## Appendix from N. D. Sheldon et al., "Continental Climatic and Weathering Response to the Eocene-Oligocene Transition" (J. Geol., vol. 120, no. 2, p. 227)

## Supplementary Tables and Figures

| Table A1.   We | athering Ratio | DS   |            |                   |       |          |                       |
|----------------|----------------|------|------------|-------------------|-------|----------|-----------------------|
| Epoch, sample  | Meter level    | CIA  | $\Delta W$ | $\Delta W^{ m a}$ | Ti/Al | MAT (°C) | MAT (°C) <sup>a</sup> |
| Eocene:        |                |      |            |                   |       |          |                       |
| MAI 4          | 115.5          | 12.5 | -1.8       |                   | .06   | 11.4     |                       |
| MAI 5          | 123.0          | 10.0 | -4.4       |                   | .08   | 8.8      |                       |
| MAI 6          | 126.3          | 15.1 | .8         |                   | .07   | 8.8      |                       |
| MAI 7          | 125.7          | 25.5 | 11.2       |                   | .06   | 12.0     |                       |
| MAI 8          | 124.7          | 10.0 | -4.3       | .3                | .06   | 11.0     | 10.4                  |
| MAI 9          | 132.7          | 18.7 | 4.4        | 1.5               | .06   | 10.9     | 10.3                  |
| MAI 11         | 155.5          | 10.5 | -3.8       | 1.6               | .07   | 7.8      | 10.1                  |
| MAI 12         | 160.0          | 9.1  | -5.2       | .4                | .07   | 10.4     | 10.4                  |
| MAI 13         | 180.3          | 21.9 | 7.6        | 3                 | .06   | 13.3     | 10.7                  |
| MAI 14         | 181.5          | 13.3 | -1.1       | .4                | .06   | 13.5     | 11.2                  |
| MAI 16         | 193.2          | 18.1 | 3.8        | .3                | .08   | 8.7      | 10.7                  |
| MAI 18         | 206.5          | 21.8 | 7.5        | 2.5               | .06   | 11.6     | 11.5                  |
| MAI 22         | 210.9          | 19.8 | 5.5        | 4.7               | .06   | 11.4     | 11.7                  |
| MAI 23         | 211.0          | 23.9 | 9.5        | 5.0               | .06   | 11.7     | 11.4                  |
| MAI 24         | 211.1          | 22.1 | 7.8        | 6.8               | .06   | 12.3     | 11.1                  |
| MAI 25         | 211.1          | 22.9 | 8.6        | 7.8               | .06   | 11.9     | 11.8                  |
| MAI 26         | 234.0          | 11.0 | -3.3       | 5.6               | .07   | 10.0     | 11.5                  |
| MAI 27         | 235.1          | 6.9  | -7.4       | 3.0               | .07   | 10.4     | 11.3                  |
| MAI 28         | 236.1          | 19.2 | 4.8        | 2.1               | .07   | 10.3     | 11.0                  |
| MAI 29         | 244.7          | 22.4 | 8.1        | 2.2               | .06   | 10.5     | 10.6                  |
| MAI 30         | 247.8          | 18.2 | 3.9        | 1.2               | .06   | 10.3     | 10.3                  |
| MAI 33         | 252.0          | 27.9 | 13.6       | 4.6               | .07   | 10.5     | 10.4                  |
| MAI 34         | 253.5          | 10.1 | -4.2       | 5.2               | .06   | 12.3     | 10.8                  |
| MAI 36         | 260.8          | 8.2  | -6.1       | 3.1               | .06   | 11.9     | 11.1                  |
| Oligocene:     |                |      |            |                   |       |          |                       |
| MAI 37         | 269.0          | 21.0 | 6.7        | 2.8               | .06   | 11.9     | 11.4                  |
| MAI 38         | 270.0          | 5.5  | -8.8       | .3                | .06   | 10.3     | 11.4                  |
| MAI 39         | 273.0          | 10.9 | -3.4       | -3.2              | .06   | 12.5     | 11.8                  |
| MAI 40         | 274.4          | 9.3  | -5.0       | -3.3              | .06   | 10.4     | 11.4                  |
| MAI 41         | 275.6          | 11.7 | -2.6       | -2.6              | .07   | 10.1     | 11.1                  |
| MAI 43         | 287.2          | 16.4 | 2.1        | -3.5              | .06   | 10.0     | 10.7                  |
| MAI 44         | 297.4          | 9.7  | -4.6       | -2.7              | .07   | 9.5      | 10.5                  |
| MAI 45         | 307.7          | 18.6 | 4.3        | -1.2              | .07   | 9.4      | 9.9                   |
| MAI 46         | 310.0          | 10.5 | -3.8       | 9                 | .06   | 11.0     | 10.0                  |
| MAI 47         | 311.4          | 5.5  | -8.8       | -2.2              | .07   | 8.2      | 9.6                   |
| MAI 48         | 314.3          | 16.9 | 2.6        | -2.1              | .07   | 10.5     | 9.7                   |
| MAI 49         | 325.2          | 18.9 | 4.6        | 2                 | .07   | 9.8      | 9.8                   |
| MAI 50         | 325.9          | 5.6  | -8.7       | -2.8              | .07   | 10.5     | 10.0                  |
| MAI 51         | 332.3          | 7.5  | -6.8       | -3.4              | .07   | 10.5     | 9.9                   |
| MAI 52         | 335.0          | 17.6 | 3.3        | -1.0              | .07   | 10.0     | 10.3                  |
| MAI 2          | 337.0          | 10.9 | -3.5       | -2.2              | .08   | 8.3      | 9.8                   |
| MAI 1          | 338.0          | 6.7  | -7.6       | -4.7              | .06   | 13.1     | 10.5                  |
| MAI 54         | 350.6          | 3.5  | -10.9      | -5.1              | .05   | 13.7     | 11.1                  |
| MAI 53         | 351.3          | 6.6  | -7.7       | -5.2              | .07   | 10.2     | 11.1                  |
| MAI 54         | 361.0          | 7.9  | -6.4       | -7.2              | .06   | 13.0     | 11.7                  |

