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Abstract The dynamics of flooding are primarily influenced by the shape, height, and roughness
(friction) of the underlying topography. For this reason, mechanisms to mitigate floods frequently employ
structural measures that either modify topographic elevation, for example, through the placement
of levees and sandbags, or increase roughness, for example, through revegetation projects. However,
the configuration of these measures is typically decided in an ad hoc manner, limiting their overall
effectiveness. The advent of high-performance surface-water modeling software and improvements in
black-box optimization suggest that a more principled design methodology may be possible. This paper
proposes a new computational approach to the problem of designing structural mitigation strategies under
physical and budgetary constraints. It presents the development of a problem discretization amenable to
simulation-based, derivative-free optimization. However, meta-heuristics alone are found to be insufficient
for obtaining quality solutions in a reasonable amount of time. As a result, this paper proposes novel
numerical and physics-based procedures to improve convergence to a high-quality mitigation. The
efficiency of the approach is demonstrated on hypothetical dam break scenarios of varying complexity
under various mitigation budget constraints. In particular, experimental results show that, on average,
the final proposed algorithm results in a 65% improvement in solution quality compared to a
direct implementation.

1. Introduction
Modern flood risk management (FRM) is a continuous process of identifying issues, defining objectives,
assessing risks, appraising options, implementation, monitoring, and review. Within this framework, risk
assessment is regarded as a cyclic process that includes the design and evaluation of alternative management
strategies. Such strategies commonly include both “hard” and “soft” structural mitigation measures, for
example, the construction of dams (hard) and wetland storage (soft; Sayers et al., 2013). Measures can also
be temporary (e.g., sandbags) or permanent (e.g., levees). However, for complex scenarios, the number of
feasible strategies is extremely large and computationally difficult to explore. As such, the manual design
and assessment of these strategies, whether conducted in a real-world or simulation-based setting, can be
time-consuming and expensive. This limitation may result in vastly suboptimal FRM strategies. To aid in the
FRM process, an optimization-based decision support approach for proposing structural mitigation designs
can serve as a useful tool within the overall risk assessment phase.

This paper develops such an optimization-based decision support approach for proposing flood protection
strategies, whereby effective mitigation designs are realized through the exploration of various configu-
rations in a computational setting. Specifically, the paper defines the Optimal Flood Mitigation Problem
(OFMP), whose goal is to make topographic modifications that protect critical regions under a given flood
scenario. This is a difficult optimization problem, as these modifications can have highly nonlinear effects on
the flooding behavior. Moreover, physical models used to examine these effects are computationally expen-
sive. Finally, as the OFMP aims at deciding several simultaneous modifications, an efficient exploration of
the full search space is computationally intractable for realistic scenarios.

The literature associated with the OFMP is limited. The closest related studies are by Judi, Tasseff, et al.
(2014) and Tasseff et al. (2016). In the former, an interdiction model for flood mitigation is proposed, and
model surrogates constructed from simulation data are used as proxies for estimating flood sensitivity to
hard structural mitigation measures. In the latter, an OFMP similar to that discussed herein is introduced,
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and mixed-integer linear programs constrained by approximate flooding dynamics are solved to obtain hard
structural mitigation designs. However, the approach is shown to suffer from substantial scalability issues
in space and time. Neither study uses an approach which relies upon repeated deterministic modeling of
the partial differential equations (PDEs) underlying the flooding dynamics.

A number of studies discuss simulation-optimization approaches for reservoir operation, where the PDEs
associated with the flood dynamics are treated as a black box. An extensive literature review of these stud-
ies can be found in Che and Mays (2015). The work described by Colombo et al. (2009) considers the full
PDEs, but their focus is on optimizing normal operations of an open-channel system. Finally, the prob-
lem of optimizing dike heights with uncertainty in flooding estimates is considered by Brekelmans et al.
(2012). However, in this study, the PDEs for flood propagation are not considered, and probability models
for maximum flood depths are used in place of deterministic physical models.

This paper presents a new approach to the problem of designing structural FRM strategies over PDE con-
straints. It develops a problem discretization amenable to simulation-based derivative-free optimization.
Moreover, the paper shows that meta-heuristics alone are insufficient for obtaining quality solutions in
reasonable time. As a result, it presents several innovative computational and physics-based techniques to
increase convergence to high-quality solutions. The efficiency of the proposed approach is compared using
hypothetical dam break scenarios of varying complexity under multiple mitigation budgets. Experimental
results show that the proposed algorithm results in a 65% improvement in solution quality compared to a
direct implementation.

The rest of this paper is organized as follows: Section 2 discusses the background of flood modeling and
formalization of the OFMP; section 3 describes solution methods for a specific OFMP; section 4 com-
pares these methods using fictional dam break scenarios, with both simplistic (section 4.3) and realistic
(section 4.4) topographies, and multiple mitigation budgets; and section 5 concludes the paper.

2. Model
In this paper, it is assumed that flood scenarios are modeled using the two-dimensional (2-D) shallow water
equations. These PDEs are derived from the Navier-Stokes equations under the assumption that horizontal
length scales are much larger than the vertical scale. This is reasonable for large-scale floods, where water
depths are much smaller than typical flood wavelengths. Two-dimensional models, in particular, alleviate
the fundamental disadvantages of their 1-D counterparts by allowing for higher-order representations of the
topographic surface. Moreover, 2-D models readily make use of widely available topographic elevation data.
Finally, with recent advances in high-performance computing, solutions to these PDEs have become numer-
ically tractable for large-scale problems, making them of particular computational interest. With volumetric,
bed slope, and bed shear stress source terms, these equations are expressed as

𝜕h
𝜕t

+ 𝜕(hu)
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+ 𝜕(hv)
𝜕𝑦
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where h is the water depth, u and v are horizontal velocities, B is the bottom topography (or bathymetry), g is
the acceleration due to gravity, n is the Manning's roughness coefficient, and R is a volumetric source term
(Chertock et al., 2015). Equation (1a) represents mass continuity, while equations (1b) and (1c) represent
conservation of momentum over the two horizontal dimensions.

These equations can be rewritten in vector form by introducing the definitions

U ∶= (h, hu, hv),F(U) ∶=
(

hu, hu2 + 1
2

gh2, huv
)
,

G(U) ∶=
(

hv, huv, hv2 + 1
2

gh2
)
, SR(R) ∶= (R(x, 𝑦, t), 0, 0) ,

SB(U,B) ∶=
(

0,−gh𝜕B
𝜕x

,−gh𝜕B
𝜕𝑦

)
, Sn ∶=

(
0,−g n2

h1∕3 |u|u,−g n2

h1∕3 |v|v) ,

(2)
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where U is the vector of conserved variables; F and G are fluxes in the x and y directions, respectively; and
SR, SB, and Sn are the volumetric, bed slope, and bed shear stress source terms, respectively. This allows
equations (1a)–(1c) to be rewritten more concisely as

Ut + Fx + G𝑦 = SR + SB + Sn, (3)

where t, x, and y indicate partial differentiation with respect to those variables.

