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Key Points: 18 

• Using the average and maximum values of neutral densities to determine the model 19 

performances can be misleading  20 

• Removing the quiet-time trend from the neutral density reveals the actual performance of 21 

the model in simulating the storm-time variations 22 

• Mean absolute error, prediction efficiency and normalized root mean square error should 23 

be considered together for the evaluations 24 
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Abstract  36 

Accurate determination of thermospheric neutral density holds crucial importance for satellite 37 

drag calculations. The problem is two-fold and involves the correct estimation of the quiet-time 38 

climatology and storm-time variations. In this work, neutral density estimations from two 39 

empirical and three physics-based models of the ionosphere-thermosphere are compared with the 40 

neutral densities along the CHAMP satellite track for six geomagnetic storms. Storm time 41 

variations are extracted from neutral density by 1) subtracting the mean difference between 42 

model and observation (bias), 2) setting climatological variations to zero, and 3) multiplying 43 

model data with the quiet time ratio between the model and observation. Several metrics are 44 

employed to evaluate the model performances. We find that the removal of bias or climatology 45 

reveals actual performance of the model in simulating the storm-time variations. When bias is 46 

removed, depending on event and model, storm-time errors in neutral density can decrease by an 47 

amount of 113% or can increase by an amount of 12% with respect to error in models with quiet 48 

time bias. It is shown that using only average and maximum values of neutral density to 49 

determine the model performances can be misleading since a model can estimate the averages 50 

fairly-well but may not capture the maximum value or vice versa. Since each of the metrics used 51 

for determining model performances provide different aspects of the error, among these, we 52 

suggest employing mean absolute error, prediction efficiency and normalized root mean square 53 

error together as standard set of metrics for the neutral density.  54 

Plain Language Summary 55 

Thermospheric neutral density is the largest source of uncertainty in atmospheric drag 56 

calculations. Consequently, mission and maneuver planning, satellite lifetime predictions, 57 

collision avoidance and orbit determination depend on the accurate estimation of the 58 
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thermospheric neutral density. Thermospheric neutral density varies in different time scales. In 59 

short time scales, the largest variations occur due to the geomagnetic storms. Several empirical 60 

and physics-based models of the ionosphere-thermosphere system are used for estimating the 61 

variations in the neutral density. However, the storm-time responses from the models are clouded 62 

by the climatology (background variations), upon which the effect of geomagnetic storms are 63 

superimposed. In this work, we show that it is critical to use reference levels for the neutral 64 

density to extract the true performance of the models for the evaluation of the storm-time 65 

performances. We demonstrate that mean absolute error, prediction efficiency and normalized 66 

root mean square error should be considered together for the performance evaluations, since each 67 

of them provides different aspects of the error.  68 

1 Introduction 69 

It is known that the atmospheric drag acting on satellites is significant between the altitudes 160 70 

and 800 km (Zesta and Huang, 2016). Consequently, in atmospheric drag calculations, in orbit 71 

determination, the largest uncertainty comes from the thermospheric neutral density (Hejduk and 72 

Snow, 2018; Bussy-Virat et al., 2017). The effects of the uncertainty in neutral density are not 73 

only limited to orbit prediction, accurate density estimates are also needed for mission and 74 

maneuver planning and collision avoidance (Storz et al., 2005). Low Earth orbit (LEO) satellites 75 

are under the influence of the thermospheric environment and their lifetimes depend on the 76 

variation of the neutral density (Prölss, 2011). Consequently, real-time estimation of the 77 

atmospheric drag, which is important for satellite operations, heavily relies on the correct 78 

estimation of the thermospheric neutral density.  79 

Variations in thermospheric density can be decomposed into three main components: 1) the 80 

variations, which are governed by the solar irradiance (solar-cycle dependent, seasonal, diurnal) 81 
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(Qian and Solomon, 2012), 2) the variations due to upward propagating tides and waves from the 82 

mesosphere (Sutton et al., 2005), and 3) the storm-time variations, which are largely influenced 83 

by the heat sources that come into play during geomagnetic activity, such as Joule heating 84 

(Fedrizzi et al, 2011; Kim et al., 2006), auroral particle precipitation (Deng et al., 2013) and 85 

heating due to small scale field-aligned currents (FACs) (Lühr et al., 2004). The former two 86 

components control the quiet-time variation in neutral density, which is referred to as 87 

climatological (background) variations in this study. In addition, the thermospheric composition 88 

modulates the changes in thermospheric neutral density (Qian et al., 2009). In some geomagnetic 89 

storm cases, the damping of the thermospheric density by NO cooling is significantly stronger 90 

than expected. Those cases are classified as problem storms by Knipp et al. (2013) and it is 91 

shown that the thermosphere’s response is strongly associated with the pre-storm properties of 92 

the solar wind. Different drivers of geomagnetic storms, such as the Coronal Mass Ejections 93 

(CME) and Corotating Interaction Regions (CIRs) cause different environmental responses in the 94 

thermosphere (McGranaghan et al., 2014). CIR and CME effects on thermospheric densities 95 

were investigated in several studies (Chen et al., 2014; Chen et al., 2012; McGranaghan et al., 96 

2014; Lei et al., 2011; Thayer et al., 2008). Even though less geoeffective in terms of Dst 97 

magnitude, the total effect of CIR storms was found to be comparable to CME induced 98 

enhancements in thermospheric neutral density (Chen et al., 2014).   99 

LEO satellite observations and empirical and physics-based models are employed in the 100 

investigations of thermospheric neutral density (Lathuillère et al., 2008; Sutton et al., 2006; Liu 101 

et al., 2005; Pardini et al., 2012; Codrescu et al., 2012; Deng et al., 2013; Solomon et al, 2011). 102 

The Challenging Micro-Satellite Payload (CHAMP) and Gravity Recovery and Climate 103 

Experiment (GRACE) satellites are the most used satellites for the investigations of the neutral 104 
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density and the associated atmospheric drag acting on satellites (Anderson et al., 2009; Picone et 105 

al., 2002; Bruinsma and Forbes, 2010; Liu et al., 2010; Xu et al., 2011; Huang et al., 2014; 106 

Bruinsma, 2015; Bruinsma et al., 2018). Recently, data from Swarm constellation has also been 107 

employed to derive the thermospheric neutral densities (Huang and Zesta, 2016; Siemes et al., 108 

