Online Appendix: Proofs
“Strategic Analysis of Dual Sourcing and Dual Channel with an Unreliable Alternative

Supplier ”

Proof of Lemma 1
Given the wholesale price W_s, the competitive supplier solves the following problem to maximize its
profit:

max Hcs = (a - be - chs)qb + Wcsq657

9b

which yields ¢, = %. The OEM’s optimal production quantity is given by solving

rrq@x I, = (a +m — bgy — qus)CIcs — WesQes,

a+m—W.s—b
2b

which yields q.s = % Solving g, and ¢.s simultaneously yields:

a—m+ Wes a4+ 2m — 2W,

9y = ——57 5 Ges = Sb

3b
Substituting them into the supplier’s profit function and then solving for optimality with respect to W,

we have the optimal wholesale price:
5a + 4m
10

wh =
Bring this back to the equations of quantities and prices, we can derive the optimums.
Proof of Lemma 2

The expected profit functions of the competitive supplier, the OEM and the non-competitive supplier

are, respectively

Eﬂcs = [a - be - b(qu + /M]ns)]% + Wchcsa
El, = [a +m — be - b(QCs + /‘LQHS)}(qCS + ,U'Qns) - bUzQis — WesGes — ﬂWns(InSa
EHns = /'LWnsqns'

Taking the first order conditions of the profit functions with respect to g, for the competitive supplier

and g.s, gns for the OEM, and solving them simultaneously, we have:

a—m+Wes B 2a02 + 4mo? — (3pu? + 402) W, + 3uWys wWes — W

3b Y qCS 6b0’2 ) an - 2b0_2

gy =

Substituting them into the profit functions of the competitive supplier and the non-competitive supplier
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and then taking the first order conditions, we have the wholesale prices as follows

10a0? + 8mo? + YuW,, . W

2(1002 + 9u?) T 2

Wcs =

Solving them two simultaneously, we have

WD — 4(5a 4 4m)o? p _ 2(ba+4m)o?
€ 4002 +27p2 T ™ 4002 +27p2

Bring these two optimums back to the functions of quantities and profits, we can derive the optimums.

Proof of Proposition 1 and 2:

Rearranging FII12, EITP and ITP with the notation z = (5)2, and then taking the derivatives with

cs?

respect to x, we have

OBITE — 8(5a+4m)*(20 + 27x)

O.

Oz b(40 4 27z)3 <
OEITP  (5a+4m)[a(1161z + 200) + 4m(621z + 616)] =0
or b(27x 4 40)3 '

Hence EITE decreases in x while EITP increases in .

Rearranging ITP, with the notation x = (%)2, and then taking the derivatives with respect to x, we have

oI, 2(5a+ 4m)*(40 — 27x)
or b(40 + 27z)3

D
% is positive for all = € [0, %), and it remains negative for all x € (g—g, +00). Thus T2 is unimodal in x

with its unique optimal solution at = = 40/27.

2(5a4+4m)o? _ 2(5a+4m)

Furthermore, W = 100251272 = d0137x is obviously decreasing in z. Note that

5 4
D= e
b(4002 + 2712)
and
(¢” )2 _ pEGa+4m)  x(ba+ 4m)
Ms) = (4002 + 2712)2 ~ bo?(40 + 272)2

Taking the derivative of (qf?s)Z w.r.t. x, we have

(g2, (5a + 4m) (40 — 27x)
Oz B bo2(40 + 27x)3

D2 . D : . . . . . _ 40
Hence, (¢f,)” as well as g2 is unimodal in z for any given ¢, and the maximum is = = 32.