The OFMP considers a flood scenario (e.g., a dam failure) and a set of 2-D regions (“assets”) to protect. To
minimize flooding at asset locations, the model must produce optimal topographic elevation and roughness
fields using a set of m mitigation measures. For each measure i ∈ {1, 2, … ,m}, the functions 𝛿B(𝜔i) and
𝛿n(𝜔i) define 2-D fields of height and roughness for a given tuple of field parameters 𝜔i. Measures can first
additively modify the elevation field B to return a new field B̃, defined as

B̃
(

B,
(
𝜔1, 𝜔2, … , 𝜔m

))
∶= B +

m∑
i=1

𝛿B(𝜔i). (4)

Similarly, measures can modify the roughness field n to return a new field defined as

ñ
(

n,
(
𝜔1, 𝜔2, … , 𝜔m

))
∶= n + {max

i
{𝛿n(𝜔(i))(x, 𝑦)} ∶ (x, 𝑦) ∈ R

2}, (5)

that is, a field of maximum roughness. For notational ease, hereafter, B̃ refers to equation (4), ñ refers to
equation (5), and the tuple (𝜔1, 𝜔2, … , 𝜔m) is referred to as the “parametric configuration” or simply the
“configuration.” With these definitions and shorthand notations, the modified bed slope source term is
defined as

S̃B
(
U,B,

(
𝜔1, 𝜔2, … , 𝜔m

))
∶=

(
0,−gh𝜕B̃

𝜕x
,−gh𝜕B̃

𝜕𝑦

)
. (6)

We note that the change in elevation may be a result of permanent structures such as levees or temporary
measures such as sandbags. Similarly, the modified bed shear stress source term is defined as

S̃n
(
U,n,

(
𝜔1, 𝜔2, … , 𝜔m

))
∶=

(
0,−g ñ2

h1∕3 |u|u,−g ñ2

h1∕3 |v|v) . (7)

Hereafter, S̃B ∶= S̃B
(
U,B, (𝜔1, 𝜔2, … , 𝜔m)

)
and S̃n ∶= S̃n

(
U,n, (𝜔1, 𝜔2, … , 𝜔m)

)
are used to concisely

denote these two source terms that vary with the configuration.

The OFMP is then written in a form that embeds the 2-D shallow water equations as constraints and
optimizes the tuple (𝜔1, 𝜔2, … , 𝜔m) (i.e., the configuration) via

minimize
𝜔1 ,𝜔2 ,… ,𝜔m

z
(
𝜔1, 𝜔2, … , 𝜔m

)
=

∑
a∈∫ ∫a

max
t

h(x, 𝑦, t)dx d𝑦 (8a)

subject to Ut + Fx + G𝑦 = SR + S̃B + S̃n (8b)

𝛿B(𝜔i)(x, 𝑦) = 0,∀i ∈ {1, 2, … ,m}, for (x, 𝑦) ∈
⋃ (8c)

𝛿n(𝜔i)(x, 𝑦) = 0,∀i ∈ {1, 2, … ,m}, for (x, 𝑦) ∈
⋃ (8d)

(
𝜔1, 𝜔2, … , 𝜔m

)
∈  . (8e)

Here  denotes the set of asset regions to be protected and z denotes the objective function. This function
is defined in equation (8a) and captures the maximum water volume over all asset locations and times.
Constraint (8b) denotes the solution to the shallow water equations in the presence of the m mitigation
measures. Constraints (8c) prohibit measures from being constructed “underneath” an asset. Similarly, con-
straints (8d) prohibit the roughness at an asset location from being modified. Finally, constraint (8e) ensures
(𝜔1, 𝜔2, … , 𝜔m) resides within the set of all feasible parametric configurations  , that is,  distinguishes
valid and invalid mitigation designs.
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For simplicity of presentation, this paper considers only two types of structural measures, although the
approach can easily be generalized to include other soft and hard measures, both temporary and permanent.
The first type is an immovable wall of fixed length (𝓁), width (w), and height (b̄i). Each wall is defined using
three continuously defined, bounded parameters: latitudinal position of the wall centroid (𝜆i), longitudinal
position of the wall centroid (𝜙i), and angle of the wall formed with respect to the longitudinal axis (𝜃i).
In this paper, the centroid position is bounded by the scenario domain's spatial extent, and 𝜃i ∈ [0, 𝜋].
The second structural type is a revegetation project defined by a 2-D circular region with center (𝜆i, 𝜙i) and
fixed radius r that increases the area's Manning's roughness coefficient based on a fixed field n̄i. Under these
assumptions, the OFMP aims at deciding 𝜔i =

(
𝜆i, 𝜙i, 𝜃i, b̄i, n̄i

)
for each measure i ∈ {1, 2, … ,m} = ,

where b̄i and n̄i are decided a priori for each measure. More specifically, this produces an OFMP of the
specialized form

minimize
𝜔1 ,𝜔2 ,… ,𝜔m

z
(
𝜔1, 𝜔2, … , 𝜔m

)
=

∑
a∈∫ ∫a

max
t

h(x, 𝑦, t)dx d𝑦 (9a)

subject to Ut + Fx + G𝑦 = SR + S̃B + S̃n (9b)

𝛿B(𝜔i)(x, 𝑦) = 0, for (x, 𝑦) ∈
⋃,∀i ∈  (9c)

𝛿n(𝜔i)(x, 𝑦) = 0, for (x, 𝑦) ∈
⋃,∀i ∈  (9d)

𝛿B(𝜔i)(x, 𝑦) =
⎧⎪⎨⎪⎩

b̄i for

{ |(x−𝜙i) cos 𝜃i − (𝑦 − 𝜆i) sin 𝜃i| ≤ 𝓁
2|(x−𝜙i) sin 𝜃i + (𝑦 − 𝜆i) cos 𝜃i| ≤ w
2

∀i ∈ 
0 otherwise

(9e)

𝛿n(𝜔i)(x, 𝑦) =
⎧⎪⎨⎪⎩

n̄i(x, 𝑦) for (x−𝜙i)2 + (𝑦 − 𝜆i)2 ≤ r2

∀i ∈ 
0 otherwise

(9f)

𝜆lb ≤ 𝜆i ≤ 𝜆ub, 𝜙lb≤ 𝜙i≤ 𝜙ub, 0 ≤ 𝜃i ≤ 𝜋,∀i ∈ . (9g)

Using this formulation, i is a wall when b̄i > 0 and n̄i = 0, and i is a revegetation project when b̄i = 0
and n̄i > 0. Constraints (9c) and (9d) emphasize that modifications cannot be made within asset regions;
constraint (9e) imposes the wall height b̄i within each rotated rectangle defined using the parameters 𝜆i, 𝜙i,
and 𝜃i and a standard 2-D rotation matrix; and constraint (9f) imposes additions to roughness within each
revegetation circle defined by the center (𝜆i, 𝜙i). Finally, constraint (9g) replaces constraint (8e) of the more
general OFMP. Here 𝜆lb and 𝜆ub (𝜙lb and 𝜙ub) are the lower and upper latitudinal (longitudinal) boundaries
of the scenario domain.

