Online Appendix: Proofs

"Strategic Analysis of Dual Sourcing and Dual Channel with an Unreliable Alternative
 Supplier"

Proof of Lemma 1

Given the wholesale price $W_{c s}$, the competitive supplier solves the following problem to maximize its profit:

$$
\max _{q_{b}} \Pi_{c s}=\left(a-b q_{b}-b q_{c s}\right) q_{b}+W_{c s} q_{c s}
$$

which yields $q_{b}=\frac{a-b q_{c s}}{2 b}$. The OEM's optimal production quantity is given by solving

$$
\max _{q_{c s}} \Pi_{o}=\left(a+m-b q_{b}-b q_{c s}\right) q_{c s}-W_{c s} q_{c s}
$$

which yields $q_{c s}=\frac{a+m-W_{c s}-b q_{b}}{2 b}$. Solving q_{b} and $q_{c s}$ simultaneously yields:

$$
q_{b}=\frac{a-m+W_{c s}}{3 b} ; \quad q_{c s}=\frac{a+2 m-2 W_{c s}}{3 b}
$$

Substituting them into the supplier's profit function and then solving for optimality with respect to $W_{c s}$, we have the optimal wholesale price:

$$
W_{c s}^{B}=\frac{5 a+4 m}{10}
$$

Bring this back to the equations of quantities and prices, we can derive the optimums.

Proof of Lemma 2

The expected profit functions of the competitive supplier, the OEM and the non-competitive supplier are, respectively

$$
\begin{aligned}
E \Pi_{c s} & =\left[a-b q_{b}-b\left(q_{c s}+\mu q_{n s}\right)\right] q_{b}+W_{c s} q_{c s} \\
E \Pi_{o} & =\left[a+m-b q_{b}-b\left(q_{c s}+\mu q_{n s}\right)\right]\left(q_{c s}+\mu q_{n s}\right)-b \sigma^{2} q_{n s}^{2}-W_{c s} q_{c s}-\mu W_{n s} q_{n s} \\
E \Pi_{n s} & =\mu W_{n s} q_{n s}
\end{aligned}
$$

Taking the first order conditions of the profit functions with respect to q_{b} for the competitive supplier and $q_{c s}, q_{n s}$ for the OEM, and solving them simultaneously, we have:

$$
q_{b}=\frac{a-m+W_{c s}}{3 b} ; \quad q_{c s}=\frac{2 a \sigma^{2}+4 m \sigma^{2}-\left(3 \mu^{2}+4 \sigma^{2}\right) W_{c s}+3 \mu W_{n s}}{6 b \sigma^{2}} ; \quad q_{n s}=\frac{\mu W_{c s}-W_{n s}}{2 b \sigma^{2}} .
$$

Substituting them into the profit functions of the competitive supplier and the non-competitive supplier
and then taking the first order conditions, we have the wholesale prices as follows

$$
W_{c s}=\frac{10 a \sigma^{2}+8 m \sigma^{2}+9 \mu W_{n s}}{2\left(10 \sigma^{2}+9 \mu^{2}\right)} ; \quad W_{n s}=\frac{\mu W_{c s}}{2}
$$

Solving them two simultaneously, we have

$$
W_{c s}^{D}=\frac{4(5 a+4 m) \sigma^{2}}{40 \sigma^{2}+27 \mu^{2}} ; \quad W_{n s}^{D}=\frac{2(5 a+4 m) \sigma^{2}}{40 \sigma^{2}+27 \mu^{2}}
$$

Bring these two optimums back to the functions of quantities and profits, we can derive the optimums.