2016; Kodikara et al., 2018). In this kind of approach, the densities are calculated from the 109 

accelerometers on the spacecraft (Sutton, 2005).  110 

However, in-situ measurements from satellites only provide the current state of the 111 

thermosphere. Hence, the empirical models involving semi-physical relations, which take 112 

geomagnetic and solar indices as input and the physics-based models of the ionosphere-113 

thermosphere (IT) are employed to nowcast and forecast of the future state of the IT system in 114 

global scales. The nowcast and forecast of neutral density are necessities for early-action and 115 

response and orbit determination of the LEO spacecraft.  116 

Comparisons between the model and observations are made in different time scales: daily global 117 

mean (Solomon et al., 2011; Qian et al., 2008), orbit averaged (Bowman et al., 2008) and along 118 

the satellite track (Connor et al., 2016; Shim et al., 2012). Comparisons for longer time scales 119 

that are associated with the periodicities in neutral density such as the 27-day, 81-day and yearly 120 

variations were also carried out in several studies (Rhoden et al., 2000; Qian and Solomon, 2012; 121 

Bruinsma et al., 2018).  122 

Several metrics are employed to assess the model performances. For the neutral density studies, 123 

the most used metrics are the mean absolute error (MAE), bias (B), correlation (R), root mean 124 

square error (RMSE), standard deviation (Std), prediction efficiency (PE), ratio of maximum and 125 

ratio of average (Pardini et al., 2012, Shim et al., 2012; Elvidge et al., 2014; Bruinsma, 2015; 126 

Elvidge et al., 2016; Emmert et al., 2017; Kodikara et al., 2018) and the version of the metrics in 127 
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log space (Picone et al., 2002; Sutton, 2018; Bruinsma et al., 2018). Each of these metrics has 128 

advantages and disadvantages (Hyndman et al., 2012; Shcherbakov et al., 2013). For example, 129 

the MAE provides the average difference between the model and observation and it is easy to 130 

use. However, it does not offer any information on the amount of the error when compared to the 131 

variations at large with respect to the event in percentage. Likewise, “ratio”s provide the 132 

difference between the observation and estimate at an instant, but they do not deliver information 133 

on the properties of the temporal evolution of the error. Std and RMSE are highly sensitive to 134 

outliers and may lead to the overestimation of errors in some cases. Among the metrics, the PE is 135 

becoming increasingly used by the space weather community. PE is a dimensionless quantity and 136 

represents the measure of success in reproducing a time series. PE basically compares the order 137 

of magnitude of model errors with the magnitude of variations of the measurements/reference 138 

data. However, one handicap of PE is that, it does not provide the actual value of difference 139 

between the observation and estimations. It is also worth to note that in the literature, same 140 

equations are used in the calculations of all metrics given above, except the bias metric. Bias 141 

may have different definitions based on the study. Bias is sometimes calculated as the difference 142 

between the model and observation in percentage (Pardini et al., 2012) and sometimes as the 143 

mean difference between the model and observation (Elvidge et al., 2016). In our work, we 144 

define model bias as the quiet-time mean difference between the model and observation (mean of 145 

model minus mean of observation). Additionally, we do not use it as a metric, but rather, use the 146 

quiet-time model bias to extract the storm-time variations from the neutral density. The 147 

definitions of the metrics that we use in our study are given in Section 2.3. 148 

As a summary, all metrics provide different aspects of the error. Hence, Chai et al. (2014) 149 

suggests using not only one, but several metrics together, especially in studies involving the 150 
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assessment of more than one model when the error distribution becomes important. 151 

Consequently, this is the case for the neutral density studies and a variety of metrics are 152 

employed together in comparisons. However, there are not any consensus on what to use as a 153 

standard set of metrics. The community need at the current time is to be able to run the models 154 

for real-time calculations of atmospheric drag in support of real-time satellite operations. For this 155 

purpose, there is a need to assess the performances of the models and to specify the conditions 156 

when they perform satisfactorily and when they do not (Shim et al., 2014; Shim et al., 2015). 157 

This study is a continuation of the GEM-CEDAR challenge for the assessment and 158 

benchmarking of the empirical and coupled models of the ionosphere-thermosphere and is a 159 

deliverable of the International Forum on Space Weather Modeling Capabilities Assessment. In 160 

the first study of the series, Shim et al. (2011) compared the model results with the local 161 

measurements available from EISCAT radars for the ionospheric parameters NmF2, hmF2 and 162 

vertical drift with limited latitudinal coverage. Shim et al. (2012) focused on the space-borne 163 

measurements of the NmF2, hmF2, ionospheric electron density and thermospheric neutral density 164 

along the satellite track at the measurement locations. NmF2 and hmF2 from the models were 165 

compared with the observations from the Constellation Observing System for Meteorology, 166 

Ionosphere and Climate (COSMIC) while ionospheric electron density and thermospheric neutral 167 

density were compared using the measurements from CHAMP. In both studies, root mean square 168 

error (RMSE), prediction efficiency (PE), ratio of (max-min) and ratio of maxima were 169 

employed to assess the model performances. They reported that the model performances depend 170 

on the metrics used and varied with latitude and geomagnetic levels. No models outperformed 171 

others in estimating the thermospheric and ionospheric parameters in all cases.  172 
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In model comparison and validation, the absence of a standard set of metrics complicates the 173 

evaluation and synthesis of the results of different studies. As a part of the systematic evaluation 174 

of the models in this study, our aims are to present ways to facilitate the comparison of the 175 

storm-time performances of the models and to provide a useful set of metrics for the neutral 176 

density studies. We present methods to remove the quiet time variations from the neutral density, 177 

so that the storm-time changes are revealed. Accordingly, direct comparisons can be made 178 

between the model estimations and observations from the CHAMP satellite for the disturbed 179 

periods. The climatology removal methods are called as baseline shifts, since they match the 180 

level of quiet-time neutral density estimated from the models with the quiet-time level of neutral 181 

density variations observed by CHAMP. Orbital averages of thermospheric neutral density along 182 

the CHAMP satellite track are used to evaluate the model performance. We show that baseline 183 

shifts are a necessity in order to correctly assess the storm-time performances of the models and 184 

the climatology and storm-time variations should be evaluated separately as the dominant 185 

mechanisms and their time-scales are different in each. In Section 2, the events selected for the 186 

case studies are introduced and baseline shifting methods are described. Section 3 presents the 187 

results and involves the comparison of baseline shifting methods and the neutral density 188 

estimations from the empirical and physics-based models of the IT. Lastly, we conclude the 189 

study and discuss the future needs of the community in Section 4. 190 

2 Data and Methodology 191 

Two empirical and three physics-based models are employed in this study. The empirical models 192 

are Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Extended 193 

(NRLMSISE-00, will be referred to as MSIS, hereafter) (Picone et al., 2002) and Jacchia-194 

Bowman-2008 (JB2008) (Bowman et al., 2008), whereas the physics-based models are 195 
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Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM1.95) 196 

(Richmond et al., 1992), Coupled Thermosphere Ionosphere Plasmasphere electrodynamics 197 

