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Abstract Postsunset midlatitude traveling ionospheric disturbances (TIDs) and equatorial plasma
bubbles (EPBs) were simultaneously observed over American sector during the geomagnetic storm on

8 September 2017. The characteristics of TIDs are analyzed by using a combination of the Millstone Hill
incoherent scatter radar data and 2-D detrended total electron content (TEC) from ground-based Global
Navigation Satellite System receivers. The main results associated with EPBs are as follows: (1) stream-like
structures of TEC depletion occurred simultaneously at geomagnetically conjugate points, (2) poleward
extension of the TEC irregularities/depletions along the magnetic field lines, (3) severe equatorial and
midlatitude electron density (Ne) bite outs observed by Defense Meteorological Satellite Program and
Swarm satellites, and (4) enhancements of ionosphere F layer virtual height and vertical drifts observed by
equatorial ionosondes near the EPBs initiation region. The stream-like TEC depletions reached 46° magnetic
latitudes that map to an apex altitude of 6,800 km over the magnetic equator using International
Geomagnetic Reference Field. The formation of this extended density depletion structure is suggested

to be due to the merging between the altitudinal/latitudinal extension of EPBs driven by strong prompt
penetration electric field and midlatitude TIDs. Moreover, the poleward portion of the depletion/irregularity
drifted westward and reached the equatorward boundary of the ionospheric main trough. This westward
drift occurred at the same time as the sudden expansion of the convection pattern and could be attributed
to the strong returning westward flow near the subauroral polarization stream region. Other possible
mechanisms for the westward tilt are also discussed.

1. Introduction

Geomagnetic storm can deposit considerable energy and momentum into auroral zone via precipitating
particles, Joule heating, or Lorenz forces. These energy deposition can generate large amplitude atmo-
spheric gravity waves (AGWs) that are manifested in the ionosphere as large-scale traveling ionospheric
disturbances (LSTIDs; Hines, 1960; Hunsucker, 1982). LSTIDs normally have horizontal wavelengths of
more than 1,000 km, propagation speeds of 400-1,000 m/s, and periods of 30-180 min. Besides LSTIDs,
medium-scale TIDs (MSTIDs) are typically measured at midlatitudes during both quiet and disturbed condi-
tions, which have horizontal wavelengths of several hundred kilometers, propagation speeds of 100-250 m/s,
and periods of 15-60 min. For many years, TIDs have been intensively observed and studied by using dif-
ferent techniques, such as ionosondes (Afraimovich et al., 2008; Bowman, 1992; Bowman & Mortimer, 2011),
Doppler measurements of HF radars (Hayashi et al., 2010; Jacobson & Carlos, 1989), incoherent scatter radars
(ISR; Kirchengast et al., 1996; Nicolls & Heinselman, 2007; Nicolls et al., 2004; van de Kamp et al,, 2014), and
all-sky airglow imagers (Shiokawa et al., 2003, 2005). Recently, with the rapid growing of worldwide Global
Navigation Satellite Systems (GNSS) receivers, the structure and evolution of TID have been further studied by
using high-resolution ionospheric total electron content (TEC) maps (e.g., Ding et al., 2008, 2007, 2014; Otsuka
et al., 2013; Pradipta et al., 2016; Shiokawa et al., 2002; Tsugawa et al., 2003, 2006; Zakharenkova et al., 2016).
LSTIDs excited from the auroral zones can propagate toward the equator and experience various changes due
to interaction with background ionosphere, such as energy dissipation caused by ion drag (Tsugawa et al.,
2004) and changes in propagation velocity/period under the influence of thermospheric winds (Ding et al.,
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2003). Thus, the middle- to low-latitude ionosphere during storm time can be subjected to intrusions of TID
perturbations originated from auroral latitudes.