Proof of Proposition 1 and 2:

Rearranging $E \Pi_{c s}^{D}, E \Pi_{o}^{D}$ and $\Pi_{n s}^{D}$ with the notation $x=\left(\frac{\mu}{\sigma}\right)^{2}$, and then taking the derivatives with respect to x, we have

$$
\begin{aligned}
\frac{\partial E \Pi_{c s}^{D}}{\partial x} & =-\frac{8(5 a+4 m)^{2}(20+27 x)}{b(40+27 x)^{3}}<0 \\
\frac{\partial E \Pi_{o}^{D}}{\partial x} & =\frac{(5 a+4 m)[a(1161 x+200)+4 m(621 x+616)]}{b(27 x+40)^{3}}>0
\end{aligned}
$$

Hence $E \Pi_{c s}^{D}$ decreases in x while $E \Pi_{o}^{D}$ increases in x.
Rearranging $\Pi_{n s}^{D}$ with the notation $x=\left(\frac{\mu}{\sigma}\right)^{2}$, and then taking the derivatives with respect to x, we have

$$
\frac{\partial \Pi_{n s}^{D}}{\partial x}=\frac{2(5 a+4 m)^{2}(40-27 x)}{b(40+27 x)^{3}}
$$

$\frac{\partial \Pi_{n s}^{D}}{\partial x}$ is positive for all $x \in\left[0, \frac{40}{27}\right)$, and it remains negative for all $x \in\left(\frac{40}{27},+\infty\right)$. Thus $\Pi_{n s}^{D}$ is unimodal in x with its unique optimal solution at $x=40 / 27$.

Furthermore, $W_{n s}^{D}=\frac{2(5 a+4 m) \sigma^{2}}{40 \sigma^{2}+27 \mu^{2}}=\frac{2(5 a+4 m)}{40+27 x}$ is obviously decreasing in x. Note that

$$
q_{n s}^{D}=\frac{\mu(5 a+4 m)}{b\left(40 \sigma^{2}+27 \mu^{2}\right)}>0
$$

and

$$
\left(q_{n s}^{D}\right)^{2}=\frac{\mu^{2}(5 a+4 m)}{b\left(40 \sigma^{2}+27 \mu^{2}\right)^{2}}=\frac{x(5 a+4 m)}{b \sigma^{2}(40+27 x)^{2}}
$$

Taking the derivative of $\left(q_{n s}^{D}\right)^{2}$ w.r.t. x, we have

$$
\frac{\partial\left(q_{n s}^{D}\right)^{2}}{\partial x}=\frac{(5 a+4 m)(40-27 x)}{b \sigma^{2}(40+27 x)^{3}}
$$

Hence, $\left(q_{n s}^{D}\right)^{2}$ as well as $q_{n s}^{D}$ is unimodal in x for any given σ, and the maximum is $x=\frac{40}{27}$.

Proof of Lemma 3

In the end market, the expected profit functions of the competitive supplier, the OEM and the non-
competitive supplier are, respectively

$$
\begin{aligned}
E \Pi_{c s} & =\left(a-b q_{b}-b \mu q_{n s}\right) q_{b} \\
E \Pi_{o} & =\left[\left(a+m-b q_{b}\right) \mu-b\left(\mu^{2}+\sigma^{2}\right) q_{n s}-\mu W_{n s}\right] q_{n s} \\
E \Pi_{n s} & =\mu W_{n s} q_{n s}
\end{aligned}
$$

It is easy to show that $E \Pi_{c s}$ and $E \Pi_{o}$ are concave with respect to q_{b} and $q_{n s}$, respectively. This yields the following production quantities of the competitive supplier and the OEM

$$
\begin{aligned}
q_{b} & =\frac{2 a \sigma^{2}+a \mu^{2}-m \mu^{2}+\mu^{2} W_{n s}}{b\left(4 \sigma^{2}+3 \mu^{2}\right)} \\
q_{n s} & =\frac{\mu\left(a+2 m-2 W_{n s}\right)}{b\left(4 \sigma^{2}+3 \mu^{2}\right)}
\end{aligned}
$$

Substituting them into the non-competitive supplier's profit function, we have the optimal wholesale price $W_{n s}^{T}=\frac{a+2 m}{4}$ and then the optimal quantities and prices by bring this back to the equations.