(CTIPe) (Millward et al., 2001; Codrescu et al., 2008) and GITM (Ridley et al., 2006). The 198 

models were run using the NASA Community Coordinated Modeling Center Runs-on-Request 199 

system. The results can be found by searching the simulation IDs that are given in Table S1. 200 

Additionally, Table S1 provides information on the version and the resolution of the models for 201 

each run. For each run and model, the initial parameters and model input are the same. Table S2 202 

shows the input parameters to the models. For physics-based models, ionospheric electric 203 

potentials have to be specified to describe the interaction of the solar wind and magnetosphere 204 

with the ionosphere. This is handled by selecting a high-latitude driver, which describes the 205 

electrodynamic input from the magnetosphere and solar wind into the high-latitude ionosphere 206 

under different solar wind conditions. In this study, Weimer-2005 (Weimer, 2005) ionospheric 207 

potentials are employed as the high-latitude driver for each physics-based model for consistency. 208 

Details on the models and their standard configurations for the runs can be found in (Shim et al., 209 

2011; Shim et al., 2012). 210 

The model results are compared against the newly updated thermospheric neutral density data set 211 

from CHAMP by Mehta et al. (2017), which is referred to as M2017, hereafter. Previous studies 212 

of systematic assessment (Shim et al., 2012; Shim et al., 2014) used older versions of neutral 213 

density data that were also derived from CHAMP accelerometer measurements (Sutton et al., 214 

2005). Besides, prior to the M2017, the most recent version of neutral density data which had 215 

been widely used in comparisons was the Version 2.3 of Sutton (2009). This version is also 216 

detailed on a report by (Sutton, 2011). The differences between the previous versions of neutral 217 

density data sets and the M2017 are associated with the modeling of the drag coefficient (CD), 218 
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which is a coefficient in the equation of satellite drag. The drag coefficient is a number that 219 

depends on the geometry of the spacecraft and the properties of the impinging particles. Precise 220 

calculations of the drag coefficient are necessary for accurate neutral density estimations, since 221 

the neutral density is calculated using accelerometer data, hence the CD. The M2017 considers a 222 

more complicated geometry and uses the most recent advances in the modeling of gas-surface 223 

interactions and the modeling of physical CD. In their work, Mehta et al. (2017) reported 224 

differences up to 20% for some cases with respect to the neutral density estimates of Sutton 225 

(2008). In this study, to give the difference between the newly derived and old data sets, the 226 

Version 2.3 data set (Sutton, 2009) is also included in the comparisons. The (Sutton, 2009) 227 

Version 2.3 is represented as SV2.3 throughout the paper.  228 

In this work, we investigate the storm-time performances of the IT models for six geomagnetic 229 

storms, which were particularly chosen by the GEM-CEDAR community for the systematic 230 

evaluation of the models. According to the NOAA classification based on the Kp index, the 231 

intensity of selected events ranges from weak to severe. Table 1 presents the extreme values of 232 

geomagnetic and solar indices along with the solar wind drivers for the events Hemispheric 233 

Power (HP) index is also given in Table 1 since it is an input to the physics-based models. In the 234 

Table, HSS denotes the high speed streams.  235 

Figure 1 shows the storm-time maximum neutral density on the left, storm-time average neutral 236 

density from the models and M2017 in the middle, and the timing difference between the neutral 237 

density maximum in M2017 and the maximum in models in the right panel, for each 238 

geomagnetic storm case. As evident from the plot, the storm-time maximum and average neutral 239 

densities from M2017 display a decreasing trend with weaker geomagnetic storms. Even though 240 

SV2.3 always shows higher values than M2017, it follows the same trend in neutral densities. 241 
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For the neutral density maximum, all models show the same tendency as in CHAMP 242 

observations, except the 2005-243 event, which is due to an HSS. TIEGCM and JB2008 243 

overestimate the neutral density peak in each event, whereas GITM slightly underestimates in 244 

four of the six events (2005-135, 2005-243, 2007-142 and 2007-91). MSIS neutral density 245 

maxima are higher than M2017 for events with Kp<6, but lower than M2017 for events with 246 

Kp>6, except the 2006-348 event. CTIPe estimates are slightly higher than but very close to 247 

M2017 in most of the events. Overall, CTIPe and GITM are the two models that generally show 248 

the closest neutral density maxima to M2017. 249 

These patterns in the modeled neutral density maxima change in the average neutral densities. A 250 

model overestimating the neutral density maxima in M2017 can give a lower average than the 251 

M2017 or vice versa for the same events. For example, JB2008 and GITM for 2005-135, 252 

TIEGCM for the 2005-243 and MSIS for the 2006-348 and 2007-142 show the opposite 253 

behavior in terms of storm-time neutral density average and maximum. In the figure, it is seen 254 

that MSIS underestimates the neutral density average in all selected events except the 2007-91.  255 

JB2008 overestimates the storm-time neutral density in four of the six events and underestimates 256 

in two events. Neither the MSIS, nor the JB2008 display the decreasing trend with weakening 257 

geomagnetic activity in average neutral density average that is illustrated in M2017 for the 258 

selected event set. Despite, TIEGCM, and GITM display the decreasing trend also for the neutral 259 

density averages, except the 2005-243 event as in neutral density maxima case. None of the 260 

models are found to be consistently closer to M2017 in terms of neutral density average.  261 

Timing differences between the models and M2017 also change with respect to event. 262 

Interestingly, most of the models performed the best in capturing the timing of maximum in 263 

2005-190 event, which is due to a CME during an HSS. The variations in timing differences 264 
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seem to be random. The timing difference between the maxima of M2017 and the models are 265 

found to be between ±7.5 hours. 266 

In Figure 1, the storm-time neutral density maxima and averages include not only the storm-time 267 

neutral density variations but also the climatological variations. That is, the model biases are also 268 

included in evaluations. In the following sections, we show that removing the climatology or 269 

quiet-time model bias reveals the actual performance of the models in simulating the 270 

thermospheric neutral density variations during geomagnetic activity. Our approach for assessing 271 

the storm-time model performances consists of three steps, such as orbit averaging, 272 

climatology/bias removal and assessment of the results. In the following sections, we describe 273 

the tools designed for each step. The codes were written in MATLAB and are in transition to 274 

Python language.  275 

2.1 Orbit Averaging Tool (OAT) 276 

The orbit averaging tool (OAT) is used for taking orbital averages of thermospheric neutral 277 

density from CHAMP and models. Comparisons along the track involve local time effects, 278 

small-scale structures, and diurnal and seasonal variations (Qian and Solomon, 2012; Liu et al., 279 

