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On the Need to Develop Guidelines for Characterizing and
Reporting Intrinsic Disorder in Proteins
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Since the early 2000s, numerous computational tools have been created and
used to predict intrinsic disorder in proteins. At present, the output from
these algorithms is difficult to interpret in the absence of standards or
references for comparison. There are many reasons to establish a set of
standard-based guidelines to evaluate computational protein disorder
predictions. This viewpoint explores a handful of these reasons, including
standardizing nomenclature to improve communication, rigor and
reproducibility, and making it easier for newcomers to enter the field. An
approach for reporting predicted disorder in single proteins with respect to
whole proteomes is discussed. The suggestions are not intended to be
formulaic; they should be viewed as a starting point to establish guidelines for
interpreting and reporting computational protein disorder predictions.

Intrinsically disordered proteins and protein regions fail to form
a stable 3D structure under physiological conditions, but instead
remain unstructured, existing as highly dynamic conformational
ensembles that vary over time and populations.[1–5] A protein
may have one, many, or no intrinsically disordered regions,
and some proteins are entirely disordered. Protein disorder is
a difficult property to characterize experimentally,[6–9] “since
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[disordered domains] do not typi-
cally ‘freeze’ while their ‘pictures are
taken.’”[10] These challenges have led
to the development of numerous com-
putational tools that predict disorder
from primary structure alone.[11] For
decades, these tools have played a critical
role in protein disorder characterization
efforts.[12]

Protein disorder is connected to many
aspects of biology,[13–27] human health
and disease,[25,28–30] and has brought in
a large number of researchers from
a wide range of disciplines. These re-
searchers are experts in their own ar-
eas, but are often unfamiliar with the
methods and tools used to study protein

disorder. Experimentalists often use disorder prediction algo-
rithms and related computational tools to assess the disorder
content of a protein of interest as part of either: i) a first-stage
assessment to motivate and/or justify experimental characteriza-
tion of a putatively intrinsically disordered protein, or ii) a late-
stage analysis to complement or explain molecular-level results
obtained experimentally.[31–33] Both cases are important, however,
the former is particularly relevant to our analysis because it im-
plies that guidelines and/or tools are available to firmly interpret
disorder predictions to decide whether experimental investiga-
tion is warranted or not. While useful guidelines are available for
making intrinsic disorder predictions,[34] resources for interpret-
ing these predictions are scarce; an example is QUARTER (QUal-
ity Assessment for pRotein inTrinsic disordEr pRedictions),[35]

which is a toolbox of methods designed for ten different dis-
order predictors. The lack of generally accepted guidelines for
interpreting the results of intrinsic disorder predictions leads to
inconsistencies in the reported data and often causes confusion.
Although disorder predictions are based on some objective cri-
teria used to develop the corresponding computational tools, in-
terpreting these predictions is rather subjective. The situation is
not as simple as it seems, and, in essence, it resembles a case of
a glass that is halfway filled with water, which for some is half-
full, being half-empty for others. Furthermore, one should keep
in mind that the results generated for a given protein by differ-
ent predictors can be rather dissimilar. As a précis, let us consider
the classification of the global disorder status of a given protein
based on its content of predicted disordered residues. The pro-
tein is considered as highly ordered, if 0–10% of its sequence is
disordered, or moderately disordered, if 11–30% of the sequence
is disordered, or highly disordered, if 31–100% of the sequence
is disordered.[36] The use of such criteria can be problematic,
if it is implemented universally for a broad range of different
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disorder predictors. To justify the universal application of clas-
sification criteria across different algorithms one would expect,
at minimum, agreement for the average disorder/order classi-
fication made. However, agreement is not always found. For
example, a quick assessment of predicted disorder content in
the Homo sapiens proteome using the Disorder Atlas[37] pro-
teome browser tool reveals expected values for percent disorder
of �24% (IUPred) and �39% (DisEMBL-H). Applying the afore-
mentioned criteria leads to different interpretations of the aver-
age disorder state predicted by these algorithms. A protein of av-
erage disorder content would be predicted as moderately disor-
dered by IUPred and highly disordered by DisEMBL-H. To recap,
the protein science community must employ criteria to mean-
ingfully interpret disorder predictions. Unfortunately, adopting
universal criteria is made difficult, if not impossible, by the large
number of disorder prediction algorithms, the diverse definitions
of intrinsic disorder employed to predict disorder, and the differ-
ences in the prevalence of features that correlate with intrinsic
disorder in nature (i.e., the properties underlying different intrin-
sic disorder definitions). The goal of this Viewpoint is to set the
stage to address these challenges. Prior to discussing this issue in
detail, we will provide a brief overview of the resources available
for computationally assessing intrinsic disorder, and the output
of disorder prediction algorithms.
With numerous databases and over 60 disorder prediction

