
manuscript submitted to Water Resources Research

Optimization of Structural Flood Mitigation Strategies1

Byron Tasseff1,2, Russell Bent3, and Pascal Van Hentenryck4
2

1Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan,3

USA.4

2Information Systems and Modeling Group, Los Alamos National Laboratory, Los Alamos, New Mexico,5

USA.6

3Applied Mathematics and Plasma Physics Group, Los Alamos National Laboratory, Los Alamos, New7

Mexico, USA.8

4H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,9

Atlanta, Georgia, USA.10

Key Points:11

• Introduction of the structural optimal flood mitigation problem12

• Development of problem discretization amenable to derivative-free optimization13

• Benefits of constraining the problem with additional physics-based restrictions14

Corresponding author: Byron Tasseff, btasseff@lanl.gov

–1–This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1029/2018WR024362

http://dx.doi.org/10.1029/2018WR024362
http://dx.doi.org/10.1029/2018WR024362


manuscript submitted to Water Resources Research

Abstract15

The dynamics of flooding are primarily influenced by the shape, height, and roughness16

(friction) of the underlying topography. For this reason, mechanisms to mitigate floods17

frequently employ structural measures that either modify topographic elevation, e.g., through18

the placement of levees and sandbags, or increase roughness, e.g., through revegetation19

projects. However, the configuration of these measures is typically decided in an ad hoc20

manner, limiting their overall effectiveness. The advent of high-performance surface wa-21

ter modeling software and improvements in black-box optimization suggest that a more22

principled design methodology may be possible. This paper proposes a new computa-23

tional approach to the problem of designing structural mitigation strategies under phys-24

ical and budgetary constraints. It presents the development of a problem discretization25

amenable to simulation-based, derivative-free optimization. However, meta-heuristics alone26

are found to be insufficient for obtaining quality solutions in a reasonable amount of time.27

As a result, this paper proposes novel numerical and physics-based procedures to improve28

convergence to a high-quality mitigation. The efficiency of the approach is demonstrated29

on hypothetical dam break scenarios of varying complexity under various mitigation bud-30

get constraints. In particular, experimental results show that, on average, the final pro-31

posed algorithm results in a 65% improvement in solution quality compared to a direct32

implementation.33

1 Introduction34

Modern flood risk management (FRM) is a continuous process of identifying issues,35

defining objectives, assessing risks, appraising options, implementation, monitoring, and36

review. Within this framework, risk assessment is regarded as a cyclic process that in-37

cludes the design and evaluation of alternative management strategies. Such strategies38

commonly include both “hard” and “soft” structural mitigation measures, e.g., the con-39

struction of dams (hard) and wetland storage (soft) (Sayers et al., 2013). Measures can40

also be temporary (e.g., sandbags) or permanent (e.g., levees). However, for complex sce-41

narios, the number of feasible strategies is extremely large and computationally difficult42

to explore. As such, the manual design and assessment of these strategies, whether con-43

ducted in a real-world or simulation-based setting, can be time-consuming and expen-44

sive. This limitation may result in vastly suboptimal FRM strategies. To aid in the FRM45
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process, an optimization-based decision support approach for proposing structural mit-46

igation designs can serve as a useful tool within the overall risk assessment phase.47

This paper develops such an optimization-based decision support approach for propos-48

ing flood protection strategies, whereby effective mitigation designs are realized through49

the exploration of various configurations in a computational setting. Specifically, the pa-50

per defines the Optimal Flood Mitigation Problem (OFMP), whose goal is to make to-51

pographic modifications that protect critical regions under a given flood scenario. This52

is a difficult optimization problem, as these modifications can have highly nonlinear ef-53

fects on the flooding behavior. Moreover, physical models used to examine these effects54

are computationally expensive. Finally, as the OFMP aims at deciding several simulta-55

neous modifications, an efficient exploration of the full search space is computationally56

intractable for realistic scenarios.57

The literature associated with the OFMP is limited. The closest related studies are58

by D. Judi, Tasseff, Bent, and Pan (2014) and Tasseff, Bent, and Van Hentenryck (2016).59

In the former, an interdiction model for flood mitigation is proposed, and model surro-60

gates constructed from simulation data are used as proxies for estimating flood sensi-61

tivity to hard structural mitigation measures. In the latter, an OFMP similar to that62

discussed herein is introduced, and mixed-integer linear programs constrained by approx-63

imate flooding dynamics are solved to obtain hard structural mitigation designs. How-64

ever, the approach is shown to suffer from substantial scalability issues in space and time.65

Neither study uses an approach which relies upon repeated deterministic modeling of the66

partial differential equations (PDEs) underlying the flooding dynamics.67

A number of studies discuss simulation-optimization approaches for reservoir op-68

eration, where the PDEs associated with the flood dynamics are treated as a black box.69

An extensive literature review of these studies can be found in Che and Mays (2015).70

The work described by Colombo, Guerra, Herty, and Schleper (2009) considers the full71

PDEs, but their focus is on optimizing normal operations of an open-channel system.72

Finally, the problem of optimizing dike heights with uncertainty in flooding estimates73

is considered by Brekelmans, den Hertog, Roos, and Eijgenraam (2012). However, in this74

study, the PDEs for flood propagation are not considered, and probability models for75

maximum flood depths are used in place of deterministic physical models.76
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This paper presents a new approach to the problem of designing structural FRM77

strategies over PDE constraints. It develops a problem discretization amenable to simulation-78

based derivative-free optimization. Moreover, the paper shows that meta-heuristics alone79

are insufficient for obtaining quality solutions in reasonable time. As a result, it presents80

several innovative computational and physics-based techniques to increase convergence81

to high-quality solutions. The efficiency of the proposed approach is compared using hy-82

pothetical dam break scenarios of varying complexity under multiple mitigation budgets.83

Experimental results show that the proposed algorithm results in a 65% improvement84

in solution quality compared to a direct implementation.85

The rest of this paper is organized as follows: Section 2 discusses the background86

of flood modeling and formalization of the OFMP; Section 3 describes solution meth-87

ods for a specific OFMP; Section 4 compares these methods using fictional dam break88

scenarios, with both simplistic (Section 4.3) and realistic (Section 4.4) topographies, and89

multiple mitigation budgets; and Section 5 concludes the paper.90

2 Model91

In this paper, it is assumed that flood scenarios are modeled using the two-dimensional92

(2D) shallow water equations. These PDEs are derived from the Navier-Stokes equations93

under the assumption that horizontal length scales are much larger than the vertical scale.94

This is reasonable for large-scale floods, where water depths are much smaller than typ-95

ical flood wavelengths. Two-dimensional models, in particular, alleviate the fundamen-96

tal disadvantages of their 1D counterparts by allowing for higher-order representations97

of the topographic surface. Moreover, 2D models readily make use of widely available98

topographic elevation data. Finally, with recent advances in high-performance comput-99

ing, solutions to these PDEs have become numerically tractable for large-scale problems,100

making them of particular computational interest. With volumetric, bed slope, and bed101

shear stress source terms, these equations are expressed as102

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= R(x, y, t), (1a)103

∂(hu)

∂t
+

∂

∂x

(
hu2 +

1

2
gh2

)
+
∂(huv)

∂y
= −gh∂B

∂x
− g n2

h1/3
|u|u, (1b)104

∂(hv)

∂t
+
∂(huv)