Proof of Proposition 3

Comparing the competitive supplier's expected profit in the termination scenario with that in the base scenario, we have

$$
E \Pi_{c s}^{T}-\Pi_{c s}^{B}=-\left[\frac{a^{2}\left(55 x^{2}+80 x\right)}{80 b(3 x+4)^{2}}+\frac{20 a m x(5 x+8)}{80 b(3 x+4)^{2}}+\frac{m^{2}\left(31 x^{2}+96 x+64\right)}{20 b(3 x+4)^{2}}\right]
$$

which is negative.
Comparing the OEM's expected profit in the termination scenario with that in the base scenario, we have

$$
E \Pi_{o}^{T}-\Pi_{o}^{B}=\frac{25 a^{2} x(x+1)+100 a m x(x+1)-4 m^{2}\left(11 x^{2}+71 x+64\right)}{100 b(3 x+4)^{2}}
$$

which is a convex quadratic function of a with negative asymmetry axis and negative constant term. Hence, it has one and only one positive root

$$
a^{\prime}=\frac{2 m\left(-5 x^{2}-5 x+2 \sqrt{9 x^{4}+33 x^{3}+40 x^{2}+16 x}\right)}{5\left(x^{2}+x\right)}
$$

It can be shown that this root is decreasing in x. It reaches $\frac{2}{5} m$ when x approaches infinity, and it reaches infinity when x approaches 0 . Hence, for a given value of a larger than m : When x is close to $0, a$ is on the left hand side of the larger root a^{\prime}, hence $E \Pi_{o}^{T}-\Pi_{o}^{B}<0$. As x increases, the larger root becomes smaller and smaller, and eventually there exists a unique threshold value x_{O} such that when $x>x_{O}, a$ begins to be bigger than the larger root a^{\prime}, then we have $E \Pi_{o}^{T}-\Pi_{o}^{B}>0$.

Proof of Proposition 4

Comparing the competitive supplier's expected profit in the dual sourcing scenario with that in the termination scenario, we have

$$
\begin{aligned}
& E \Pi_{c s}^{D}-E \Pi_{c s}^{T}=\frac{a^{2}\left[-x^{2}\left(6561 x^{2}+17856 x+12160\right)\right]}{16 b(3 x+4)^{2}(27 x+40)^{2}} \\
& \quad+\frac{a\left[-4 m x\left(2187 x^{3}+4680 x^{2}+448 x-2560\right)\right]+4 m^{2}\left(2187 x^{4}+18864 x^{3}+50432 x^{2}+54272 x+20480\right)}{16 b(3 x+4)^{2}(27 x+40)^{2}}
\end{aligned}
$$

The sign of this function is determined by its numerator, which is a concave quadratic function of a. Notice that it takes a strict positive value at $a=0$, hence it have one and only one root that is larger than 0 .

The larger root is given as:

$$
a^{\prime \prime}=\frac{2 m\left(2560-2187 x^{3}-4680 x^{2}-448 x+2 \sqrt{3}\left(81 x^{2}+228 x+160\right) \sqrt{(3 x+8)(81 x+104)}\right.}{6561 x^{3}+17856 x^{2}+12160 x}
$$

It can be shown that the larger root is decreasing in x. It reaches $\frac{2}{3} m$ when x approaches infinity and it reaches infinity when x approaches 0 .

For a given value of $a>m$, we find that: When $x=0, a$ is on the left side of the larger root $a^{\prime \prime}$, and hence $E \Pi_{c s}^{D}-E \Pi_{c s}^{T}>0$. As x increases, the root moves leftward, and finally there exists a unique threshold value of x larger than which a falls on the right side of the larger root, resulting in $E \Pi_{c s}^{D}-E \Pi_{c s}^{T}<0$. We name this threshold value of x as x_{C}. This indicates that when x exceeds x_{C}, the termination scenario is more profitable for the competitive supplier. When x is smaller than x_{C}, accepting the OEM's dual sourcing strategy is more profitable for the competitive supplier. Lastly, because the root is decreasing in x, we find that when a increases, the threshold value x_{C} becomes smaller, and vice versa.

