [2013]. Although the database135

includes many years of data, in this paper we use 2013 to match GITM.136

Figure 1. Locations, site codes, and network names for the six FPI sites used in this study. Magnetic
latitude (MLAT) is also shown.

137

138

These FPIs operate by cycling through a variety of look directions, including oc-139

casional observations of a frequency-stabilized laser for calibration. A variety of operat-140

ing modes were used in 2013, including cardinal mode (which cycles through north, east,141

south, and west, at a 45-deg zenith angle, followed by zenith) and common-volume mode142

(which optimizes look directions to observe the same location from different sites); see143

Makela et al. [2013] for more details. In this work, each instrument is analyzed for winds144

independently. The dataset also includes an operational mode with a constant exposure145

time (usually set to 180, 210, or 300 seconds) as well as a mode that adjusts the exposure146

time to maintain a constant measurement uncertainty.147

3.1 Analysis148

Each observation’s raw data are analyzed using the algorithm described by Harding149

et al. [2014] to obtain LoS wind estimates, which are ascribed to an altitude of 250 km.150

To convert the various LoS wind observations from a single instrument into an estimate151

of the zonal and meridional wind, the LoS data are first collected in half hour bins. Half152

hour bins were chosen to match the GITM samples. The zonal and meridional directions153

refer to a geographic coordinate system. The unknown zonal wind, u, meridional wind, v,154

and Doppler reference, ∆d, in each bin are fit in the least-squares sense (accounting for155

measurement uncertainties) to the following observation model:156

di = u sin θi sin φi + v cos θi sin φi + ∆d (1)

where di is the ith LoS wind in the bin, θi is the azimuth angle of that measurement, and157

φi is the zenith angle. On average, 8 LoS observations contribute to each estimate of u, v,158

and ∆d, though it ranges from 3 to 27. The assumption is that the vertical wind is zero.159

This differs from the procedure used in previous studies, which allowed for the estimation160

of time-dependent vertical winds, but which also required an assumption that the aver-161

age vertical wind over a night is zero [e.g., Makela et al., 2013]. In this study, we assume162
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that the instantaneous vertical wind is zero, as this allows ∆d to vary. Ideally, the time-163

dependence of ∆d is accounted for by frequent laser calibration observations, but allowing164

∆d to vary better handles non-ideal cases such as laser drift, instrument fluctuations that165

are more rapid than the calibration cadence, and most importantly, contamination by emis-166

sion lines such as OH which are not addressed by the quality control algorithm (described167

below). The binned least-squares procedure is general enough to handle data from both168

cardinal and common-volume modes of operation.169

We multiply all horizontal winds by 1.10 to correct for the scattering of airglow in170

the troposphere, as recommended by Harding et al. [2017]. This does not affect any re-171

ported correlations, but it reduces the normalized standard deviations in Figure 5. This172

simple correction is appropriate for cases with no horizontal airglow gradients. In the173

dataset used here, the variation of airglow brightness measured in different directions is on174

average 28%, so the correction should likely be larger and depend on direction. However,175

it cannot be evaluated without colocated all-sky imagers at each site and prohibitively ex-176

pensive computation.177

3.2 Quality Control178

The quality control algorithm first removes all LoS measurements with temperatures179

less than 150 K or uncertainties greater than 100 m/s or 100 K, as these indicate poor raw180

data quality or poor fringe fitting. Samples for which the continuum background spectrum181

contribution is more than 0.4 counts/s are considered to be contaminated by moonlight182

and are removed. It is well known that when the 630.0 nm emission is dim, the nearby183

OH emissions at 629.8 nm and 630.7 nm have a contaminating effect upon the winds184

[Hernandez, 1974; Ronksley, 2016], and the effect depends upon the characteristics of the185

instrument’s interference filter. We remove samples for which the measured brightness is186

below a predetermined instrument-dependent threshold, chosen by binning historical zenith187

observations by brightness, and choosing the brightness for which the measured wind de-188

viates from zero by more than 20 m/s.189

A second quality control step is implemented after the binning and conversion from190

LoS to horizontal winds. Bins for which the least-squares fit is deemed untrustworthy191

(matrix condition number greater than 10, root-mean-square (RMS) residual greater than192

50 m/s, or propagated uncertainty greater than 50 m/s) are removed. To focus on quiet193

times, bins for which the maximum value of Kp in the previous 24 hours is greater than194

3 are eliminated. Bins which contain any samples deemed cloudy are removed. Cloud195

detection is implemented using a colocated Boltwood cloud sensor, which measures the196

ambient temperature and the infrared sky temperature. When the infrared temperature mi-197

nus the ambient temperature is greater than a threshold, cloudy conditions are indicated.198