∂x
+

∂

∂y

(
hv2 +

1

2
gh2

)
= −gh∂B

∂y
− g n2

h1/3
|v|v, (1c)105

106

where h is the water depth, u and v are horizontal velocities, B is the bottom topogra-107

phy (or bathymetry), g is the acceleration due to gravity, n is the Manning’s roughness108
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coefficient, and R is a volumetric source term (Chertock, Cui, Kurganov, & Wu, 2015).109

Equation (1a) represents mass continuity, while Equations (1b) and (1c) represent con-110

servation of momentum over the two horizontal dimensions.111

These equations can be rewritten in vector form by introducing the definitions112

U := (h, hu, hv) , F(U) :=

(
hu, hu2 +

1

2
gh2, huv

)
,

G(U) :=

(
hv, huv, hv2 +

1

2
gh2

)
,SR(R) := (R(x, y, t), 0, 0) ,

SB(U, B) :=

(
0,−gh∂B

∂x
,−gh∂B

∂y

)
, Sn :=

(
0,−g n2

h1/3
|u|u,−g n2

h1/3
|v|v

)
,

(2)113

where U is the vector of conserved variables; F and G are fluxes in the x- and y-directions,114

respectively; and SR, SB , and Sn are the volumetric, bed slope, and bed shear stress source115

terms, respectively. This allows Equations (1a), (1b), and (1c) to be rewritten more con-116

cisely as117

Ut + Fx + Gy = SR + SB + Sn, (3)118

where t, x, and y indicate partial differentiation with respect to those variables.119

The OFMP considers a flood scenario (e.g., a dam failure) and a set of 2D regions120

(“assets”) to protect. To minimize flooding at asset locations, the model must produce121

optimal topographic elevation and roughness fields using a set of m mitigation measures.122

For each measure i ∈ {1, 2, . . . ,m}, the functions δB(ωi) and δn(ωi) define 2D fields of123

height and roughness for a given tuple of field parameters ωi. Measures can first addi-124

tively modify the elevation field B to return a new field B̃, defined as125

B̃(B, (ω1, ω2, . . . , ωm)) := B +

m∑
i=1

δB(ωi). (4)126

Similarly, measures can modify the roughness field n to return a new field defined as127

ñ(n, (ω1, ω2, . . . , ωm)) := n+ {max
i
{δn(ω(i))(x, y)} : (x, y) ∈ R2}, (5)128

i.e., a field of maximum roughness. For notational ease, hereafter, B̃ refers to Equation129

4, ñ refers to Equation 5, and the tuple (ω1, ω2, . . . , ωm) is referred to as the “paramet-130

ric configuration,” or simply the “configuration.” With these definitions and shorthand131

notations, the modified bed slope source term is defined as132

S̃B (U, B, (ω1, ω2, . . . , ωm)) :=

(
0,−gh∂B̃

∂x
,−gh∂B̃

∂y

)
. (6)133

We note that the change in elevation may be a result of permanent structures such as134

levees or temporary measures such as sandbags. Similarly, the modified bed shear stress135
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source term is defined as136

S̃n (U, n, (ω1, ω2, . . . , ωm)) :=

(
0,−g ñ2

h1/3
|u|u,−g ñ2

h1/3
|v|v

)
. (7)137

Hereafter, S̃B := S̃B (U, B, (ω1, ω2, . . . , ωm)) and S̃n := S̃n (U, n, (ω1, ω2, . . . , ωm))138

are used to concisely denote these two source terms that vary with the configuration.139

The OFMP is then written in a form that embeds the 2D shallow water equations140

as constraints and optimizes the tuple (ω1, ω2, . . . , ωm) (i.e., the configuration) via141

minimize
ω1,ω2,...,ωm

z (ω1, ω2, . . . , ωm) =
∑
a∈A

∫∫
a

max
t
h(x, y, t) dx dy (8a)142

subject to Ut + Fx + Gy = SR + S̃B + S̃n (8b)143

δB(ωi)(x, y) = 0, ∀i ∈ {1, 2, . . . ,m}, for (x, y) ∈
⋃
A (8c)144

δn(ωi)(x, y) = 0, ∀i ∈ {1, 2, . . . ,m}, for (x, y) ∈
⋃
A (8d)145

(ω1, ω2, . . . , ωm) ∈ F . (8e)146
147

Here, A denotes the set of asset regions to be protected and z denotes the objective func-148

tion. This function is defined in Equation (8a) and captures the maximum water vol-149

ume over all asset locations and times. Constraint (8b) denotes the solution to the shal-150

low water equations in the presence of the m mitigation measures. Constraints (8c) pro-151

hibit measures from being constructed “underneath” an asset. Similarly, Constraints (8d)152

prohibit the roughness at an asset location from being modified. Finally, Constraint (8e)153

ensures (ω1, ω2, . . . , ωm) resides within the set of all feasible parametric configurations154

F , i.e., F distinguishes valid and invalid mitigation designs.155

For simplicity of presentation, this paper considers only two types of structural mea-156

sures, although the approach can easily be generalized to include other soft and hard mea-157

sures, both temporary and permanent. The first type is an immovable wall of fixed length158

(`), width (w), and height (b̄i). Each wall is defined using three continuously-defined,159

bounded parameters: latitudinal position of the wall centroid (λi), longitudinal position160

of the wall centroid (φi), and angle of the wall formed with respect to the longitudinal161

axis (θi). In this paper, the centroid position is bounded by the scenario domain’s spa-162

tial extent, and θi ∈ [0, π]. The second structural type is a revegetation project defined163

by a 2D circular region with center (λi, φi) and fixed radius r that increases the area’s164

Manning’s roughness coefficient based on a fixed field n̄i. Under these assumptions, the165

OFMP aims at deciding ωi =
(
λi, φi, θi, b̄i, n̄i

)
for each measure i ∈ {1, 2, . . . ,m} =166
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M, where b̄i and n̄i are decided a priori for each measure. More specifically, this pro-167

duces an OFMP of the specialized form168

minimize
ω1,ω2,...,ωm

z (ω1, ω2, . . . , ωm) =
∑
a∈A

∫∫
a

max
t
h(x, y, t) dx dy (9a)169

subject to Ut + Fx + Gy = SR + S̃B + S̃n (9b)170

δB(ωi)(x, y) = 0, for (x, y) ∈
⋃
A, ∀i ∈M (9c)171

δn(ωi)(x, y) = 0, for (x, y) ∈
⋃
A, ∀i ∈M (9d)172

δB(ωi)(x, y) =


b̄i for


|(x− φi) cos θi − (y − λi) sin θi| ≤ `

2

|(x− φi) sin θi + (y − λi) cos θi| ≤ w
2

0 otherwise

∀i ∈M (9e)173

δn(ωi)(x, y) =


n̄i(x, y) for (x− φi)2 + (y − λi)2 ≤ r2

0 otherwise

∀i ∈M (9f)174

λlb ≤ λi ≤ λub, φlb ≤ φi ≤ φub, 0 ≤ θi ≤ π, ∀i ∈M. (9g)175
176

Using this formulation, i is a wall when b̄i > 0 and n̄i = 0, and i is a revegetation project177

when b̄i = 0 and n̄i > 0. Constraints (9c) and (9d) emphasize that modifications can-178

not be made within asset regions; Constraints (9e) impose the wall height b̄i within each179

rotated rectangle defined using the parameters λi, φi, and θi and a standard 2D rota-180

tion matrix; and Constraints (9f) impose additions to roughness within each revegeta-181

tion circle defined by the center (λi, φi). Finally, Constraints (9g) replace Constraint (8e)182

of the more general OFMP. Here, λlb and λub (φlb and φub) are the lower and upper lat-183

itudinal (longitudinal) boundaries of the scenario domain.184

Constraints (9g) imply a large feasible region, as the spatial extent is typically much185

larger than the flood’s extent. To reduce the solution space, the notion of a restricted186

region P is thus introduced, where centroids must reside in P. That is,187

(λi, φi) ∈ P, ∀i ∈ {1, 2, . . . ,m} (9h)188

is appended to the problem above, completing the primary model used in this paper.189

