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ABSTRACT 

This article reviews genes and syndromes associated with predisposition to colorectal 

cancer (CRC), with an overview of gene variant classification. We include updates on 

the application of preventive and therapeutic measures, focusing on the use of non-

steroidal anti-inflammatory drugs (NSAIDs) and immunotherapy. Germline pathogenic 

variants in genes conferring high or moderate risk to cancer are detected in 6–10% of all 

CRCs and 20% of those diagnosed before age 50. CRC syndromes can be subdivided 

into nonpolyposis and polyposis entities, the most common of which are Lynch 

syndrome and familial adenomatous polyposis respectively. In addition to known and 

novel genes associated with highly penetrant CRC risk, identification of pathogenic 

germline variants in genes associated with moderate-penetrance cancer risk and/or 

hereditary cancer syndromes not traditionally linked to CRC may have an impact on 

genetic testing, counseling and surveillance. The use of multigene panels in genetic 

testing has exposed challenges in the classification of variants of uncertain significance. 

We provide an overview of the main classification systems and strategies for improving 

these. Finally, we highlight approaches for integrating chemoprevention in the care of 

individuals with genetic predisposition to CRC and use of targeted agents and 

immunotherapy for treatment of mismatch repair deficient and hypermutant tumors.   

 

Keywords: Hereditary colorectal cancer; cancer predisposition; cancer syndromes; 

polyposis; cancer genes; variants of uncertain significance; VUS; chemoprevention; 

checkpoint inhibitors; immune-oncology. 
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Introduction 

Colorectal cancer (CRC) is the third most common cancer diagnosed in men and 

women. While there has been an overall decrease in CRC incidence and mortality 

among individuals age 50 and older, recent epidemiological studies demonstrate 

increasing incidence of CRC among young individuals which remains unexplained [1]. 

Genetic predisposition, due to pathogenic germline variants in genes associated with 

high cancer risk has been implicated in 2–8% of all CRCs, 6-10% when considering 

pathogenic mutations in known high- and moderate- penetrance genes [2–4] (1 in 5 of 

those diagnosed at age<50) [5–7]. For individuals with certain hereditary cancer 

syndromes lifetime risks for CRC may approach 50–80% in the absence of endoscopic 

and/or surgical intervention. In addition to family history, tumor histology and 

molecular phenotypes are instrumental not only for identifying individuals with genetic 

predisposition to CRC but also for guiding cancer treatment. The following review is an 

overview of the known CRC predisposing genetic conditions, the challenge of variant 

classification, and chemoprevention and treatment strategies in hereditary CRC 

syndromes. 

 

Genetic Susceptibility to Colorectal Cancer: Polyposis and Non-Polyposis 

Syndromes 

Genetic susceptibility to CRC appears to be more common than previously appreciated.  

Several recent studies have identified pathogenic germline variants in a broad spectrum 

of high and moderate penetrance cancer susceptibility genes in > 10% of individuals 
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with advanced cancer diagnoses [8, 9] and the prevalence of 1 in 10 appears to also be 

true among individuals with CRC [2]. In a cohort of unselected CRC patients evaluated 

at a tertiary care cancer center, 105/1058 (9.9%) had pathogenic germline variants 

identified through next generation sequencing with a multigene panel, half of which 

were in cancer genes not previously associated with CRC risk [2]. Genetic susceptibility 

appears to be even more prevalent among young CRC patients, with several studies 

documenting prevalence of germline mutations of 16–33% among those diagnosed 

age<50 [5–7]. 

 

The hereditary CRC syndromes, characterized by dramatic increases in risk for 

colorectal neoplasia, are phenotypically divided into polyposis and nonpolyposis 

syndromes, based largely on the number and histology of colorectal polyps (Figure 1).  

Tumor molecular features characteristic of CRC-predisposing syndromes caused by 

altered DNA repair are shown in Table 1, and current colonoscopy surveillance 

recommendations for the well-known high penetrance CRC syndromes, in Table 2.  

 

Polyposis syndromes 

Familial adenomatous polyposis (FAP) is characterized by multiple (typically dozens 

to hundreds) colorectal adenomas, with potential for significant variability in clinical 

phenotype. FAP is associated with pathogenic germline variants in APC, a tumor 

suppressor instrumental in regulation of WNT signaling. While FAP exhibits autosomal 

dominant inheritance, approximately 30% of affected individuals have no family history 
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and represent de novo mutations [10]. Phenotypes vary, with some individuals 

exhibiting classic polyposis (100s–1000s polyps) requiring surgical colectomy, while 

others may manifest more subtle presentations (20–100 polyps), often referred to as 

attenuated polyposis (or AFAP). Most individuals with FAP also develop neoplasia in 

the upper GI tract, including gastric fundic gland polyps and duodenal and ampullary 

adenomas. Adenocarcinomas of the duodenum and ampulla nowadays represent the 

second leading cause of cancer death after CRC requiring ongoing endoscopic 

surveillance. Although gastric fundic gland polyps rarely exhibit neoplastic 

transformation, gastric adenocarcinomas have been reported.  A rare germline point 

mutations in Exon 1B of APC have been identified in individuals with Gastric 

Adenocarcinoma and Proximal Polyposis Syndrome (GAPPS), conferring severe gastric 

polyposis and high risk for gastric cancer without colorectal polyposis [11]. Extra-

intestinal manifestations in FAP can include increased risk for papillary thyroid cancers 

(particularly the cribriform-morular variant). Desmoid tumors develop in some 

individuals, and mesenteric desmoid disease can be a source of significant morbidity 

and mortality. Although some studies have found associations between mutations in 

codons 543–713 and 1310–2011 and risk for desmoid disease [12], factors contributing 

to desmoid disease remain largely unknown.   

 

MUTYH-associated polyposis (MAP) is an autosomal recessive syndrome associated 

with biallelic germline variants in the base excision repair gene MUTYH. Individuals 

with MAP can exhibit a wide range of phenotypes including classic and attenuated 
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polyposis. Two common founder mutations (Y165C and G382D) have a carrier 

frequency of 1% in populations of European ancestry [13]. Monoallelic MUTYH 

variants have been found to be associated with a moderate (1.5–2-fold) increased risk 

for CRC, particularly among individuals with a first degree relative with CRC [14]. 