Proof of Lemma 3

In the end market, the expected profit functions of the competitive supplier, the OEM and the non-
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competitive supplier are, respectively

Ell.s = (a—bg, — bugns)qs,
EHO = [(a’ +m— bqb):u’ - b(:u2 + 02)%5 - MWns]Qnsy
EHns - NWnSQns~

It is easy to show that EIl.; and FII, are concave with respect to ¢, and ¢,s, respectively. This yields

the following production quantities of the competitive supplier and the OEM

_ 2a0? + ap® — mp® + pPW,
® = b (402 + 3u?) ’
wla +2m — 2W,,)

b (402 + 3u?)

Gns =

Substituting them into the non-competitive supplier’s profit function, we have the optimal wholesale price
WL = % and then the optimal quantities and prices by bring this back to the equations.
Proof of Proposition 3

Comparing the competitive supplier’s expected profit in the termination scenario with that in the base

scenario, we have

a?(55z2 + 80x) N 20amz(5x +8)  m?2(31z2 + 96z + 64)
80b(3z + 4)2 | 80b(3z + 4)2 206(3z + 42 |’

EnY, —mk = —

which is negative.
Comparing the OEM’s expected profit in the termination scenario with that in the base scenario, we

have
25a%x(z + 1) + 100amz(z + 1) — 4m? (1122 + Tlx + 64)
100b(3x + 4)2 ’

Enl —1mf =

which is a convex quadratic function of a with negative asymmetry axis and negative constant term. Hence,

it has one and only one positive root

, 2m (=522 — 5z + 2v/92 + 3323 + 4022 + 162)
‘= 5(x2 + ) '

It can be shown that this root is decreasing in x. It reaches %m when x approaches infinity, and it reaches
infinity when x approaches 0. Hence, for a given value of a larger than m: When z is close to 0, a is on the
left hand side of the larger root a’, hence EII] — ITP® < 0. As x increases, the larger root becomes smaller
and smaller, and eventually there exists a unique threshold value xo such that when = > xp, a begins to be

bigger than the larger root a’, then we have EIIT — ITZ > 0.

Proof of Proposition 4
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Comparing the competitive supplier’s expected profit in the dual sourcing scenario with that in the

termination scenario, we have

B - BT — a? [~2? (6561z% 4 17856z + 12160)]

16b(3x + 4)2(27x + 40)2
L9 [—4ma (21872 4 468022 + 448z — 2560) | + 4m? (2187x* + 188642 4 5043227 + 542722 + 20480)
16b(3z + 4)2(27z + 40)? '

The sign of this function is determined by its numerator, which is a concave quadratic function of a. Notice
that it takes a strict positive value at a = 0, hence it have one and only one root that is larger than 0.

The larger root is given as:

, 2m(2560 — 218723 — 468022 — 448z + 2v/3(8122 + 228 + 160)+/ (3 + 8)(81x + 104)
a = P
656123 + 1785622 + 12160

It can be shown that the larger root is decreasing in x. It reaches %m when = approaches infinity and it
reaches infinity when x approaches 0.

For a given value of @ > m , we find that: When z = 0, a is on the left side of the larger root a”, and
hence EIIY — EIIL > 0. As z increases, the root moves leftward, and finally there exists a unique threshold
value of x larger than which a falls on the right side of the larger root, resulting in EIT2 — EITL, < 0. We
name this threshold value of x as x¢. This indicates that when x exceeds z¢, the termination scenario is
more profitable for the competitive supplier. When z is smaller than z¢, accepting the OEM’s dual sourcing
strategy is more profitable for the competitive supplier. Lastly, because the root is decreasing in x, we find
that when a increases, the threshold value z¢~ becomes smaller, and vice versa.

Comparing the OEM’s expected profit in the dual sourcing scenario with that in the termination scenario,

we have
2P BT — a?x?(2187x% 4+ 5787x + 3824) N damz(3648 + 9296 + 783922 + 21872°)
0 0 4b(4 + 31)2(40 + 272)2 4b(4 + 3)2(40 + 27x)2
N 4m?(2187z* + 1021523 + 1793622 + 14016z + 4096)
4b(4 + 3x)2(40 + 27x)? ’

which is apparently larger than 0.