3 Algorithm190

The OFMP at the end of Section 2 remains difficult to solve directly. However, with191

recent improvements in both numerical discretizations of the shallow water equations (e.g.,192

Chertock et al. (2015)) and high-performance implementations thereof (e.g., Brodtkorb,193
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Sætra, and Altinakar (2012), Tasseff (2016)), numerically efficient solutions of the PDEs194

described in Constraint (9b) are possible. With this intuition, in Algorithm 1, a time-195

limited search-based method is introduced to find a near-optimal solution (ω∗1 , ω
∗
2 , . . . , ω

∗
m)196

to the problem defined by Equations (9a) through (9h).197

Algorithm 1 SolveOFMP: Solves the OFMP defined by Equations (9a) through (9h).

1: function SolveOFMP(B,n,A,m, Tmax, α)

2: P̃ ← InitializeRestriction(B,n,A, α)

3: (ω∗1 , ω
∗
2 , . . . , ω

∗
m)← InitializeSolution(m, P̃), Ω← ∅

4: while Clock < Tmax do

5: (ω1, ω2, . . . , ωm)← GenerateSolution(m, P̃,Ω)

6: Solve Ut + Fx + Gy = SR + S̃B + S̃n

7: Ω← Ω ∪ {(ω1, ω2, . . . , ωm)}

8: if z(ω1, ω2, . . . , ωm) < z(ω∗1 , ω
∗
2 , . . . , ω

∗
m) then

9: (ω∗1 , ω
∗
2 , . . . , ω

∗
m)← (ω1, ω2, . . . , ωm)

10: P̃ ← UpdateRestriction(U,A, P̃, α)

11: end if

12: end while

13: return (B +
∑m

i=1 δB(ω∗i ), n+ {maxi{δn(ω∗i )(x, y)} : (x, y) ∈ R2})

14: end function

Here, B and n denote the initial topographic elevation and Manning’s roughness198

coefficient fields; A denotes the set of assets; m denotes the number of mitigation mea-199

sures being configured; Tmax denotes the maximum clock time; and α is a parameter used200

for computing restrictions. The function Clock returns the current clock time. Since201

a useful definition of P is difficult to compute a priori, P̃ serves as an iterative approx-202

imation of some desired P. In Line 2, P̃ is initialized; it is later modified in Line 10 us-203

ing UpdateRestriction. Both functions are described in Section 3.1. In Line 3, the204

best solution and the historical solution set Ω are initialized. In Line 5, a configuration205

is generated via some history-dependent function GenerateSolution, described in Sec-206

tion 4.1. In Line 6, the shallow water equations are solved. In Line 7, the historical so-207

lution set is updated. In Lines 8 through 11, the best solution and P̃ are updated. Fi-208

nally, in Line 13, the best elevation and roughness fields are returned.209
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3.1 Computation of the restricted region210

3.1.1 The direct methodology211

The most obvious globally acceptable method for selecting P is to assume212

P = R2, (10)213

where, of course,214

{
(x, y) ∈ R2 : λlb ≤ x ≤ λub, φlb ≤ y ≤ φub

}
⊂ P, (11)215

indicating the bounds within Constraints 9g involving λi and φi dominate those imposed216

by P. This method for selecting P is hereafter referred to as the direct method. In prac-217

tice, this method is used to define the direct implementations of the functions Initial-218

izeRestriction and UpdateRestriction, both of which return the set R2.219

3.1.2 The pathline methodology220

A pathline is the trajectory an individual fluid element follows over time, begin-221

ning at position (x0, y0) and time t0. In 2D, a pathline is defined by the two equations222

x(t) = x0 +

∫ t

t0

u(x(t′), y(t′), t′)dt′, (12a)223

y(t) = y0 +

∫ t

t0

v(x(t′), y(t′), t′)dt′, (12b)224

225

where u and v are velocities in the x- and y-directions. To compute the pathline from226

a flood wave to an initially dry point (x0, y0), the definition of twet(x0, y0) is introduced227

as the time at which the depth at (x0, y0) exceeds some threshold. More concisely,228

twet(x0, y0) := min {t ∈ [t0, tf ] : h(x0, y0, t) ≥ εh} , (13)229

where εh is an arbitrarily small depth, taken in this study to be one millimeter. Using230

this definition, the pathline equations may be integrated in reverse, giving231

xwet(x0, y0, t) = x0 +

∫ t

twet

u(xwet(t
′), ywet(t

′), t′)dt′, (14a)232

ywet(x0, y0, t) = y0 +

∫ t

twet

v(xwet(t
′), ywet(t

′), t′)dt′, (14b)233

234

where it is assumed that t ≤ twet. The above equations approximate a path to flood-235

ing.236
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In this paper, a pathtube is defined as a set of pathlines satisfying Equations (14a)237

and (14b). For a region R, the pathtube S encompassing R with a start time of t0 is238

S(U,R) =
{

(xwet(x0, y0, t), ywet(x0, y0, t)) ∈ R2 : (x0, y0) ∈ R, t ∈ [t0, twet(x0, y0)]
}
. (15)239

This region encompasses approximate paths of least resistance from a flood to R. It is240

clear that good locations for structural mitigation measures are likely to reside in S.241

A robust selection of P would account for the change in U with respect to a large242

set of feasible configurations. In an ideal setting, a good selection for P would thus be243

P =
⋃
ω∈F

⋃
a∈A

{
(x, y) ∈ S(U, a) : Ut + Fx + Gy = SR + S̃B + S̃n

}
. (16)244

In practice, defining P as per Equation (16) is nontrivial. First, each a ∈ A may be a245

set of infinitely many points. There are also infinitely many moments t in a solution U246

to the shallow water equations. Most importantly, the union over all feasible configu-247

rations (ω1, ω2, . . . , ωm) = ω ∈ F assumes knowledge of U for any such feasible con-248

figuration (ω1, ω2, . . . , ωm). For these reasons, an iteratively-constructed definition of the249

pathtube-like region P̃ is instead proposed, which approximately captures the features250

of some unknown larger P relevant to the OFMP (e.g., Equation (16)).251

From a numerical perspective, each a ∈ A is actually a polygon whose exterior252

connects a set of points Pa. Solutions to the OFMP are likely to intersect the pathlines253

from a flood to each of these points. Also, in practice, numerical solutions to the shal-254

low water equations are discrete in space and time. Assuming that solutions are obtained255

for a set of timestamps T on a rectangular grid G, twet is first redefined as256

twet(x0, y0) := min{t ∈ T : hi0,j0,t ≥ εh}, (17)257

where (i0, j0) is the unique index of the cell in grid G that contains the point (x0, y0).258