 

Polymerase Proofreading-Associated Polyposis (PPAP) is associated with germline 

pathogenic variants in the exonuclease (proofreading) domains of polymerases epsilon 

(POLE) and delta (POLD1) [15]. Individuals may present with autosomal dominant 

classic or attenuated polyposis, CRCs and other tumors that exhibit somatic 

hypermutation, usually with DNA mismatch repair proficient phenotypes.  

 

Adenomatous polyposis syndromes have been recently updated with the addition of two 

rare autosomal recessive forms caused by biallelic mutations in NTHL1, a DNA 

glycosylase involved in base excision repair [16], and in MSH3, an MMR gene not 

associated with Lynch syndrome [17]. 

 

Hamartomatous polyposis syndromes, characterized by the presence of gastrointestinal 

hamartomatous polyps, are rare, having only one tenth the prevalence of adenomatous 

polyposis syndromes. Hamartomatous polyposis syndromes exhibit autosomal dominant 

patterns of inheritance, and include Peutz-Jeghers, Juvenile polyposis and PTEN-

hamartoma tumor syndromes. 
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Peutz-Jeghers syndrome (PJS) is characterized by multiple hamartomatous polyps 

throughout the GI tract and increased risk for various cancers including gastrointestinal 

(gastric, colorectal, pancreatic), breast, lung, and sex cord tumors. Individuals with PJS 

may have prominent mucocutaneous pigmentation and bowel obstructions due to polyp 

intussusceptions. Germline pathogenic variants in STK11 are identified in 50-70% of 

individuals.  

 

Juvenile polyposis syndrome (JPS) is characterized by multiple gastric and/or colonic 

hamartomas. Germline pathogenic variants in BMPR1A and SMAD4 are identified in 

50–70% of affected individuals. JPS is associated with increased risks for gastric and 

colorectal cancers. Individuals with SMAD4 mutations are at risk for hereditary 

hemorrhagic telangiectasia (HHT). 

 

PTEN-hamartoma tumor syndrome (PHTS) is associated with increased risk for 

breast, thyroid, endometrial, and renal cancers resulting from germline pathogenic 

variants in PTEN. The gastrointestinal phenotype of the PTEN-hamartoma tumor 

syndrome can include gastric and colorectal hamartomas, adenomas, serrated polyps, 

hyperplastic polyps, lipomas and ganglioneuromas. PTEN pathogenic variants confer 

variable clinical phenotypes, which include several conditions such as Cowden, 

Bannayan-Riley-Ruvalcaba and Proteus-like syndromes [18]. 
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Mixed polyposis is characterized by the presence of multiple colorectal polyps of mixed 

histological type, including serrated lesions, conventional adenomas and hamartomas, 

and is associated with increased risk of colorectal carcinoma. While the genetic cause 

remains elusive in most cases, germline variants in and upstream of GREM1 have been 

identified in some affected individuals. A founder mutation consisting of a duplication 

of 40 kb upstream of GREM1 has been identified in several kindreds of Ashkenazi 

Jewish ancestry [19], while a duplication of 16 kb has been reported in a Swedish 

family affected with hereditary mixed polyposis [20].  

 

Serrated polyposis, previously referred to as hyperplastic polyposis, is defined by the 

World Health Organization on the basis of any of the following criteria 1) >5 serrated 

polyps proximal to the sigmoid colon with at least 2 measuring >10 mm; 2) any number 

of serrated polyps in the proximal colon in an individual with a first-degree relative with 

serrated polyposis; or 3) >20 serrated polyps of any size [21]. While germline mutations 

in the tumor suppressor gene RNF43 have been identified in rare cases of serrated 

polyposis [22, 23], the low mutation frequency among affected individuals tempers 

enthusiasm for including RNF43 in multigene panels [24, 25]. Although germline 

mutations in GREM1 and MUTYH have been reported, genetic testing is usually 

uninformative. 

 

Hereditary nonpolyposis colorectal cancer 
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Although the CRC syndromes associated with polyposis phenotypes are the most easily 

recognized, the vast majority of individuals affected by genetic predisposition to CRC 

do not exhibit multiple polyps. Syndromic non-polyposis CRC is subdivided on the 

basis of molecular tumor phenotype as DNA mismatch repair deficient (MMR-d) or 

proficient (MMR-p) (Figure 1). 

 

Lynch syndrome (LS) [previously known as hereditary nonpolyposis colorectal cancer 

(HNPCC)] is the most common of the hereditary CRC syndromes. LS is associated with 

pathogenic germline variants or epimutations in DNA mismatch repair genes (MLH1, 

MSH2, MSH6, PMS2), which predispose to development of neoplasms with distinctive 

molecular phenotypes of MMR-d. MMR-d tumors exhibit high instability at specific 

DNA microsatellites (MSI-H) and loss of expression of the corresponding DNA 

mismatch repair protein by immunohistochemistry. Although CRC and endometrial 

cancer are the most prominent cancers in most affected families, risks for ovarian, 

gastric, small intestinal, urinary tract, brain, pancreatic, prostate and sebaceous 

neoplasms of the skin are also increased among mutation carriers. Lynch-associated 

colorectal neoplasms tend to develop at younger ages and progress more rapidly 

compared with sporadic CRCs, requiring specialized surveillance (Table 2). Although 

risk prediction models use personal and family history to assess an individual’s 

probability of carrying a germline MMR gene mutation (e.g. PREMM1,2,6 [26], 

MMRpro [27]), universal screening of CRC tumors for MMR-d remains the most 

effective strategy for identifying individuals affected with LS (Figure 2) [28, 29]. 
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MMR-proficient hereditary nonpolyposis colorectal cancer. Half of the CRC families 

meeting the Amsterdam criteria (3 individuals with CRC over 2 generations, >1 

diagnosed age<50) have MMR-p tumors, without identifiable germline mutations in the 

MMR genes. These families can be distinguished from LS in that the lifetime risk for 

CRC is lower (only 2-fold increased) and there is no increase in risks for extracolonic 

tumors [30]. Despite enormous efforts to identify new genes that could explain the 

apparently dominantly inherited forms of MMR-p nonpolyposis CRC, the only 

candidate gene that has shown consistent association with hereditary nonpolyposis CRC 

is RPS20 (ribosomal protein S20) [31, 32]. Although the scant available data suggest 

high penetrance for RSP20 mutations and absence of extracolonic manifestations, data 

from additional mutation carriers are required to estimate risks and recommend 

surveillance measures. Many other putative familial CRC genes have been proposed, 

but most are extremely uncommon, and others may only moderately increase the risk to 

CRC, complicating the assessment of their contribution to predisposition to CRC [33-

36]. 