2005; Lühr et al., 2004; Kwak et al., 2009), which make it hard to specify the reason behind the 280 

difference in model estimations and observations. On the other hand, taking orbital averages 281 

smooths out the temporal and spatial variations due to the spacecraft position on a single orbit 282 

and provides the globally averaged response to the geomagnetic storm. It was also shown 283 

previously by Burke et al. (2007) that the change in orbit-averaged densities occurs 284 

systematically whereas the local density exhibits large variations.  285 
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The OAT works with CHAMP ephemeris data. First, the beginning and end times of each orbit 286 

are determined: an orbit starts at the highest northern latitude, crosses the highest southern 287 

latitude and ends at the highest northern latitude. One orbit lasts approximately 92 minutes. 288 

There are typically ~15 orbits in a day. Neutral density observations from CHAMP and 289 

estimations from each model are averaged over every single orbit of the spacecraft.   290 

2.2 Baseline Shifting Tool (BAST)  291 

In this study, we are concerned with the storm-time performances of the models. Thus, to 292 

compare only the storm-time responses, the baseline shifting tool (BAST) is used. BAST adjusts 293 

the quiet-time neutral density level of the models to match the quiet time level of M2017. The 294 

adjustment is handled by assuming that unless there is a geomagnetic storm, the neutral density 295 

variations will continue to fluctuate around the quiet time level of neutral density. Consequently, 296 

three types of adjustment are employed:1) subtracting the average quiet-time difference between 297 

the models and observation (Shift1-SH1), 2) setting off the climatology to zero by subtracting 298 

the quiet-time neutral density average from the models and the observation (Shift2: SH2), and 3) 299 

multiplying the model results with the quiet time average ratio between the model and 300 

observation (Shift3:SH3). All adjustments are applied separately to the model results. Hereafter, 301 

we call the adjustments as baseline shifts, since they shift the quiet time reference level of the 302 

model results to the observation or to the zero level. In the shifting procedure, the “quiet time” 303 

refers to the neutral density variations, which are only due to the changes in the solar irradiance 304 

and tides. Subsequently, any additional changes in the neutral density that are due to the 305 

geomagnetic disturbances are referred to as storm-time variations. The storm-time variations are 306 

considered to be superimposed on the quiet time neutral density variations (Lühr et al., 2011).  307 
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All three shifts work with the quiet time average of thermospheric neutral density from the 308 

model and observations. Hence, the correct identification of the quiet time intervals is important. 309 

To determine the quiet time intervals, we select a threshold for the Kp index and the neutral 310 

density fluctuations as observed by the CHAMP satellite. An interval is defined as quiet when 311 

Kp < 3- and the orbit-averaged neutral density difference between two consecutive orbits of 312 

CHAMP is less than or equal to 1.25×10-13 kg/m3. The threshold, 1.25×10-13 kg/m3, was 313 

selected by inspecting the orbit-averaged neutral density variations on quiet day cases (2007-79, 314 

2007-190, 2007-341) used in (Shim et al., 2012) (see Figure S1). We define it as the start of the 315 

storm when the increase in CHAMP neutral density is more than 1.25×10-13 kg/m3 and there is 316 

an increasing trend in orbit-averaged neutral density in two consecutive orbits. The end of the 317 

storm is marked as the time when CHAMP neutral densities return to quiet-time average neutral 318 

density level. Table 2 details the shifts that are applied to the thermospheric neutral density. 319 

As a result of the shifting processes, we estimate the errors to be as high as the selected 320 

threshold: ± 1.25×10-13 kg/m3, which is about 5% to 7% of the quiet-time neutral density of the 321 

selected events.  322 

Figure 2 shows the 2006-348 event, which is classified as ‘severe’ according to the NOAA 323 

geomagnetic storm scale based on Kp, as an example event for baseline shifts. The selected quiet 324 

time interval for the event, which was determined according to thresholds for Kp and neutral 325 

density level is between 13/12/2006 15:00 UT and 14/12/2006 14:00. The original time series 326 

from the model and observations are displayed on the left and the shifts 1, 2 and 3 are found on 327 

the right panels. It is seen that most of the models overestimate the neutral densities during the 328 

quiet-time interval. Appropriately, the shifts remove the bias from the models, so that we can 329 

compare the storm-time variations directly between the models and M2017. 330 
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Before the baseline shifting procedure, MSIS is one of the best performing models with a 331 

maximum close to the M2017 for the 2006-348 event. However, with the removal of its bias, it is 332 

found that it actually underestimates the neutral density enhancement due to the geomagnetic 333 

storm. In the case of TIEGCM, the model overestimates the quiet-time neutral density so much 334 

that, the neutral density maximum and average during the storm are the highest among the 335 

models. Consequently, the resulting differences between the model and observation are the 336 

highest when the quiet-time bias is included. On the other hand, shifting the baseline to M2017 337 

levels as seen in panels b and c indicate that the storm-time response as modeled by the 338 

TIEGCM is closer to M2017 than they are before the shift. These cases demonstrate the 339 

usefulness of the shifts in determining the actual storm-time response from the models. 340 

Following the same assumptions as in case of SH1, SH2 and SH3, several other types of shifts 341 

can also be applied to the data to remove the influence of the quiet time bias on the storm-time 342 

performances. For example, an artificial time series can be produced using the quiet-time data by 343 

assuming that the neutral density levels will remain the same on the following day. The easiest 344 

way to produce an artificial time series is to sequentially iterate the neutral density during the 345 

quiet time period to cover the entire event interval. Afterwards, this newly generated time series 346 

can be used for point-to-point subtraction of 1) bias (Shift4, SH4) and 2) quiet time neutral 347 

density at the same instant (Shift5-SH5) or for 3) point to point multiplication using the quiet 348 

time ratios (Shift6-SH6). These procedures were also investigated in this work. However, since 349 

the results of point-to-point shifts are similar to shifts based on quiet time averages, which are 350 

described above, we chose to present only the results from SH1, SH2 and SH3. However, the 351 

results of all shifts for the selected events are provided in the supplement from Figure S2 to 352 
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Figure S7. The figures demonstrate that, point-to-point shifting processes may lead to unphysical 353 

variations in neutral density as in the case of GITM for weak events in this study. 354 

2.3 Performance Assessment Tool (PAT) 355 

After adjusting the baseline of the model and observations, storm-time model performances are 356 

evaluated according to the M2017 data set. Performance Assessment Tool (PAT) measures the 357 

model performances during individual events according to seven metrics. Those are: ratio 358 

between the model maximum and CHAMP maximum (Ratiomax), ratio between the model mean 359 

and CHAMP mean (Ratioavg), time delay between the peak of the model and peak of the 360 

CHAMP observation (TD), mean absolute error (MAE), normalized root mean square error 361 

(NRMSE), prediction efficiency (PE) and integrated density change (IDC). Equations from 1 to 362 