Table A1 Weathering Ratio

Note. CIA = chemical index of alteration,  $\Delta W =$  long-term changes in chemical weathering, MAT =

mean annual temperature.

<sup>a</sup>Five-point running average values.

| Table A2. Sta | able Isotope D | ata            |                |               |  |  |
|---------------|----------------|----------------|----------------|---------------|--|--|
| Epoch, sample | Meter level    | $\Delta^{13}C$ | $\Delta^{18}O$ | Bk depth (cm) |  |  |
| Eocene:       |                |                |                |               |  |  |
| MC 3          | 122.7          | -4.54          | -6.52          | 45            |  |  |
| MC 4          | 125.9          | -5.12          | -6.53          | 55            |  |  |
| MC 5          | 155            | -4.79          | -5.74          | 35            |  |  |
| MC 6          | 158.5          | -4.72          | -6.33          | Eroded        |  |  |
| MC 7          | 162.3          | -6.09          | -6.47          | Eroded        |  |  |
| MC 8          | 171            | -4.65          | -6.61          | Eroded        |  |  |
| MC 9          | 180.5          | -4.78          | -6.43          | Eroded        |  |  |
| MC 10         | 183.4          | -4.92          | -6.04          | Eroded        |  |  |
| MC 11         | 207.7          | -5.46          | -5.81          | 55            |  |  |
| MC 12         | 235.6          | -6.51          | -6.29          | 60            |  |  |
| MC 13         | 243.2          | -4.52          | -5.43          | 60            |  |  |
| MC 14         | 253            | -5.16          | -6.61          | Eroded        |  |  |
| MC 15         | 259.2          | -5.30          | -6.17          | 50            |  |  |
| Oligocene:    |                |                |                |               |  |  |
| MC 16         | 272.5          | -4.95          | -5.63          | 45            |  |  |
| MC 2          | 276            | -5.36          | -5.91          | Eroded        |  |  |
| MC 17         | 293.5          | -4.35          | -5.24          | Eroded        |  |  |
| MC 18         | 305.7          | -5.19          | -6.95          | Eroded        |  |  |
| MC 1          | 312.5          | -4.75          | -6.53          | Eroded        |  |  |
| MC 19         | 329.2          | -4.23          | -6.14          | 50            |  |  |
| MI 1          | 330.55         | -4.88          | -6.47          | Eroded        |  |  |
| MI 2          | 336            | -4.97          | -6.49          | Eroded        |  |  |
| MI 3          | 350.75         | -4.25          | -6.26          | Eroded        |  |  |
| MI 4          | 359.5          | -4.46          | -6.70          | Eroded        |  |  |

 Table A2.
 Stable Isotope Data

Note. Samples for which the Bk depth is listed as "eroded" are cases where the completeness of the profile could not be assured, so the Bk depth was not measured. In all cases, the pedogenic nodules were collected at least 30 cm below the top of the remaining profile, regardless of whether a precise Bk depth could be measured.

