
Online Appendix: Proofs

“Strategic Analysis of Dual Sourcing and Dual Channel with an Unreliable Alternative

Supplier ”

Proof of Lemma 1

Given the wholesale price Wcs, the competitive supplier solves the following problem to maximize its

profit:

max
qb

Πcs = (a− bqb − bqcs)qb +Wcsqcs,

which yields qb = a−bqcs
2b . The OEM’s optimal production quantity is given by solving

max
qcs

Πo = (a+m− bqb − bqcs)qcs −Wcsqcs,

which yields qcs = a+m−Wcs−bqb
2b . Solving qb and qcs simultaneously yields:

qb =
a−m+Wcs

3b
; qcs =

a+ 2m− 2Wcs

3b
.

Substituting them into the supplier’s profit function and then solving for optimality with respect to Wcs,

we have the optimal wholesale price:

WB
cs =

5a+ 4m

10
.

Bring this back to the equations of quantities and prices, we can derive the optimums.

Proof of Lemma 2

The expected profit functions of the competitive supplier, the OEM and the non-competitive supplier

are, respectively

EΠcs = [a− bqb − b(qcs + µqns)]qb +Wcsqcs,

EΠo = [a+m− bqb − b(qcs + µqns)](qcs + µqns)− bσ2q2ns −Wcsqcs − µWnsqns,

EΠns = µWnsqns.

Taking the first order conditions of the profit functions with respect to qb for the competitive supplier

and qcs, qns for the OEM, and solving them simultaneously, we have:

qb =
a−m+Wcs

3b
; qcs =

2aσ2 + 4mσ2 − (3µ2 + 4σ2)Wcs + 3µWns

6bσ2
; qns =

µWcs −Wns

2bσ2
.

Substituting them into the profit functions of the competitive supplier and the non-competitive supplier
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and then taking the first order conditions, we have the wholesale prices as follows

Wcs =
10aσ2 + 8mσ2 + 9µWns

2(10σ2 + 9µ2)
; Wns =

µWcs

2
.

Solving them two simultaneously, we have

WD
cs =

4(5a+ 4m)σ2

40σ2 + 27µ2
; WD

ns =
2(5a+ 4m)σ2

40σ2 + 27µ2
.

Bring these two optimums back to the functions of quantities and profits, we can derive the optimums.

Proof of Proposition 1 and 2:

Rearranging EΠD
cs, EΠ

D
o and ΠD

ns with the notation x =
(
µ
σ

)2
, and then taking the derivatives with

respect to x, we have

∂EΠD
cs

∂x
= −8(5a+ 4m)2(20 + 27x)

b(40 + 27x)3
< 0;

∂EΠD
o

∂x
=

(5a+ 4m)[a(1161x+ 200) + 4m(621x+ 616)]

b(27x+ 40)3
> 0.

Hence EΠD
cs decreases in x while EΠD

o increases in x.

Rearranging ΠD
ns with the notation x = (µσ )2, and then taking the derivatives with respect to x, we have

∂ΠD
ns

∂x
=

2(5a+ 4m)2(40− 27x)

b(40 + 27x)3
.

∂ΠD
ns

∂x is positive for all x ∈ [0, 4027 ), and it remains negative for all x ∈ ( 40
27 ,+∞). Thus ΠD

ns is unimodal in x

with its unique optimal solution at x = 40/27.

Furthermore, WD
ns = 2(5a+4m)σ2

40σ2+27µ2 = 2(5a+4m)
40+27x is obviously decreasing in x. Note that

qDns =
µ(5a+ 4m)

b(40σ2 + 27µ2)
> 0

and (
qDns
)2

=
µ2(5a+ 4m)

b(40σ2 + 27µ2)2
=

x(5a+ 4m)

bσ2(40 + 27x)2
.

Taking the derivative of
(
qDns
)2

w.r.t. x, we have

∂
(
qDns
)2

∂x
=

(5a+ 4m)(40− 27x)

bσ2(40 + 27x)3
.

Hence,
(
qDns
)2

as well as qDns is unimodal in x for any given σ, and the maximum is x = 40
27 .

Proof of Lemma 3

In the end market, the expected profit functions of the competitive supplier, the OEM and the non-
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competitive supplier are, respectively

EΠcs = (a− bqb − bµqns)qb,

EΠo = [(a+m− bqb)µ− b(µ2 + σ2)qns − µWns]qns,

EΠns = µWnsqns.