Comparing the OEM's expected profit in the dual sourcing scenario with that in the termination scenario, we have

$$
\begin{aligned}
& E \Pi_{o}^{D}-E \Pi_{o}^{T}=\frac{a^{2} x^{2}\left(2187 x^{2}+5787 x+3824\right)}{4 b(4+3 x)^{2}(40+27 x)^{2}}+\frac{4 a m x\left(3648+9296 x+7839 x^{2}+2187 x^{3}\right)}{4 b(4+3 x)^{2}(40+27 x)^{2}} \\
& +\frac{4 m^{2}\left(2187 x^{4}+10215 x^{3}+17936 x^{2}+14016 x+4096\right)}{4 b(4+3 x)^{2}(40+27 x)^{2}}
\end{aligned}
$$

which is apparently larger than 0 .

Proof of Proposition 5

We first compare the two roots $\left(a^{\prime \prime}\right.$ and $\left.a^{\prime}\right)$ in Proposition 3 and 4.

$$
\begin{aligned}
& a^{\prime \prime}-a^{\prime}=\frac{2}{5} m\left[\frac{10\left(2187 x^{3}+6588 x^{2}+5856 x+1280\right)}{x\left(6561 x^{2}+17856 x+12160\right)}\right. \\
& \left.+\frac{10 \sqrt{3}\left(81 x^{2}+228 x+160\right) \sqrt{(3 x+8)(81 x+104)}}{x\left(6561 x^{2}+17856 x+12160\right)}-\frac{2(3 x+4) \sqrt{x(x+1)}}{x(x+1)}\right]
\end{aligned}
$$

It can be shown that the derivatives of both $\frac{10\left(2187 x^{3}+6588 x^{2}+5856 x+1280\right)}{x\left(6561 x^{2}+17856 x+12160\right)}$ (the first term) and
$\left[\frac{10 \sqrt{3}\left(81 x^{2}+228 x+160\right) \sqrt{(3 x+8)(81 x+104)}}{x\left(6561 x^{2}+17856 x+12160\right)}-\frac{2(3 x+4) \sqrt{x(x+1)}}{x(x+1)}\right]$ (the second term) are strictly negative. When x goes to infinity, the first term reaches $\frac{10}{3}$ while the second term reaches $-\frac{8}{3}$. This indicates their sum is always larger than $\frac{10}{3}-\frac{8}{3}>0$. Hence we have $a^{\prime \prime}>a^{\prime}$.

Recall our proof in Proposition 3 and Proposition 4: When x increases, both $a^{\prime \prime}$ and a^{\prime} decrease. For a given value of $a>m$, when x increases from 0 to infinity, a^{\prime} reaches a first and $a^{\prime \prime}$ reaches a later. Thus, x_{O} is always smaller than x_{C} for any given a.

Proof of Proposition 6

When the competitive supplier is capacity-constrained, in the dual sourcing scenario, the equilibrium wholesale prices are:

$$
\begin{aligned}
W_{c s}^{D K} & =\frac{4\left(2 a \sigma^{2}-3 b \sigma^{2} K+\sigma^{2} m\right)}{4 \sigma^{2}+3 \mu^{2}} \\
W_{n s}^{D K} & =\frac{2 \mu\left(2 a \sigma^{2}-3 b \sigma^{2} K+\sigma^{2} m\right)}{4 \sigma^{2}+3 \mu^{2}}
\end{aligned}
$$

the order quantities are

$$
\begin{aligned}
q_{b}^{D K} & =\frac{4 a \sigma^{2}+a \mu^{2}-4 b \sigma^{2} K-m \mu^{2}}{4 b \sigma^{2}+3 b \mu^{2}} \\
q_{c s}^{D K} & =\frac{-a\left(4 \sigma^{2}+\mu^{2}\right)+b K\left(8 \sigma^{2}+3 \mu^{2}\right)+m \mu^{2}}{b\left(4 \sigma^{2}+3 \mu^{2}\right)} \\
q_{n s}^{D K} & =\frac{\mu(2 a-3 b K+m)}{b\left(4 \sigma^{2}+3 \mu^{2}\right)}
\end{aligned}
$$