On the other hand, the equatorial ionospheric irregular structures, such as equatorial plasma bubbles (EPBs),
can be intensified and exhibit poleward expansion during a storm. Plasma bubbles appear mainly after sunset
under the driving mechanism of the Rayleigh-Taylor (R-T) instability in the bottomside ionosphere. The pre-
reversal enhancement (PRE) of the zonal electric field can enhance the upward drift of the F layer, which can
increase the growth rate of R-T instability and thereby facilitate the development of EPBs (Abadi et al., 2015;
Abdu, 2005; Huba & Joyce, 2007; Kil, 2015; Li et al., 2008). During storm time, the occurrence of EPBs can be
enhanced or suppressed due to two different perturbation electric fields: (1) the prompt penetration electric
field (PPEF), which is created by solar wind-magnetosphere coupling after the southward turning of interplan-
etary magnetic field (IMF) B,, can superpose upon the normal PRE to facilitate the development of EPBs on
the duskside (Abdu et al., 2003; Basu et al., 2001, 2007; Huang et al., 2010; Ram Tulasi et al., 2008); (2) iono-
spheric disturbance dynamo electric field, which is caused by changes in global thermosphere circulation due
to Joule heating in the auroral zone, can inhibit the occurrence of EPBs on the duskside (Carter et al., 2016; Li,
Ning, Liu, et al., 2009; Ramsingh et al., 2015; Scherliess & Fejer, 1997). In addition, the substorm-related shield-
ing electric field could also influence the zonal electric field (Ebihara & Tanaka, 2015; Jin et al., 2018). Moreover,
several studies have found that under favorable storm time PPEF/PRE conditions, the EPBs can rise to higher
altitude with plasma depletion extending along the magnetic field lines to midlatitude regions (e.g., Foster &
Rich, 1998; Kelley et al., 2003; Ma & Maruyama, 2006; Mendillo et al., 2005), while in some extreme cases, the
depletion signatures can even be measured around 40° magnetic latitude (MLAT; e.g., Aa et al., 2018; Cherniak
& Zakharenkova, 2016; Katamzi-Joseph et al., 2017; Martinis et al., 2005). Hence, the storm time morphology of
midlatitude ionosphere can be influenced by disturbances initiated from both auroral and equatorial regions.

Although there have been many observations of EPBs and TIDs, these two phenomena are usually studied
separately. Actually, these two processes can interact with each other to generate more complicated struc-
tures. Some studies have indicated that the AGW/TIDs can play a role of seed perturbation in triggering plasma
bubbles (e.g., Abdu et al., 2015; Krall et al., 2011; Li et al., 2016; Li, Ning, Zhao, et al., 2009; Taori et al., 2015; Taka-
hashi et al., 2018). Moreover, some other studies presented observations that the EPBs-related depletions can
be embedded in or even counteracted by the wavy structures of TIDs (Ding et al., 2012; Ogawa et al., 2005;
Otsuka et al.,, 2012). Considering the impact of these disturbances on space application systems as well as
the above-mentioned scientific concerns, the coupling process of TIDs and EPBs is one of the key issues that
worth further investigation. In this paper, we present a unique event with simultaneous observations of EPBs
and TIDs over American sector during an intense storm on 8 September 2017. The evolutionary characteristics
and coupling processes of these two phenomena are recorded and addressed by using measurements from
ISR, dense GNSS network, Defense Meteorological Satellite Program (DMSP), and Swarm satellites, as well as
ionosondes. It was found that the storm time PPEF superposed on the normal PRE zonal electric field, which
triggered the EPBs with rapid upward plasma drift. The corresponding field-aligned extension of EPBs merged
with midlatitude TIDs. The associated depletion structures extended to relatively high MLAT (46°) and then
drifted westward reaching the equatorward boundary of the ionospheric main trough.

2. Data and Method

The most important ground-based measurements of EPBs and TIDs are TEC data derived from global and
regional networks of GNSS receivers as are described in the acknowledgment section. The ionospheric TEC
can be calculated by using the geometry-free linear combination of the pseudoranges and carrier phase
measurements of GNSS receives with dual frequencies. For more details about the procedures of TEC deriva-
tion, readers may refer to Aa et al. (2015) and references therein. Overall data from more than 4,000 GNSS
receivers were processed. Moreover, the gridded TEC products from Madrigal database are also used here,
which are developed at Massachusetts Institute of Technology Haystack Observatory by using dense networks
of worldwide GNSS receivers (Rideout & Coster, 2006; Vierinen et al., 2016).