The best choice for this threshold is not obvious, and some analyses (not shown) have sug-199

gested that it may depend on site and season. In the absence of any justification for which200

functions to use, in this work we use a scalar threshold of −22◦C. Although the manu-201

facturer recommends a threshold of −25◦C, we find that this results in nearly all summer202

days at UAO and PAR to be considered cloudy. Although many of the quality control pa-203

rameters listed above are somewhat arbitrarily chosen, the same qualitative conclusions are204

reached when other reasonable parameters are used. After quality control, 490–790 hours205

of data are available per instrument, which represents about 25% of the raw data set.206

4 Results and Discussion207

We take the modeled and observed horizontal winds for 2013 and first calculate the212

weather. For the model, the weather at a particular time is defined by subtracting the av-213

erage wind at the same time of day in ±5-day window. Bins which do not contain at least214

7 samples for defining the climate are removed. For the data, a ±30-day window is used.215

Although ideally the same window length would be used, a shorter window than ±30 days216

–6–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to JGR-Space Physics

0 2 4 6 8 10
200

150

100

50

0

50

M
er

id
io

na
l w

in
d 

[m
/s

]

Data (FPI at PAR)
Interval surrounding 15 Apr 2013

±30day mean

0 2 4 6 8 10
UT [hr]

200

150

100

50

0

50

M
er

id
io

na
l w

in
d 

[m
/s

]

Model (GITM at PAR)

±5day mean

Figure 2. Meridional wind during an interval surrounding 15 Apr 2013. Thin, colored lines denote the
wind from individual nights in the data (top) and model (bottom). An interval of 60 days is shown for the
data, while 10 days are shown for the model. The thick black line is the computed background climate. Statis-
tical errors in the data range from 4 to 40 m/s, averaging 12 m/s.

208

209

210

211

is not supported by the data density, and if a longer window is used for the model, the re-217

sulting weather is dominated by a monthly artifact arising from the model restart, not the218

true day-to-day variability. The underlying cause of the artifact is unknown but under in-219

vestigation. Different quantitative results are obtained for different definitions of climate220

(e.g., a ±10- instead of ±5-day window), but the qualitative conclusions are unchanged.221

Figure 2 shows observed and modeled meridional winds from an interval surround-222

ing 15 Apr 2013. Each thin colored line contains data from one night, and the thick black223

line is the calculated background climate. The weather is defined as the difference. We224

emphasize that features such as unvarying tidal structures (e.g., diurnal, semidiurnal, etc.)225

would not be included in the following analysis, since they would be subtracted as part226

of the climate. It is only the day-to-day variations in these tides that would be considered227

weather in this study. In the following sections, we answer the questions: when there is a228

disturbance from the background climate, how long does it last, how widespread is it, and229

how well does the model capture the disturbance?230

4.1 Decorrelation Time231

To quantify the temporal persistence of the weather, we calculate its autocorrelation235

function. An example for the CAR zonal wind is shown in the left panel of Figure 3. The236

correlation decreases with increasing time lag, and the time lag at which the correlation237

drops to e−1 is 1.9 hours. We refer to this as the decorrelation time. Past this time delay,238

the fluctuations about the background climate can be considered uncorrelated.239

The right panel of Figure 3 displays the decorrelation times for the zonal and merid-240

ional winds at all sites, in both the data and the model. On average, the model and the241

data agree remarkably well, with decorrelation times of 1.9 and 1.8 hours, respectively. In242

the model, at midlatitudes (PAR, EKU, UAO, and ANN), zonal and meridional decorre-243
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Figure 3. (Left) The measured time-lagged autocorrelation function for the CAR zonal wind weather, with
the computed decorrelation time. (Right) The decorrelation time at all sites in both the zonal and meridional
wind for the data (top) and model (bottom).