and the supply chain parties' profits are

$$
\begin{aligned}
& E \Pi_{o}^{D K}=\frac{(9 x+64) b^{2} K^{2}+2 b(2 a x-32 a+13 m x) K+(a+2 m)^{2} x^{2}+\left(-4 a^{2}-12 a m+m^{2}\right) x+16 a^{2}}{b(4+3 x)^{2}} \\
& E \Pi_{c s}^{D K}=\frac{-4(9 x+20) b^{2} K^{2}+4 b(20 a+8 m+7 a x+2 m x) K+(4 a+a x-m x)(a x-4 m-4 a-m x)}{b(4+3 x)^{2}}
\end{aligned}
$$

and $E \Pi_{n s}^{D K}=\frac{2 x(2 a-3 b K+m)^{2}}{b(4+3 x)^{2}}$. Note that $E \Pi_{c s}^{D K}$ is a concave quadratic function of K with a positive symmetry axis. We take the first order condition of $E \Pi_{c s}^{D K}$ with respect to K. This gives $K_{c s}^{D}=\frac{20 a+8 m+7 a x+2 m x}{2 b(9 x+20)}$, which is smaller than $q_{b}^{D}+q_{c s}^{D}=\frac{20 a+8 m+13 a x+5 m x}{b(27 x+40)}$.

Proof of Proposition 7

Comparing the profits of the OEM and the competitive supplier between the two scenarios, we have

$$
\begin{aligned}
& E \Pi_{o}^{D K}-E \Pi_{o}^{B K}=\frac{\mu^{2}(2 a+m-3 b K)\left[K\left(29 b \sigma^{2}+12 b \mu^{2}\right)-\left(14 a \sigma^{2}+4 a \mu^{2}-m \sigma^{2}-4 m \mu^{2}\right)\right]}{b\left(4 \sigma^{2}+3 \mu^{2}\right)^{2}} \\
& E \Pi_{c s}^{D K}-E \Pi_{c s}^{B K}=\frac{\mu^{2}(2 a+m-3 b K)\left[-K\left(28 b \sigma^{2}+15 b \mu^{2}\right)+\left(5 a \mu^{2}+4 m \sigma^{2}+m \mu^{2}+12 a \sigma^{2}\right)\right]}{b\left(4 \sigma^{2}+3 \mu^{2}\right)^{2}}
\end{aligned}
$$

Therefore we have the two thresholds:

$$
\begin{aligned}
& K_{o}=\frac{14 a \sigma^{2}+4 a \mu^{2}-m \sigma^{2}-4 m \mu^{2}}{29 b \sigma^{2}+12 b \mu^{2}}=\frac{14 a-m+4(a-m) x}{29 b+12 b x} \\
& K_{c}=\frac{5 a \mu^{2}+4 m \sigma^{2}+m \mu^{2}+12 a \sigma^{2}}{28 b \sigma^{2}+15 b \mu^{2}}=\frac{12 a+4 m+(5 a+m) x}{28 b+15 b x} .
\end{aligned}
$$

It is not difficult to show that $K_{o}<q_{b}^{D}+q_{c s}^{D}$ and $K_{c}<q_{b}^{D}+q_{c s}^{D}$, that is, these two thresholds cannot satisfy all the orders and is actually binding. Furthermore,

$$
K_{c}-K_{o}=-\frac{\left(4 \sigma^{2}+3 \mu^{2}\right)\left(11 a \sigma^{2}-36 m \sigma^{2}-24 m \mu^{2}\right)}{b\left(28 \sigma^{2}+15 \mu^{2}\right)\left(29 \sigma^{2}+12 \mu^{2}\right)}
$$

so its sign depends on whether $11 a \sigma^{2}-36 m \sigma^{2}-24 m \mu^{2}<0$. i.e., $x>\frac{11 a-36 m}{24 m}$.