Constraint (9g) implies a large feasible region, as the spatial extent is typically much larger than the flood's
extent. To reduce the solution space, the notion of a restricted region  is thus introduced, where centroids
must reside in  . That is,

(𝜆i, 𝜙i) ∈  ,∀i ∈ {1, 2, … ,m} (9h)

is appended to the problem above, completing the primary model used in this paper.
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3. Algorithm
The OFMP at the end of section 2 remains difficult to solve directly. However, with recent improve-
ments in both numerical discretizations of the shallow water equations (e.g., Chertock et al., 2015) and
high-performance implementations thereof (e.g., Brodtkorb et al., 2012; Tasseff & Judi, 2016), numerically
efficient solutions of the PDEs described in constraint (9b) are possible. With this intuition, in algorithm
1, a time-limited search-based method is introduced to find a near-optimal solution

(
𝜔∗

1, 𝜔
∗
2, … , 𝜔∗

m
)

to the
problem defined by equations (9a) through (9h).

Here B and n denote the initial topographic elevation and Manning's roughness coefficient fields;  denotes
the set of assets; m denotes the number of mitigation measures being configured; Tmax denotes the maximum
clock time; and 𝛼 is a parameter used for computing restrictions. The function Clock returns the current
clock time. Since a useful definition of  is difficult to compute a priori, ̃ serves as an iterative approxima-
tion of some desired  . In line 2, ̃ is initialized; it is later modified in line 10 using UpdateRestriction.
Both functions are described in section 3.1. In line 3, the best solution and the historical solution setΩ are ini-
tialized. In line 5, a configuration is generated via some history-dependent function GenerateSolution,
described in section 4.1. In line 6, the shallow water equations are solved. In line 7, the historical solution set
is updated. In lines 8 through 11, the best solution and ̃ are updated. Finally, in line 13, the best elevation
and roughness fields are returned.

3.1. Computation of the Restricted Region
3.1.1. The Direct Methodology
The most obvious globally acceptable method for selecting  is to assume

 = R
2, (10)

where, of course, {
(x, 𝑦) ∈ R

2 ∶ 𝜆lb ≤ x ≤ 𝜆ub, 𝜙lb ≤ 𝑦≤ 𝜙ub
}
⊂  , (11)

indicating the bounds within constraint (9g) involving 𝜆i and 𝜙i dominate those imposed by  . This method
for selecting  is hereafter referred to as the direct method. In practice, this method is used to define the
direct implementations of the functions InitializeRestriction and UpdateRestriction, both of which
return the set R2.
3.1.2. The Pathline Methodology
A pathline is the trajectory an individual fluid element follows over time, beginning at position

(
x0, 𝑦0

)
and

time t0. In 2-D, a pathline is defined by the two equations

x(t) = x0 + ∫
t

t0

u(x(t′), 𝑦(t′), t′)dt′, (12a)

𝑦(t) = 𝑦0 + ∫
t

t0

v(x(t′), 𝑦(t′), t′)dt′, (12b)
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where u and v are velocities in the x and y directions. To compute the pathline from a flood wave to an
initially dry point (x0, y0), the definition of twet (x0, y0) is introduced as the time at which the depth at (x0, y0)
exceeds some threshold. More concisely,

twet(x0, 𝑦0) ∶= min
{

t ∈ [t0, t𝑓 ] ∶ h(x0, 𝑦0, t) ≥ 𝜖h
}
, (13)

where 𝜖h is an arbitrarily small depth, taken in this study to be 1 mm. Using this definition, the pathline
equations may be integrated in reverse, giving

xwet(x0, 𝑦0, t) = x0 + ∫
t

twet

u(xwet(t′), 𝑦wet(t′), t′)dt′, (14a)

𝑦wet(x0, 𝑦0, t) = 𝑦0 + ∫
t

twet

v(xwet(t′), 𝑦wet(t′), t′)dt′, (14b)

where it is assumed that t ≤ twet. The above equations approximate a path to flooding.

In this paper, a pathtube is defined as a set of pathlines satisfying equations (14a) and (14b). For a region ,
the pathtube  encompassing  with a start time of t0 is

(U,) =
{
(xwet(x0, 𝑦0, t), 𝑦wet(x0, 𝑦0, t)) ∈ R

2 ∶ (x0, 𝑦0) ∈ , t ∈ [t0, twet(x0, 𝑦0)]
}
. (15)

This region encompasses approximate paths of least resistance from a flood to . It is clear that good
locations for structural mitigation measures are likely to reside in  .

A robust selection of  would account for the change in U with respect to a large set of feasible configura-
tions. In an ideal setting, a good selection for  would thus be

 =
⋃
𝛚∈

⋃
a∈

{
(x, 𝑦) ∈ (U, a) ∶ Ut + Fx + G𝑦 = SR + S̃B + S̃n

}
. (16)

In practice, defining  as per equation (16) is nontrivial. First, each a ∈  may be a set of infinitely many
points. There are also infinitely many moments t in a solution U to the shallow water equations. Most impor-
tantly, the union over all feasible configurations (𝜔1, 𝜔2, … , 𝜔m) = 𝛚 ∈  assumes knowledge of U for any
such feasible configuration (𝜔1, 𝜔2, … , 𝜔m). For these reasons, an iteratively constructed definition of the
pathtube-like region ̃ is instead proposed, which approximately captures the features of some unknown
larger  relevant to the OFMP (e.g., equation (16)).

From a numerical perspective, each a ∈  is actually a polygon whose exterior connects a set of points
Pa. Solutions to the OFMP are likely to intersect the pathlines from a flood to each of these points. Also, in
practice, numerical solutions to the shallow water equations are discrete in space and time. Assuming that
solutions are obtained for a set of time stamps  on a rectangular grid G, twet is first redefined as

twet(x0, 𝑦0) ∶= min{t ∈  ∶ hi0 ,𝑗0 ,t ≥ 𝜖h}, (17)

where (i0, j0) is the unique index of the cell in grid G that contains the point (x0, y0).

