Appendix A from N. D. Sheldon, "Quaternary Glacial-Interglacial Climate Cycles in Hawaii"

(J. Geol., vol. 114, no. 3, p. 000)

Online Tables

Table A1Geochemical Data

Sample	Core depth (m)	SiO ₂	TiO ₂	Al ₂ O ₃	Total iron (Fe ₂ O ₃)	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅
HS01	65.11	34.4	4.10	16.80	18.70	.25	5.46	4.00	1.43	.55	.58
HS02		40.5	2.25	11.60	14.56	.20	16.20	4.83	1.05	.33	.25
HS03		32.3	3.79	20.01	19.42	.36	2.39	.79	1.23	.89	.34
HS04		35.1	3.12	18.18	17.32	.21	3.80	1.97	1.04	.42	.18
HS06	98.79	32.8	3.17	16.02	18.66	.27	7.62	1.17	1.04	.37	.24
HS09	153.65	38.1	2.74	17.18	15.59	.22	5.26	3.30	.94	.34	.14
HS14	202.17	29.8	3.29	18.35	16.45	.23	2.61	1.36	.97	.43	.37
HS15		21.1	3.46	25.6	18.33	.20	1.86	.99	.80	.25	.40
HS15B		26.0	6.19	15.94	30.48	.13	1.06	.52	.61	.69	.50
HS16		21.2	3.99	25.44	20.39	.13	2.26	.38	.72	.29	.43
HS18		42.1	2.44	14.00	13.82	.18	10.50	6.27	.93	.20	.16
HS19		47.0	2.33	13.75	13.31	.18	10.30	9.67	1.83	.12	.21
HS21		33.1	3.91	19.78	12.15	.08	2.06	2.06	1.42	.79	.55
HS22	238.14	30.2	3.82	21.97	13.61	.27	1.02	.87	1.50	.92	.60
HS23		27.6	3.92	21.08	16.66	1.43	.91	.74	1.31	.84	.54
HS24		26.1	3.02	20.57	17.54	1.71	.90	.68	1.03	.66	.60
HS25		36.7	2.21	12.46	14.90	.34	15.00	2.55	.39	.19	.23
HS27	257.89	39.1	3.82	14.64	16.04	.22	7.78	6.54	1.01	.32	.36
HS28		28.8	3.53	19.88	22.89	.40	2.83	1.98	.45	.33	.50
HS29		41.6	3.11	13.19	14.10	.20	8.93	8.51	.79	.13	.30
HS30	360.61	29.5	4.79	15.51	24.90	.24	5.25	1.66	.21	.32	.22
HS31		31.4	4.05	16.67	20.71	.22	3.30	2.30	.14	.24	.20
HS32	402.37	33.9	5.36	14.67	25.31	.13	2.80	2.02	.30	.53	.16
HS34	720.88	38.3	2.24	9.53	14.66	.21	18.30	1.98	1.12	.48	.11
HS35	772.79	38.7	3.20	15.73	16.76	.24	11.00	5.66	1.90	.37	.25
HS38	448.70	42.1	3.57	13.59	16.53	.22	9.32	9.62	1.31	.12	.27
HS39	560.13	34.8	3.26	17.24	18.11	.32	7.18	2.47	1.48	.44	.11
HS40		33.8	3.08	16.40	17.31	.24	5.40	1.17	1.62	.54	.15
HS41	510.17	47.0	2.76	13.36	13.17	.21	8.46	11.40	1.88	.16	.25
HS43	540.75	36.3	3.85	14.35	21.62	.27	12.70	5.34	.79	.19	.20
HS44		40.0	2.79	13.11	15.12	.22	14.70	7.67	1.21	.18	.14
HS45	661.33	44.8	2.71	11.60	14.15	.20	14.70	8.36	1.46	.17	.20