7 show the definitions of the metrics. The subscripts “i” and “j” represent the orbit number 363 

during the quiet-time and entire event and “t”, the time of the orbit, respectively. All calculations 364 

are based on the storm-time variations after performing the baseline shifts. 365 

Ratio𝑚𝑎𝑥 = 𝜌𝑚𝑜𝑑𝑒𝑙,𝑚𝑎𝑥
𝜌𝑀2017,𝑚𝑎𝑥

             (1) 366 

Ratio𝑎𝑣𝑔 = 𝜌𝑚𝑜𝑑𝑒𝑙,𝑎𝑣𝑔

𝜌𝑀2017,𝑎𝑣𝑔
            (2) 367 

TD =  𝑡𝑚𝑜𝑑𝑒𝑙,𝑚𝑎𝑥 − 𝑡𝑀2017,𝑚𝑎𝑥           (3) 368 

MAE = ∑ |𝜌𝑀2017,𝑖 − 𝜌𝑚𝑜𝑑𝑒𝑙,𝑖| /𝑁          (4) 369 

NRMSE = 𝑅𝑀𝑆𝐸 (𝜌𝑀2017,𝑚𝑎𝑥 − 𝜌𝑀2017,𝑚𝑖𝑛)⁄ = �∑ (𝜌𝑀2017,𝑖−𝜌𝑚𝑜𝑑𝑒𝑙,𝑖)2

𝑁
(𝜌𝑀2017,𝑚𝑎𝑥 − 𝜌𝑀2017,𝑚𝑖𝑛)�   370 

       (5) 371 

𝑃𝐸 = 1 − 𝑅𝑀𝑆𝑚𝑜𝑑𝑒𝑙 𝑅𝑀𝑆𝑀2017⁄ = 1 −�∑(𝜌𝑀2017,𝑖−𝜌𝑚𝑜𝑑𝑒𝑙,𝑖)2

∑(𝜌𝑀2017,𝑖−𝜌𝑀2017,𝑖)2
       (6) 372 
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IDC =  ∑ �∑ 𝜌𝑑𝑎𝑡𝑎,𝑡 − 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑡𝑒𝑛𝑑
𝑡𝑠𝑡𝑎𝑟𝑡 �

𝑗
𝑛𝑜𝑟𝑏𝑖𝑡
𝑗=1 ; 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = ∑ �∑ 𝜌𝑑𝑎𝑡𝑎,𝑡

𝑡𝑒𝑛𝑑
𝑡𝑠𝑡𝑎𝑟𝑡 �

𝑖
𝑞𝑜𝑟𝑏𝑖𝑡
𝑖=1 /𝑞𝑜𝑟𝑏𝑖𝑡  (7) 373 

Among the metrics, the IDC works with the orbit and storm-time integrated neutral densities. 374 

The subscript “data” in Equation 7 denotes model or M2017 data. 𝑞𝑜𝑟𝑏𝑖𝑡is the total number of 375 

orbits during the quiet time interval. 𝑛𝑜𝑟𝑏𝑖𝑡 is the total number of orbits during the entire event 376 

and “tend” and “tstart” denote the start and end times of each orbit. Accordingly, 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 377 

represents the average of the orbit-integrated neutral density during the quiet time.  378 

In contrast, other metrics use the orbit-averaged neutral densities. The perfect score for the ratios 379 

(Ratiomax, Ratioavg) is 1, whereas TD should be zero, meaning there is no lag between the peak of 380 

the model and the time of the maximum from CHAMP. Determining the TD for less intense 381 

events is different from determining the TD for intense events. In intense events, the maximum 382 

of the neutral density is distinguishable, whereas in less intense events, there may be numerous 383 

local maxima. Consequently, we first mark the timing of the maximum neutral density from 384 

M2017, then detect the timing of the closest local maxima from the models. MAE gives the 385 

average distance between the observation and model estimations. Values approaching to zero 386 

indicate better agreement between the model and observations. Furthermore, MAE gives a 387 

dimensioned skill score, that is, it has the same units with the neutral density (kg/m3). On the 388 

other hand, ratios, NRMSE and PE are dimensionless. PE varies between 1 and negative infinity. 389 

PE equals to 1 indicates perfect agreement between the model and observations whereas PE=0 390 

means the model errors are in the same order with the variations of the observations. Negative 391 

PE values show that the observed mean is a better estimate for forecasts than the model (Shim et 392 

al., 2012). The NRMSE, is the normalized version of RMSE. The NRMSE gives errors in 393 

percentage. RMSE, consequently, NRMSE, vary with the variability of error magnitudes and the 394 
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mean absolute error (Wilmott and Matsuura, 2005). When interpreted together with the MAE, 395 

NRMSE provides information on the variability of error magnitudes.  396 

3 Results and Discussion 397 

In this section, we present the storm-time performances of the models after the baseline shifting 398 

methods are applied to the observation and model neutral density estimations from the models. 399 

Figure 3 presents the ratio of maximum neutral density (top row) and ratio of average neutral 400 

density (middle row) from each model to M2017. The best agreements are displayed between the 401 

SV2.3 and M2017 for all events before and after the baseline shifting. The SH3 yields the best 402 

results among the shifts for the SV2.3 and lead to one-to-one match between the M2017 and 403 

SV2.3 for all events. This is because M2017 and SV2.3 are only different by a constant factor in 404 

each event and SH3 finds and removes this factor by using the ratio between the SV2.3 and 405 

M2017 during the selected quiet time interval.  406 

For MSIS, CTIPe and GITM, baseline shifting causes the ratio of maximum to diverge from 1 407 

for some events, whereas for TIEGCM and JB2008 the shifts cause performance enhancement in 408 

capturing the maximum in M2017. MSIS and GITM are found to underestimate the maximum in 409 

M2017 generally, after the shifts. For all models, SH1 produces the closest ratios to 1 among the 410 

shifts for both the ratio of maximum and ratio of average neutral densities. SH2 causes the ratios 411 

to be more spread for all events and models. Using SH3 leads to the underestimation of neutral 412 

density average and maximum for all models except the JB2008. For JB2008, after the SH3, the 413 

ratios approach closer to 1 with respect to other shifts for most of the events. However, there is 414 

still overestimation in two of the events. Additionally, in TIEGCM, the 2005-135 event shows a 415 
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distinct behavior and captures the maximum in M2017 better after SH3. CTIPe overestimates for 416 

events with Kp<7 and underestimates in with Kp≥7 before and after the shifts.  417 

Qualitatively, the same conclusions mostly hold true for the ratio of neutral density averages and 418 

maxima from the models; only the amount of underestimation or overestimation changes. 419 

However, a model overestimating the neutral density maximum may underestimate the average 420 

density as in JB2008 case for the 2006-348 event. Moreover, a model underestimating the neutral 421 

density maximum may overestimate the average density as in CTIPe for the event 2005-243 and 422 