For each point along an asset exterior, a numerical representation of the pathline leading to that point
is desired. To accomplish this, it is assumed that a pathline can be approximated as a set  of discrete
points. These points can be generated by solving equations (14a) and (14b) using any suitable ordi-
nary differential equation integration technique. In this study, suggestions from Telea, (2014; initially
described for streamlines, which trace a static field) are used to compute pathlines according to the func-
tion ComputePathline(U, x0, y0), whose arguments denote a solution U to the shallow water equations
and the x and y positions of a seed point, respectively. A complete description of this function is given in
algorithm 3.

The definition of ComputePathline enables the computation of a set of points Q approximating the
pathtube leading to a set of exterior asset points Pa ∈ a ∈  via

Q(U,Pa) =
⋃

(x0 ,𝑦0)∈Pa

ComputePathline(U, x0, 𝑦0). (18)
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Since pathtubes are curvilinear, typical geometries that envelope Q (e.g., the convex hull) do not effectively
summarize this set. For this reason, the notion of an alpha shape is introduced, which minimally encom-
passes points of Q using straight lines. A discussion on alpha shapes can be found in Fischer (2000). In
this study, Edelsbrunner's algorithm (Edelsbrunner et al., 1983), presented in algorithm 4, is used to com-
pute alpha shapes. The function that computes this shape for a set Q and alpha value 𝛼 is denoted as
AlphaShape(Q, 𝛼).

The definition of the function AlphaShape finally allows for definition of the functions
InitializeRestriction and UpdateRestriction. Both assume restrictions are the unions of alpha
shapes approximating the pathtubes leading to each asset. The functions are described in algorithms 2
and equation (19), respectively. In algorithm 2, line 2, the shallow water equations are solved without the
presence of structural mitigation measures. In line 3, the union of alpha shapes for all pathtubes leading to
the assets a ∈  is computed. Asset regions are then subtracted from this set to ensure structural measures
do not overlap with asset locations.

The function UpdateRestriction using the pathline approach is defined as

UpdateRestriction(U,, , 𝛼) =  ∪

(⋃
a∈

AlphaShape(Q(U,Pa), 𝛼)

)
⧵
⋃. (19)

The majority of this function resembles algorithm 2, although the union of the current set and previous 
is computed to encourage exploration of a more representative (i.e., expanded) search space. Moreover, as
per algorithm 1, this function is only called as better solutions to the OFMP are obtained. This decreases the
burden of computing pathtubes and alpha shapes on each iteration of the algorithm.

3.2. Sequential Optimization Algorithm
Due to the nonlinear sensitivity of flooding behavior with respect to mitigation efforts, predictable and incre-
mental changes to solutions of the OFMP while increasing the number of mitigation measures, m, are not
ensured. This may be undesirable from a planning perspective. A separate algorithm is thus proposed to
induce a sequential solution to the OFMP, whereby solutions with m = 2 include those of m = 1, solu-
tions with m = 3 include those of m = 2, and so on. This ensures increasing utility for configurations of
increasing sizes. It also allows policymakers to more clearly understand the effects of budgetary constraints
with respect to the overall structural flood mitigation efforts. The recursion to compute sequential solutions
may be defined as

(Bi,ni) = SolveOFMP
(

Bi−1,ni−1,, 1,
Tmax

m
, 𝛼

)
, (20)

where B0 = B, n0 = n, and the time for each subproblem is an equal portion of Tmax. In this paper, line
10 is eliminated from algorithm 1 when using the sequential approach, as the best placement for a single
structural mitigation measure is likely to reside within the initial ̃ computed on line 2. As a consequence,
for each structural measure placed using the sequential approach, pathtubes are constructed only once.

4. Results
4.1. Model Relaxation
The proposed approach uses the open sourcescipy.optimize.differential_evolution (DE) and
RBFOpt libraries to produce two separate implementations of GenerateSolution in algorithm 1 (Costa
& Nannicini, 2018; Storn & Price, 1997). Both only include support for simple bounds like those indi-
cated in constraint (9g). Thus, these implementations of GenerateSolution may generate configurations
that are infeasible with respect to constraints (9c) through (9f). To overcome this, the OFMP defined by
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Figure 1. Pictorial descriptions of six simple Optimal Flood Mitigation Problem scenarios, ordered numerically (e.g.,
one in the upper left). Black represents nonzero topographic elevation (of height 1 m); blue represents nonzero initial
water depth (of height 1 m); and red represents assets.

equations (9a) through (9h) is replaced with the relaxed formulation

minimize
𝜔1 ,𝜔2 ,… ,𝜔m

z
(
𝜔1, 𝜔2, … , 𝜔m

)
= p1 + p2 +

∑
a∈∫ ∫a

max
t

h(x, 𝑦, t)dx d𝑦 (21a)

subject to p1 = c1

m∑
i=1

min
{‖‖‖(x, 𝑦) − (

𝜆i, 𝜙i
)‖‖‖ ∶ (x, 𝑦) ∈ }

(21b)

p2 = c2

m∑
i=1

∑
a∈∫ ∫a

𝛿B(𝜔i)dx d𝑦 + c3

m∑
i=1

∑
a∈∫ ∫a

𝛿n(𝜔i)dx d𝑦 (21c)

Ut + Fx + G𝑦 = SR + S̃B + S̃n (21d)

𝛿B(𝜔i)(x, 𝑦) =
⎧⎪⎨⎪⎩

b̄i for

{ |(x−𝜙i) cos 𝜃i − (𝑦 − 𝜆i) sin 𝜃i| ≤ 𝓁
2|(x−𝜙i) sin 𝜃i + (𝑦 − 𝜆i) cos 𝜃i| ≤ w
2

∀i ∈ 
0 otherwise

(21e)

𝛿n(𝜔i)(x, 𝑦) =
⎧⎪⎨⎪⎩

n̄i for (x−𝜙i)2 + (𝑦 − 𝜆i)2 ≤ r2

∀i ∈ 
0 otherwise

(21f)

𝜆lb ≤ 𝜆i ≤ 𝜆ub, 𝜙lb≤ 𝜙i≤ 𝜙ub, 0 ≤ 𝜃i ≤ 𝜋,∀i ∈ . (21g)

In equation (21a), two penalty terms are included in the objective to capture infeasibilities in constraints
(9c) through (9f). The first penalty, p1, is defined in constraint (21b) and denotes the sum of all minimum
distances between each measure's centroid and the nearest point of the restricted positional set  . This term
is scaled by the constant c1, taken in this study to be equal to one. The second penalty, p2, is defined in
constraint (21c). Here the first term denotes the net modified elevation volume over all asset regions, and
the second term denotes the net change in roughness over all asset regions. These terms are scaled by the
constants c2 and c3, respectively. Herein, both are taken to be (Δr)−2, where Δr is the spatial resolution of
the discretization.
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Figure 2. Comparison of objective value versus number of PDE evaluations for scenarios 1 through 6, using DE-D and
DE-PL for configurations of one through five walls. PDE = partial differential equation.