For each point along an asset exterior, a numerical representation of the pathline259

leading to that point is desired. To accomplish this, it is assumed that a pathline can260

be approximated as a set L of discrete points. These points can be generated by solv-261

ing Equations (14a) and (14b) using any suitable ODE integration technique. In this study,262

suggestions from Telea (2014) (initially described for streamlines, which trace a static263

field) are used to compute pathlines according to the function ComputePathline(U, x0, y0),264

whose arguments denote a solution U to the shallow water equations and the x- and y-265

positions of a seed point, respectively. A complete description of this function is given266

in the appendix (Algorithm 3).267
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The definition of ComputePathline enables the computation of a set of points268

Q approximating the pathtube leading to a set of exterior asset points Pa ∈ a ∈ A via269

Q(U, Pa) =
⋃

(x0,y0)∈Pa

ComputePathline(U, x0, y0). (18)270

Since pathtubes are curvilinear, typical geometries that envelope Q (e.g., the convex hull)271

do not effectively summarize this set. For this reason, the notion of an alpha shape is in-272

troduced, which minimally encompasses points of Q using straight lines. A discussion273

on alpha shapes can be found in Fischer (2000). In this study, Edelsbrunner’s algorithm274

(Edelsbrunner, Kirkpatrick, and Seidel (1983)), presented in the appendix (Algorithm275

4), is used to compute alpha shapes. The function that computes this shape for a set Q276

and alpha value α is denoted as AlphaShape(Q,α).277

The definition of the function AlphaShape finally allows for definition of the func-278

tions InitializeRestriction and UpdateRestriction. Both assume restrictions are279

the unions of alpha shapes approximating the pathtubes leading to each asset. The func-280

tions are described in Algorithms 2 and Equation (19), respectively. In Algorithm 2, Line281

2, the shallow water equations are solved without the presence of structural mitigation282

measures. In Line 3, the union of alpha shapes for all pathtubes leading to the assets a ∈283

A is computed. Asset regions are then subtracted from this set to ensure structural mea-284

sures do not overlap with asset locations.285

The function UpdateRestriction using the pathline approach is defined as286

UpdateRestriction(U,A,P, α) = P ∪

(⋃
a∈A

AlphaShape(Q(U, Pa), α)

)
\
⋃
A. (19)287

The majority of this function resembles Algorithm 2, although the union of the current288

set and previous P is computed to encourage exploration of a more representative (i.e.,289

expanded) search space. Moreover, as per Algorithm 1, this function is only called as bet-290

ter solutions to the OFMP are obtained. This decreases the burden of computing path-291

tubes and alpha shapes on each iteration of the algorithm.292

3.2 Sequential optimization algorithm293

Due to the nonlinear sensitivity of flooding behavior with respect to mitigation ef-294

forts, predictable and incremental changes to solutions of the OFMP while increasing295

the number of mitigation measures, m, are not ensured. This may be undesirable from296

a planning perspective. A separate algorithm is thus proposed to induce a sequential so-297
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Algorithm 2 InitializeRestriction: Returns the initial restricted positional set.

1: function InitializeRestriction(B,n,A, α)

2: Solve Ut + Fx + Gy = SR + SB + Sn

3: return
⋃

a∈AAlphaShape (Q(U, Pa), α) \
⋃
A

4: end function

lution to the OFMP, whereby solutions with m = 2 include those of m = 1, solutions298

with m = 3 include those of m = 2, and so on. This ensures increasing utility for con-299

figurations of increasing sizes. It also allows policymakers to more clearly understand the300

effects of budgetary constraints with respect to the overall structural flood mitigation301

efforts. The recursion to compute sequential solutions may be defined as302

(Bi, ni) = SolveOFMP

(
Bi−1, ni−1,A, 1,

Tmax

m
,α

)
, (20)303

where B0 = B, n0 = n, and the time for each subproblem is an equal portion of Tmax.304

In this paper, Line 10 is eliminated from Algorithm 1 when using the sequential approach,305

as the best placement for a single structural mitigation measure is likely to reside within306

the initial P̃ computed on Line 2. As a consequence, for each structural measure placed307

using the sequential approach, pathtubes are constructed only once.308

4 Results309

4.1 Model relaxation310

The proposed approach uses the open source scipy.optimize.differential evolution311

(DE) and RBFOpt libraries to produce two separate implementations of GenerateS-312

olution in Algorithm 1 (Costa & Nannicini, 2014; Storn & Price, 1997). Both only in-313

clude support for simple bounds like those indicated in Constraints (9g). Thus, these im-314

plementations of GenerateSolution may generate configurations that are infeasible315

with respect to Constraints (9c) through (9f). To overcome this, the OFMP defined by316
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Equations (9a) through (9h) is replaced with the relaxed formulation317

minimize
ω1,ω2,...,ωm

z (ω1, ω2, . . . , ωm) = p1 + p2 +
∑
a∈A

∫∫
a

max
t
h(x, y, t) dx dy (21a)318

subject to p1 = c1

m∑
i=1

min {‖(x, y)− (λi, φi)‖ : (x, y) ∈ P} (21b)319

p2 = c2

m∑
i=1

∑
a∈A

∫∫
a

δB(ωi) dx dy + c3

m∑
i=1

∑
a∈A

∫∫
a

δn(ωi) dx dy (21c)320

Ut + Fx + Gy = SR + S̃B + S̃n (21d)321

δB(ωi)(x, y) =


b̄i for


|(x− φi) cos θi − (y − λi) sin θi| ≤ `

2

|(x− φi) sin θi + (y − λi) cos θi| ≤ w
2

0 otherwise

∀i ∈M (21e)322

δn(ωi)(x, y) =


n̄i for (x− φi)2 + (y − λi)2 ≤ r2

0 otherwise

∀i ∈M (21f)323

λlb ≤ λi ≤ λub, φlb ≤ φi ≤ φub, 0 ≤ θi ≤ π, ∀i ∈M. (21g)324
325

In Equation (21a), two penalty terms are included in the objective to capture infeasi-326

bilities in Constraints (9c) through (9f). The first penalty, p1, is defined in Constraint327

(21b) and denotes the sum of all minimum distances between each measure’s centroid328

and the nearest point of the restricted positional set P. This term is scaled by the con-329

stant c1, taken in this study to be equal to one. The second penalty, p2, is defined in Con-330

straint (21c). Here, the first term denotes the net modified elevation volume over all as-331

set regions, and the second term denotes the net change in roughness over all asset re-332

gions. These terms are scaled by the constants c2 and c3, respectively. Herein, both are333

taken to be (∆r)−2, where ∆r is the spatial resolution of the discretization.334

4.2 Experimental setting335

For simplicity, Sections 4.3 through 4.4.3 focus on OFMPs where only wall-type336

measures are considered (i.e., b̄i > 0), while Section 4.4.4 presents an algorithmic proof337

of concept where only revegetation-type measures are considered (i.e., n̄i > 0). For each338

experiment, Algorithm 1 was limited to one day of wall-clock time. When using DE, pop-339

ulation sizes of 45m (b̄i > 0) and 30m (n̄i > 0) were employed; trial solutions were340

computed as the best solution plus scaled contributions of two random candidates; the341

mutation constant varied randomly within [0.5, 1.0); and the recombination constant was342

set to 0.9. When using the direct InitializeRestriction and UpdateRestriction343
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methods, Latin hypercube sampling was used to initialize the population. When using344

the pathline-based methods, the population was initialized via random sampling over the345

initial restricted set (i.e., P̃) and θi ∈ [0, π]. When using RBFOpt, the sampling method346

was used; most other parameters were left unchanged.347

For computational considerations, if the configuration proposed by GenerateS-348

olution was feasible, the shallow water equations (i.e., Constraint (21d)) were solved349

using the proposed configuration. Otherwise, a solution containing no structural miti-350

gation measures was referenced. That is, S̃B was replaced with SB , and S̃n was replaced351

with Sn. To solve these PDEs, the open-source surface-water modeling software Nuflood352