 Table A3.
 Whole-Rock Geochemical Data (Eocene Samples)

| Sample     | Meter level | $SiO_2$ | $Al_2O_3$ | $Fe_2O_3$ | MgO  | CaO  | Na <sub>2</sub> O | $K_2O$ | $TiO_2$ | $P_2O_5$ |
|------------|-------------|---------|-----------|-----------|------|------|-------------------|--------|---------|----------|
| MAI 4      | 115.5       | 38.0    | 10.2      | 4.0       | 6.7  | 37.7 | .2                | 2.6    | .5      | .1       |
| MAI 5      | 123         | 43.2    | 7.6       | 2.5       | 7.5  | 36.2 | .2                | 2.2    | .5      | .1       |
| MAI 6      | 126.3       | 47.2    | 8.3       | 3.9       | 13.4 | 24.1 | .2                | 2.3    | .5      | .1       |
| MAI 7      | 125.7       | 45.3    | 13.1      | 4.9       | 13.5 | 18.9 | .2                | 3.3    | .6      | .1       |
| MAI 8      | 124.7       | 32.5    | 8.3       | 2.8       | 13.9 | 39.6 | .2                | 2.1    | .4      | .1       |
| MAI 9      | 132.7       | 41.6    | 10.4      | 4.9       | 16.6 | 23.0 | .2                | 2.7    | .5      | .1       |
| MAI 11     | 155.5       | 49.5    | 6.9       | 2.5       | 7.7  | 30.8 | .2                | 2.0    | .4      | .1       |
| MAI 12     | 160         | 34.9    | 8.1       | 2.7       | 8.3  | 43.2 | .2                | 2.1    | .4      | .1       |
| MAI 13     | 180.3       | 37.9    | 12.8      | 5.0       | 17.3 | 22.9 | .2                | 3.2    | .6      | .1       |
| MAI 14     | 181.5       | 33.8    | 11.6      | 3.6       | 7.5  | 40.0 | .2                | 2.7    | .5      | .1       |
| MAI 16     | 193.2       | 52.8    | 8.9       | 3.2       | 11.1 | 20.5 | .3                | 2.4    | .6      | .1       |
| MAI 18     | 206.5       | 42.9    | 11.8      | 4.4       | 15.7 | 21.2 | .3                | 3.0    | .6      | .1       |
| MAI 22     | 210.9       | 45.5    | 12.2      | 4.5       | 8.4  | 25.2 | .2                | 3.1    | .6      | .1       |
| MAI 23     | 211.02      | 44.4    | 12.4      | 4.6       | 14.8 | 19.7 | .3                | 3.1    | .6      | .1       |
| MAI 24     | 211.1       | 41.2    | 12.4      | 4.5       | 16.0 | 21.9 | .3                | 3.1    | .6      | .1       |
| MAI 25     | 211.06      | 42.6    | 12.3      | 4.9       | 15.5 | 20.7 | .3                | 3.0    | .5      | .1       |
| MAI 26     | 234         | 40.3    | 8.7       | 3.1       | 7.5  | 37.3 | .2                | 2.2    | .5      | .1       |
| MAI 27     | 235.1       | 30.4    | 7.0       | 3.1       | 6.3  | 50.6 | .2                | 1.9    | .4      | .1       |
| MAI 28     | 236.1       | 44.7    | 10.2      | 3.8       | 15.9 | 21.8 | .3                | 2.6    | .5      | .1       |
| MAI 29     | 244.7       | 47.4    | 11.2      | 4.2       | 13.9 | 19.4 | .3                | 2.9    | .5      | .1       |
| MAI 30     | 247.8       | 48.7    | 11.2      | 3.4       | 7.1  | 25.5 | .3                | 3.0    | .6      | .1       |
| MAI 33     | 252         | 51.6    | 12.2      | 4.7       | 12.0 | 15.1 | .3                | 3.3    | .7      | .1       |
| MAI 34 A\6 | 253.5       | 31.6    | 9.5       | 3.5       | 7.2  | 45.0 | .2                | 2.4    | .4      | .1       |
| MAI 36     | 260.75      | 27.6    | 7.9       | 3.4       | 11.2 | 47.2 | .2                | 2.0    | .4      | .0       |

Note. Major element oxide values are normalized to 100%; totals less than 100% reflect samples with a minor amount of MnO (<0.1 wt%).