Proof of Proposition 8

When the non-competitive supplier has a tight capacity τ, the equilibrium wholesale prices are

$$
\begin{aligned}
W_{c s}^{D t} & =\frac{2 \sigma^{2}(5 a+4 m-9 b \mu \tau)}{20 \sigma^{2}+9 \mu^{2}} \\
W_{n s}^{D t} & =\frac{2 \sigma^{2}\left(5 a \mu+4 m \mu-18 b \tau \mu^{2}-20 b \sigma^{2} \tau\right)}{\mu\left(20 \sigma^{2}+9 \mu^{2}\right)},
\end{aligned}
$$

the production quantities are

$$
\begin{aligned}
q_{b}^{D t} & =\frac{(10 a-4 m-6 b \tau \mu) \sigma^{2}+3(a-m) \mu^{2}}{b\left(20 \sigma^{2}+9 \mu^{2}\right)} \\
q_{c s}^{D t} & =\frac{3 a \mu^{2}+8 m \sigma^{2}+6 m \mu^{2}-9 b \tau \mu^{3}-8 b \sigma^{2} \tau \mu}{b\left(20 \sigma^{2}+9 \mu^{2}\right)},
\end{aligned}
$$

and $q_{n s}^{D t}=\tau$. Note that the binding constraint requires $\tau \leq q_{n s}^{D}=\frac{(5 a+4 m) \mu}{b\left(40 \sigma^{2}+27 \mu^{2}\right)}$. Then, taking the first-order derivatives w.r.t. μ and σ respectively, we have

$$
\begin{aligned}
\frac{\partial W_{c s}^{D t}}{\partial \mu} & =-\frac{18 \sigma^{2}\left(10 a \mu+8 m \mu-9 b \tau \mu^{2}+20 b \sigma^{2} \tau\right)}{\left(20 \sigma^{2}+9 \mu^{2}\right)^{2}}<0 \\
\frac{\partial W_{c s}^{D t}}{\partial \sigma} & =\frac{36 \sigma \mu^{2}(5 a+4 m-9 b \tau \mu)}{\left(20 \sigma^{2}+9 \mu^{2}\right)^{2}}>0 \\
\frac{\partial q_{b}^{D t}}{\partial \mu} & =-\frac{6 \sigma^{2}\left(10 a \mu+8 m \mu-9 b \tau \mu^{2}+20 b \sigma^{2} \tau\right)}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{2}}<0 \\
\frac{\partial q_{b}^{D t}}{\partial \sigma} & =\frac{12 \sigma \mu^{2}(5 a+4 m-9 b \tau \mu)}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{2}}>0
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial q_{c s}^{D t}}{\partial \sigma} & =-\frac{24 \sigma \mu^{2}(5 a+4 m-9 b \tau \mu)}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{2}}<0 \\
\frac{\partial q_{c s}^{D t}}{\partial \mu} & =\frac{\left(-160 b \sigma^{4}-468 b \sigma^{2} \mu^{2}-81 b \mu^{4}\right) \tau+120 a \sigma^{2} \mu+96 m \sigma^{2} \mu}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{2}} \\
& \geq \frac{\mu\left(40 \sigma^{2}-9 \mu^{2}\right)(5 a+4 m)}{b\left(20 \sigma^{2}+9 \mu^{2}\right)\left(40 \sigma^{2}+27 \mu^{2}\right)}
\end{aligned}
$$

the latter of which is positive if $40 \sigma^{2}-9 \mu^{2}>0$, i.e., $x<40 / 9$. Furthermore,