algorithms available,[11] deciding on an appropriate approach
to computationally analyze disorder can be a daunting task.
There are three core computational resources for characterizing
intrinsic disorder: i) disorder prediction algorithms (including
DisEMBL,[38] ESpritz,[39] IUPred,[40–42] PONDR,[43] and many oth-
ers), ii) databases of pre-computed intrinsic disorder predictions
(D2P2,[44] MobiDB,[45–48] and datasets hosted on various digital
data repositories[27]), and iii) databases of experimentally charac-
terized intrinsically disordered proteins or proteins with intrin-
sically disordered regions (e.g., DisProt,[49–51] IDEAL,[52,53] etc.).
Let us focus primarily on disorder prediction algorithms and the
accurate evaluation of their output. Following metrology princi-
ples, we define accuracy in the context of disorder prediction al-
gorithms as the protein disorder measurement that delivers the
true value of the intended measurand (object to be measured).[54]

Importantly, we are not referring to the actual computational ac-
curacies and confidence of the disorder prediction algorithms.
Instead, we are focusing our attention on finding an appropriate
means that can be used to accurately interpret the disorder pre-
dictions made by existing algorithms and seek to provide stan-
dards for comparison of such results.
Disorder prediction algorithms use many different types

of input variables to identify intrinsic disorder, including but
not limited to the assessment of relevant physicochemical
properties[55] and patterns,[56–58] scoring matrices[59,60] and
scales,[61] and various applications of Shannon’s entropy[62] to
assess disorder-relevant properties.[63,64] While the definitions
of disorder employed are diverse, the general operation of
these algorithms is straightforward. After submitting a primary
sequence for disorder prediction, the residue-by-residue disorder
propensity values are typically returned. Next, end users employ
a binary classification system to label each residue as either
ordered or disordered by comparing residue-specific scores to
an algorithm-specific threshold. Figure 1 displays a summary of

Figure 1. Residue level binary classification of order/disorder. The amino
acid sequence of a protein of interest is input into a disorder predic-
tion algorithm, which returns residue-by-residue disorder propensity val-
ues. These disorder propensity values are compared against a defined
threshold to classify a residue as either ordered or disordered. IUPred-
disorder predictions are displayed for the H. sapiens alpha-synuclein pro-
tein (P37840). IUPred uses a threshold value of 0.5 to assign ordered and
disordered residues. Residues that fall within the red region are disor-
dered, whereas residues that fall in the blue region are ordered.