GITM as in events with Kp≥7.  423 

Timing differences between the maximum in M2017 and the models are shown on the bottom 424 

row in Figure 3. SH1, SH2 and SH3 do not change the lags between the model maximum and 425 

M2017. This is natural as only a constant value is used for the baseline shifts.  426 

Figure 4 depicts the changes of the neutral density maximum (left panel) and average (middle 427 

panel) from the quiet time values in percentage. Right panel shows the time and orbit-integrated 428 

density change (IDC). The percentage change from the background variations and the IDC are 429 

calculated around the zero-baseline level when all climatology is removed. Accordingly, SH2 is 430 

used in the calculations of percentage change and the IDC. The percentages are calculated as 431 

%𝐶ℎ𝑎𝑛𝑔𝑒 = 100 × (𝑠𝑡𝑜𝑟𝑚 − 𝑞𝑢𝑖𝑒𝑡) 𝑞𝑢𝑖𝑒𝑡⁄ ..  432 

In M2017, the change in neutral density maximum due to the geomagnetic storm is found to be 433 

nearly as twice as the change in neutral density average for the observations and models for all 434 

events. The change in neutral density maximum ranges from 200% to 90% and the change in 435 

neutral density average ranges from 100% to 45%. Both the change in maximum and average of 436 

the observations (M2017 and SV2.3) show a decreasing trend with lower geomagnetic storm 437 
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intensity in terms of Kp. TIEGCM and CTIPe estimate the closest percentages to M2017 for 438 

events with Kp≤7. CTIPe also performs reasonably well for events with Kp≥7.  439 

In the right panel, geomagnetic storms with less Kp, which are due to HSSs (2007-142, 2005-440 

190) display IDCs as large as the events due to CMEs (2005-135, 2006-348). There is not any 441 

model, which is consistently closer to the IDC from M2017. However, MSIS is closer to M2017 442 

more times than the other models (4 of the 6 selected cases: 2006-348, 2005-243, 2007-142, 443 

2007-91). TIEGCM overestimates in all events. Similar to TIEGCM, JB2008 and CTIPe are 444 

higher than the M2017, except the 2005-135 and 2005-243 events, respectively. GITM shows a 445 

distinction between Kp≥6+ and Kp<6+ events: it overpredicts the IDC in events with Kp≥6+ and 446 

under predicts for events with Kp<6+ for the selected events.  447 

Figure 5 presents mean absolute error (MAE), normalized root mean square error (NRMSE) and 448 

prediction efficiency (PE) of the models for the selected events. MAE and NRMSE are 449 

negatively-oriented skill scores, meanwhile PE is positively-oriented. This means that, lower 450 

values of MAE and NRMSE are more desirable whereas PE closer to one shows the perfect 451 

agreement between the models and M2017, in our case.  452 

From Figure 5, the effect of baseline shifts on the storm-time performance of the models can be 453 

distinguished. It is found that generally, the calculated errors after the baseline shifts are on the 454 

same order for all models and range between 1% and 20%. In the figure, baseline shifts are 455 

found to reduce the errors (MAE, NRMSE and PE) for the TIEGCM and SV2.3 for all cases. 456 

Additionally, as in the case of the ratios, SV2.3 errors are more efficiently reduced using the SH3 457 

compared to the other shifts.  458 
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The MAE provides information on the amount of mean error in dimensioned units (kg/m3, in the 459 

case of thermospheric neutral density). For the selected event set, MAE is found to be high for 460 

strong events and low for weak events after the baseline shifts (except for GITM in 2005-243 461 

and CTIPe in 2006-348), which is consistent with the findings of (Shim et al., 2012). Moreover, 462 

Figure S8 shows that the behavior of RMSE is the same with MAE in all cases and models and 463 

the amount of error grows with respect to event intensity. The amount of error increases with 464 

stronger events because the temporal variability of the thermospheric neutral density is higher in 465 

stronger geomagnetic storms. Normalization shows the errors are actually around the same order 466 

of magnitude in terms of percentage for the events. A high MAE may account for a low NRMSE 467 

based on the variation of the thermospheric neutral density during the event. On the other hand, 468 

an increase in MAE after the shift, with respect to the original time series without shift, mirrors 469 

itself as an increase in NRMSE with respect to the original time series, as well. Thus, basically, 470 

the MAE and NRMSE provide the same information on the change in errors. However, NRMSE 471 

gives the additional information that how much this error accounts for from the perspective of 472 

the variability of the thermospheric neutral density based on the event.  473 

The NRMSE from the models are confined between 60% and 10% after the shifts. Before the 474 

shift, TIEGCM has the maximum NRMSE with ~125% for the event 2007-91. The shifts 475 

revealed that its actual storm-time performance to be on the order of ~12% (SH1, SH2) to ~33% 476 

(SH3) for the same event. In contrast, MSIS has a minimum error around ~25%, which increases 477 

to ~37% (SH1, SH2) to ~41% (SH3) for the event 2005-135.  478 

The 2005-135 is an exceptional case as can be seen from MAE, RMSE, NRMSE and PE of the 479 

TIEGCM. Interestingly, only for TIEGCM among the other empirical and physics-based models 480 

of the IT and only in this event, baseline removal via ratios (SH3) reduces the error more than 481 
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the shifts based on subtraction. In this case, the storm-time variation is so high and strong that it 482 

is compensated by taking ratios. However, we argue that this is not the actual performance of the 483 

model. Since storm effects are generally additions to the background neutral density (Lühr et al., 484 

2011), in the case of this event, the model, in fact, overestimates the storm-time variations so 485 

much that the error is reduced via the SH3, which uses quiet-time ratios. On the other hand, for 486 

other events, SH3 gives rise to the underestimation of the average and maximum values of the 487 

neutral density from TIEGCM (Figures 2 and 3, Figures S2 to S6).  488 

The PE on the right column shows the same variations with the NRMSE according to the event. 489 

The PE increases when the NRMSE increases and vice versa. The PEs of TIEGCM for the 490 

original, unshifted model neutral density are so low that the scales are compressed in the figure. 491 

However, after the shifts, there is a clear improvement in model performances, which can be 492 

seen from the frame interior to the figure.  493 

The errors in TIEGCM seem to increase with the intensity of the geomagnetic storm. After 494 

removing the climatology via the baseline shifts, the errors in CTIPe and JB2008 are also found 495 

to decrease except the 2006-348 and 2005-135 events, respectively. The events with the most 496 

errors in CTIPe model are found to be the problem cases, which Knipp et al., 2013 listed (2005-497 