4.2. Experimental Setting
For simplicity, sections 4.3 through 4.4.3 focus on OFMPs where only wall-type measures are considered
(i.e., b̄i > 0), while section 4.4.4 presents an algorithmic proof of concept where only revegetation-type mea-
sures are considered (i.e., n̄i > 0). For each experiment, algorithm 1 was limited to 1 day of wall-clock time.
When using DE, population sizes of 45 m (b̄i > 0) and 30 m (n̄i > 0) were employed; trial solutions were
computed as the best solution plus scaled contributions of two random candidates; the mutation constant
varied randomly within [0.5, 1.0); and the recombination constant was set to 0.9. When using the direct
InitializeRestriction and UpdateRestriction methods, Latin hypercube sampling was used to ini-
tialize the population. When using the pathline-based methods, the population was initialized via random
sampling over the initial restricted set (i.e., ̃) and 𝜃i ∈ [0, 𝜋]. When using RBFOpt, the samplingmethod
was used; most other parameters were left unchanged.

For computational considerations, if the configuration proposed by GenerateSolution was feasible, the
shallow water equations (i.e., constraint (21d)) were solved using the proposed configuration. Otherwise, a
solution containing no structural mitigation measures was referenced. That is, S̃B was replaced with SB, and
S̃n was replaced with Sn. To solve these PDEs, the open-source surface-water modeling software Nuflood
(Tasseff & Judi, 2016) was used, where the shallow water equations are spatially discretized according to the
scheme described by Kurganov and Petrova (2007).
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Figure 3. Best obtained elevations and maximum depths for configurations of one through five walls for the highly simplified flood scenarios, referenced as
scenarios 1 through 6 (vertically). Darker blue corresponds to larger maximum depths; black corresponds to nonzero portions of the initial topographic
elevation field; green corresponds to elevation additions via the placement of walls; and red corresponds to asset locations. The orange lines represent the
exteriors of the final computed restricted positional sets ̃ in algorithm 1.

Each experiment was conducted on one Intel Xeon E5-2695 V4 CPU containing 18 cores at 2.1 GHz and
125 GB of RAM. Nuflood was compiled in single-precision mode using the Intel C++ Compiler, version
17.0.1. The remainder of algorithm 1 was implemented in Python 3.6. Compared to the PDE evaluations,
these other portions of the algorithm were found to be computationally negligible.
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Table 1
Table Comparing Objectives Using the (Direct) RBFOpt-D and (Pathline-Based) RBFOpt-PL Solvers Over 10 Random Seeds,
With the Number of Walls (m) Ranging From 1 to 10, as Discussed in Section 4.4

RBFOpt-D RBFOpt-PL
m Mean Min Max SD Mean Min Max SD Mean improvement
1 165.93 159.63 170.25 3.36 162.81 159.63 167.59 2.61 1.88%
2 147.96 105.34 166.60 20.14 111.02 95.98 130.88 10.74 24.96%
3 144.93 111.87 164.10 15.44 89.22 77.56 93.62 5.40 38.44%
4 128.52 105.81 159.12 14.21 81.33 51.63 97.83 13.47 36.72%
5 135.94 128.25 144.42 5.03 62.38 26.40 80.40 15.67 54.11%
6 122.24 98.38 140.19 14.22 59.13 41.40 71.25 9.07 51.63%
7 119.14 81.14 145.80 18.65 51.11 29.13 66.20 13.08 57.10%
8 102.08 78.65 122.69 16.22 43.28 27.82 57.35 9.40 57.60%
9 107.40 81.93 127.53 15.52 42.73 19.00 53.26 11.19 60.21%
10 104.90 77.17 124.13 16.75 34.72 21.75 42.74 7.60 66.90%

Note. Values are scaled by a factor of 10−4. SD = standard deviation.

4.3. Simplified Circular Dam Break Scenarios
To compare the two positional restriction methodologies described in section 3.1, six simple OFMP scenar-
ios were constructed. All were intended to have human intuitive solutions, that is, optimal placement of
structural mitigation measures could be inferred from a basic understanding of flood propagation. These
scenarios are displayed pictorially in Figure 1. In each scenario, under the influence of gravity, the initial
volume of water (colored with blue) is propagated outward; without mitigation measures, this water comes
into contact with assets (colored with red), flooding them.

Each of the six scenarios was modeled using a spatial resolution of 1 m and 64 × 64 grid cells. The ground
surface was assumed to be frictionless; critical depth boundary conditions were employed; and a simula-
tion duration of 100 s was used. When necessary to compute pathlines, intermediate PDE solution data
were reported for every 1 s of simulation time. In the experiments performed, each of the corresponding
OFMPs was solved with the number of walls, m, ranging from one to five. Wall widths, lengths, and heights
were fixed to 2.5, 8.0, and 1.0 m, respectively. Finally, all experiments were performed using a single fixed
random seed.

In Figure 2, for each experiment, the objective behavior is plotted against the number of PDE evaluations
required to reach that objective. These behaviors are compared for the direct differential evolution solver
(DE-D) and its pathline-based counterpart (DE-PL). The DE-PL solver was generally able to find good solu-
tions faster and improve upon them more rapidly, especially for configurations involving larger numbers of
walls. However, there were some instances where the DE-D solver produced higher quality solutions than
the DE-PL solver, for example, when optimizing the configuration of five walls in scenario 4. These anoma-
lies could be a consequence of the random nature of the DE algorithm; they could also be due to the DE
implementation's tendency to terminate once a population has sufficiently stabilized.

In Figure 3, the best obtained wall configurations using DE-PL are displayed pictorially for all pairs of scenar-
ios and numbers of mitigation measures. The configurations resemble what might be intuited by a human.
When applicable, configurations are nonoverlapping and well-connected. As the number of walls varies,
configurations also show interesting nonincremental behavior. For example, in the first scenario, walls are
initially placed close to the asset; as the number of walls increases, they are placed farther away to form
connections with existing topographic features. However, such nonsequential behavior may be undesirable
from a planning perspective.