			D	c c	X	NII	7	DI	MAD	
Sample	LOI	Cr_2O_3	Ва	Sr	Y	Nb	Zr	Rb	MAP	MAT
HS01	13.2	.12	313	184	23		175	7	774	17.5
HS02	6.9	.14	417	132	17		110	17	Х	Х
HS03	17.5	.07	314	136	32		180	26	Х	Х
HS04	18.2	.07	356	79	28		142	7	Х	Х
HS06	17.1	.16	389	106	23		146	10	1084	17.5
HS09	16.0	.06	370	56	17		121	9	869	16.5
HS14	25.9	.06	291	116	16		164	11	1113	21.0
HS15	26.7	.08	236	61			157	11	Х	Х
HS15B	17.5	.12		85	21		242	19	Х	Х
HS16	24.3	.12	201	52			163	16	Х	Х
HS18	8.9	.09	367	100	14		118	13	Х	Х
HS19	1.0	.09	373	243	16		111	17	Х	Х
HS21	23.9	.06	235	104	41	45	444	21	Х	Х
HS22	25.0	.04	226	74	43	50	503	17	1167	24.2
HS23	24.8	.04	224	66	40	36	409	15	Х	Х
HS24	26.9	.02	322	58	37	37	401	12	Х	Х
HS25	14.8	.14	391	50	22		124	13	Х	Х
HS27	10.0	.08	433	241	26		199	7	615	14.4
HS28	16.7	.06	401	165	23		218	14	Х	Х
HS29	8.7	.08	444	229	22		161	10	Х	Х
HS30	16.2	.18	223	127	33		178	14	1116	18.5
HS31	20.4	.08	279	132	26		187	12	Х	Х
HS32	13.7	.12	98	102	22		164	30	1026	16.0
HS34	12.6	.19	450	129	19		110	18	775	10.9
HS35	5.9	.15	447	201	19		156	15	640	15.3
HS38	3.0	.08	437	202	20	5	169	7	495	12.9
HS39	14.4	.12	383	113	21		140	15	902	17.7
HS40	20.0	.11	372	143	28		130	17	Х	Х
HS41	1.0	.06	383	280	22		134	9	449	11.9
HS43	3.8	.23	433	80	14		164	10	674	14.9
HS44	4.53	.16	430	142	23		141	7	Х	Х
HS45	1.34	.14	442	207	19		133	14	484	11.2

Table A2Trace Elements and Calculated MAP/MAT

Note. Mean annual precipitation (MAP) and mean annual temperature (MAT) estimates are listed above for Bw/Bt horizons; other data correspond to other paleosol horizons. LOI = loss on ignition. All trace elements are in parts per million.

	Depth			
Sample ID	(cm)	Horizon	$ au_{ m Si}$	$ au_{ m Al}$
HS01	-10	A/Bw^{a}	254	297
HS02	-22	Bw	.6007	115
HS03	-57	С	242	094
HS04	-70	R	0	0
HS14	10	Overlying basalt		
HS14	-16	A/Bw^{a}	698	.2538
HS15	-22	Bw	792	564
HS16	-31	Bw	737	.0804
HS18	-55	С	146	028
HS19	-152	R	0	0
HS21	0	А	49	103
HS22	-10	Bw	525	.0201
HS23	-29	BC	577	046
HS24	-53	Cox	48	.2081
HS25	-69	R	0	0

 Table A3

 Horizonation of Profiles Sampled in Depth and

 Described in the Discussion

^a Sampled at contact between A and Bw horizons.

Table A4Published and UnpublishedHSDP Core Ages

	0	
Core depth (m)	Age (kyr)	Uncertainty (kyr)
268.2	132ª	32
279.3	234	32
299.2	199 ^a	9
327.0	232 ^a	4
332.7	241 ^a	5
415.7	326 ^a	23
935.5	400 ^a	26
984.5	370	133
995.1	391ª	40
1037.7	380	80
2243.2	520	82
2615.0	578	110
2789.9	612	140

^a Age determinations are from Sharp et al. (1996); other ages are unpublished ages from the H-2 core.