190, 2005-243 and 2005-135). In the problem events, the damping of the thermospheric density 498 

by NO cooling is more than expected, so that the density may not enhance as high as, that 499 

estimated by the IT models. However, we should note that the version of CTIPe that is used in 500 

this work does not include the correction to NO cooling at high Kp levels. From the selected 501 

events, GITM appears to show a reduction in error for events with Kp≥6+ and growth in errors 502 

for the events with Kp<6 after the baseline shifts. On the contrary, after the removal of the 503 
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climatology, for MSIS, the errors in the selected cases give the impression that they increase for 504 

events with Kp≥6+, except the 2005-135 event, and decrease for events with Kp<6.  505 

In our selected cases, after SH1 or SH2, TIEGCM performed the best for events with Kp<7 506 

according to all metrics. Moreover, TIEGCM demonstrated the highest PE for most of the cases. 507 

Lastly, it is found that the SH3 reduces the errors more than the other shifts for the SV2.3, since 508 

neutral density is derived from the accelerometer on spacecraft and the error can be multiplied 509 

during this process. All shifts and all events in terms of MAE, NRMSE, and PE show that the 510 

SH3 works perfectly for the SV2.3 and the errors are on the order of ~1%, with a maximum of 511 

~2.5%. 512 

In addition to the errors from the models using the shifts SH1, SH2, and SH3 provided above, the 513 

errors for the shifts with point-to-point subtraction and multiplication (SH4, SH5, SH6) are given 514 

in the supplement (Figure S10, Figure S11). It can be seen from Figure S10 and Figure S11 that 515 

the choice of the baseline shifting method does not affect the performance outcome of the 516 

models. The errors obtained by using SH1 and SH4, SH2 and SH5 and SH3 and SH6 are very 517 

close to each other. 518 

Furthermore, additional metrics may be utilized serving to the special purposes of the studies. 519 

For example, since their technique for data assimilation aims to reduce the errors in logarithmic 520 

densities, Sutton (2018) used mean, normalized standard deviation and root mean square (rms) 521 

errors of the log density ratio (𝑙𝑛 (𝜌𝑚𝑜𝑑𝑒𝑙 𝜌𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛⁄ )) in their work. For the sake of 522 

comparison, we also tested these metrics for our events. Figure S9 presents the results. The 523 

logarithmic mean gives similar results to the Ratioavg for all shifts, whereas for SH2, the errors 524 

from the models are amplified in standard deviation and rms relying on the 525 
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ln(model/observation) ratio. The rms of log density ratio in SH1 and SH3 are found to be very 526 

close to NRMSE.  527 

4 Summary and Conclusion 528 

In this study, we had two aims: 1) to find methods to facilitate the evaluation of the storm-time 529 

performance of models and 2) to suggest a standard set of metrics to determine the model 530 

performances.  531 

For the first part, we presented methods to remove the quiet-time bias/climatology from the 532 

models and referred to these methods as “baseline shifts”. Shifts are based on subtraction of bias 533 

from the models (SH1), subtraction of climatology from model and observation (SH2) and 534 

multiplication of the quiet-time ratio between the model and observation with the model to match 535 

the quiet-time neutral density level of observation (SH3). It was shown that defining the quiet-536 

time reference level is very critical in determining the actual storm-time performances. In some 537 

events and models, the shifts were found to reduce the errors due to climatology in evaluating the 538 

storm-time performances up to 113% (TIEGCM-2007-91: 125% to 12%) whereas in some 539 

events, they increased the errors by 13% (MSIS-2005-135: 12% to 25%). 540 

For the storm-time performance assessment of the models, SH1 and SH2 are found to work 541 

equally well. The choice of different baseline levels (shifting the models to the level of CHAMP 542 

observations or shifting observations and models to zero level by removing all the climatology) 543 

does not change the amount of error associated with a model. Besides, SH3 increases the 544 

variability of the errors from the models when compared to the other shifts. This is due to the 545 

fact that the storm-time effects are generally superimposed upon the background (climatological) 546 

variations and their nature is not multiplicative. Hence, modifying the original time series using 547 
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ratios does not work as efficiently as the subtraction process for the empirical and physics-based 548 

models.  549 

On the other hand, SH3 is efficient when comparing M2017 and SV2.3 as it depends on the quiet 550 

time ratios. The difference between these two data sets is only a constant number, which depends 551 

on the modeling of the Cd and the geometry of the spacecraft. Therefore, the SH3 works the best 552 

for SV2.3 when compared to other shifts. Hence, when neutral density is derived from 553 

accelerometer data, systematic error and bias can be multiplied, so it is reasonable to divide to 554 

remove them. It follows that the findings of the past model validation studies which used SV2.3 555 

can be re-evaluated and calibrated using the SH3. 556 

From the selected cases, it appears that, TIEGCM is more successful in low Kp events, and its 557 

success rate decreases with the intensity of the storm. GITM shows a reduction in error for 558 

events with Kp≥6+ and increase in errors for the events with Kp<6. On the contrary, the model 559 

errors increase for MSIS for events with Kp≥6+, except the 2005-135 event, and decrease for 560 

events with Kp<6 in this event set. JB2008 does not show any systematic errors for the selected 561 

events. After the removal of the quiet time bias/climatology between M2017 and the models, 562 

TIEGCM seems to perform the best in terms of all metrics for most of the selected events, 563 

followed by CTIPe and GITM. For the selected cases, JB2008 was closer to M2017 than MSIS 564 

for more of the events.  565 

Three of the six events selected in this study were listed as problem storms by (Knipp et al., 566 

2013). They reported that the modeling of these storms is more difficult with respect to several 567 

other events with less NO production. The NO cooling during these events restrict the neutral 568 

density enhancement and neutral density does not increase as high as expected from the models. 569 

In our event set, for these storms, the range of errors from the models are between 13% and 40% 570 

This article is protected by copyright. All rights reserved.



and do not greatly differ from the other cases. Thus, we do not see any distinction among model 571 

performances with respect to the solar wind drivers of the events. On the other hand, 572 

performances of the MSIS, TIEGCM and GITM suggest differences based on Kp.  573 

Furthermore, it is possible to estimate integrated neutral density change (IDC) during the storm 574 

via SH2, which shifts the baseline to zero level. IDC is important as drag has a cumulative effect 575 

on orbit determination and prediction (Emmert et al., 2017). For the evaluations in drag 576 

calculations, we suggest using the upper limits for IDC that are calculated after SH2 to stay on 577 

the safe side. In terms of the IDC metric, MSIS was found to be the closest to the M2017 in more 578 

events than the other models studied here. This may be due to the fact that MSIS is trained with 579 

the integrated neutral density (Picone et al., 2002). 580 

The second part of this study involves selecting a standard set of metrics to quantify the errors in 581 

neutral density. Seven metrics were investigated for this purpose: the ratio between the model 582 

maximum and CHAMP maximum (Ratiomax), ratio between the model mean and CHAMP mean 583 