In order to extract the perturbation components in TEC data to represent the signatures of TID, the back-
ground trend of TEC is filtered out by using a method similar to those of Shiokawa et al. (2003), Tsugawa et al.
(2007), and Zakharenkova et al. (2016). A running average of TEC over 1 hr was subtracted from the raw data
for all satellite-receiver paths. Then for each temporal-spatial grid of 1° x 1° x 10 min, the TEC perturbation is
calculated by averaging all available detrended vertical TEC values whose ionospheric pierce points crossed
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Figure 1. Parameters variation during the period of 7-8 September 2017: (a) solar wind speed, (b) interplanetary
magnetic field (IMF) B, (c) interplanetary electric field (IEF) Ey, (d) SYM-H index, (e) equatorial electrical field (EEF) at
80°W for quiet time (black) and quiet plus penetration (red), (f) log electron density profile marked with peak height
(asterisk), and (g) vertical ion velocity profile. The solar wind and IMF data have been shifted to the nose of the Earth’s
bow shock. The vertical dotted line represents the storm sudden commencement. PRE = prereversal enhancement.

the grid. In this way, the two-dimensional detrended TEC maps are constructed. Moreover, the EPBs-related
ionospheric irregularities can be represented by using the two-dimensional maps of rate of TEC index (ROTI),
which is defined as the 5-min standard deviation of the time derivative of TEC (rate of TEC change) for all
available satellite-receiver paths. Readers may refer to Pi et al. (1997) and Cherniak et al. (2014) to get more
mathematical details on ROTI/rate of TEC change.

Besides TEC data, midlatitude ionospheric information from the ISR at Millstone Hill (42.6°N, 288.5°E) as well
as the in situ plasma density/drift measurements onboard DMSP F17 and Swarm A/C satellites are used here
to analyze the characteristics of LSTIDs and EPBs. Moreover, the ionosonde measurements from Jicamarca
(12°S, 283.2°E; dip latitude: 0.2°S), Campo Grande (20.5°S, 305°E; dip latitude: 13.9°S), Sao Luis (2.6°S, 315.8°E;
dip latitude: 4.9°S), and Eglin AFB (30.5°N, 273.5°E; dip lat: 40.9°N) are also used here to study bubble features.

3. Geomagnetic Conditions of 7-8 September 2017

The solar wind and IMF conditions during 7-8 September 2017 have been described in several recent papers
(e.g., Aaetal, 2018; Jin et al., 2018; Lei et al,, 2018; Li et al., 2018; Shen et al., 2018), which are also shown here
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Figure 2. (a—d) Global TEC maps showing evolution of EPBs over American sector for four different time instants on 7-8
September 2017. The terminator and magnetic equator are marked with dotted and solid lines, respectively. TEC = total
electron content; EPB = equatorial plasma bubble.

in Figures 1a-1d. It was a storm with a double main phase. Multiple Coronal Mass Ejections associated with
the X9.3 solar flare on 6 September 2017 reached Earth at 23:04 UT on 7 September 2017. After the shock
arrival, the IMF Bz reached a minimum value of —31.2 nT at 23:31 UT and remained southward for more than
2 hr. The symmetric index (SYM-H), which is the high-resolution Dst index, dropped to a minimum value of
—146 nT at 01:08 UT on 8 September 2017. There was another drastic southward turning of IMF Bz, which
reached —17.4 nT at 11:55 UT on 8 September and remained negative for several hours. The SYM-H dropped
to a second minimum value of —115 nT at 13:56 UT on 8 September. We here focus on observations obtained
during the first main phase.