 

Prevalence and penetrance 

The prevalence of mutations in CRC-predisposing genes has traditionally been 

estimated from patients diagnosed with CRC (or endometrial cancer for LS). This 

approach reveals that LS accounts for about 3% of CRC [2, 37–40] and 2% of 

endometrial cancer cases [41–43]; additionally, FAP accounts for 0.3–0.5% of 
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diagnosed colorectal tumors [2, 3]. When LS is ascertained from individuals with a 

personal/familial history of cancer, germline mutations in MSH2 and MLH1 consistently 

account for the majority of LS cases (60–87.5%), with a minority of cases carrying 

mutations in MSH6 and PMS2 [2, 5, 6, 37, 39, 44]. 

 

Recent epidemiologic data have shone more light on the true prevalence of LS in the 

general population, finding that LS is more common and less penetrant than 

traditionally estimated. Recently, Win et al studied 5,744 CRC patients and 37,634 first-

degree relatives, 2% of whom had been diagnosed with CRC, recruited through the 

Colon Cancer Family Registry [45] (http://coloncrf.org) and for whom germline genetic 

testing results were available [46]. They estimated that 0.36% (1 in 279) of the 

population carry pathogenic mutations in the MMR genes: 0.140% (1 in 714) in PMS2, 

0.132% (1 in 758) in MSH6, 0.051% (1 in 1,946) in MLH1and 0.035% (1 in 2,841) in 

MSH2. Regarding MUTYH, 2.2% (1 in 45) would be monoallelic and 0.012% (1 in 

8,073), biallelic carriers. Interestingly, pathogenic variants in PMS2 and MSH6 are the 

most prevalent in the general population, but least prevalent among LS cases 

ascertained based on their personal history of cancer, suggesting that the PMS2 and 

MSH6 mutations confer more modest risk of cancer when compared with MLH1 and 

MSH2 mutations [47–53]. Of note, the presence of founder mutations in specific 

populations may increase the prevalence of the syndrome and influence the relative 

proportion of mutations in each gene in those populations [54–58]. 
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For other less common CRC syndromes, the estimated prevalence is very low, ranging 

from 1 in 10,000–31,250 for APC-associated adenomatous polyposis [59, 60], to 1 in 

100,000–250,000 for hamartomatous polyposis syndromes [61-63]. The prevalences of 

more recently described syndromes, such as those caused by mutations in POLE and 

POLD1, NTHL1, RNF43 or MSH3, remain unknown. 

 

Significant interpatient heterogeneity exists among patients with a priori the same CRC 

predisposing syndrome, posing challenges for diagnosis and clinical management. For 

years, the lack of prospectively-obtained information has led current clinical guidelines 

to rely upon retrospective data from patient cohorts whose selection for molecular 

testing was biased (CRC risk estimates from retrospectively collected cohorts were 

reviewed by Lorans et al [64]). The Prospective LS Database (PLSD) provides 

estimates of cancer risks in LS, both in individuals who have yet to develop a cancer 

and those who have survived a cancer (http://lscarisk.org/). According to these data, the 

relative cumulative incidence (relative risk) of cancer at age 75 is: 10–12% for CRC and 

25–35% for endometrial cancer in MLH1 and MSH2 mutation carriers; 30% for 

endometrial cancer in MSH6 mutation carriers, and for PMS2, the increased cancer risks 

did not reach statistical significance when compared to population incidence [65]. More 

recently, the analysis of 284 families, including 4,878 first- and second-degree family 

members, 513 of whom were PMS2 mutation carriers, concluded that  PMS2 mutation 

carriers are at small increased risk of CRC (cumulative risk at age 80: 12–13%) and 

endometrial cancer (cumulative risk at age 80 for female carriers: 13%) [66]. 

This article is protected by copyright. All rights reserved.



 14 

 

In addition to the gene-specific risks, cancer risks in hereditary CRC syndromes may 

also vary by the type of mutation, ethnicity or geographic location. There is 

heterogeneity even among family members sharing the same mutation, suggesting that 

other factors, such as environmental and polygenic factors may influence phenotypic 

expression [67]. 

 

Moderate-penetrance colorectal cancer gene mutations 

The inclusion of moderate-penetrance cancer susceptibility genes in multigene panel 

testing poses challenges regarding the optimal management of carriers of pathogenic 

mutations in these genes. In fact, the associated clinical significance of these mutations 

remains unclear. In the case of CRC, the most prevalent mutations are APC p.I1307K, 

CHEK2 c.1100delC, CHEK2 p.I157T, and monoallelic MUTYH mutations [2] (Figure 

1). Recently, Katona et al [68] defined a counseling framework for these moderate-

penetrance mutations based on the estimated CRC risk associated with each variant [69] 

and the estimated CRC risk for average-risk individuals [70]. Based on this analysis, 

colonoscopy screening initiation is recommended at age 45 (at age 50 for average-risk 

individuals [71]) for APC p.I1307K and CHEK2 mutation carriers, however, no earlier 

initiation of colonoscopy screening is recommended for monoallelic MUTYH mutation 

carriers, in line with current National Comprehensive Cancer Network 

recommendations [71]. Such recommendations apply to patients without family history 

of CRC; importantly, however, earlier and more frequent colonoscopy screening is 
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recommended for individuals with a family history of CRC, even in the absence of 

gene-based findings [72]. 

 

Mutations in genes associated with hereditary cancer syndromes not traditionally 

linked to CRC 

Both classical testing strategies and multigene panel tests in CRC cases have uncovered 

germline pathogenic variants in cancer susceptibility genes associated with syndromes 

that do not classically include CRC, such as hereditary breast and ovarian cancer 

syndrome. Studies with several hundred up to roughly 2,000 CRC cases and controls 

have yielded evidence for ATM, BRCA1, BRCA2, CDKN2A, PALB2, and TP53 as 

moderate-risk CRC susceptibility genes (Table 3). The most frequently mutated non-

CRC hereditary genes identified in CRC patients are BRCA1 and BRCA2 (0.7–1.3% of 

CRC patients, regardless of selection criteria), followed by the moderate-penetrance 

gene ATM (0.7–0.9% of CRC patients, regardless of selection criteria). The debate 

whether pathogenic BRCA mutations, or mutations in any of the above mentioned 

genes, increase the risk of CRC is still ongoing. A recent meta-analysis based on 14 

studies [73] estimated a 1.22-fold increased risk of CRC in BRCA mutation carriers, and 

this was attributable largely to a 1.48-fold greater risk in BRCA1 mutation but not in 

BRCA2 mutation carriers, regardless of age. 