Proof of Proposition 5

We first compare the two roots (a” and a’) in Proposition 3 and 4.

2 |10 (21872 4 6588z + 58562 + 1280)
5" x (656122 + 17856 + 12160)

" /
a —a =

N 10v/3 (8122 + 2282 + 160) /(32 + 8)(8lz + 104)  2(3z + 4)\/z(x + 1)

2 (656122 + 17856z + 12160) z(z+1)

10(21872° +65882° +58562+1280)

It can be shown that the derivatives of both (656221785627 12160)

(the first term) and
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(656122 + 178562+ 12160) z(z+1)

10V3(812% 42280+ 100) /(32 +8) (812 +104) _ 23+4)y/w(x 1) (the second term) are strictly negative. When x

goes to infinity, the first term reaches % while the second term reaches —%. This indicates their sum is
always larger than % — % > 0. Hence we have o’ > a’.

Recall our proof in Proposition 3 and Proposition 4: When x increases, both a” and a’ decrease. For a
given value of @ > m, when x increases from 0 to infinity, a’ reaches a first and a” reaches a later. Thus, zo

is always smaller than x¢ for any given a.

Proof of Proposition 6
When the competitive supplier is capacity-constrained, in the dual sourcing scenario, the equilibrium whole-

sale prices are:

4(2a0? — 3b0%K + o?m)

WDK — ;
s 402 + 3u?
WDK  _ 2u(2a0? — 3b0?K + o*m)
ns - 40_2 + 3M2 I
the order quantities are
DK 4ac? + ap?® — 4bo? K — mpy?
@ = 4bo? + 3bp? ’
bk —a(40® + p?) + bK(80® + 3p?) + mpu?
s = b(402 + 342) ’
PK = w(2a — 3bK +m)

b(4o2 4+ 3u2)
and the supply chain parties’ profits are

(92 + 64)b2K? + 2b(2az — 32a + 13mz) K + (a + 2m)?z? + (—4a® — 12am + m?)x + 164>

EHDK
© b(4 + 3z)? ’
BIIPE  _ —4(9z + 20)b2K? + 4b(20a + 8m + Tax + 2mz) K + (4a + ax — mz)(azx — 4m — 4a — mx)
e b(4 + 3x)2 ’

2
and EITPK = %. Note that EITEX is a concave quadratic function of K with a positive symme-

try axis. We take the first order condition of EITEX with respect to K. This gives K2 = W,

which is smaller than ¢ + ¢Z = 20“"’%{3;‘;?%;’ Sma

Proof of Proposition 7

Comparing the profits of the OEM and the competitive supplier between the two scenarios, we have

EIIPK _ BrBK 12 (2a +m — 3bK) [K (29b0? + 12bp?) — (14ac? 4 dap® — mo? — 4mp?)|
° ° b(4o? 4 3u?2)? ’
12 (2a +m — 3bK) [—K(28ba? + 15bu?) + (5ap? + 4mo? + mp? + 12a0?)]

b(402 + 34:2)2

EIIPK — priBK  —
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Therefore we have the two thresholds:

14a0? + dap® — mo? — dmp?  14a — m +4(a — m)x

K, = = ,
29b02 + 12bu? 29b + 12bx

K Sap® + 4mo? + mp? + 12a0®  12a 4 4m + (5a + m)z
c 28b02 + 15bu2 N 28b + 15bx

It is not difficult to show that K, < q,? +¢E and K, < qlf’ +¢E, that is, these two thresholds cannot satisfy

all the orders and is actually binding. Furthermore,

(40% + 3p2)(11a0? — 36mo? — 24mu?)
K.—-K, = - ,
b(2802 + 1542) (2902 + 12u2)

so its sign depends on whether 11ac? — 36mo? — 24mu® < 0. ie., z > %.