4, Results

During the first main phase of the storm, the North American sector is around local dusk. In order to have an
estimation about the equatorial electric field, the Prompt Penetration Equatorial Electric Field Model (Manoj
& Maus, 2012) is used to calculate the PPEF and PRE around local dusk at U.S. longitudes, which is shown in
Figure 1e with the time of PRE being marked by an arrow. It can be clearly seen that the PRE is drastically
enhanced from 0.38 mV/m (quiet) to 0.94 mV/m (quiet plus penetration). Thus, the postsunset ionosphere in
this sector is highly uplifted, which created a favorable condition for the formation of plasma bubbles. The
TID features, on the other hand, can be observed from the ISR measurements at Millstone Hill observatory.
It can be seen from the Ne and peak height results in Figure 1f that at least three oscillations of the F layer
were recorded after the storm commencement with the second one raised the F peak to around 450 km.
The vertical velocity data in Figure 1g also show continuous fluctuations indicating wave-like structures of
large-scale ionosphere activity with a period of around 1.5-2 hr, likely due to AGW initiated after the auroral
energy deposition. In particular, large vertical drift (~100 m/s) was observed after 01 UT on 8 September
responsible for the F region height increase to 450 km.
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Figure 3. (a) Global TEC map at 01:00 UT on 8 September 2017, with path of DMSP F17 satellite and geomagnetic
equator being superimposed. Latitudinal distribution of the (b) ionospheric ion density, (c) vertical velocity component,
and (d) horizontal velocity component. Five different asterisks mark the location of Millstone Hill (MH), Eglin AFB (EG),
Jicamarca (JI), Campo Grande (CG), and Sao Luis (SA), respectively. The shaded areas represent deep plasma depletions.
The vertical dotted lines indicate the location of the ion horizontal velocity peak in the SAPS region and the midlatitude
troughs. TEC = total electron content; DMSP = Defense Meteorological Satellite Program; MLAT = magnetic latitude;
GLAT = Geographic latitude; MLT = magnetic local time.
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Figure 4. (a) The global TEC map focusing on American sector at 03:00 UT with four consecutive satellite paths of Swarm A. (b) Variation of in situ electron
density as a function of geographic latitudes along these paths. (c, d) The same as Figures 3a and 3b, respectively, but for TEC map at 04:30 UT and Swarm C
satellite. The magnetic equator is marked by solid line in left panels and dotted line in right panels.
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Figure 5. (a-f) Detrended TEC maps focusing on American sector for different time instants on 8 September 2017. The terminator and magnetic equator are
marked with dotted and solid lines, respectively. TEC = total electron content.

Figure 2 presents four snapshots of gridded TEC maps showing the evolution of EPBs over American sector
on 7-8 September 2017. There was no signature of EPBs at 23:15 UT. After the drastic southward decreasing
of IMF Bz at 23:31 UT, clear TEC depletion occurred over equatorial regions cutting through two EIA crests as
can be seen in Figure 2b, which represented the initiation of EPBs. Then the stream-like depletions gradually
extended toward the Northern and Southern geomagnetically conjugate points at middle to high latitudes,
forming an “inverted C shape” as indicated by the arrows. The depth of the depletions varied in the range of
5-15 TEC Unit (TECU, 106 el/m?).

In order to further investigate these TEC depletions, in situ density measurements from multiple low Earth
orbiting satellites are shown in Figures 3 and 4. Figure 3a shows a global TEC map focusing on American sector
at 01:00 UT on 8 September 2017, with the path of DMSP F17 satellite during 00:43-01:20 UT being superim-
posed. The azimuthally extended main trough can be clearly seen at the subauroral ionosphere in the form
of TEC depletion. Besides the main trough, the “inverted C shape” TEC depletion structures over midlatitude
can also be observed. In the DMSP in situ plasma density/drift measurements shown in Figures 3b-3d, there
were two depletion characteristics at midlatitude regions in the Northern (MLAT: 43-47°N) and Southern
(MLAT: 33-38°S) Hemispheres, respectively. These plasma depletions were clearly separated from the subau-
roral polarization stream (SAPS; Foster & Burke, 2002) region that coincided with the ionospheric main trough,
which are highlighted by the vertical dotted lines. The ion velocities of these midlatitude depletions are ver-
tically downward, which are likely to be caused by the field-aligned component of the poleward plasma flow
at this latitude. Through comparing Figures 3a and 3b, it can be seen that the midlatitude plasma bite outs in
the DMSP Ne profile collocated well at the intersection of TEC depletion and satellite path. These midlatitude
plasma depletions are the major focus of this study.