 

Whether these findings are the result of detecting the background population prevalence 

of such mutations or the result of pleiotropism, i.e., a germline variant manifests itself in 
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a variety of clinical phenotypes, which would suggest that, for example, BRCA1/BRCA2 

mutations increase the risk to CRC, is still a matter of debate. In order to clarify the 

contribution of non-CRC susceptibility genes to CRC predisposition, Dobbins et al 

analyzed 114 hereditary cancer genes in approximately 850 unexplained early-

onset/familial CRC and 1,609 controls. Globally, no statistically significant enrichment 

of pathogenic and likely pathogenic variants was detected between cases and controls 

(6.7% versus 5.3%), not even for BRCA or TP53 mutations, thus arguing against the 

hypothesis supporting pleiotropism [74]. Recently, AlDubayan et al [3] evaluated the 

presence of germline mutations in 40 DNA repair genes linked to (non-CRC) inherited 

cancer predisposition in 591 unselected CRC patients from two prospective population-

based studies and 89 clinic-based unselected CRC patients (total n=680) and compared 

the mutation frequency with that observed in 27,728 ancestry-matched cancer-free 

adults from the Exome Aggregation Consortium (ExAC). This study revealed 

significantly higher rates of ATM and PALB2 mutations in CRC patients than in cancer-

free controls, results that were independently validated in 1,661 unselected CRC 

patients for both genes and in 1,459 early-onset (age<56) CRC patients only for ATM 

[3]. On the other hand, no differences were observed for BRCA1 and BRCA2 or other 

non-CRC DNA repair genes. The consequences of one or the other situation 

(background population mutation prevalence versus pleiotropism) are different and 

highly relevant for the management of the families, therefore, requiring further research 

to provide definitive evidence. 
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Genetic testing for predisposition to CRC 

The well-established, clinically-actionable susceptibility genes with quantified 

magnitude of risk form the core of current familial CRC and polyposis genetic testing 

(Table 3). In recent years, clinical genetic testing has transitioned from phenotype-

driven single gene sequencing to multigene panel testing using targeted massively 

parallel sequencing. The criteria for identifying individuals most likely to benefit from 

genetic testing continue to evolve along with our understanding of the variability in 

disease penetrance and expressivity associated with germline alterations in cancer 

predisposition genes [71].  

 

Overview on variants of uncertain significance 

When patients are tested for germline susceptibility gene mutations, most outcomes fall 

into one of three categories: a pathogenic variant is found, a variant of uncertain 

significance (VUS) is found, or no reportable variant is found. When a pathogenic 

variant is found, patients can be counseled and managed on the basis of their personal 

and family cancer history plus gene-specific guidelines. “Cascade testing” of at-risk 

relatives can identify additional carriers. These newly identified carriers benefit because 

they can be offered earlier and intensified screening; this is particularly valuable for 

CRC syndromes because there is credible evidence that exposure to colonoscopy 

reduces incidence and mortality from CRC [75, 76]; put simply, cascade testing 

followed by intensified screening of carriers can add years to these individuals’ lives. 
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Non-carriers benefit from knowing that their CRC risk is lower than that of carriers in 

their family, and may be spared intensified family history-based screening [77, 78]. 

 

Observation of a VUS presents a quandary, since it is not known where on a spectrum 

from pathogenic to benign any given VUS falls, carrier status does not stratify members 

of a family into those with higher or lower risk. Thus, detection and reporting of the 

VUS provides no medical management benefit to sentinel carriers or their relatives. 

Unfortunately physicians may misinterpret or miscommunicate a VUS test result, 

resulting in management of a patient with a VUS as if they carried a pathogenic variant, 

which is clearly incorrect [79, 80]. Moreover, there is a lack of tools for updating 

clinical oncologists and genetic counselors after a VUS has been reclassified [81]. 

 

Main categories of variants of uncertain significance 

Most VUS fall into one of three categories: missense substitutions, splice junction 

variants, and in-frame insertion or deletions variants (in-frame indels), with missense 

substitutions being the most numerous. Because of the patterns biophysical similarity 

and dissimilarity between the 20 naturally occurring amino acids, a missense 

substitution can fall anywhere in a spectrum from innocuous to ablating protein function 

to creating new protein functions. Similarly, because splicing machinery has varying 

dependencies on the individual nucleotide positions within splice donor and splice 

acceptor consensus sequences, sequence variants within these regions may ablate, 

reduce, or even increase the efficiency of splicing at the affected intron-exon junction.. 
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Thus, the key analytic problem is that the effects of VUS need not to be all-or-none. 

Whether variants are assayed one-by-one or en masse using high-throughput gene 

editing techniques, it is difficult to determine what proportion reduction of normal 

function from a damaged protein, or of productive transcript from a damaged allele, is 

required to confer clinically relevant increased risk of cancer [82–88]. 

 

A second problem is that VUS are individually very rare, but summed across the 

population, numerous. Indeed, in a study of the ExAC data, Kobayashi et al found that 

most pathogenic variants with continental population allele frequencies above 0.01% 

are already well characterized [89]; this means that most VUS (at least for dominant 

CRC susceptibility genes) with allele frequencies of above 0.01% are actually neutral. 

Yet on reviewing the lists of MLH1 and MSH2 sequence variants recorded in the 

InSiGHT and GnomAD databases, we found 1,299 distinct VUS missense substitutions 

(Table 4). This is just the tip of the iceberg, as, based on the estimated per generation 

germline de novo mutation rate and the size of the human population [90, 91], the 

human gene pool actually includes multiple missense substitutions at most protein 

coding codons, and most of these are pedigree-specific. 