this classification process. After classifying the residues, users
then compute the percentage of disordered residues, as well as
the length and location of continuous stretches of disordered
residues. Another approach used to analyze the disorder status
of a given protein involves inspecting distribution peculiarities of
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actual per-residue disorder scores within the protein sequence,
which typically range from0 to 1 (Figure 1 displays one such plot).
Here, users commonly rely on the visual analysis of the resulting
disorder profiles to gain some useful information. We reiterate
that both of these approaches involves subjective judgement.
The output(s) of the aforementioned procedures lead to the

central problem of this Viewpoint: How does one interpret these
predictions to decide whether intrinsic disorder is a significant
feature of the protein of interest? Needless to say, only experi-
mental investigation will truly determine the role or influence
of intrinsic disorder on the function of a particular protein—and
these investigations require substantial time and financial
investments. Nevertheless, tools and guidelines that enable the
rigorous interpretation of disorder predictions are needed to
help researchers decide whether experimental investigation is
warranted.
To further illustrate the need for disorder interpretation

tools, it is important to distinguish standards for accurate mea-
surement from standards for comparison. Disorder prediction
algorithms use standards for accuratemeasurement at two differ-
ent stages: i) internally defined standards used during the initial
stages of algorithm development, which is a pool of protein se-
quences and corresponding structural information defined by the
algorithm developers themselves, and ii) community-wide stan-
dards used at later stages of development that serves to calibrate
and benchmark performance of published algorithms against
a centralized pool of characterized proteins. The latter is the
focus of the critical assessment of structure predictions (CASP)
experiment.[65] For a given disorder prediction tool, CASP deter-
mines prediction accuracy against characterized targets to evalu-
ate the effectiveness of different methods in predicting intrinsic
disorder. Disorder prediction algorithms serve to predict some
objective measure of disorder, and the CASP competition ulti-
mately compares this predicted value against a set of knownmea-
surands (characterized structured and unstructured proteins).
The balanced accuracy, specificity, sensitivity, and Matthews Cor-
relation Coefficient (MCC) are commonly used as performance
metrics. CASP further provides a platform to compare the accu-
racy of predictions made by competing and/or complementary
algorithms. The balanced accuracy (Acc) is calculated using
Equation (1). True positives, true negatives, false positives, and
false negatives are denoted by pt, nt, pf, nf, respectively. The speci-
ficity is computed as the fraction of correctly predicted negatives,
whereas the sensitivity is computed as the fraction of correctly
predicted positives. The performance of the binary classification
system is further assessed using MCC, Equation (2), which
returns a value in the interval [−1, 1] describing the agreement
between a predicted classification and observed classification
(−1 indicates complete disagreement; +1 indicates complete
agreement; 0 indicates that the prediction is no better than
random). Equations (1) and (2) are:

Acc = pt
pt + n f

+ nt
nt + p f

(1)

MCC = ptnt − p f n f√
(pt + p f )(n f + nt )(p f + nt )(pt + n f )

(2)

CASP further provides a platform to compare the accu-
racy of predictions made by competing and/or complemen-

tary algorithms. In addition to CASP, a number of other
studies have rigorously compared and ranked disorder prediction
algorithms.[66,67]

While the protein disorder community has established a clear
standard for measurement and calibration through its inclusion
in CASP, it is important to recognize that these standards are
not standards for comparison because they do not facilitate the
interpretation of the predictions. We also note that consensus
predictions made by meta-predictors[43,68–70] do not provide this
information either. While meta-predictors improve accuracy by
homing in on the regions of the sequence having the greatest
likelihood of disorder, they do not indicate whether the results are
conspicuous and/or anomalous. Abstractly, algorithm developers
use measurement standards to calibrate their tools to measure
disorder, just as the developer of a mass balance instrument
would use objects with a defined mass in kilograms to calibrate
their instrument to measure mass. In the case of a mass balance,
an individual using the balance cannot use the reported value in
kilograms to determine whether they are heavy or light. Instead,
this heavy versus light classification is determined by comparing
the reported mass against threshold values derived from a pop-
ulation of measured masses. In the case of disorder prediction
algorithms, where a researcher uses a high-performing algo-
rithm to predict disorder content in a protein of interest, what
do these returned values/predictions actually mean? Similar to
the mass balance analogy, these predicted values are virtually
meaningless in isolation, without standards for comparison that
put the measurand into context. To address this problem, we
proposed proteome-based quantitative guidelines for disorder
prediction algorithms.[26,27] These guidelines enable users to
evaluate whether a protein is disordered or not with respect to a
reference standard—a central measurement (median, mean) for
a specified proteome—for comparative purposes.
Resources for interpreting intrinsic disorder predictions must

follow rigor and reproducibility guidelines. Scientific rigor and
reproducibility is a topic that has recently attracted considerable
attention. The US National Institutes of Health’s “Principles and
Guidelines for Reporting Preclinical Research” to encourage the
use of standards for rigorous reporting of research results.[71] In
any scientific field, reproducibility can be achieved if three con-
ditions are met:

1) Scientists agree on scientificmethodologies based on consen-
sus of a majority of people carrying out studies in the field.

2) Scientists agree on standards for measuring, reporting, and
comparing results based on consensus of a majority of people
carrying out studies in the field.

3) Scientists follow the best practices agreed upon for condi-
tions (1) and (2).

In our opinion, population-based reporting guidelines are
needed to meaningfully interpret intrinsic disorder predictions.
Population statistics directly provide the standing of predicted
disorder features in a protein of interest (or intrinsically disor-
dered region) relative to the rest of the proteome. A population-
based solution is provided by our quantitative proteome-based
guidelines for reporting and characterizing intrinsic disorder.[26]

These guidelines are implemented in a web-based toolkit,
known as Disorder Atlas,[71] that enables users to objectively in-
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terpret disorder predictions with respect to the whole proteome.
Disorder Atlas employs a rich user interface that implements
pre-computed disorder predictions together with our previously
published disorder interpretation guidelines.[26] As a result,
this software further enables users to conduct population-level
analyses of intrinsic disorder regardless of their computational
background. Figure 2 displays a simple example of using
population-statistics to interpret intrinsic disorder predictions
of total disorder content and long disordered regions in two
disordered proteins and two ordered proteins. α-Casein[72–74]

and Spinophilin[75] are characterized as intrinsically disordered
proteins, whereas serum albumin[76] and myoglobin[77] are
considered as ordered proteins. Figure 2 demonstrates these dis-
order/order classifications are captured by the relative standing
with respect to theH. sapiens proteome.
In addition to improving the interpretation of disorder predic-

tions, standards for comparison will permit the scientific com-
munity to define what intrinsic disorder is in a more quantitative
and rigorous fashion. One of the hallmarks of intrinsically disor-
dered proteins and intrinsically disordered protein regions is the
amino acid composition. Disordered sequences exhibit a rela-
tively low proportion of hydrophobic and aromatic residues, and a
relatively high proportion of charged and polar residues.[4,56,78–81]

Yet, for a given stretch of amino acids, it remains unclear
what proportion of the total amino-acid sequence needs to be
composed of hydrophobic/aromatic versus charged/polar to
drive the region into a disordered regime. Is there a particular
number of consecutive disordered amino acids that makes the
intrinsically disordered region stand out with respect to other
proteins containing intrinsically disordered regions?
More broadly, the increased interest in intrinsic disorder

warrants the establishment of a central web service to facilitate
the computational characterization of intrinsic disorder in a
protein of interest. Experimentalists are the target user base of
this web service, and as such, it must serve as a comprehensive
resource that predicts intrinsic disorder from a sequence of
interest and allows these predictions to be objectively interpreted
with confidence. The envisioned web service would be a collab-
orative project built by an expert panel in the protein disorder
community. A tentative list of milestones toward realizing this
web service includes:

1) Establish a governing board comprised of experts in the dis-
order community.

2) Establish a curated list of the topmetrics for predicting intrin-
sic disorder from protein sequences, and definitions of intrin-
sic disorder based on these metrics.

3) Establish a community-sponsored list of recommended dis-
order prediction algorithms.
a. Based on the agreed upon definitions, experts should pub-
lish a categorized list of merit-based recommendations for
the highest performing prediction algorithms for each of
primary definition(s) of intrinsic disorder. This list should
be based on CASP evaluations, as well as other quality as-
sessments within the community, and should be updated
every few years as new algorithms are continuously devel-
oped and evaluated.