232

233

234

lation times are nearly identical, yet at low latitudes (CAR and CAJ), the zonal decorre-244

lation time is much shorter. No evidence for this is seen in the data, for which the zonal245

and meridional decorrelation times are similar at all sites, except for the PAR and ANN246

zonal wind, which are larger. ANN and PAR are the northernmost and southernmost sites247

in the midlatitude network, so there does not appear to be any physical reason why their248

decorrelation times are longest.249

4.2 Decorrelation Distance250

To quantify the spatial scale spanned by structures in the weather, we compute the251

cross-correlation between sites. In comparing the model results with the data, we must252

take care to account for noise in the data. For example, if two sites observe exactly the253

same weather but encounter different noise, the correlation is less than one. Assuming254

the propagated uncertainties are correctly estimated, this effect can be corrected by using255

a modified cross-correlation. The standard Pearson correlation coefficient between two256

measurements y1 and y2 can be written as257

ρ =
〈y1y2〉√〈
y2

1
〉√〈

y2
2
〉 (2)

where 〈·〉 denotes ensemble or temporal average. In the case where the measurement is258

a combination of signal and noise (y = s + n), the noise is uncorrelated with the signal,259

the noise is uncorrelated between sites, and the noise power
〈
n2〉 is known, the modified260

correlation coefficient can be calculated as261

ρ′ =
〈y1y2〉√〈

y2
1
〉
−

〈
n2

1
〉√〈

y2
2
〉
−

〈
n2

2
〉 . (3)

For this dataset, ρ′ is larger than ρ by about 10–20%.262

Figure 4 shows the modified cross-correlations for all pairs of sites, as a function265

of baseline (i.e., great-circle distance between the sites). In general, the trend is smaller266
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Figure 4. Cross-correlations for all pairs of sites, for both the zonal and meridional wind in the data and the
model.

263

264

correlations for longer baselines, with correlations over the long distances between NA-267

TION and RENOIR near zero. The modeled weather has much higher correlation than the268

data, suggesting that the model is smoothing over spatial structure that is observed in real269

weather.270

Without longer baselines than those available within RENOIR or within NATION,271

it is impossible to conclusively evaluate the decorrelation distance (the baseline at which272

the cross-correlation drops to e−1). Nevertheless, upon extrapolation, the data suggest a273

decorrelation distance of roughly 1000 km.274

The closest baseline is CAJ-CAR at 232 km. While the CAJ-CAR meridional corre-275

lation (0.73) fits the general trend well, the low zonal correlation (0.50) appears to be an276

outlier. Despite much effort, no explanation is apparent, but we suspect that this is caused277

by a cloud detection problem. This would explain why the zonal wind is affected more278

than the meridional wind. The zonal wind is generally larger, and the presence of clouds279

brings the measured wind toward zero. Cloud cover at CAJ but not CAR would cause280

large differences in the zonal wind. However, the correlation is low for a variety of cloud281

detection thresholds, as well as seasonally dependent thresholds, so the cause of this low282

correlation remains unknown.283

If the weather were dominated by day-to-day tidal variability, the decorrelation dis-284

tance would be expected to take on global scales larger than 1000 km. Combined with the285

relatively short decorrelation times reported above, this suggests that the weather in the286

thermosphere is dominated by some other source than tidal variability, possibly large-scale287

gravity waves generated by high-latitude heating (often called traveling atmospheric distur-288

bances).289

It should be noted that the estimates of
〈
n2

1
〉
and

〈
n2

2
〉
used in (3) contain statisti-290

cal noise only. Systematic errors can arise as a consequence of OH contamination, atmo-291

spheric scattering, rapid ambient temperature changes, and uncertainty in the layer alti-292

tude, among other sources. However, the quantification of these errors is too uncertain to293

include in this analysis. If they were included, they would increase the correlations shown294

in Figure 4, but it is unlikely they would change the conclusion that the decorrelation dis-295

tance is less than tidal scales.296
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A caveat of this analysis is that the wind estimate uses oblique measurements, which297

sample the thermosphere at locations horizontally removed from the site location. For ex-298

ample, in cardinal mode, the pierce points of the north-, east-, south-, and west-observing299

directions are 250 km away. Because of this, the true cross-correlations for baselines less300

than about 500 km are likely lower than reported here.301

One might expect that given the relatively short decorrelation times and distances,302

weather may arrive at different sites at different times. To address this, we performed303

a time-lag analysis. The time-lagged cross-correlation functions are broad (1–3 hours)304

and peaked at or near zero, so adding a time lag does not significantly change the results305

shown in Figure 4.306

4.3 Model-Data Correlation307

The previous two subsections compared the statistics of the modeled weather with308

the statistics of the observed weather. This section quantifies how well the weather com-309

pares on a day-to-day basis. To evaluate GITM’s performance in capturing the weather we310

use Taylor diagrams [Taylor, 2001], which have previously been applied to space physics311

by Elvidge et al. [2014]. Taylor diagrams combine two commonly used metrics for model312

performance, correlation and RMS error, using the fact that their relationship resembles313

the law of cosines.314

The Taylor diagrams for GITM’s zonal and meridional weather are shown in Fig-319

ure 5. Each is a polar plot where the angle is arccosine of the model-data correlation,320

which is calculated including a modification like in (3) to account for noise in the data.321