| Sample     | Meter level | $SiO_2$ | $Al_2O_3$ | $Fe_2O_3$ | MgO  | CaO  | Na <sub>2</sub> O | $K_2O$ | $TiO_2$ | $P_2O_5$ |
|------------|-------------|---------|-----------|-----------|------|------|-------------------|--------|---------|----------|
| MAI 37     | 269         | 41.1    | 11.8      | 4.9       | 15.9 | 22.2 | .2                | 3.2    | .6      | .1       |
| MAI 38     | 270         | 27.0    | 6.2       | 2.0       | 5.8  | 56.7 | .2                | 1.8    | .3      | .1       |
| MAI 39     | 273         | 32.6    | 10.1      | 4.5       | 6.1  | 43.6 | .2                | 2.4    | .4      | .1       |
| MAI 40     | 274.4       | 35.3    | 8.2       | 3.5       | 7.7  | 42.5 | .2                | 2.1    | .4      | .1       |
| MAI 41     | 275.6       | 40.6    | 8.9       | 4.1       | 7.7  | 35.4 | .2                | 2.5    | .5      | .1       |
| MAI 43     | 287.15      | 42.5    | 9.2       | 3.9       | 17.0 | 24.2 | .3                | 2.4    | .5      | .1       |
| MAI 44     | 297.4       | 37.4    | 7.4       | 2.5       | 13.1 | 36.6 | .2                | 2.2    | .4      | .1       |
| MAI 45     | 307.7       | 47.9    | 9.5       | 3.0       | 15.1 | 20.9 | .2                | 2.7    | .5      | .1       |
| MAI 46     | 310         | 36.2    | 9.1       | 3.6       | 6.6  | 41.2 | .2                | 2.4    | .5      | .1       |
| MAI 47     | 311.4       | 32.5    | 5.0       | 2.0       | 12.4 | 45.8 | .2                | 1.6    | .3      | .0       |
| MAI 48     | 314.3       | 41.3    | 9.7       | 3.2       | 17.7 | 24.3 | .3                | 2.8    | .5      | .1       |
| MAI 49     | 325.2       | 46.2    | 9.7       | 4.4       | 15.2 | 21.0 | .2                | 2.6    | .5      | .1       |
| MAI 50     | 325.9       | 27.0    | 6.3       | 2.2       | 4.5  | 57.6 | .2                | 1.8    | .3      | .1       |
| MAI 51     | 332.3       | 30.1    | 7.1       | 2.6       | 10.9 | 46.8 | .2                | 1.9    | .4      | .1       |
| MAI 52     | 335         | 44.1    | 9.7       | 3.3       | 16.3 | 23.0 | .3                | 2.7    | .5      | .1       |
| MAI 2      | 337         | 43.4    | 6.7       | 2.8       | 15.2 | 29.0 | .3                | 2.1    | .4      | .1       |
| MAI 1      | 338         | 23.2    | 7.7       | 2.6       | 6.8  | 56.9 | .2                | 2.1    | .4      | .1       |
| MAI 54     | 350.6       | 13.6    | 4.8       | 1.6       | 5.9  | 72.1 | .1                | 1.5    | .2      | .1       |
| MAI 53     | 351.3       | 27.1    | 6.1       | 2.1       | 16.4 | 45.6 | .2                | 2.1    | .3      | .1       |
| MAI 54 (9) | 361         | 25.2    | 8.2       | 3.9       | 8.7  | 51.3 | .1                | 2.0    | .4      | .0       |

 Table A4.
 Whole-Rock Geochemical Data (Oligocene Samples)

Note. Major element oxide values are normalized to 100%; totals less than 100% reflect samples with a minor amount of MnO (<0.1 wt%).



**Figure A1.** Paleosol features from Ebro Basin paleosols preserved in the Artés Formation. *A*, Depth profile through an Inceptisollike paleosol. Note that the Bk horizon is ~40 cm beneath the top of the profile and is dispersed over ~20 cm within the profile. *B*, Centimeter-scale burrows. Note the redox difference between the oxidized paleosol and the reduced burrow. *C*, Terrestrial gastropod casts. *D*, In situ burrow. As with *B*, there appears to be a redox difference between the burrow and the surrounding paleosol material.



**Figure A2.** Ti/Al ratio as a function of stratigraphic position. The Eocene-Oligocene boundary is at 264.5 m on the basis of magnetostratigraphy. The consistency of the Ti/Al ratio indicates unchanging sedimentary provenances, and the absolute values of the ratio are consistent with previously reported values for terrigenous clastic material (Sheldon and Tabor 2009).



**Figure A3.** Cross-plot of pedogenic carbonate  $\delta^{13}$ C and  $\delta^{18}$ O values. There is no relationship between  $\delta^{13}$ C and  $\delta^{18}$ O, which is consistent with samples that have not been diagenetically altered or subject to significant amounts of evaporation (Ufnar et al. 2008).

## **References Cited Only in the Appendix**

- Sheldon, N. D., and Tabor, N. J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev. 95:1–52.
- Ufnar, D. F.; Grocke, D. R.; and Beddows, P. A. 2008. Assessing pedogenic calcite stable-isotope values: can positive linear covariant trends be used to quantify paleo-evaporation rates? Chem. Geol. 256:46–51.