4) Agree upon and publish algorithm-specific and proteome-
specific standards for comparison to objectively interpret the

Figure 2. Population-based interpretation of protein disorder predictions.
The standing of IUPred-predicted A,B) disorder content and C,D) the
longest continuous disordered region (CDL) with respect to the H. sapi-
ens proteome for two ordered proteins (Albumin, P02768; Myoglobin,
P02144) and two disordered proteins (alpha-casein, P47710; Spinophilin,
Q96SB3). IUPred predicts Albumin contains 0.2% disorder (1st per-
centile) and lacks continuous disordered regions, Myoglobin contains
9.7% disorder (46th percentile) and a 6 AA CDL (15th percentile), alpha-
casein contains 47.0% disorder (80th percentile) with a 64 AA CDL (74th
percentile), and Spinophilin contains 69.1% disorder (90th percentile) and
a 259 aa CDL (97th percentile).
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output of the recommended intrinsic disorder prediction
algorithms.

5) Establish a centralized web service with recommended disor-
der prediction algorithms and tools for objectively interpret-
ing the predictions made by these algorithms.

The central web service could be set up as an addition to an ex-
isting service or by combining several existing architectures, but
must provide standards for comparison for each community-
recommended prediction algorithm. Without standards for
comparison, we reiterate the point that the results cannot be
meaningfully interpreted and are of little use to experimentalists.
This service should also include features for comparing results
from user-specified combinations of the supported disorder
prediction algorithms, and should further include structural in-
formation where possible. While services exist that support some
of these features, a comprehensive service that incorporates all
of these features does not exist to our knowledge.
Given the uncertainties in the analysis and interpretation

of protein disorder predictions, we present a standardization
problem in this Viewpoint to open an active dialogue between
researchers to develop standards for comparison. Here we dis-
cussed general procedures and available methods in one article,
and encourage the use of quantitative guidelines to report and
interpret results from those methods. The views expressed here
are not intended as a set mandate, but instead offer suggested ap-
proaches along with descriptions of how predicted disorder can
be assessed quantitatively, as well as certain caveats or cautions
that users should bemindful of. For example, a general statistical
standard for comparison might not correlate with biochemical
function. An intrinsically disordered region might contain
amino-acid residues that interact and fold upon binding a
molecule in the surrounding environment, giving a critical func-
tional importance to the intrinsically disordered region. How to
effectively capture functional influence using a combination of
pattern recognition, structural bioinformatics, and standards for
comparison remains an open question for the intrinsic disorder
community. Of importance, we note our guidelines are not
meant to deter or hinder data interpretation; they are only meant
to guide, not to restrict. This work is a starting point to begin es-
tablishing reference points for interpreting disorder, and through
modification with more advanced metrics it is envisioned that
the presented guidelines will evolve to become evenmore useful.
It is worth noting that guidelines aremeant to build the protein

disorder community andmaintain a level of collegiality. Straight-
forward explanations of methods and interpretations opens the
field to new researchers, fosters interactions among researchers
to improve the guidelines, and increases rigor and reproducibility
in the field. More importantly, guidelines themselves represent a
community effort; establishing useful guidelines for interpreting
protein disorder data cannot be achieved without surveying the
expertise of many members of the protein disorder, biochemical,
and biophysical communities. At this early stage, it is important
that these guidelines are both simple and flexible. Flexibility is
particularly important for allowing the incorporation of changes
from an active field of research that is frequently cultivating new
findings, methodologies, and thoughts on data interpretation.
We hope that our initial guidelines provide a starting point for

standardizing protein disorder nomenclature and interpretation

to enable better communication and improved reproducibility
within the field. We further envision that these guidelines
will have the added benefit of lowering the barrier to en-
try for researchers interested in beginning protein disorder
investigations.
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