(Ratioavg), time delay between the peak of the model and peak of the CHAMP observation (TD), 584 

mean absolute error (MAE), normalized root mean square error (NRMSE), prediction efficiency 585 

(PE) and integrated density change (IDC). In this study, we show that Ratiomax and Ratioavg may 586 

not be consistent with each other even after the baseline shifting procedure. A model 587 

overestimating the ratio of maximum may predict the Ratioavg well. This is due to the shape of 588 

the response curve and is controlled by how fast the growth and decay rates of the neutral density 589 

are within the model. Thus, neither the neutral density maximum nor the neutral density average 590 

is definitive in model performance assessment when used alone. In this study, consistency is 591 

achieved between the skill scores MAE, RMSE, NRMSE and PE after the baseline shifts. 592 

Consequently, we suggest using MAE, NRMSE and PE together for the neutral density 593 
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evaluations. MAE will provide the mean amount of error, NRMSE, the error percentage with 594 

respect to the event and PE will provide how efficient the model is in capturing the variability 595 

and mean of the neutral density observations.  596 

To conclude, we have shown that baseline shifting is useful in assessing the storm-time model 597 

performance when models have bias against the data during the quiet-time. Removal of the 598 

baseline allows for the detection of actual storm-time response and performances from the 599 

models. We emphasize that quiet-time climatology and storm-time performances of the models 600 

should be evaluated separately, and after baseline shifts, especially for the models with quiet-601 

time bias. Even though, we focused on the storm-time performances of the models in this work, 602 

we emphasize that for the long-term estimations of satellite drag, it is important to provide the 603 

background neutral density precisely. 604 

For satellite drag calculations, the accuracy of neutral density estimations is important. This 605 

study shows, the IT models present variable errors depending on the event. None of the models 606 

perform perfectly for all cases. In such cases, the uncertainty in thermospheric neutral density in 607 

an event can be represented well by using an ensemble of models and iterating the results 608 

(Elvidge et al., 2016). In an operational scenario, the ensemble method and baseline shifts using 609 

the previous, quiet-day estimations can be used together to tune the models and their output, so 610 

that the storm-time variations can be better estimated. Murray (2018) demonstrated the 611 

usefulness of ensembles in space weather forecasting to determine the uncertainty and (Knipp, 612 

2016) reported the studies, which use the ensemble method for space weather forecasting. We 613 

also point out that multi-model ensemble forecasts can be of great use and are candidates for 614 

future work, especially in respect of the integrated density change, maximum and average neutral 615 
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density which are found to be highly variable among the models and are important in satellite 616 

drag calculations and for real-time operations.  617 
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Event Kpmax F10.7 Dstmin (nT) HPmax (GW) Driver 

2005-135 8+ 103 -247 1225 CME 
2006-348 8+ 93.6 -162 504 CME 
2005-243 7 84 -122 260 HSS 
2005-190 6+ 106.6 -92 238 HSS 
2007-142 5+ 72 -58 197 HSS 
2007-091 5 71.7 -63 286 HSS 

 818 

 819 

Table 2. Baseline shifts. ρold is the original orbit-averaged time series whereas ρnew is the 820 

baseline shifted time series. Subscript index “n” represents the orbit numbers for the entire event 821 

(quiet+storm) interval, “i” stands for the orbit number during the selected quiet time interval of 822 

the event. Overbars denote the mean. 823 

Shifts Shifting Parameter Shifted Series Reference Level 

Shift1 (SH1) S1=ρ𝑐ℎ𝑎𝑚𝑝,𝚤  −  ρ𝑚𝑜𝑑𝑒𝑙,𝚤������������������������� ρnew,n= ρold,n-S1 CHAMP 

Shift2 (SH2) 
S2=ρ𝑐ℎ𝑎𝑚𝑝,𝚤���������� for CHAMP 

S2=ρ𝑚𝑜𝑑𝑒𝑙𝑠,𝚤����������� for models 
ρnew,n= ρold,n-S2 Zero 

Shift3 (SH3) S3=ρ𝑐ℎ𝑎𝑚𝑝,𝚤/ ρ𝑚𝑜𝑑𝑒𝑙,𝚤����������������������; ρnew,n= ρold,n× S3 CHAMP 

 824 
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Figures: 825 

Figure 1. From left to right: storm-time maximum in neutral density, storm-time average neutral 826 

density, timing difference between the peak of models and M2017. The circles denote neutral 827 

density estimations based on accelerometers on CHAMP: orange, SV2.3 and dot-centered black, 828 

M2017. The triangles and the diamond show the model estimations: red, right-triangle: MSIS; 829 

blue, left-triangle: JB2008; green, up-triangle: TIEGCM; cyan, down-triangle: CTIPe; pink, 830 

diamond: GITM. X-label is the events listed from severe (Kp>8) to weak (Kp=5) starting from 831 

left to right, according to the NOAA classification based on Kp values. 832 

Figure 2: An example event: 2006-348. First row, from left to right: a) top: Neutral density from 833 

the model and observations without shift; below: Kp and Dst indices, neutral density estimations 834 

from the models and M2017 after b) SH1, c) SH2, d) SH3. 835 

Figure 3: From top to bottom: storm-time ratio of maximum neutral density of the models to 836 

M2017, storm-time ratio of average neutral density from the models to M2017, timing difference 837 

between the peak of models and M2017. From left to right: SV2.3, MSIS, JB2008, CTIPe, 838 

GITM and TIEGCM. O denotes the results for the original, unshifted time series whereas SH1 to 839 

SH3 represents the shifts from Shift1 to Shift3. Red symbols represent the severe events with 840 

high Kp; cyan denotes strong event with Kp=7; black is for 7>Kp>6; and green color is for weak 841 

events with Kp around 5. Circle represents the event 2005-135; square, 2006-348; up-triangle, 842 

2005-243; down-triangle, 2005-190; cross, 2007-142; plus, 2007-91. 843 

Figure 4: From left to right: storm-time orbit and time integrated neutral density, storm-time 844 

change in maximum neutral density, storm-time change in mean neutral density. The symbol and 845 

colors are the same as Figure 1. 846 
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Figure 5: From top to bottom: MAE, NRMSE, PE. From left to right: SV2.3, MSIS, JB2008, 847 

CTIPe, GITM and TIEGCM. KP scales, axis labels, colors and symbols are the same as Figure 3. 848 

Please note that the y-axis scales for TIEGCM is different than the other panels for the three 849 

parameters. Additionally, for TIEGCM, PE results after the shifts SH1 to SH3 are shown in 850 

another frame inside the PE panel with scaled y-axis. The inside frame has the same y-axis scale 851 

as the other panel for PEs. 852 
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