It is easy to show that EΠcs and EΠo are concave with respect to qb and qns, respectively. This yields

the following production quantities of the competitive supplier and the OEM

qb =
2aσ2 + aµ2 −mµ2 + µ2Wns

b (4σ2 + 3µ2)
,

qns =
µ(a+ 2m− 2Wns)

b (4σ2 + 3µ2)
.

Substituting them into the non-competitive supplier’s profit function, we have the optimal wholesale price

WT
ns = a+2m

4 and then the optimal quantities and prices by bring this back to the equations.

Proof of Proposition 3

Comparing the competitive supplier’s expected profit in the termination scenario with that in the base

scenario, we have

EΠT
cs −ΠB

cs = −
[
a2(55x2 + 80x)

80b(3x+ 4)2
+

20amx(5x+ 8)

80b(3x+ 4)2
+
m2(31x2 + 96x+ 64)

20b(3x+ 4)2

]
,

which is negative.

Comparing the OEM’s expected profit in the termination scenario with that in the base scenario, we

have

EΠT
o −ΠB

o =
25a2x(x+ 1) + 100amx(x+ 1)− 4m2(11x2 + 71x+ 64)

100b(3x+ 4)2
,

which is a convex quadratic function of a with negative asymmetry axis and negative constant term. Hence,

it has one and only one positive root

a′ =
2m
(
−5x2 − 5x+ 2

√
9x4 + 33x3 + 40x2 + 16x

)
5(x2 + x)

.

It can be shown that this root is decreasing in x. It reaches 2
5m when x approaches infinity, and it reaches

infinity when x approaches 0. Hence, for a given value of a larger than m: When x is close to 0, a is on the

left hand side of the larger root a′, hence EΠT
o −ΠB

o < 0. As x increases, the larger root becomes smaller

and smaller, and eventually there exists a unique threshold value xO such that when x > xO, a begins to be

bigger than the larger root a′, then we have EΠT
o −ΠB

o > 0.

Proof of Proposition 4
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Comparing the competitive supplier’s expected profit in the dual sourcing scenario with that in the

termination scenario, we have

EΠD
cs − EΠT

cs =
a2
[
−x2

(
6561x2 + 17856x+ 12160

)]
16b(3x+ 4)2(27x+ 40)2

+
a
[
−4mx

(
2187x3 + 4680x2 + 448x− 2560

)]
+ 4m2

(
2187x4 + 18864x3 + 50432x2 + 54272x+ 20480

)
16b(3x+ 4)2(27x+ 40)2

.

The sign of this function is determined by its numerator, which is a concave quadratic function of a. Notice

that it takes a strict positive value at a = 0, hence it have one and only one root that is larger than 0.

The larger root is given as:

a′′ =
2m(2560− 2187x3 − 4680x2 − 448x+ 2

√
3(81x2 + 228x+ 160)

√
(3x+ 8)(81x+ 104)

6561x3 + 17856x2 + 12160x

It can be shown that the larger root is decreasing in x. It reaches 2
3m when x approaches infinity and it

reaches infinity when x approaches 0.

For a given value of a > m , we find that: When x = 0, a is on the left side of the larger root a′′, and

hence EΠD
cs−EΠT

cs > 0. As x increases, the root moves leftward, and finally there exists a unique threshold

value of x larger than which a falls on the right side of the larger root, resulting in EΠD
cs − EΠT

cs < 0. We

name this threshold value of x as xC . This indicates that when x exceeds xC , the termination scenario is

more profitable for the competitive supplier. When x is smaller than xC , accepting the OEM’s dual sourcing

strategy is more profitable for the competitive supplier. Lastly, because the root is decreasing in x, we find

that when a increases, the threshold value xC becomes smaller, and vice versa.

Comparing the OEM’s expected profit in the dual sourcing scenario with that in the termination scenario,

we have

EΠD
o − EΠT

o =
a2x2(2187x2 + 5787x+ 3824)

4b(4 + 3x)2(40 + 27x)2
+

4amx(3648 + 9296x+ 7839x2 + 2187x3)

4b(4 + 3x)2(40 + 27x)2

+
4m2(2187x4 + 10215x3 + 17936x2 + 14016x+ 4096)

4b(4 + 3x)2(40 + 27x)2
,

which is apparently larger than 0.