$$
\begin{aligned}
\frac{\partial E \Pi_{c s}^{D t}}{\partial \mu}= & -\frac{4 \sigma^{2}(5 a+4 m-9 b \tau \mu)\left(45 a \mu^{3}+36 m \mu^{3}+200 b \sigma^{4} \tau+270 b \sigma^{2} \tau \mu^{2}\right)}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{3}}<0 \\
\frac{\partial E \Pi_{c s}^{D t}}{\partial \sigma}= & \frac{36 \sigma \mu^{4}(5 a+4 m-9 b \tau \mu)^{2}}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{3}}>0, \\
\frac{\partial E \Pi_{o}^{D t}}{\partial \mu}= & \frac{24 \sigma^{2}\left(3 a \mu^{2}+8 m \sigma^{2}+6 m \mu^{2}+12 b \sigma^{2} \tau \mu\right)\left(10 a \mu+8 m \mu-9 b \tau \mu^{2}+20 b \sigma^{2} \tau\right)}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{3}}>0, \\
\frac{\partial E \Pi_{o}^{D t}}{\partial \sigma}= & \frac{2 b^{2} \sigma\left(8000 \sigma^{6}+10800 \sigma^{4} \mu^{2}+7452 \sigma^{2} \mu^{4}+729 \mu^{6}\right) \tau^{2}-144 b \mu^{3} \sigma\left(20 a \sigma^{2}-9 a \mu^{2}-8 m \sigma^{2}-18 m \mu^{2}\right) \tau}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{3}} \\
& -\frac{48 \mu^{2} \sigma(5 a+4 m)\left(3 a \mu^{2}+8 m \sigma^{2}+6 m \mu^{2}\right)}{b\left(20 \sigma^{2}+9 \mu^{2}\right)^{3}}<0
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial E \Pi_{n s}^{D t}}{\partial \mu}=\frac{2 \sigma^{2} \tau\left[-9(5 a+4 m) \mu^{2}-360 b \sigma^{2} \tau \mu+20 \sigma^{2}(5 a+4 m)\right]}{\left(20 \sigma^{2}+9 \mu^{2}\right)^{2}} \\
& \frac{\partial E \Pi_{n s}^{D t}}{\partial \sigma}=\frac{4 \sigma \tau\left[-400 b \tau \sigma^{4}-360 b \tau \mu^{2} \sigma^{2}+9 \mu^{3}(5 a+4 m-18 b \tau \mu)\right]}{\left(20 \sigma^{2}+9 \mu^{2}\right)^{2}} .
\end{aligned}
$$

The numerators of the last two derivatives both include a quadratic function with negative quadratic coefficient and positive constant term, and therefore $E \Pi_{n s}^{D t}$ is unimodal in both μ and σ.

Proof of Proposition 9

When the non-competitive supplier produces at its full capacity and is able to sell the excess components to a spot market, the equilibrium wholesale prices and quantities are

$$
\begin{aligned}
W_{c s}^{D o} & =\frac{20 a \sigma^{2}+16 m \sigma^{2}+9 \mu^{2} W}{40 \sigma^{2}+27 \mu^{2}}=\frac{20 a+16 m+9 x W}{40+27 x} \\
W_{n s}^{D o} & =\frac{2\left(5 a \sigma^{2}+4 m \sigma^{2}+10 \sigma^{2} W+9 \mu^{2} W\right)}{40 \sigma^{2}+27 \mu^{2}}=\frac{2(5 a+4 m+10 W+9 x W)}{40+27 x} \\
q_{b}^{D o} & =\frac{20 a-8 m+9 a x-9 m x+3 x W}{b(40+27 x)} \\
q_{c s}^{D o} & =\frac{32 m+8 a x+28 m x+8 x W+9 x^{2} W}{2 b(40+27 x)} \\
q_{n s}^{D o} & =\frac{x(10 a+8 m-20 W-9 x W)}{2 b \mu(40+27 x)}
\end{aligned}
$$

Therefore,

$$
W_{c s}^{D o}-W=\frac{2(10 a+8 m-20 W-9 x W)}{40+27 x}>0
$$

if and only if $W<\frac{10 a+8 m}{20+9 x}$. Furthermore, if this condition holds, then $W_{n s}^{D o}=\left(W_{c s}^{D o}+W\right) / 2>W$ and $q_{n s}^{D o}>0$.