(Tasseff, 2016) was used, where the shallow water equations are spatially discretized ac-353

cording to the scheme described by Kurganov and Petrova (2007).354

Each experiment was conducted on one Intel Xeon E5-2695 V4 CPU containing355

eighteen cores at 2.1 GHz and 125 GB of RAM. Nuflood was compiled in single-precision356

mode using the Intel C++ Compiler, version 17.0.1. The remainder of Algorithm 1 was357

implemented in Python 3.6. Compared to the PDE evaluations, these other portions of358

the algorithm were found to be computationally negligible.359

4.3 Simplified circular dam break scenarios360

To compare the two positional restriction methodologies described in Section 3.1,361

six simple OFMP scenarios were constructed. All were intended to have human intuitive362

solutions, i.e., optimal placement of structural mitigation measures could be inferred from363

a basic understanding of flood propagation. These scenarios are displayed pictorially in364

Figure 1. In each scenario, under the influence of gravity, the initial volume of water (col-365

ored with blue) is propagated outward; without mitigation measures, this water comes366

into contact with assets (colored with red), flooding them.367

Each of the six scenarios was modeled using a spatial resolution of one meter and368

64×64 grid cells. The ground surface was assumed to be frictionless; critical depth bound-369

ary conditions were employed; and a simulation duration of one hundred seconds was used.370

When necessary to compute pathlines, intermediate PDE solution data was reported for371

every one second of simulation time. In the experiments performed, each of the corre-372

sponding OFMPs was solved with the number of walls, m, ranging from one to five. Wall373
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widths, lengths, and heights were fixed to 2.5, 8.0, and 1.0 meters, respectively. Finally,374

all experiments were performed using a single fixed random seed.375

In Figure 2, for each experiment, the objective behavior is plotted against the num-376

ber of PDE evaluations required to reach that objective. These behaviors are compared377

for the direct differential evolution solver (DE-D) and its pathline-based counterpart (DE-378

PL). The DE-PL solver was generally able to find good solutions faster and improve upon379

them more rapidly, especially for configurations involving larger numbers of walls. How-380

ever, there were some instances where the DE-D solver produced higher quality solutions381

than the DE-PL solver, e.g., when optimizing the configuration of five walls in Scenario382

4. These anomalies could be a consequence of the random nature of the DE algorithm;383

they could also be due to the DE implementation’s tendency to terminate once a pop-384

ulation has sufficiently stabilized.385

In Figure 3, the best obtained wall configurations using DE-PL are displayed pic-386

torially for all pairs of scenarios and numbers of mitigation measures. The configurations387

resemble what might be intuited by a human. When applicable, configurations are non-388

overlapping and well-connected. As the number of walls varies, configurations also show389

interesting nonincremental behavior. For example, in the first scenario, walls are initially390

placed close to the asset; as the number of walls increases, they are placed farther away391

to form connections with existing topographic features. However, such non-sequential392

behavior may be undesirable from a planning perspective.393

4.4 Hypothetical dam break scenario from Theme C of the 12th Inter-394

national Benchmark Workshop on Numerical Analysis of Dams395

This section focuses on demonstrating the merits of the sequential optimization al-396

gorithm using the hypothetical dam break defined in Theme C of the 12th International397

Benchmark Workshop on Numerical Analysis of Dams (ICOLD 2013) (D. R. Judi, Pasqualini,398

& Arnold, 2014). To simulate this scenario, the dam break was modeled as a point source399

with time-dependent discharge. The initial topographic elevation field (with the dam ex-400

cluded) was provided by the workshop and resampled from a resolution of ten to ninety401

meters to ease computational burden. The Manning’s roughness coefficient was set to402

0.035; critical depth boundary conditions were employed; a duration of twelve hours was403
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used; and, when necessary to compute pathlines, PDE solution data was reported ev-404

ery ten minutes of simulation time.405

Asset locations and sizes were selected to increase the difficulty of the OFMP, with406

two assets placed near the primary channel of the scenario and three placed farther away.407

The experimental setup remained similar to that described in Section 4.3. However, in408

this case, the number of walls ranged from one to ten, while wall widths, lengths, and409

heights were fixed to 250, 1000, and ten meters, respectively. To compare differences in410

OFMP solver performance, each solver was executed using ten different random seeds411

for each possible number of walls. In total, the experiments described in this subsection412

thus required nearly six hundred days of compute time.413

4.4.1 Pathline-based algorithm results414

To confirm the effectiveness of the pathline-based solvers, two implementations of415

Algorithm 1 using RBFOpt were benchmarked. In Table 1, the objective behavior of the416

pathline-based solver (RBFOpt-PL) is compared against its direct counterpart (RBFOpt-417

D). The pathline-based solver clearly outperformed RBFOpt-D in nearly all instances,418

e.g., it resulted in smaller minima, means, and standard deviations. The single excep-419

tion appears to be for m = 1, where the direct solver produced an equivalent minimum420

to the pathline-based solver. Nonetheless, on average, the pathline-based solver provided421

a 45% improvement over the direct solver, with generally larger improvements for greater422

numbers of walls. This improvement was computed as423

percentage improvement = 100

(
a− b
a

)
, (22)424

where, here, a and b represent the mean objective values obtained from the RBFOpt-425

D and RBFOpt-PL solvers. The same metric is also used throughout Tables 2, 3, and426

4.427

A similar comparison is made between DE-D and DE-PL in Table 2. Again, the428

pathline-based solver (DE-PL) outperformed its direct counterpart (DE-D) in nearly all429

metrics, providing an overall mean improvement of 59%. The pathline-based solver also430

displayed mostly monotonic decreases in the objective as the number of walls increased,431

while the objectives associated with the direct solver generally increased as the number432

of walls increased. However, note that for small numbers of walls (i.e., one and two), the433

direct DE solver outperformed its pathline-based counterpart. This could be a conse-434
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quence of the more complicated objective penalty in Constraint (21b) when P is restricted.435

For example, Deb (2000) describes various means by which penalty-based genetic algo-436

rithms can result in nonoptimal solutions. Nonetheless, overall, the direct penalization437

method considered herein works well.438

It is important to note the differences between the RBFOpt-based and DE-based439

solvers benchmarked in Tables 1 and 2, respectively. In general, DE-PL greatly outper-440

formed both RBFOpt-based solvers; for example, DE-PL provided a 47% mean improve-441

ment over RBFOpt-PL. These differences could be for multiple reasons. For example,442

there are many more hyperparameters associated with RBFOpt than DE; more careful443

tuning may have increased RBFOpt’s convergence. Furthermore, RBFOpt’s sampling444

search strategy was used to show the efficacy of the pathline-based approach when ap-445

plied to other (non-evolutionary) search techniques; the solver software may have per-446

formed more favorably using some other strategy.447

Figure 4 displays the best obtained wall configuration for each possible number of448

walls using the DE-PL solver. Structure placement appears highly nonincremental as the449

number of walls increases, especially for smaller numbers of walls. Also, when optimiz-450

ing for a number of walls greater than eight, solutions generally deteriorated, indicat-451

ing the search space becomes prohibitively large. Interestingly, the size of the restricted452

set P̃ did not increase substantially as the configuration size grew. Finally, in Figure 5,453

the best obtained solution for ten walls using DE-D is displayed; this underscores the454

difficulty of such a problem when applying a conventional algorithm.455

4.4.2 Sequential algorithm results456

To counteract the degradation of solutions for larger configurations, the sequen-457

tial approach presented in Section 3.2 was benchmarked in a similar setting. In Table458