Proof of Proposition 8

When the non-competitive supplier has a tight capacity 7, the equilibrium wholesale prices are

202(5a + 4m — 9bur)

WDt —
cs 2002 + 9p? ’
wht _ 202 (5ap + 4mu — 18bTu? — 20b0>T)
" (2002 + 9u2) ’
the production quantities are
pe _ (10a —4m — 6brp)o? 4 3(a — m)u?
% = b(2002 + 92) ’
Dt 3ap? 4+ 8mo? + 6mu? — b — 8boTp
qcs = )

b(2002 + 9u2)

and ¢P! = 7. Note that the binding constraint requires 7 < ¢, = b((wkﬂ Then, taking the first-order

4002427p2) "
derivatives w.r.t. p and o respectively, we have
OWLt 180 (10ap + 8mpu — 9b7p* + 20b0°7)
o (2002 + 91:2)2 ;
ownht B 360u%(5a + 4m — 9bTu) =0
do N (2002 + 92)? )
oqPt  60%(10ap + 8mpu — 9bTp* + 20bo?T)
o b(2002 + 9u2)2 ,
dqPt 12047 (5a + 4m — 9bTp) -0
do b(2002 + 9u2)? ’
and
gt 240p(5a + 4m — 9brp) “0
do b(2002 + 9pu2)2 ’
gt _ (—160bo* — 468b02pu? — 81bu*)T + 120a0?p + 96mo?p
o b(2002 + 9u2)2

(4002 — 9u?)(5a + 4m)
b(2002 4 9u?) (4002 + 27u?)’
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the latter of which is positive if 4002 — 9u? > 0, i.e., x < 40/9. Furthermore,

OEIS'  40°(5a + 4m — 9bTp)(45ap® 4+ 36my® + 200001 + 27000 7i°) “0
o b(2002 4 9u?)3 ’
OEITR' 360y (5a + 4m — 9brp)? >0
o b(2002 + 94:2)3 ’
OENPY 2402 (3ap® 4 8mo? + 6mu? + 12bo?7p)(10ap + 8mu — 9bru? + 20b0°T) -
ou b(2002 + 9pu?)3 ’
OEIIP'  2b20(80000° 4 108000 u? + 745202 u* + 7295)72 — 144bp30(20a0? — 9ap? — 8mo? — 18mu?)T
9o b(2002 + 92)3
B 48120 (5a + 4m) (3ap? + 8ma? + 6mu?) <0
b(2002 4 9p2)3 ’
and
OFIIDY  20%7[—9(5a + 4m)pu® — 360bo? T 4 2002 (5a + 4m)]
o N (2002 4 9pu?)?
OEIIP!  407[—400bro* — 360b7 20?4 91u®(5a 4 4m — 18b7pu)]
9 (2002 + 9:2)2 '

The numerators of the last two derivatives both include a quadratic function with negative quadratic coeffi-
cient and positive constant term, and therefore EITP! is unimodal in both x and o.

Proof of Proposition 9

When the non-competitive supplier produces at its full capacity and is able to sell the excess components to

a spot market, the equilibrium wholesale prices and quantities are

20a0? + 16mo? + YW 20a + 16m + 9zW

wbheo — = ,
©s 4002 + 272 40 + 27x
who 2(5a0? + 4mo? + 1002W + 9p®W)  2(5a + 4m + 10W + 9zW)
nso 4002 + 272 N 40 4 27z ’
Do 20a — 8m + 9ax — Imx + 3xzW
qb = )
b(40 4 27x)
Do 32m+ 8ax + 28ma + 8z W + 922 W
fes” = 2b(40 + 272) ’
e x(10a + 8m — 20W — 9a2W)
s 2bp(40 + 27x)
Therefore,
2(1 -2 —
WDhe _w = (10a + 8m — 20W 9xW)>O

40 + 27x

if and only if W < 108 Furthermore, if this condition holds, then W,2° = (W2° + W)/2 > W and

q,?f > 0.