Figure 4a (Figure 4c) shows a TEC map focusing on the American sector at 03:00 UT (04:30 UT) with four con-
secutive orbits of Swarm A (Swarm C) satellite on 8 September 2017. The corresponding profiles of in situ
electron density (Ne) along these orbits are shown as a function of geographic latitudes in Figures 4b and 4d.
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Figure 6. (a—i) ROTI maps of ionospheric irregularities over North American regions with 15-min interval during 00:00-02:00 UT on 8 September 2017.

The local magnetic equator is shown as a horizontal dotted line in each panel. Both Swarm A and Swarm C flew
at a height of ~450 km and were located at nearby longitudes around 10 LT (dayside) and 22 LT (nightside)
between 60°N and 60°S. Swarm B satellite is not shown here because it did not pass through the American
sector at local dusk hours in this period. Taking Swarm A as an example, the signature of EPBs can be clearly
seen in orbit #1 (48.9° W), where a huge plasma depletion was located near the magnetic equator. Measured
electron density was 4 x 10? el/cm?, which was 2 -3 orders of magnitude lower than the normal Ne profile. In
orbit #2 (72.4°W) and #3 (95.8°W), there were still considerable plasma bite outs over the magnetic equator,
while one major branch of plasma depletion gradually propagated away from the equator toward the midlat-
itude regions, indicating the upward drift and the field-aligned extension of EPBs. Besides these bite outs, the
midlatitude trough can also be identified as a density decrease above ~40° latitude in these plasma profiles.
Similar results can also be found for Swarm C. The shaded areas indicate the sequential occurrence of plasma
depletions over the equator, low latitudes, and midlatitude regions. These measurements are consistent with
the poleward extension of TEC depletion and DMSP bite outs structures in Figure 3.

Figure 5 shows a sequence of the detrended TEC maps focusing on the American sector at 15-min intervals
during 00:00-01:15 UT on 8 September 2017. The results clearly show the occurrence and propagation of TIDs
with positive and negative phase fronts. Figure 5a indicates two distinct wave crests that appeared in the form
of arc bands: the northern one stretched across Pacific-to-Atlantic coast over 40°N, which is colocated with the
main trough; the southern one elongated aligned the Rocky mountains all the way to the Gulf of Mexico. Dur-
ing the next hour, these wave-like structures of TIDs propagated equatorward across North America with the
estimated velocities of ~300-400 m/s, wave amplitude of ~0.8-1.0 TECU, wavelength of ~1,000-1,200 km,
and wave period of ~50-60 min. The generation of these TIDs is expected due to the intensification of auroral
activity and enhanced Joule heating after the strong southward turning during the storm. The shape of the
wavefront of TIDs was mainly controlled by the wind pattern of thermosphere, the geomagnetic field, and the
Coriolis effect (Afraimovich et al., 2000). Another thing worth noting is that in Figures 5a-5c, there were some
tiny bifurcated structures of density decrease that occurred around 30°N near the duskside boundary of solar
terminator, which look like nighttime midlatitude MSTIDs with west tilted shape. Then started from 00:30 UT,

AAETAL.

STORM-TIME MERGING OF TIDS AND EPBS 291



AAAAAAAAAAAAAA

Space Weather 10.1029/20185W002101

Latitude

Latitude

Latitude

a) 08-SEP-2017 00:00 UT b) 08-SEP 2017 00:15 UT c) 08-SEP- 2017 00:30 UT

10 1.0

i 10
i 20

| a0 0.8

i -40

-100 -90 -80 -70

-100 -90 -80 -70

-40
-100 -90 -80 -70

-60

d) 08 SEP-2017 00:45 UT e) 08-SEP-2017 01:00 UT f) 08- SEP-2017 01:15UT
: , . ) - 10¢ . : -

-60
9) 08 SEP-2017 01:30 UT h) 08-SEP 2017 01:45 UT i) 08 SEP-2017 02:00 UT
i ] : 10f T g

-50 -40 -30 -20 -100 -90 -80 -70 -60 -50 -40 -30 -20 -100 -90 -80 -70 -60 -50 -40 -30 -20