  

Variant classification frameworks 

In 2008, an International Agency for Research on Cancer (IARC) Working Group on 

VUS in cancer susceptibility genes created the five-tiered variant classification scheme 

shown in Table 5 [92]. This scheme was adopted by the International Society for 
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Gastrointestinal Hereditary Tumors (InSiGHT), and with minor modification for 

general use, by the American College of Medical Genetics and Genomics and the 

Association for Molecular Pathology (ACMG/AMP) [86, 93]. 

 

There are two basic frameworks for variant classification: qualitative rules-based and 

quantitative Bayesian classifications. Since methods for evaluation of VUS in LS genes 

are better developed than for most other CRC susceptibility genes, this discussion will 

focus on evaluation of MMR gene VUS. The essence of rules-based classification is to 

set up a series of points of evidence, and then to define rules governing which 

combinations of evidence result in a specific categorical classification. Data used in the 

qualitative InSiGHT MMR gene variant classifier [86, 87] fall into two broad 

categories: i) patient observational data, such as details of the patient's personal and 

cancer family history, segregation (or not) in pedigrees, or presence (or not) of MSI in 

tumors with the VUS; and ii) variant specific data such as sequence analysis evidence, 

functional assay results including mismatch repair proficiency and protein stability 

assays, mRNA splicing assays, and allele frequency in control populations. Rules that 

result in classification as Pathogenic can use stand-alone data such as the variant is a 

protein truncating variant in a coding exon other than the final exon, or combine 

several pieces of individually weaker data such as reduced activity in a functional assay 

plus co-segregation with CRC plus multiple tumors with MSI plus very low allele 

frequency in continental level populations. There are also corresponding rules for 

classification as Not Pathogenic. For a succinct summary, see Figure 1A of Thompson 
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et al, 2014 [86]. Critically, if a variant is not associated with enough data to meet either 

of the Pathogenic or Not Pathogenic rules, then it will be classified as VUS. 

 

Bayesian classification views the points of evidence as data. Each data type is calibrated 

so that it can be re-expressed as a prior probability of pathogenicity (Prior_P), odds in 

favor of pathogenicity (Odds_Path), or a likelihood ratio (LR) in favor of pathogenicity. 

The data from each individual sequence variant are then combined using Bayes’ rule to 

obtain a posterior probability of pathogenicity (Post_P). The Post_P is then interpreted 

through a quantitative classifier [92] to obtain the categorical classifications (Table 5). 

 

The challenge with quantitative classification is to calibrate the data types – ie, to 

convert from the units in which each type of data is naturally expressed to Odds_Path, 

LR, or Prior_P. For classification of MMR gene variants, data that have been calibrated 

include: a sequence analysis-based Prior; segregation in pedigrees; and degree of MSI in 

CRC tumors combined with somatic BRAF mutation status [86, 94, 95]. Because MSI 

plus BRAF status can be detected by somatic tumor mutation screening, this datum will 

become more widely available as tumor screening takes off [96]. 

Functional assays could make and important contribution to VUS classification [93, 97, 

98]. Noting that failure of mismatch repair is thought to be the key molecular defect 

underlying LS, de Wind and colleagues developed an in vitro MMR Activity (CIMRA) 

assay [99–101], which has now been calibrated to convert % wild-type activity into 

CIMRA Odds_Path [102]. When the sequence analysis Prior_P and CIMRA assay 

This article is protected by copyright. All rights reserved.



 22 

provided concordant evidence in favor of pathogenicity, results met the IARC Likely 

Pathogenic criterion that >95% of variants should actually be pathogenic. On the other 

hand, when the sequence analysis Prior_P and CIMRA assay provided concordant 

evidence against pathogenicity, results fell short of the IARC Likely Not Pathogenic 

criterion that <5% of variants should be pathogenic [86, 87, 102].  In fact, this 

asymmetry is somewhat expected because a purely in vitro assay is intrinsically not able 

to detect functional defects such as loss of subcellular localization or reduced protein 

half-life. 

 

In their 2017 update to the MMR gene variant classification system, Tricarico and 

colleagues argued that "variants attaining thresholds for assignment to clinically 

actionable classes ... with limited contribution from clinical or laboratory evidence be 

considered of uncertain significance until further evidence is accrued" [87]. Whether 

integrated into LS variant classification through the rules-based or quantitative Bayesian 

approach, the systematic application of the computational Prior_P and CIMRA assay is 

likely to dramatically accelerate classification to Likely Pathogenic of missense 

substitutions observed in patients with CRC or other LS spectrum tumor. Further 

acceleration may be possible if the high-throughput gene editing techniques that Findlay 

et al. recently applied to BRCA1 sequence variants can be applied to MMR VUS [85]. 

 

Precision medicine in hereditary colorectal cancer syndromes 
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Precision Prevention. Among patients with FAP and other polyposis syndromes, 

prophylactic surgery continues to be the current gold standard for prevention of CRC. 

However, those patients that elect rectal-sparing surgeries continue to develop 

adenomas, thus retaining an excessive risk for rectal cancer. Also, duodenal cancer has 

become a major cause of mortality among the FAP population. Therefore, the 

development of chemopreventive agents is still an unmet need in the care of patients 

with polyposis syndromes. Initial studies focused in the efficacy of non-steroidal anti-

inflammatory drugs (NSAIDs) and more specifically sulindac, aspirin and COX-2 

inhibitors. Sulindac was the first NSAID to show an effect decreasing the number and 

size of polyps in a cohort of 22 patients compared with placebo (44%, P=0.014; and 

35%, P<0.001, respectively) [103]. Subsequently, a follow-up randomized double-blind 

placebo-controlled study was launched for primary prevention. Unfortunately, this study 

was only able to accrue 41 FAP patients and therefore was underpowered, which led to 

no significant differences in the number of polyps between the two arms [104]. The 

field moved next to explore agents with specificity for inhibition of COX-2. Celecoxib 

demonstrated that treatment of pre-surgical patients with 2 different doses (100 and 400 

mg daily) reduced the number and burden of polyps with excellent tolerance from the 

safety standpoint in this young population.[105, 106]. However, the translation of 

Celecoxib into the general population rendered an unacceptable cardiovascular toxicity 

profile (2.5% of subjects in the Celecoxib group and 1.9% in the placebo group) and the 

drug development was halted despite of a reduction on the occurrence of adenomas (RR 