4.4. Hypothetical Dam Break Scenario From Theme C of the Twelfth International Benchmark
Workshop on Numerical Analysis of Dams
This section focuses on demonstrating the merits of the sequential optimization algorithm using the hypo-
thetical dam break defined in Theme C of the Twelfth International Benchmark Workshop on Numerical
Analysis of Dams (ICOLD 2013; Judi, Pasqualini, et al., 2014). To simulate this scenario, the dam break was
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Table 2
Table Comparing Objective Values Obtained Using the (Direct) DE-D and (Pathline-Based) DE-PL Solvers Over 10 Random
Seeds, With the Number of Walls (m) Ranging From 1 to 10

DE-D DE-PL
m Mean Min Max SD Mean Min Max SD Mean improvement
1 162.18 158.59 167.59 3.85 163.86 159.63 170.07 4.52 −1.04%
2 99.49 84.87 104.24 6.29 102.61 94.24 105.39 3.19 −3.13%
3 66.78 39.56 119.20 27.76 50.75 33.36 65.93 14.80 24.01%
4 101.06 79.57 134.61 20.57 31.84 17.51 56.87 13.20 68.49%
5 115.43 100.56 145.39 16.04 22.74 12.82 36.39 8.04 80.30%
6 124.15 101.22 145.75 15.85 24.79 7.24 60.66 14.87 80.03%
7 129.17 110.94 153.14 12.52 18.14 5.59 26.77 6.64 85.96%
8 125.51 96.68 144.92 16.47 14.02 4.03 19.74 5.59 88.83%
9 129.23 99.39 146.58 14.02 17.83 8.56 22.46 4.85 86.20%
10 119.09 86.16 140.87 17.91 19.68 10.43 30.38 5.61 83.47%

Note. Values are scaled by a factor of 10−4. Best objectives over all seeds and solvers in Tables 1 through 4 are denoted in
bold, while best mean objectives are underlined. SD = standard deviation.

modeled as a point source with time-dependent discharge. The initial topographic elevation field (with the
dam excluded) was provided by the workshop and resampled from a resolution of 10 to 90 m to ease compu-
tational burden. The Manning's roughness coefficient was set to 0.035; critical depth boundary conditions
were employed; a duration of 12 hr was used; and when necessary to compute pathlines, PDE solution data
were reported every 10 min of simulation time.

Asset locations and sizes were selected to increase the difficulty of the OFMP, with two assets placed near
the primary channel of the scenario and three placed farther away. The experimental setup remained similar
to that described in section 4.3. However, in this case, the number of walls ranged from 1 to 10, while wall
widths, lengths, and heights were fixed to 250, 1,000, and 10 m, respectively. To compare differences in OFMP
solver performance, each solver was executed using 10 different random seeds for each possible number of
walls. In total, the experiments described in this subsection thus required nearly 600 days of compute time.
4.4.1. Pathline-Based Algorithm Results
To confirm the effectiveness of the pathline-based solvers, two implementations of algorithm 1 using
RBFOpt were benchmarked. In Table 1, the objective behavior of the pathline-based solver (RBFOpt-PL)
is compared against its direct counterpart (RBFOpt-D). The pathline-based solver clearly outperformed

Table 3
Table Comparing Objective Values Obtained Using the (Pathline-Based) DE-PL and (Direct Sequential) DE-D-S Solvers Over
10 Random Seeds, With the Number of Walls (m) Ranging From 1 to 10

DE-PL DE-D-S
m Mean Min Max SD Mean Min Max SD Mean improvement
1 163.86 159.63 170.07 4.52 162.18 158.59 167.59 3.85 1.02%
2 102.61 94.24 105.39 3.19 102.38 100.97 103.68 0.87 0.22$
3 50.75 33.36 65.93 14.80 64.98 48.97 81.93 14.71 −28.06%
4 31.84 17.51 56.87 13.20 41.04 26.07 58.60 14.88 −28.89%
5 22.74 12.82 36.39 8.04 23.22 17.45 34.87 6.18 −2.11%
6 24.79 7.24 60.66 14.87 14.94 11.56 18.39 2.26 39.76%
7 18.14 5.59 26.77 6.64 11.14 4.10 14.53 2.87 38.60%
8 14.02 4.03 19.74 5.59 9.42 6.02 16.64 3.30 32.81%
9 17.83 8.56 22.46 4.85 4.72 0.00 9.91 3.74 73.52%
10 19.68 10.43 30.38 5.61 3.07 0.00 9.29 3.10 84.38%

Note. Values are scaled by a factor of 10−4. Best objectives over all seeds and solvers in Tables 1 through 4 are denoted in
bold, while best mean objectives are underlined. SD = standard deviation.
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Table 4
Table Comparing Objectives Obtained Using the (Direct Sequential) DE-D-S and (Pathline-Based Sequential) DE-PL-S Solvers
Over 10 Random Seeds, With the Number of Walls (m) Ranging From 1 to 10

DE-D-S DE-PL-S
m Mean Min Max SD Mean Min Max SD Mean improvement
1 162.18 158.59 167.59 3.85 163.61 159.63 167.59 4.19 −0.88%
2 102.38 100.97 103.68 0.87 98.25 86.78 105.84 7.45 4.04%
3 64.98 48.97 81.93 14.71 56.74 35.73 86.12 13.92 12.69%
4 41.04 26.07 58.60 14.88 27.18 14.55 56.37 11.81 33.77%
5 23.22 17.45 34.87 6.18 16.32 8.38 25.35 5.25 29.73%
6 14.94 11.56 18.39 2.26 10.63 3.92 16.96 5.29 28.82%
7 11.14 4.10 14.53 2.87 7.02 0.13 15.00 5.08 36.97%
8 9.42 6.02 16.64 3.30 4.53 0.00 9.68 3.81 51.90%
9 4.72 0.00 9.91 3.74 3.36 0.00 7.86 3.43 28.83%
10 3.07 0.00 9.29 3.10 2.59 0.00 6.30 2.60 15.76%

Note. Values are scaled by a factor of 10−4. Best objectives over all seeds and solvers in Tables 1 through 4 are denoted in
bold, while best mean objectives are underlined. SD = standard deviation.

RBFOpt-D in nearly all instances; for example, it resulted in smaller minima, means, and standard devi-
ations. The single exception appears to be for m = 1, where the direct solver produced an equivalent
minimum to the pathline-based solver. Nonetheless, on average, the pathline-based solver provided a 45%
improvement over the direct solver, with generally larger improvements for greater numbers of walls. This
improvement was computed as

percentage improvement = 100
(

a − b
a

)
, (22)

where, here, a and b represent the mean objective values obtained from the RBFOpt-D and RBFOpt-PL
solvers. The same metric is also used throughout Tables 2–4.

A similar comparison is made between DE-D and DE-PL in Table 2. Again, the pathline-based solver
(DE-PL) outperformed its direct counterpart (DE-D) in nearly all metrics, providing an overall mean
improvement of 59%. The pathline-based solver also displayed mostly monotonic decreases in the objective
as the number of walls increased, while the objectives associated with the direct solver generally increased as
the number of walls increased. However, note that for small numbers of walls (i.e., one and two), the direct
DE solver outperformed its pathline-based counterpart. This could be a consequence of the more compli-
cated objective penalty in constraint (21b) when  is restricted. For example, Deb (2000) describes various
means by which penalty-based genetic algorithms can result in nonoptimal solutions. Nonetheless, overall,
the direct penalization method considered herein works well.