10

oFt. - 10.6
[

110
i 20

-30 F10.4

| a0 - .
.50 40 -30 20 -100 -90 -80 -70 -60 -50 -40 -30 -20 -100 -90 -80 -70 -60 -50 -30 -30 -20

Rate of TEC Index (ROTI)

10
0

1 -10
i 20

305,

-40 0.0

-60
Longitude Longitude Longitude

-50 -40 -30 -20 -100 -90 -80 -70 -60 -50 -40 -30 -20 -100 -90 -80 -70 -60 -50 -40 -30 -20

Figure 7. The same as Figure 6 but for South American regions.

those midlatitude branches merged with the poleward extension of low-latitude depletion structures, which
elongated across two hemispheres.

In order to further verify the interaction of EPBs-related depletions and TIDs, Figure 6 shows the TEC ROTI
maps over North America (10-60°N, 60-140°W) at 15-min intervals during 00:00-02:00 UT on 8 September
2017. A noticeable zone of irregularities can be seen over midlatitude trough/SAPS region. In addition, there
was another obvious trace of irregularities, which was first seen around longitudinal sectors 70-80°W in the
low-latitude regions at 00 UT (19 LT) and then propagated poleward. This propagating structure of irregulari-
ties corresponds to the upward drift and field-aligned extension of EPBs, which agrees well with the magnetic
declination angle (—10° to —15°) in this longitudinal sector. At 00:30 UT, the trace of irregularities reached 40°N
(MLAT: 46°N), which maps to an apex altitude of 6,800 km over the magnetic equator according to Interna-
tional Geomagnetic Reference Field. After 00:30 UT, the irregularities stopped poleward migrating and started
to drift westward reaching the equatorward boundary of the main trough. Thus, the results in Figures 5 and 6
strengthened each other, which collectively illustrates the merging of EPBs-related depletions and the wavy
structures of TIDs. Figure 7 shows similar ROTI results over South America. Also, the morphology of ROTI/TIDs
variations agrees well with the satellite measurements in Figures 3 and 4.

5. Discussion

First, there were noticeable plasma depletions over American sector in the local dusk on 8 September 2017
as can be seen from the results of TEC depletions, ROTI variations, and Ne bite outs in the DMSP and Swarm
satellites. Recall from Figure 1e that the sudden decreasing of IMF B, right after the passage of solar termina-
tor effectively triggered a drastic enhancement of PPEF, which penetrated nearly instantly into low-latitude
regions and maintained eastward for 1-2 hr before reverse. This strong PPEF is expected to lift the equatorial
ionosphere to much higher altitudes and created a quite favorable condition for EPBs to develop by increas-
ing the growth rate of R-T instability. In order to further verify the PPEF and understand the development of
EPBs, Figure 8 shows the corresponding variation of F layer bottomside virtual height (h’F) over Jicamarca,
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Figure 8. The temporal variations of (a) IMF B,, (b) ionospheric h’'F observed at Jicamarca, F layer vertical drift velocity
and eastward drift velocity observed at Campo Grande (c, d) and at Sao Luis (e, f), and eastward drift velocity at Eglin
AFB (g) during the period of 7-8 September 2017. The black lines represent the values of geomagnetic quiet day (6
September 2017). The vertical dotted line represents the local sunset. The error bars represent the velocity spread.

as well as the vertical and zonal drift velocity components observed at Campo Grande and Sao Luis. These
three ionosondes are located around geomagnetic equator. The zonal drift observed by ionosonde Eglin AFB
at midlatitude region is also shown, which is located right at the depletion trace at 01 UT (Figure 3). The
h'F over Jicamarca exhibited a significant postsunset enhancements (marked with an arrow) that associated
with the drastic decreasing of the IMF B,. The vertical velocity drift over Campo Grande (Figure 8c) and Sao
Luis (Figure 8e) also displayed considerable increase compared with those on quiet day (6 September). Sim-
ilar ionosonde measurements were also reported in Li et al. (2018), and these collectively demonstrate the
presence of an enhanced equatorial PPEF to trigger EPBs.