3, performance of the direct sequential DE solver (DE-D-S) is compared against DE-PL.459

Interestingly, DE-D-S performed much better than DE-PL for configurations contain-460

ing many walls, providing improvements as large as 84%. This result indicates the dif-461

ficulty in optimizing configurations of multiple structural mitigation measures simulta-462

neously, which may lead to a worse objective when running the previous algorithms with463

more measures. Note, however, that the sequential approach generally did not provide464

improvements over DE-PL for configurations consisting of three, four, and five walls. These465
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results indicate that sequential optimization is most beneficial when the number of struc-466

tural measures becomes larger (e.g., greater than five).467

Finally, a comparison between DE-D-S and the sequential DE-PL solver (DE-PL-468

S) is made in Table 4. On average, DE-PL-S provided a 24% improvement over its di-469

rect counterpart. The sequential DE-PL solver was also capable of finding a solution which470

completely mitigated the flood using a smaller structural budget. That is, the direct se-471

quential solver found a totally mitigating solution at m = 9, but DE-PL-S accomplished472

this for m = 8. Interestingly, however, for m = 10, DE-D-S found a totally mitigat-473

ing solution, whereas DE-PL-S only found a nearly mitigating solution. This again may474

be a consequence of the relatively small number of experiments performed. Overall, ex-475

cept for small m (i.e., m = 1), the pathline-based sequential approach appears highly476

superior to the direct sequential approach. This result indicates that DE-PL-S serves as477

a good general purpose OFMP solver.478

Figure 6 displays the ten incremental configurations obtained via DE-PL-S for m =479

10 and the random seed that gave the minimum corresponding objective in Table 4. The480

ultimate solution for m = 10 shows remarkable similarity to the solution obtained via481

DE-PL for m = 8, as shown in Figure 4. That is, both solutions appear to exploit the482

critical depth boundary condition to divert water outside of the domain’s uppermost bound-483

ary. However, the sequential solution appears to place a larger number of walls in more484

intuitive locations. Similarly, as displayed by the solution for m = 10 shown in Figure485

7, DE-D-S also produced a configuration which diverted flow out of the domain’s upper-486

most boundary, although one wall was placed extraordinarily near this boundary. Such487

solutions may not be possible when using the pathline approach, as pathlines typically488

do not reside near domain boundaries.489

4.4.3 Summary of algorithm comparisons490

Tables 1 through 4 compare the performance of solvers against one another. Within491

these tables, the best objectives over all seeds and solvers are denoted in bold, while the492

best mean objectives are underlined. It is first apparent that for m ∈ {1, 2}, minima493

were obtained through use of DE-D. Good mean objectives were also obtained using this494

solver. This result indicates that direct local search algorithms are capable of perform-495
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ing well on OFMPs that contain a small number of structural measures. It also implies496

that more careful tuning of these algorithms may hold great promise.497

For m = 3, DE-PL performed most favorably, providing the best overall and best498

mean objectives. This implies for a moderate number of structural measures, DE-PL ef-499

fectively uses pathlines to restrict the search space. Moreover, if the optimal solution is500

nonincremental, it is capable of finding solutions that sequential approaches cannot. How-501

ever, for m > 3, DE-PL-S performs most favorably, indicating a combination of pathline-502

based and sequential approaches are needed to solve challenging problems.503

4.4.4 Proof of concept for soft structural mitigation measures504

Sections 4.3 through 4.4.3 focus on OFMPs designed to configure the placement505

of hard structural mitigation measures (i.e., b̄i > 0 and n̄i = 0). However, it is im-506

portant to emphasize that the problem formulations and techniques described through-507

out Sections 2, 3, and 4.1 are not limited to such measures. To exemplify this, a proof508

of concept employing only soft structural measures is assessed. In particular, an OFMP509

taking the form of Equations (21a) through (21g) is proposed that optimizes the con-510

figuration of m revegetation projects (i.e., n̄i > 0 and b̄i = 0).511

Using the ICOLD 2013 scenario, the above problem was constructed for a num-512

ber of revegetation projects ranging from one to ten. Each revegetation project was as-513

sumed to have a radius of 250 meters and increased the Manning’s roughness coefficient514

in the project region from 0.035 to 0.123. An experimental setting equivalent to that de-515

scribed in Section 4.2 was used. However, in these experiments, only the DE and DE-516

PL solvers were compared. Furthermore, only a single random seed was used.517

In Figure 8, for each experiment, the objective behavior is plotted against the num-518

ber of PDE evaluations required to reach that objective. The DE-PL solver was gener-519

ally able to improve upon solutions more rapidly, especially for configurations involving520

larger numbers of revegetation projects. These results mimic the behaviors of Figure 2,521

Table 1, and Table 2. That is, for smaller numbers of projects, the direct algorithm is522

sufficient, but for larger numbers of projects, the pathline-based algorithm is needed to523

obtain meaningful solutions.524
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Finally, in Figure 9, the configurations using DE-PL are displayed pictorially for525

all pairs of scenarios and numbers of projects. The results are highly intuitive upon greater526

inspection. First, many of the projects appear to be placed in locations that interdict527

the initial flood wave. More interestingly, many are located along the primary channels528

of the scenario domain, where larger velocities would occur. This makes sense, as the bed529

shear stress source terms are proportional to the square of velocity; measures that in-530

crease roughness are thus highly beneficial in these regions.531

5 Conclusion532

This study addressed the difficult problem of designing structural flood risk man-533

agement strategies for use within the risk assessment process. To this end, an optimization-534

based decision support approach was proposed for designing mitigation strategies. A num-535

ber of numerical methodologies were developed that generally function through modi-536

fying the bed slope and bed shear stress source terms of the 2D shallow water equations.537

However, the methodologies are sufficiently general to modify other source terms (e.g.,538

adjustment of soil properties that affect SR via infiltration) or even supplant the shal-539

low water equations with a different physical model.540

To formalize the mitigation task, the Optimal Flood Mitigation Problem (OFMP)541

was introduced. To solve practical problems of this type, a time-limited search-based op-542

timization algorithm was developed. Within this algorithm, three approaches to gener-543

ate solutions were explored: a direct approach using only derivative-free optimization,544

an augmented approach using pathlines to restrict the search space, and a sequential op-545

timization approach. The latter two were largely successful, depending on the number546

of mitigation measures defined in the OFMP. Overall, the non-sequential and sequen-547

tial pathline-based differential evolution approaches provided average improvements of548