It is important to note the differences between the RBFOpt-based and DE-based solvers benchmarked in
Tables 1 and 2, respectively. In general, DE-PL greatly outperformed both RBFOpt-based solvers; for exam-
ple, DE-PL provided a 47% mean improvement over RBFOpt-PL. These differences could be for multiple
reasons. For example, there are many more hyperparameters associated with RBFOpt than DE; more careful
tuning may have increased RBFOpt's convergence. Furthermore, RBFOpt's sampling search strategy was
used to show the efficacy of the pathline-based approach when applied to other (nonevolutionary) search
techniques; the solver software may have performed more favorably using some other strategy.

Figure 4 displays the best obtained wall configuration for each possible number of walls using the DE-PL
solver. Structure placement appears highly nonincremental as the number of walls increases, especially
for smaller numbers of walls. Also, when optimizing for a number of walls greater than eight, solutions
generally deteriorated, indicating the search space becomes prohibitively large. Interestingly, the size of the
restricted set ̃ did not increase substantially as the configuration size grew. Finally, in Figure 5, the best
obtained solution for 10 walls using DE-D is displayed; this underscores the difficulty of such a problem
when applying a conventional algorithm.
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Figure 4. Best obtained elevations and maximum depths for configurations of 1 through 10 walls for the ICOLD 2013 dam failure scenario using DE-PL.
Darker blue corresponds to larger maximum depths; gray corresponds to the initial topographic elevation field; green corresponds to elevation additions via the
placement of walls; and red corresponds to asset locations. Orange lines represent the exteriors of the final restricted positional sets ̃ in algorithm 1.

Figure 5. Best solution in a setting equivalent to Figure 4 for 10 walls using DE-D.
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Figure 6. Best obtained elevations and maximum depths for configurations of 1 through 10 walls for the ICOLD 2013 dam failure scenario using DE-PL-S.
Darker blue corresponds to larger maximum depths; gray corresponds to the initial topographic elevation field; green corresponds to elevation additions via the
placement of walls; and red corresponds to asset locations. Orange lines represent the exteriors of the restricted positional sets ̃ initialized in algorithm 1.

4.4.2. Sequential Algorithm Results
To counteract the degradation of solutions for larger configurations, the sequential approach presented in
section 3.2 was benchmarked in a similar setting. In Table 3, performance of the direct sequential DE solver
(DE-D-S) is compared against DE-PL. Interestingly, DE-D-S performed much better than DE-PL for config-
urations containing many walls, providing improvements as large as 84%. This result indicates the difficulty
in optimizing configurations of multiple structural mitigation measures simultaneously, which may lead
to a worse objective when running the previous algorithms with more measures. Note, however, that the
sequential approach generally did not provide improvements over DE-PL for configurations consisting of
three, four, and five walls. These results indicate that sequential optimization is most beneficial when the
number of structural measures becomes larger (e.g., greater than five).

Finally, a comparison between DE-D-S and the sequential DE-PL solver (DE-PL-S) is made in Table 4. On
average, DE-PL-S provided a 24% improvement over its direct counterpart. The sequential DE-PL solver was
also capable of finding a solution which completely mitigated the flood using a smaller structural budget.
That is, the direct sequential solver found a totally mitigating solution at m = 9, but DE-PL-S accomplished
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Figure 7. Best solution in a setting equivalent to Figure 6 for 10 walls using DE-D-S.

this for m = 8. Interestingly, however, for m = 10, DE-D-S found a totally mitigating solution, whereas
DE-PL-S only found a nearly mitigating solution. This again may be a consequence of the relatively small
number of experiments performed. Overall, except for small m (i.e., m = 1), the pathline-based sequential
approach appears highly superior to the direct sequential approach. This result indicates that DE-PL-S serves
as a good general purpose OFMP solver.

Figure 6 displays the 10 incremental configurations obtained via DE-PL-S for m = 10 and the random
seed that gave the minimum corresponding objective in Table 4. The ultimate solution for m = 10 shows
remarkable similarity to the solution obtained via DE-PL for m = 8, as shown in Figure 4. That is, both
solutions appear to exploit the critical depth boundary condition to divert water outside of the domain's
uppermost boundary. However, the sequential solution appears to place a larger number of walls in more
intuitive locations. Similarly, as displayed by the solution for m = 10 shown in Figure 7, DE-D-S also
produced a configuration which diverted flow out of the domain's uppermost boundary, although one wall
was placed extraordinarily near this boundary. Such solutions may not be possible when using the pathline
approach, as pathlines typically do not reside near domain boundaries.
4.4.3. Summary of Algorithm Comparisons
Tables 1 through 4 compare the performance of solvers against one another. Within these tables, the best
objectives over all seeds and solvers are denoted in bold, while the best mean objectives are underlined. It
is first apparent that for m ∈ {1, 2}, minima were obtained through use of DE-D. Good mean objectives
were also obtained using this solver. This result indicates that direct local search algorithms are capable of
performing well on OFMPs that contain a small number of structural measures. It also implies that more
careful tuning of these algorithms may hold great promise.

For m = 3, DE-PL performed most favorably, providing the best overall and best mean objectives. This
implies for a moderate number of structural measures, DE-PL effectively uses pathlines to restrict the search
space. Moreover, if the optimal solution is nonincremental, it is capable of finding solutions that sequential

Figure 8. Comparison of objective versus number of partial differential equation evaluations for the Optimal Flood
Mitigation Problem in section 4.4.4, using DE-D and DE-PL for configurations of 1 through 10 revegetation projects.
PDE = partial differential equation.
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Figure 9. Revegetation locations and maximum depths for configurations of 1 through 10 projects for the ICOLD 2013 dam failure scenario using DE-PL.
Darker blue corresponds to larger maximum depths; gray corresponds to the initial topographic elevation field; green corresponds to the placement of
revegetation projects; and red corresponds to asset locations. Orange lines represent the exteriors of the restricted positional sets ̃ initialized in algorithm 1.

approaches cannot. However, for m > 3, DE-PL-S performs most favorably, indicating a combination of
pathline-based and sequential approaches is needed to solve challenging problems.
4.4.4. Proof of Concept for Soft Structural Mitigation Measures
Sections 4.3 through 4.4.3 focus on OFMPs designed to configure the placement of hard structural mitigation
measures (i.e., b̄i > 0 and n̄i = 0). However, it is important to emphasize that the problem formulations
and techniques described throughout sections 2, 3, and 4.1 are not limited to such measures. To exemplify
this, a proof of concept employing only soft structural measures is assessed. In particular, an OFMP taking
the form of equations (21a) through (21g) is proposed that optimizes the configuration of m revegetation
projects (i.e., n̄i > 0 and b̄i = 0).