The radius is the standard deviation of the modeled weather, divided by the standard devi-322

ation of the observed weather. Again, a correction is included to remove the noise power.323

The dashed contours are RMS error, normalized to the standard deviation of the observed324

weather. A perfect model with zero error is located at the lower right corner, with a corre-325

lation of 1.0 and a normalized standard deviation of 1.0.326

Immediately evident in Figure 5 is the large RMS error of ~1.0, indicating that the327

model error is of the same magnitude as the observed weather. The model error is un-328

derstood in terms of two sources. First, the modeled weather is too small, with a normal-329

ized standard deviation of 0.35 on average, indicating that the magnitude of the weather330

is underestimated by 65% in the model. The low latitude meridional wind fluctuations are331

particularly underestimated in the model (0.16). Second, the correlations are low, rang-332

ing from -0.07 to 0.36. The uncertainty in the reported correlations is ~0.03. In general,333

for both the zonal and meridional wind, the low latitude correlations (insignificantly dif-334

ferent from zero) are less than the mid latitude correlations (0.19 on average). The mid335

latitude correlations are small yet statistically significant, indicating that while GITM’s336

performance in capturing the weather is quite poor, it is at least representing some of the337

relevant physics at mid latitudes. This is perhaps surprising given the relative simplicity of338

the lower-boundary and high-latitude forcing in the model. Especially at low latitudes, the339

performance may be improved by including data-driven lower boundary tidal variability,340

but the short decorrelation distances and times in the data suggest this would not address341

the dominant type of weather.342

Unlike the previous results, which were based on correlations, the standard devi-343

ations are sensitive to the assumed emission altitude of 250 km. A sensitivity test was344

performed in which the winds were extracted from the model at two other altitudes, 210345

km and 290 km. The normalized standard deviations were 25–50% lower at 210 km com-346

pared to 290 km, indicating that the magnitude of the weather is larger at higher altitudes.347

However, using a different altitude than 250 km does not change the conclusion that the348

magnitude of the weather is underestimated in the model.349
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Figure 5. Taylor diagrams evaluating the model performance in the zonal (top) and meridional (bottom)
weather. The angular coordinate represents model-data correlation and the radial coordinate represents mod-
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5 Conclusion350

We have presented the first long-term comparison of thermospheric weather be-351

tween a first-principles numerical model and data. Using nighttime thermospheric wind352

data from 2013 at six FPI sites at mid and low latitudes, we have characterized fluctu-353

ations about the climate during quiet times, focusing on three questions: how long do354

fluctuations last, how widespread are they, and how well does the model reproduce the355

observed weather? The data indicate an average decorrelation time of 1.8 hours and sug-356

gest a decorrelation distance of about 1000 km. The weather in the model (GITM) has a357

remarkably similar decorrelation time of 1.9 hours, but nearby sites are much more cor-358

related than in the data, suggesting that the modeled weather is too smooth spatially but359

has the correct temporal persistence. The short decorrelation time and distance in the data360

suggest that the dominant mode of variability is not tidal.361

The model’s ability to capture day-to-day variations in the weather is poor. It under-362

estimates the magnitude of the weather by 65%. Averaged between the zonal and merid-363

ional wind, model-data correlations are near zero at low latitudes and 0.19 at mid lati-364

tudes. Clearly, much work remains to model thermospheric weather, and our work sug-365

gests that focusing on high-latitude drivers is likely to be more successful than improving366

lower boundary tidal forcing.367

These results could be useful for assimilative models, at least for the regions studied368

here (mid and low latitudes in the American sector). Most assimilative models have a no-369

tion of model covariance, which characterizes the temporal and spatial scales over which370

incoming measurements should inform the next estimate. The reported decorrelation time371

and distance could help tune model covariance, as there is a clear analogy between our372

definition of weather and the innovation sequence used in Kalman filters.373

The site-to-site cross-correlations in Figure 4 reveal a significant gap in our under-374

standing of the weather on scale sizes between 790 km (the longest baseline in NATION)375

and ~7000 km (the distance between NATION and RENOIR). They also suggest that376

the NATION FPIs are not optimally distributed. For example, the EKU-PAR correlation377

(baseline 311 km) is 0.78, so most of the information would have been captured by just378

one site. If the goal is to maximize the observability of fluctuations in the thermospheric379

wind, future deployments should target longer baselines.380
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