59% and 65% over their direct counterpart, respectively. Results illustrate the first mean-549

ingful solutions to large-scale optimization problems of this type.550

Future work should seek to increase and prove the applicability of the approach to551

realistic flood scenarios. First, it should seek to generalize the approach by benchmark-552

ing performance on a greater number of real-world flood scenarios. Second, it should ad-553

dress the inherent uncertainty in flood scenario parameterizations (e.g., topographic el-554

evation, dam breach parameterization, bed friction). To this end, a stochastic optimiza-555
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tion approach should be developed to ensure solutions are distributionally robust from556

a planning perspective. Third, a human behavioral study should be conducted to com-557

pare the utility of the optimization approach presented herein with the typically man-558

ual process used in simulation-based mitigation design. Fourth, algorithmic enhancements559

should be made to increase the realism of mitigation designs. For example, flood walls560

used in the numerical experiments were overtoppable. This may not be realistic from a561

flood risk management perspective. Such realism can be embedded within the optimiza-562

tion problem in the form of additional penalties (e.g., when walls are overtopped, a penalty563

is introduced) or additional constraints. Finally, the approach should be extended to solve564

OFMPs for scenarios that require modeling at finer spatial resolutions. To accomplish565

this, a multi-resolution approach should be developed, where the spatial resolution of a566

flood scenario is iteratively refined as optimization progresses. This work would be valu-567

able for realistic scenarios, where fine resolution details are sometimes necessary to ac-568

curately predict flooding behavior.569

A ComputePathline(U, x0, y0)570

In Algorithm 3, Line 2, the pathline and current pathline segment lengths, L and571

`, are initialized to zero, and the pathline-describing point set L is initialized. In Line572

3, the integration loop is defined. Integration halts once the total pathline length is greater573

than some predefined threshold, Lmax, or the time falls outside the interval of interest,574

[t0, twet], where twet is calculated as per Equation (17). In Line 4, the discrete solution575

indices are obtained. Here, GetIndex(x, y) is a function that maps the spatial coordi-576

nates (x, y) to the corresponding spatial index on the rectangular solution grid G, (i, j).577

Similarly, the time index k is obtained by computing the index of the ordered timestamp578

set T corresponding to the least absolute difference with the current integration time t.579

In Lines 5 through 7, the loop is terminated if the current speed or depth is smaller than580

some arbitrarily small constant εm.581

In Line 8, the time step is computed to (approximately) ensure the integrated dis-582

tance will not be greater than one third the length of a grid cell. In Line 9, the first step583

of second-order Runge-Kutta integration is performed. In Lines 10 through 12, the loop584

is terminated if the point suggested by the previous integration step falls outside the flood585

scenario’s spatial domain, denoted as D(U). In Line 13, the discrete indices of the pro-586

posed solution are obtained. In Lines 14 through 16, the loop is terminated if the depth587
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Algorithm 3 ComputePathline: Approximates a pathline emanating to some point.

1: function ComputePathline(U, x0, y0)

2: L← 0, `← 0, x← x0, y ← y0, t← twet(x0, y0), L ← {(x0, y0)}

3: while L < Lmax and t ∈ [t0, twet(x0, y0)] do

4: (i, j)← GetIndex(x, y), k ← argmin {τ ∈ T (U) : |t− τ |}

5: if
√
u2
ijk + v2

ijk ≤ εm or hijk ≤ εm then

6: break

7: end if

8: ∆t← − 1
3 min

(
∆x
|uijk| ,

∆y
|vijk|

)
9: x∗ ← x+ uijk∆t, y∗ ← y + vijk∆t, t∗ = t+ ∆t

10: if (x∗, y∗) /∈ D(U) then

11: break

12: end if

13: (i∗, j∗)← GetIndex(x∗, y∗), k∗ ← argmin {τ ∈ T (U) : |t∗ − τ |}

14: if hi∗,j∗,k∗ ≤ εm then

15: break

16: end if

17: xn ← x+ 1
2∆t (uijk + ui∗,j∗,k∗) , yn ← y + 1

2∆t (uijk + ui∗,j∗,k∗)

18: ∆s←
√

(xn − x)2 + (yn − y)2

19: if (xn, yn) /∈ D(U) or ∆s ≤ εm or ∆s > 2α then

20: break

21: end if

22: L← L+ ∆s, `← `+ ∆s

23: x← xn, y ← yn, t← t∗

24: if ` ≥ 1
2 (∆x+ ∆y) then

25: `← 0, L ← L ∪ {(xn, yn)}

26: end if

27: end while

28: return L

29: end function

at the proposed index is too small. In Line 17, the second Runge-Kutta integration step588

is performed. In Lines 19 through 21, the loop is terminated if the integrated point falls589

–22–This article is protected by copyright. All rights reserved.



manuscript submitted to Water Resources Research

outside D(U), if the change was small, or if the change was very large (where α is some590

predefined fixed distance). In Line 22, the total pathline and temporary segment lengths591

are updated using the most recent integration distance. In Line 23, the relevant variables592

are integrated. In Lines 24 through 26, the temporary segment length is reset to zero593

and the pathline approximation is updated if the segment length is greater than or equal594

to the mean grid cell spacing.595

B AlphaShape(Q,α)596

In Algorithm 4, Delaunay(Q,α) is a function that computes the Delaunay tri-597

angulation for a set Q of discrete points. A Delaunay triangulation is a set of triangles598

such that no point in Q is contained within the circumscribed circle of any triangle. A599

number of algorithms exist to compute this triangulation; herein, that of Barber, Dobkin,600

and Huhdanpaa (1996) is used.

Algorithm 4 AlphaShape: Computes an alpha shape from a discrete set of points Q.

1: function AlphaShape(Q,α)

2: D ← Delaunay(Q), B ← ∅

3: for ∆ ∈ D do

4: (a, b, c)← GetVertices(∆)

5: da ← ‖a− b‖ , db ← ‖b− c‖ , dc ← ‖c− a‖

6: s← 1
2 (da + db + dc)

7: A←
√
s (s− da) (s− db) (s− dc)

8: if A = 0 then

9: continue

10: else if dadbdc

4A < α then

11: B ← B ∪∆

12: end if

13: end for

14: return B

15: end function

601

In Line 2 of Algorithm 4, the set of Delaunay triangles D is computed for the point602

set Q, and the set B comprising the triangular regions of the alpha shape is initialized603
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as the empty set. In Line 4, the function GetVertices(∆) is used to obtain the ver-604

tex positions of the triangle ∆. In Line 5, the Euclidean edge distances are computed605

for the triangle ∆. In Line 6, the semiperimeter s of the triangle ∆ is computed. In Line606

7, the area of the triangle ∆ is computed via Heron’s formula. In Line 11, if the circum-607

scribed radius of the triangle is less than the constant α, the triangle is unioned with the608

set B describing the alpha shape. In this paper, α is always taken to be 5(∆x+∆y)/2,609

where ∆x and ∆y are the grid cell spacings used to discretize the spatial domain in the610

x- and y- directions, respectively.611
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RBFOpt-D RBFOpt-PL Mean

Improvementm Mean Min Max SD Mean Min Max SD

1 165.93 159.63 170.25 3.36 162.81 159.63 167.59 2.61 1.88%

2 147.96 105.34 166.60 20.14 111.02 95.98 130.88 10.74 24.96%

3 144.93 111.87 164.10 15.44 89.22 77.56 93.62 5.40 38.44%

4 128.52 105.81 159.12 14.21 81.33 51.63 97.83 13.47 36.72%

5 135.94 128.25 144.42 5.03 62.38 26.40 80.40 15.67 54.11%

6 122.24 98.38 140.19 14.22 59.13 41.40 71.25 9.07 51.63%

7 119.14 81.14 145.80 18.65 51.11 29.13 66.20 13.08 57.10%

8 102.08 78.65 122.69 16.22 43.28 27.82 57.35 9.40 57.60%

9 107.40 81.93 127.53 15.52 42.73 19.00 53.26 11.19 60.21%

10 104.90 77.17 124.13 16.75 34.72 21.75 42.74 7.60 66.90%

Table 1. Table comparing objectives using the (direct) RBFOpt-D and (pathline-based)