Second, as EPBs-related depletions rise from the bottomside ionosphere, they tend to form into wedge-like
structures that extend along the magnetic field line. One prominent feature is that the depletions reached
very high latitude in this case (MLAT: 46°N), which maps to an apex altitude of 6,800 km over the magnetic
equator (L shell ~2). Such deep depletion structures over midlatitude ranges have also been reported in a few
studies (e.g. Aa et al., 2018; Cherniak & Zakharenkova, 2016; Huang et al., 2007; Li et al., 2018; Martinis et al.,
2005). One interpretation is that these midlatitude depletion structures are the field-aligned extension of EPBs
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Figure 9. Polar view of the 2-D GPS vertical TEC maps over Northern Hemisphere at 0050, 0100, and 0110 UT on 8 September 2017. The blue (red) solid contours
indicate negative (positive) ionospheric electrostatic potential field, which is derived from SuperDARN measurements. The black arrows represent ionospheric
plasma line-of-sight velocity measurements taken by SuperDARN radars at different sites. The plot is shown in the MLT and MLAT coordinates with 12 MLT at the
top. GPS = Global Positioning System; TEC = total electron content; SuperDARN = Super Dual Auroral Radar Network; MLT = magnetic local time;

MLAT = magnetic latitude.

that have risen to high apex heights, since these depletions can be detected at geomagnetically conjugate
points in each hemisphere as was shown in Figure 2, which is similar with those pointed out in earlier studies
(e.g., Martinis & Mendillo, 2007; Mendillo et al., 2018; Otsuka et al., 2002; Shiokawa et al., 2004). Besides strong
PPEF, other processes have also been proposed to be able to assist in triggering of such depletion structures.
A number of recent papers have discussed that large-scale wave structures in TIDs and/or coupling between
local Perkins and sporadic E (Es) instabilities can play a role as seeding factors to trigger plasma irregularities
(e.g. Abdu et al., 2015; Li et al., 2016; Takahashi et al., 2018; Taori et al., 2015). Considering that the detrended
TEC maps also exhibit MSTID-like structures, the possibility that MSTIDs also played a role in the formation of
the midlatitude depletions cannot be ruled out. Moreover, the observed depletions extended poleward and
reached the equatorward boundary of the midlatitude trough/SAPS region, which is associated with the plas-
masphere boundary layer (Carpenter & Lemaire, 2004; Moldwin & Zou, 2013). Therefore, this density depletion
might also be observed by equatorial orbiting satellite at low L shells. Previously, there have been reports
about embedded low-density structures within the plasmasphere (Horwitz et al., 1990; Huang et al., 2007;
Ober et al.,, 1997). Fu et al. (2010) reported that the low-density trough can be observed to extend from the
plasmasphere to the topside ionosphere along the geomagnetic field lines. Whether this is related with the
density depletions reported in current case is not clear, and conjugate observations will be needed in order
to solve this problem.