Proof of Proposition 5

We first compare the two roots (a′′ and a′) in Proposition 3 and 4.

a′′ − a′ =
2

5
m

[
10
(
2187x3 + 6588x2 + 5856x+ 1280

)
x (6561x2 + 17856x+ 12160)

+
10
√

3
(
81x2 + 228x+ 160

)√
(3x+ 8)(81x+ 104)

x (6561x2 + 17856x+ 12160)
−

2(3x+ 4)
√
x(x+ 1)

x(x+ 1)

]

It can be shown that the derivatives of both
10(2187x3+6588x2+5856x+1280)

x(6561x2+17856x+12160) (the first term) and
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[
10
√
3(81x2+228x+160)

√
(3x+8)(81x+104)

x(6561x2+17856x+12160) − 2(3x+4)
√
x(x+1)

x(x+1)

]
(the second term) are strictly negative. When x

goes to infinity, the first term reaches 10
3 while the second term reaches − 8

3 . This indicates their sum is

always larger than 10
3 −

8
3 > 0. Hence we have a′′ > a′.

Recall our proof in Proposition 3 and Proposition 4: When x increases, both a′′ and a′ decrease. For a

given value of a > m, when x increases from 0 to infinity, a′ reaches a first and a′′ reaches a later. Thus, xO

is always smaller than xC for any given a.

Proof of Proposition 6

When the competitive supplier is capacity-constrained, in the dual sourcing scenario, the equilibrium whole-

sale prices are:

WDK
cs =

4(2aσ2 − 3bσ2K + σ2m)

4σ2 + 3µ2
,

WDK
ns =

2µ(2aσ2 − 3bσ2K + σ2m)

4σ2 + 3µ2
;

the order quantities are

qDKb =
4aσ2 + aµ2 − 4bσ2K −mµ2

4bσ2 + 3bµ2
,

qDKcs =
−a(4σ2 + µ2) + bK(8σ2 + 3µ2) +mµ2

b(4σ2 + 3µ2)
,

qDKns =
µ(2a− 3bK +m)

b(4σ2 + 3µ2)
;

and the supply chain parties’ profits are

EΠDK
o =

(9x+ 64)b2K2 + 2b(2ax− 32a+ 13mx)K + (a+ 2m)2x2 + (−4a2 − 12am+m2)x+ 16a2

b(4 + 3x)2
,

EΠDK
cs =

−4(9x+ 20)b2K2 + 4b(20a+ 8m+ 7ax+ 2mx)K + (4a+ ax−mx)(ax− 4m− 4a−mx)

b(4 + 3x)2
,

and EΠDK
ns = 2x(2a−3bK+m)2

b(4+3x)2 . Note that EΠDK
cs is a concave quadratic function of K with a positive symme-

try axis. We take the first order condition of EΠDK
cs with respect to K. This gives KD

cs = 20a+8m+7ax+2mx
2b(9x+20) ,

which is smaller than qDb + qDcs = 20a+8m+13ax+5mx
b(27x+40) .

Proof of Proposition 7

Comparing the profits of the OEM and the competitive supplier between the two scenarios, we have

EΠDK
o − EΠBK

o =
µ2(2a+m− 3bK)

[
K(29bσ2 + 12bµ2)− (14aσ2 + 4aµ2 −mσ2 − 4mµ2)

]
b(4σ2 + 3µ2)2

,

EΠDK
cs − EΠBK

cs =
µ2(2a+m− 3bK)

[
−K(28bσ2 + 15bµ2) + (5aµ2 + 4mσ2 +mµ2 + 12aσ2)

]
b(4σ2 + 3µ2)2

.
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Therefore we have the two thresholds:

Ko =
14aσ2 + 4aµ2 −mσ2 − 4mµ2

29bσ2 + 12bµ2
=

14a−m+ 4(a−m)x

29b+ 12bx
,

Kc =
5aµ2 + 4mσ2 +mµ2 + 12aσ2

28bσ2 + 15bµ2
=

12a+ 4m+ (5a+m)x

28b+ 15bx
.

It is not difficult to show that Ko < qDb + qDcs and Kc < qDb + qDcs, that is, these two thresholds cannot satisfy

all the orders and is actually binding. Furthermore,

Kc −Ko = − (4σ2 + 3µ2)(11aσ2 − 36mσ2 − 24mµ2)

b(28σ2 + 15µ2)(29σ2 + 12µ2)
,

so its sign depends on whether 11aσ2 − 36mσ2 − 24mµ2 < 0. i.e., x > 11a−36m
24m .