RBFOpt-PL solvers over ten random seeds, with the number of walls (m) ranging from one to

ten, as discussed in Section 4.4. Values are scaled by a factor of 10−4.
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DE-D DE-PL Mean

Improvementm Mean Min Max SD Mean Min Max SD

1 162.18 158.59 167.59 3.85 163.86 159.63 170.07 4.52 −1.04%

2 99.49 84.87 104.24 6.29 102.61 94.24 105.39 3.19 −3.13%

3 66.78 39.56 119.20 27.76 50.75 33.36 65.93 14.80 24.01%

4 101.06 79.57 134.61 20.57 31.84 17.51 56.87 13.20 68.49%

5 115.43 100.56 145.39 16.04 22.74 12.82 36.39 8.04 80.30%

6 124.15 101.22 145.75 15.85 24.79 7.24 60.66 14.87 80.03%

7 129.17 110.94 153.14 12.52 18.14 5.59 26.77 6.64 85.96%

8 125.51 96.68 144.92 16.47 14.02 4.03 19.74 5.59 88.83%

9 129.23 99.39 146.58 14.02 17.83 8.56 22.46 4.85 86.20%

10 119.09 86.16 140.87 17.91 19.68 10.43 30.38 5.61 83.47%

Table 2. Table comparing objective values obtained using the (direct) DE-D and (pathline-

based) DE-PL solvers over ten random seeds, with the number of walls (m) ranging from one to

ten. Values are scaled by a factor of 10−4. Best objectives over all seeds and solvers in Tables 1

through 4 are denoted in bold, while best mean objectives are underlined.
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DE-PL DE-D-S Mean

Improvementm Mean Min Max SD Mean Min Max SD

1 163.86 159.63 170.07 4.52 162.18 158.59 167.59 3.85 1.02%

2 102.61 94.24 105.39 3.19 102.38 100.97 103.68 0.87 0.22%

3 50.75 33.36 65.93 14.80 64.98 48.97 81.93 14.71 −28.06%

4 31.84 17.51 56.87 13.20 41.04 26.07 58.60 14.88 −28.89%

5 22.74 12.82 36.39 8.04 23.22 17.45 34.87 6.18 −2.11%

6 24.79 7.24 60.66 14.87 14.94 11.56 18.39 2.26 39.76%

7 18.14 5.59 26.77 6.64 11.14 4.10 14.53 2.87 38.60%

8 14.02 4.03 19.74 5.59 9.42 6.02 16.64 3.30 32.81%

9 17.83 8.56 22.46 4.85 4.72 0.00 9.91 3.74 73.52%

10 19.68 10.43 30.38 5.61 3.07 0.00 9.29 3.10 84.38%

Table 3. Table comparing objective values obtained using the (pathline-based) DE-PL and

(direct sequential) DE-D-S solvers over ten random seeds, with the number of walls (m) ranging

from one to ten. Values are scaled by a factor of 10−4. Best objectives over all seeds and solvers

in Tables 1 through 4 are denoted in bold, while best mean objectives are underlined.
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DE-D-S DE-PL-S Mean

Improvementm Mean Min Max SD Mean Min Max SD

1 162.18 158.59 167.59 3.85 163.61 159.63 167.59 4.19 −0.88%

2 102.38 100.97 103.68 0.87 98.25 86.78 105.84 7.45 4.04%

3 64.98 48.97 81.93 14.71 56.74 35.73 86.12 13.92 12.69%

4 41.04 26.07 58.60 14.88 27.18 14.55 56.37 11.81 33.77%

5 23.22 17.45 34.87 6.18 16.32 8.38 25.35 5.25 29.73%

6 14.94 11.56 18.39 2.26 10.63 3.92 16.96 5.29 28.82%

7 11.14 4.10 14.53 2.87 7.02 0.13 15.00 5.08 36.97%

8 9.42 6.02 16.64 3.30 4.53 0.00 9.68 3.81 51.90%

9 4.72 0.00 9.91 3.74 3.36 0.00 7.86 3.43 28.83%

10 3.07 0.00 9.29 3.10 2.59 0.00 6.30 2.60 15.76%

Table 4. Table comparing objectives obtained using the (direct sequential) DE-D-S and

(pathline-based sequential) DE-PL-S solvers over ten random seeds, with the number of walls

(m) ranging from one to ten. Values are scaled by a factor of 10−4. Best objectives over all seeds

and solvers in Tables 1 through 4 are denoted in bold, while best mean objectives are underlined.
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Figure 1. Pictorial descriptions of six simple OFMP scenarios, ordered numerically (e.g., one

in the upper left). Black represents nonzero topographic elevation (of height one meter); blue

represents nonzero initial water depth (of height one meter); and red represents assets.

694

695

696

Figure 2. Comparison of objective value versus number of PDE evaluations for Scenarios 1

through 6, respectively, using DE-D and DE-PL for configurations of one through five walls.

697

698

Figure 3. Best obtained elevations and maximum depths for configurations of one through

five walls for the highly simplified flood scenarios, referenced as Scenarios 1 through 6 (ver-

tically). Darker blue corresponds to larger maximum depths; black corresponds to nonzero

portions of the initial topographic elevation field; green corresponds to elevation additions via

the placement of walls; and red corresponds to asset locations. The orange lines represent the

exteriors of the final computed restricted positional sets P̃ in Algorithm 1.
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703

704

Figure 4. Best obtained elevations and maximum depths for configurations of one through

ten walls for the ICOLD 2013 dam failure scenario using DE-PL. Darker blue corresponds to

larger maximum depths; gray corresponds to the initial topographic elevation field; green corre-

sponds to elevation additions via the placement of walls; and red corresponds to asset locations.

Orange lines represent the exteriors of the final restricted positional sets P̃ in Algorithm 1.
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Figure 5. Best solution in a setting equivalent to Figure 4 for ten walls using DE-D.710

Figure 6. Best obtained elevations and maximum depths for configurations of one through

ten walls for the ICOLD 2013 dam failure scenario using DE-PL-S. Darker blue corresponds to

larger maximum depths; gray corresponds to the initial topographic elevation field; green corre-

sponds to elevation additions via the placement of walls; and red corresponds to asset locations.

Orange lines represent the exteriors of the restricted positional sets P̃ initialized in Algorithm 1.
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714

715

Figure 7. Best solution in a setting equivalent to Figure 6 for ten walls using DE-D-S.716

Figure 8. Comparison of objective versus number of PDE evaluations for the OFMP in Sec-

tion 4.4.4, using DE-D and DE-PL for configurations of one through ten revegetation projects.

717

718

Figure 9. Revegetation locations and maximum depths for configurations of one through

ten projects for the ICOLD 2013 dam failure scenario using DE-PL. Darker blue corresponds to

larger maximum depths; gray corresponds to the initial topographic elevation field; green corre-

sponds to the placement of revegetation projects; and red corresponds to asset locations. Orange

lines represent the exteriors of the restricted positional sets P̃ initialized in Algorithm 1.
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