Using the ICOLD 2013 scenario, the above problem was constructed for a number of revegetation projects
ranging from 1 to 10. Each revegetation project was assumed to have a radius of 250 m and increased the
Manning's roughness coefficient in the project region from 0.035 to 0.123. An experimental setting equiva-
lent to that described in section 4.2 was used. However, in these experiments, only the DE and DE-PL solvers
were compared. Furthermore, only a single random seed was used.
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In Figure 8, for each experiment, the objective behavior is plotted against the number of PDE evaluations
required to reach that objective. The DE-PL solver was generally able to improve upon solutions more
rapidly, especially for configurations involving larger numbers of revegetation projects. These results mimic
the behaviors of Figure 2 and Tables 1 and 2. That is, for smaller numbers of projects, the direct algo-
rithm is sufficient, but for larger numbers of projects, the pathline-based algorithm is needed to obtain
meaningful solutions.

Finally, in Figure 9, the configurations using DE-PL are displayed pictorially for all pairs of scenarios and
numbers of projects. The results are highly intuitive upon greater inspection. First, many of the projects
appear to be placed in locations that interdict the initial flood wave. More interestingly, many are located
along the primary channels of the scenario domain, where larger velocities would occur. This makes sense,
as the bed shear stress source terms are proportional to the square of velocity; measures that increase
roughness are thus highly beneficial in these regions.

5. Conclusion
This study addressed the difficult problem of designing structural FRM strategies for use within the risk
assessment process. To this end, an optimization-based decision support approach was proposed for design-
ing mitigation strategies. A number of numerical methodologies were developed that generally function
through modifying the bed slope and bed shear stress source terms of the 2-D shallow water equations.
However, the methodologies are sufficiently general to modify other source terms (e.g., adjustment of soil
properties that affect SR via infiltration) or even supplant the shallow water equations with a different
physical model.

To formalize the mitigation task, the OFMP was introduced. To solve practical problems of this type, a
time-limited search-based optimization algorithm was developed. Within this algorithm, three approaches
to generate solutions were explored: a direct approach using only derivative-free optimization, an aug-
mented approach using pathlines to restrict the search space, and a sequential optimization approach. The
latter two were largely successful, depending on the number of mitigation measures defined in the OFMP.
Overall, the nonsequential and sequential pathline-based differential evolution approaches provided aver-
age improvements of 59% and 65% over their direct counterpart, respectively. Results illustrate the first
meaningful solutions to large-scale optimization problems of this type.

Future work should seek to increase and prove the applicability of the approach to realistic flood scenar-
ios. First, it should seek to generalize the approach by benchmarking performance on a greater number of
real-world flood scenarios. Second, it should address the inherent uncertainty in flood scenario parameteri-
zations (e.g., topographic elevation, dam breach parameterization, and bed friction). To this end, a stochastic
optimization approach should be developed to ensure solutions are distributionally robust from a planning
perspective. Third, a human behavioral study should be conducted to compare the utility of the optimization
approach presented herein with the typically manual process used in simulation-based mitigation design.
Fourth, algorithmic enhancements should be made to increase the realism of mitigation designs. For exam-
ple, flood walls used in the numerical experiments were overtoppable. This may not be realistic from a
flood risk management perspective. Such realism can be embedded within the optimization problem in the
form of additional penalties (e.g., when walls are overtopped, a penalty is introduced) or additional con-
straints. Finally, the approach should be extended to solve OFMPs for scenarios that require modeling at
finer spatial resolutions. To accomplish this, a multiresolution approach should be developed, where the
spatial resolution of a flood scenario is iteratively refined as optimization progresses. This work would be
valuable for realistic scenarios, where fine resolution details are sometimes necessary to accurately predict
flooding behavior.

Appendix A: ComputePathline(U, x0, y0)
In algorithm 3, line 2, the pathline and current pathline segment lengths, L and 𝓁, are initialized to zero,
and the pathline-describing point set  is initialized. In line 3, the integration loop is defined. Integration
halts once the total pathline length is greater than some predefined threshold, Lmax, or the time falls outside
the interval of interest,

[
t0, twet

]
, where twet is calculated as per equation (17). In line 4, the discrete solution

indices are obtained. Here GetIndex(x, y) is a function that maps the spatial coordinates (x, y) to the cor-
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responding spatial index on the rectangular solution grid G, (i, j). Similarly, the time index k is obtained by
computing the index of the ordered time stamp set  corresponding to the least absolute difference with
the current integration time t. In lines 5 through 7, the loop is terminated if the current speed or depth is
smaller than some arbitrarily small constant 𝜖m.

In line 8, the time step is computed to (approximately) ensure the integrated distance will not be greater
than one third the length of a grid cell. In line 9, the first step of second-order Runge-Kutta integration is
performed. In lines 10 through 12, the loop is terminated if the point suggested by the previous integration
step falls outside the flood scenario's spatial domain, denoted as D(U). In line 13, the discrete indices of the
proposed solution are obtained. In lines 14 through 16, the loop is terminated if the depth at the proposed
index is too small. In line 17, the second Runge-Kutta integration step is performed. In lines 19 through 21,
the loop is terminated if the integrated point falls outside D(U), if the change was small, or if the change was
very large (where 𝛼 is some predefined fixed distance). In line 22, the total pathline and temporary segment
lengths are updated using the most recent integration distance. In line 23, the relevant variables are inte-
grated. In lines 24 through 26, the temporary segment length is reset to zero, and the pathline approximation
is updated if the segment length is greater than or equal to the mean grid cell spacing.

Appendix B: AlphaShape(Q, 𝜶)
In algorithm 4, Delaunay(Q) is a function that computes the Delaunay triangulation for a set Q of discrete
points. A Delaunay triangulation is a set of triangles such that no point in Q is contained within the circum-
scribed circle of any triangle. A number of algorithms exist to compute this triangulation; herein, that of
Barber et al. (1996) is used.
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In line 2 of algorithm 4, the set of Delaunay triangles  is computed for the point set Q, and the set 
comprising the triangular regions of the alpha shape is initialized as the empty set. In line 4, the function
GetVertices(Δ) is used to obtain the vertex positions of the triangle Δ. In line 5, the Euclidean edge dis-
tances are computed for the triangle Δ. In line 6, the semiperimeter s of the triangle Δ is computed. In line
7, the area of the triangle Δ is computed via Heron's formula. In line 11, if the circumscribed radius of the
triangle is less than the constant 𝛼, the triangle is unioned with the set  describing the alpha shape. In this
paper, 𝛼 is always taken to be 5(Δx + Δy)∕2, where Δx and Δy are the grid cell spacings used to discretize
the spatial domain in the x and y directions, respectively.
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