Proof of Proposition 8

When the non-competitive supplier has a tight capacity τ , the equilibrium wholesale prices are

WDt
cs =

2σ2(5a+ 4m− 9bµτ)

20σ2 + 9µ2
,

WDt
ns =

2σ2(5aµ+ 4mµ− 18bτµ2 − 20bσ2τ)

µ(20σ2 + 9µ2)
,

the production quantities are

qDtb =
(10a− 4m− 6bτµ)σ2 + 3(a−m)µ2

b(20σ2 + 9µ2)
,

qDtcs =
3aµ2 + 8mσ2 + 6mµ2 − 9bτµ3 − 8bσ2τµ

b(20σ2 + 9µ2)
,

and qDtns = τ . Note that the binding constraint requires τ ≤ qDns = (5a+4m)µ
b(40σ2+27µ2) . Then, taking the first-order

derivatives w.r.t. µ and σ respectively, we have

∂WDt
cs

∂µ
= −18σ2(10aµ+ 8mµ− 9bτµ2 + 20bσ2τ)

(20σ2 + 9µ2)2
< 0,

∂WDt
cs

∂σ
=

36σµ2(5a+ 4m− 9bτµ)

(20σ2 + 9µ2)2
> 0,

∂qDtb
∂µ

= −6σ2(10aµ+ 8mµ− 9bτµ2 + 20bσ2τ)

b(20σ2 + 9µ2)2
< 0,

∂qDtb
∂σ

=
12σµ2(5a+ 4m− 9bτµ)

b(20σ2 + 9µ2)2
> 0,

and

∂qDtcs
∂σ

= −24σµ2(5a+ 4m− 9bτµ)

b(20σ2 + 9µ2)2
< 0,

∂qDtcs
∂µ

=
(−160bσ4 − 468bσ2µ2 − 81bµ4)τ + 120aσ2µ+ 96mσ2µ

b(20σ2 + 9µ2)2

≥ µ(40σ2 − 9µ2)(5a+ 4m)

b(20σ2 + 9µ2)(40σ2 + 27µ2)
,
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the latter of which is positive if 40σ2 − 9µ2 > 0, i.e., x < 40/9. Furthermore,

∂EΠDt
cs

∂µ
= −4σ2(5a+ 4m− 9bτµ)(45aµ3 + 36mµ3 + 200bσ4τ + 270bσ2τµ2)

b(20σ2 + 9µ2)3
< 0,

∂EΠDt
cs

∂σ
=

36σµ4(5a+ 4m− 9bτµ)2

b(20σ2 + 9µ2)3
> 0,

∂EΠDt
o

∂µ
=

24σ2(3aµ2 + 8mσ2 + 6mµ2 + 12bσ2τµ)(10aµ+ 8mµ− 9bτµ2 + 20bσ2τ)

b(20σ2 + 9µ2)3
> 0,

∂EΠDt
o

∂σ
=

2b2σ(8000σ6 + 10800σ4µ2 + 7452σ2µ4 + 729µ6)τ2 − 144bµ3σ(20aσ2 − 9aµ2 − 8mσ2 − 18mµ2)τ

b(20σ2 + 9µ2)3

−48µ2σ(5a+ 4m)(3aµ2 + 8mσ2 + 6mµ2)

b(20σ2 + 9µ2)3
< 0,

and

∂EΠDt
ns

∂µ
=

2σ2τ [−9(5a+ 4m)µ2 − 360bσ2τµ+ 20σ2(5a+ 4m)]

(20σ2 + 9µ2)2

∂EΠDt
ns

∂σ
=

4στ [−400bτσ4 − 360bτµ2σ2 + 9µ3(5a+ 4m− 18bτµ)]

(20σ2 + 9µ2)2
.

The numerators of the last two derivatives both include a quadratic function with negative quadratic coeffi-

cient and positive constant term, and therefore EΠDt
ns is unimodal in both µ and σ.

Proof of Proposition 9

When the non-competitive supplier produces at its full capacity and is able to sell the excess components to

a spot market, the equilibrium wholesale prices and quantities are

WDo
cs =

20aσ2 + 16mσ2 + 9µ2W

40σ2 + 27µ2
=

20a+ 16m+ 9xW

40 + 27x
,

WDo
ns =

2(5aσ2 + 4mσ2 + 10σ2W + 9µ2W )

40σ2 + 27µ2
=

2(5a+ 4m+ 10W + 9xW )

40 + 27x
,

qDob =
20a− 8m+ 9ax− 9mx+ 3xW

b(40 + 27x)
,

qDocs =
32m+ 8ax+ 28mx+ 8xW + 9x2W

2b(40 + 27x)
,

qDons =
x(10a+ 8m− 20W − 9xW )

2bµ(40 + 27x)
.

Therefore,

WDo
cs −W =

2(10a+ 8m− 20W − 9xW )

40 + 27x
> 0

if and only if W < 10a+8m
20+9x . Furthermore, if this condition holds, then WDo

ns = (WDo
cs + W )/2 > W and

qDons > 0.
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