0.64; 95% CI, 0.56 to 0.75) [107, 108]. Based on the safety data developed in sporadic 
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populations, the benefit of regular use of coxibs in terms of delaying the growth of 

polyps and delaying prophylactic surgery in patients with FAP needs to be weighed 

against the risk of toxic cardiovascular effects. Since the onset of polyps in patients with 

FAP begins occurring during the teenage years, the toxicity profile of coxibs in these 

patients with FAP may be essentially different from that in the general population. In 

fact, Lynch et al demonstrated that celecoxib at a dose of 16 mg/kg/day in children (10–

14 years) with FAP is safe, and generated a significant reduction of the number of 

colorectal polyps [109]. Given the cardiovascular toxicity of coxibs, the focus of 

chemopreventive efforts in FAP turned to Aspirin and combinations of Sulindac with 

other agents. The Concerted Action Polyp Prevention (CAPP) group completed an 

international, multicenter, randomized, placebo-controlled trial (CAPP1 protocol) of 

aspirin (600 mg daily) and/or resistant starch (30 mg daily) in young FAP patients 

[110]. After 17 months of treatment, the primary endpoint to observe a decrease in the 

polyp number in the rectum and sigmoid colon failed. Of note, the diameter of the 

largest polyp detected by endoscopy at the end of intervention tended to be smaller in 

the aspirin group (P=0.05). On the combination side, DMFO plus sulindac is being 

explored as chemoprevention in FAP (NCT01483144) after the remarkable activity 

demonstrated in a phase III with 375 patients with history of resected adenomas for 

prevention of polyp recurrence [111]. Finally, chemoprevention of duodenal adenomas 

in FAP has made significant advances recently with the publications of the results of a 

clinical trial combining sulindac and erlotinib on preventing duodenal neoplasia [112]. 

This was a double-blind randomized placebo-controlled study including 92 FAP 
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participants that were given 150 mg of sulindac twice daily combined with 75 mg of 

erlotinib once daily. The end point of the trial was met and a 71% reduction in duodenal 

polyp burden was observed between the treatment and placebo groups. This 

combination also rendered substantial modulation of the colorectal adenoma burden 

[113]. 

 

Aspirin has been the primary NSAID explored for chemoprevention in LS. In the 

CAPP2 study, a total of 861 LS patients were given 600 mg of aspirin or placebo for up 

to 4 years [114–116]. Overall, 600 mg of aspirin given over an average of 25 months 

was found to be effective in reducing CRC occurrence in LS patients. As a follow-up 

CAPP-3, which is a non-inferiority clinical trial, is now being conducted to study the 

long-term effect of aspirin in 3000 LS patients at three different doses: 100, 300, or 600 

mg per day [114]. We have recently completed a multi-center Phase Ib biomarker, 

placebo-controlled, trial of naproxen, an NSAID with improved safety profile [117], in 

a total of 80 LS patients (NCT02052908). All participants underwent colonoscopy 

before and after the intervention as well as collection of blood, plasma, tissue, and urine 

for subsequent biomarker studies with mRNA-seq, miRNA-seq and determination of 

levels PGE2 in tissue, naproxen in blood and plasma, and PGM in urine. The primary 

endpoint of this trial was safety and modulation of PGE2 levels in tissue. This study has 

completed accrual and the data is currently being analyzed [118]. 
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Precision treatment: The role of immuno-oncology (IO) in hereditary CRC 

syndromes. IO has become a reality in the treatment of patients with hypermutant 

cancers in general and also in CRC displaying MSI. The activation of the immune 

system developed inn this type of tumors was noted several decades ago by pathologists 

that observed extensive involvement by tumor-infiltrating lymphocytes (TILs) located 

mainly at the invasive front [119]. In fact, the presence of TILs became a standard 

pathology criterion for the diagnosis of sporadic and hereditary MSI tumors [120]. 

 

Tumors with a germline MMR mutation must acquire a second somatic hit in the 

alternate allele of the same gene in order to become hypermutant. The inactivity of one 

of the heterodimers of the MMR complex (either the MutL or MutS complexes) leads to 

the accumulation of frameshift mutations that generate neoantigens [121–123]. Some of 

these neoantigens will be processed, presented by the HLA system (HLA-I and II), and 

recognized as foreign by T-cells. In fact, high levels of infiltration by activated CD8-

positive cytotoxic T lymphocytes and activated Th1 cells with associated IFN³  

production has been confirmed in detailed immune-pathologic studies. In order to 

counterbalance this active immune environment, multiple immune checkpoints such as 

PD-1, PD-L1, CTLA-4 and others are then activated by tumor cells, thus making them 

particularly susceptible to immune check-point blockade [124]. 

 

All of these data provided the biologic rationale for two phase II clinical trials assessing 

the activity of checkpoint inhibitors in MSI/Hypermutant tumors. The first trial 
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demonstrated that pembrolizumab, a humanized monoclonal anti-PD-1 antibody, given 

as single agent induced an immune-related objective response rate of 40% and an 

immune-related progression-free survival rate at 20 weeks of 78% in patients with 

metastatic MSI CRC [125]. This exceptional activity contrasted with almost negligible 

response observed among microsatellite stable (MSS)/non-hypermutant tumors. Of 

note, there were also no significant differences in the objective response rate between 

LS- and non-LS-associated tumors (46% versus 59%, respectively) [126]. The second 

trial tested nivolumab, which is another IgG4 PD-1 blocking antibody, and also 

demonstrated activity as a single agent and in combination with ipilimumab, a fully 

human immunoglobulin monoclonal anti-CTLA4 antibody, thus providing double 

checkpoint blockade. 31.1% of patients treated with single agent nivolumab achieved an 

objective response rate with disease control for 12 weeks or longer in 51% [127]. The 

combination of both checkpoint inhibitors expanded further these results and 55% of 

treated patients achieved an objective response rate, and disease control rate for more 

than 12 weeks was present in 80% of the patients [128]. This remarkable antitumor 

activity showed by checkpoint inhibitors led the FDA to approve the use of 

pembrolizumab in May of 2017, then nivolumab in July of 2017, and later the 

combination of ipilimumab with nivolumab in July 2018 for the treatment of stage IV 

hypermutant/MSI tumors after progression to standard chemotherapy. Therefore, these 

advances have placed hereditary CRC syndromes at the epicenter of precision medicine 

and immune-oncology in the last two years. 
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Summary 

CRC remains one of the most prevalent cancers, but it is also preventable. Making the 

diagnosis of genetic predisposition to CRC provides opportunities for precision cancer 

treatment, early detection, as well as prevention of subsequent cancers in patients and 

their at-risk relatives. Implementation of routine screening of CRC tumors for DNA 

MMR deficiency has been shown to improve detection of Lynch syndrome beyond 

family history criteria alone. As new strategies for surveillance and chemoprevention 

provide opportunities to reduce morbidity and mortality for individuals with Lynch 

syndrome, FAP and other genetic diagnoses, it is increasingly important to implement 

effective strategies to improve identification and management of presymptomatic  

individuals at high risk for CRC. 
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Table 1. Molecular alterations detected in the tumors developed by carriers of germline mutations in DNA repair genes. 
 