Third, after 00:30 UT on 8 September 2017, the poleward extension of plasma depletion exhibited westward
propagation and mixed with the wavy structures of TIDs as indicated both in Figures 5 and 6. This west tilted
irregularity structure was also reported in the Asian sector during the second main phase for the same storm
event (Aa et al., 2018; Li et al., 2018). The thermospheric wind pattern has been suggested to be able to create
such shape, which might be similar with those suggested by Zhang et al. (2015) and Li et al. (2018). During
geomagnetic quiet conditions, the zonal drift of plasma at the equatorial E region is normally eastward due to
solar-driven eastward wind, while at greater altitudes that map to higher latitudes, the density depletion struc-
tures tend to move slower than those at lower heights horizontally due to the decrease of eastward wind. In
addition, Kil et al. (2009) and Shiokawa et al. (2015) also indicated that the polarization electric field developed
inside the plasma depletion region could retard the eastward drift. These were suggested to be responsible
for the west tilted structure (so-called inverted C shape) in optical observations (e.g., Kil et al., 2009; Makela &
Kelley, 2003; Martinis et al., 2015; Otsuka et al.,, 2002;). However, during storm time, the eastward drift could
be largely reduced or even reversed as can be seen from Figures 8d, 8f, and 8g that the storm time zonal
drift after local sunset was steadily westward. This westward reversal of EPBs drift has been reported in sev-
eral studies with different triggering mechanisms being proposed, such as vertical Hall electric field induced
by PPEF under enhanced E layer conductivity (e.g., Abdu et al., 2003; Santos et al., 2016) and disturbance
dynamo-associated westward thermospheric winds (e.g., Abdu, 2012; Sutton et al., 2005; Xiong et al., 2015).
In either scenario, the westward drift velocity is expected to increase from low to middle latitudes, which is in
good agreement with ionosonde observations in current study.
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In addition, the irregularity structures reached the equatorward boundary of the ionospheric main trough,
where the westward convection flows can exist due to nighttime convection electric field penetrated into
the plasmasphere or not completely shielded by the Region 2 system (Lyons et al., 2009; Zou et al., 2009).
In order to see whether westward convection flows may exist at the equatorward boundary of the trough,
Figure 9 shows three consecutive polar plots of GNSS TEC maps over the Northern Hemisphere at 0050, 0100,
and 0110 UT on 8 September 2017, which is superimposed with the ionospheric E X B convection pattern
derived on the basis of Super Dual Auroral Radar Network measurements (Ruohoniemi & Baker, 1998; Shep-
herd & Ruohoniemi, 2000). It can be seen based on the convection pattern and line-of-sight velocities that the
main trough was colocated with very large convection return flows, that is, SAPS. The bubble-related deple-
tions gradually deepened near the equatorward boundary of the main trough at ~20 MLT, which could be
induced by these large convection flows near SAPS region through enhanced recombination in the iono-
sphere F region height. Although the equatorward boundary of the returning flow cannot be fully revealed
due to the limited field of view of the Super Dual Auroral Radar Network radar, the DMSP drift results in
Figure 3 also indicate the existence of such large convection flows. Thus, the returning convection flow, the
disturbance thermospheric wind, as well as the Hall electric field could collectively be responsible for the
depletion/irregularity structures to drift westward along the wavefronts of LSTIDs. Considering that the cou-
pling process of TIDs and EPBs is still of rare study, more work, in particular numerical simulations, is needed
in the future to further specify the dominant factor in triggering the EPB and the subsequent evolution.

6. Conclusion

This paper investigated the main characteristics and merging of postsunset EPBs and midlatitude TIDs over
American sector during a storm on 8 September 2017. The spatial-temporal evolution and interaction of EPBs
and TIDs can be simultaneously observed from the following measurements: (1) distinct stream-like struc-
tures of depletion (~5-15 TECU) occurred at geomagnetically conjugate points in GNSS TEC maps, (2) severe
plasma bite outs of 2-3 orders at both equatorial and midlatitude regions in the Swarm/DMSP Ne profiles,
(3) significant ROTI irregularities that propagated poleward along the field lines and then drifted westward,
and (4) enhancements of ionosphere F layer virtual height and vertical drifts observed at certain equatorial
ionosondes. A prominent feature is that the plasma depletions reached very high latitudes (MLAT: 46°) that
map to an altitude of 6,800 km over the magnetic equator. The triggering mechanism of this midlatitude
depletion could be attributed to two possible mechanisms. One is that there were considerable altitudinal
uplift and latitudinal extension of EPBs driven by strong eastward PPEF accompanied with drastic south-
ward turning of IMF Bz in local dusk time, while TID wave structures might also play a role in forming these
structures.

Moreover, there were intense LSTIDs that propagated equatorward in North America, as can be seen from the
detrended TEC maps and Ne/ion velocity fluctuations in the ISR results. One distinct feature is that the mid-
latitude depletion/irregularities drifted westward along the wavefronts of TIDs, forming into a longitudinally
elongated structure that reached the equatorward boundary of the ionospheric main trough. This could be
attributed to the large-scale convection returning flows equatorward of the SAPS region, while other mech-
anisms, such as the disturbance thermospheric westward wind, could also make certain contribution. These
processes collectively drove the midlatitude depletions to propagate westward, though more case studies
and numerical modeling work are still needed in the future to specify the dominant mechanism.
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