Syndrome Causal gene Tumor molecular 
features 

COSMIC mutational signaturesb 
 

Lynch syndrome MSH2 
MLH1 
MSH6 
PMS2 

MSI 
IHC: loss of MMR protein 

hypermutated 

Single base substitution: SBS6, SBS15, SBS21, SBS26, SBS44 
Doublet base substitution: DBS7, DBS10 
Insertion and deletion: ID7, (ID1), (ID2) 

PPAP POLEa 
POLD1a 

Ultramutated 
C:G>A:T (context TCT) 
C:G>T:A (context TCG) 

Single base substitution: SBS10a, SBS10b, SBS14 (concurrent 
POLE mutation and MMR deficiency), SBS20 (concurrent POLD1 

mutation and MMR deficiency) 
Doublet base substitution: DBS3 

 
MAP Biallelic MUTYH G:C>T:A 

KRAS G12C 
 

Single base substitution: SBS36 

NTHL1-associated 
polyposis 

Biallelic NTHL1 G:C>A:T 
 

Single base substitution: SBS30 

MSH3-associated 
polyposis 

Biallelic MSH3 MSI of di- and 
tetranucleotides (EMAST) 

-  

CMMRD Bilalellic MSH2, 
MLH1, MSH6, 

PMS2 

MSI 
IHC: loss of MMR protein 

(tumor and normal tissues) 

See Lynch syndrome 

a. Mutations affecting the proofreading (exonuclease) activity of the polymerases. 

b. Alexandrov et al 2018 [129]. 
Abbreviations: CMMRD, constitutional mismatch repair deficiency; EMAST, elevated microsatellite alterations at selected tetranucleotide 
repeats; IHC, immunohistochemistry; MAP, MUTYH-associated polyposis; MMR, DNA mismatch repair; MSI, microsatellite instability; 
PPAP, polymerase proofreading-associated polyposis. 

 

Table 2. Colonoscopy surveillance recommendations for individuals with germline pathogenic variants (high penetrance 
syndromes) [130]. 

Syndrome (Gene) Family history of CRC Age at CRC screening initiation Screening interval if no adenomas 
No mutationa No 50 10 years 

 Yes (≥1 FDR) 40b 5-10 years 

FAP (APC) N/A 10-15 1 year, colectomy if polyps too 
numerous 

Lynch syndrome 
(MLH1, MSH2, 
MSH6, PMS2) 

N/A 20-25 1-2 years until age 40, then every 1 
year 

MAP (MUTYH 
Biallelic) 

N/A 25-30 1-3 years depending on polyp burden 

Juvenile polyposis 
(SMAD4, BMPR1A) 

N/A 15 1-3 years depending on polyp burden 

Peutz-Jeghers 
(STK11) 

N/A 15 2-3 years depending on polyp burden 

Li Fraumeni (TP53) N/A 20-25 3 years 

Hereditary Breast 
Ovarian Cancer 

(BRCA1/BRCA2) 

No 
Yes 

50 
50 or per family history 

10 years 
5 years 

a. Recommendations based in the guidelines from the National Comprehensive Cancer Network [71]. 
b. 40 years old or 10 years earlier than the youngest-onset CRC in the family. 

Abbreviations: CRC, colorectal cancer; FDR, first-degree relative; SDR, second-degree relative. 
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Table 3. Characteristics and results of key published studies on multigene germline testing for CRC predisposition. 

Study Tested patients Country Multigene panel Hereditary CRC genes Other cancer 
genesa 

Non-selected CRC patients     
Yurgelun 2017 
[2] 

1,058 CRC patients 
(clinic-based) 

USA Commercial 25-gene 
panelb 

High penetrance 
3.1% MMR gene (Lynch sd.) 
0.5% APC 
0.3% biallelic MUTYH 
 
Moderate/Low penetrance 
1.7% monoallelic MUTYH 
1.3% APC*I1307K 
0.2% CHEK2 

High penetrance 
1.0% BRCA1/2 
0.2% PALB2 
0.1% CDKN2A 
0.1% TP53 
 
Moderate/Low 
penetrance 
0.9% ATM 
0.3% BRIP1 
0.2% NBN 
0.1% BARD1 

AlDubayan 2018 
[3] 

680 CRC patients (NHS, 
HPFS, CanSeq study) 

 

USA 14 CRC-risk genes 
and 40 DNA repair 

genes associated with 
(non-CRC) cancer 

phenotypes 

High penetrance 
0.6% MMR gene (Lynch sd.) 
0.3% APC 
0% biallelic MUTYH 
 
Moderate/Low penetrance 
1.62% monoallelic MUTYH 
1.18% APC*I1307K 
0.6% CHEK2 

High penetrance 
0.7% BRCA1/2 
0.4% PALB2 
0.3% TP53 
 
Moderate/Low 
penetrance 
0.7% ATM 
0.3% BRIP1 
0.1% BARD1 
 

DeRycke 2017 
[4] 

548 CRC patients (Colon 
Cancer Family Registry) 

Australasia 
USA 

Canada 

36-gene custom 
panelc (known or 

putative CRC genes) 

High penetrance 
6% MMR gene (Lynch sd.) 
0.9% APC 
0.4% biallelic MUTYH 
 
Moderate/Low penetrance 
0.4% CHEK2 

High penetrance 
0.2% TP53 
0.5% FLCN 
 
 

      
Non-selected young-onset CRC patients   
Pearlman 2017 
[5] 

450 CRC patients age 
<50 

USA Commercial 25-gene 
panelb 

High penetrance 
8.4% MMR gene (Lynch sd.) 
1.3% APC 
0.9% biallelic MUTYH 
0.2% SMAD4 
 
Moderate/Low penetrance 
1.6% monoallelic MUTYH 
0.9% APC*I1307K 
0.2% CHEK2 

High penetrance 
1.3% BRCA1/2 
0.4% PALB2 
0.2% CDKN2A 
 
Moderate/Low 
penetrance 
0.9% ATM 

DeRycke 2017 
[4] 

333 CRC patients age 
≤50 (MMR-proficient or 
unknown MMR status) 

Australasia 
USA 

Canada 

36-gene custom 
panelc (known or 

putative CRC genes) 

High penetrance 
4.8% MMR gene (Lynch sd.) 
2.1% APC 
1.5% biallelic MUTYH 
0.3% SMAD4 
0.3% BMPR1A 
 
Moderate/Low penetrance 
0.3% CHEK2 

High penetrance 
0% TP53 
 

High-risk patients (familial CRC)    
Yurgelun 2015 
[44] 

1,260 patients referred for 
Lynch sd. germline 

testing 

USA Commercial 25-gene 
panelb 

High penetrance 
9.0% MMR gene (Lynch sd.) 
0.4% APC 
0.2% biallelic MUTYH 
0.08% STK11 
 
Moderate/Low penetrance 
2.1% monoallelic MUTYH 
0.4% CHEK2 

High penetrance 
1.2% BRCA1/2 
0.08% PALB2 
 
Moderate/Low 
penetrance 
0.7% ATM 
0.2% BRIP1 
0.08% NBN 
0.08% BARD1 
0.08% RAD51C 
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Stoffel 2018 [6] 430 CRC patients age 
<50 evaluated by a 

clinical genetics service 

USA Germline DNA 
sequencing (n=293) 

 
Commercial multigene 

panel (n=22)b 
 

67-gene custom panel 
(n=117)d 

High penetrance 
13.0% MMR gene (Lynch sd.) 
2.3% APC 
1.9% biallelic MUTYH 
0.5% SMAD4 
0.2% POLE 
 
Moderate/Low penetrance 
0.5% CHEK2 

High penetrance 
0.5% TP53 
0.2% BRCA1/2 
 
 

Hansen 2017 
[131] 

274 patients (263 
families) fulfilling the 

Amsterdam (n=262) or 
revised Bethesda (n=12) 

criteria with no 
pathogenic MMR 

mutations 

Norway 
Australia 

122-gene custom 
paneld 

High penetrance 
1.14% MMR gene (Lynch sd.)e 
0.8% POLE 
0.4% biallelic MUTYH 
0.4% PTEN 
0.4% AXIN2 (oligodontia-CRC 
sd.) 
0% APC 
 
Moderate/Low penetrance 
1.5% monoallelic MUTYH 
0.4% CHEK2 

High penetrance 
1.1% BRCA1/2 
 
Moderate/Low 
penetrance 
0.8% ATM 

a. The causal role of these genes in CRC predisposition has not been unequivocally proven.  
b. NTHL1, MSH3, POLE and POLD1 and RPS20 are not included in the panel.  
c. NTHL1, POLE and POLD1 and RPS20 are not included in the panel. 
d. NTHL1 and RPS20 are not included in the panel. 
e. Previously identified MMR mutation carriers had been excluded from the analysis. 

 

 

 

Table 4. MLH1 and MSH2 missense substitutions in the InSiGHT and GnomAD databases. 

Variant class and source Missense substitution count Average sequence analysis-based 
probability of pathogenicity 

Class 4, 5   144 0.784 
InSiGHT only   135 0.790 
InSiGHT and GnomAD       9 0.690 

Class 3 1,299 0.391 
InSiGHT only    408 0.579 
InSiGHT and GnomAD    176 0.388 
GnomAD    891 0.306 

Class 1, 2     45 0.260 
InSiGHT only       5 0.374 
InSiGHT and GnomAD     40 0.246 

 
 
 
 
Table 5. The IARC variant classification scheme (Modified from Plon et al. 2008 [92]). 

Category Synonym Definition 
Pathogenic  Post_P> 0.99 
Likely Pathogenic  0.99 ≥ Post_P> 0.95 
VUS Unclassified variant (UV) 0.95 ≥ Post_P ≥ 0.05 
Likely Not Pathogenic Likely Benign 0.05 >Post_P ≥0.001 
Not Pathogenic Benign Post_P< 0.001 
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FIGURE LEGENDS 

Figure 1. Phenotypic classification of nonpolyposis and polyposis CRC syndromes, 

mode of inheritance, causal genes and affected molecular pathways.  

Note: Germline AXIN2 autosomal dominant mutations (Wnt pathway) may cause 

oligodontia-colorectal cancer syndrome characterized by severe permanent tooth 

agenesis and the presence CRC or precancerous colonic or gastric lesions of variable 

types (adenomas, hyperplastic polyps) [132–134]. Due to the still undefined CRC and 

polyposis phenotype, it has not been included in the figure. 

Abbreviations: BER, base excision repair; CMMRD, constitutional mismatch repair 

deficiency; HMPS, hereditary mixed polyposis syndrome; MAP, MUTYH-associated 

polyposis; MMR, DNA mismatch repair; PPAP, polymerase proofreading-associated 

polyposis; SPS, serrated polyposis syndrome. 

 

Figure 2. Strategy for universal tumor screening for Lynch syndrome in CRC patients 

(Adapted from Hampel, et al 2018 [29]). The different etiologies of MMR-d CRCs are: 

i) germline MMR gene mutation; ii) serrated pathway lesions (somatic BRAF mutation 

and/or MLH1 promoter hypermethylation); iii) double somatic MMR gene mutations; 

iv) somatic MMR gene mutation secondary to a POLE or POLD1 exonuclease mutation 

or to biallelic MUTYH mutations. 

Abbreviations: CRC, colorectal cancer; IHC, immunohistochemistry; MMR, DNA 

mismatch repair; MMR-d, mismatch repair deficient; MSI, microsatellite instability; 
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MSI-H, high level of microsatellite instability (microsatellite unstable); NGS, next 

generation sequencing. 
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