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Preface 

While it is clear that future connected and automated vehicles (CAVs) will revolutionize personal 

mobility, the sustainability and environmental impacts are highly uncertain. The research objective of this 

thesis is to evaluate the primary energy and life cycle greenhouse gas (GHG) emissions performance of 

CAVs for a variety of deployment scenarios. The analysis was conducted in two phases: Phase 1 included 

the subsystem and vehicle levels, while Phase 2 included the system level. The figure below illustrates the 

relationship between the phases, levels, and autonomous vehicle effects. The scope of Phase 1 focused on 

a single CAV compared to a human-driven vehicle across six scenarios that varied the powertrain and 

CAV subsystem. Phase 2 zoomed out to examine an autonomous taxi (AT) fleet across nine scenarios 

over the long term. Each research phase used life cycle assessment methodology to ensure the inclusion 

and comprehensive accounting of materials, manufacturing, use, and end of life burdens. The vehicle-

level results indicate the addition of CAV subsystems to platform vehicles could increase GHG emissions 

3-20%; however, when operational efficiencies from CAV direct effects are included, the net result is up 

to a 9% reduction. The system-level results indicate the strategic deployment of an electrified AT fleet 

can reduce cumulative GHG emissions from 2020 to 2050 by 60%. Further reductions up to 87% can be 

achieved with accelerated electrical grid decarbonization, dynamic ride-share, longer vehicle lifetime, 

more energy efficient computers, and higher new vehicle fuel consumption rate reductions. Overall, this 

research highlights the major opportunities for maximizing the environmental performance of this 

emerging technology. 

 



5 
 

The work presented in Phase 1 of this thesis was published in the journal Environmental Science and 

Technology: Gawron, J. H., Keoleian, G. A., De Kleine, R. D., Wallington, T. J., & Kim, H. C. (2018). 

Life cycle assessment of connected and automated vehicles: Sensing and computing subsystem and 

vehicle level effects. Environmental science & technology, 52(5), 3249-3256. 

https://pubs.acs.org/doi/full/10.1021/acs.est.7b04576#citing 

The work presented in Phase 2 of this thesis was submitted for publication in the journal Transportation 

Research Part D: Transport and the Environment. The publication decision is still pending at this time.  

https://pubs.acs.org/doi/full/10.1021/acs.est.7b04576#citing


6 
 

Table of Contents 
List of Tables .....................................................................................................................................8 

List of Figures ....................................................................................................................................8 

1. Phase 1: Subsystem and Vehicle Levels............................................................................................9 

1.1 Abstract ....................................................................................................................................9 

1.2 Introduction ..............................................................................................................................9 

1.3 Methods.................................................................................................................................. 11 

1.4 Product System ....................................................................................................................... 12 

1.5 Results.................................................................................................................................... 18 

1.6 Discussion .............................................................................................................................. 24 

2. Phase 2: Mobility System Level ..................................................................................................... 25 

2.1 Abstract .................................................................................................................................. 25 

2.2 Introduction ............................................................................................................................ 26 

2.3 Methods.................................................................................................................................. 29 

2.3.1 Goal and Scope ................................................................................................................. 31 

2.3.2 Fleet Characteristics .......................................................................................................... 32 

2.3.3 Vehicles ........................................................................................................................... 33 

2.3.4 Parking............................................................................................................................. 36 

2.3.5 Charging Infrastructure...................................................................................................... 36 

2.3.6 Fleet Turnover .................................................................................................................. 36 

2.4 Results.................................................................................................................................... 38 

2.4.1 Base Case Results  ............................................................................................................. 38 



7 
 

2.4.2 Dynamic Ride-sharing ....................................................................................................... 42 

2.4.3 Sensitivity Analysis ........................................................................................................... 43 

2.5 Conclusion.............................................................................................................................. 44 

References ....................................................................................................................................... 47 

Appendix A – Phase 1 Supporting Information ................................................................................... 54 

Appendix B – Phase 2 Supporting Information ................................................................................... 55 

 

  



8 
 

List of Tables 

Table 1: CAV Sensing and Computing Subsystem Architectures………………………………………13 

Table 2: CAV Component Weight and Power Characteristics………………………………………… 14 

Table 3: Individual CAV Direct Effects…………………………………………………………………18 

Table 4: Key characteristics for each of the nine AT fleet scenarios……………………………………32 

Table 5: Vehicle life-cycle energy and GHG emissions per km………………………………………...35 

Table 6: New vehicle fuel consumption for 2010 to 2050………………………………………………37 

List of Figures 

Figure 1: Three CAV impact levels and the boundary of this study…………………………………….11 

Figure 2: Medium CAV subsystem weight and power breakdown……………………………………. 19 

Figure 3: Medium CAV subsystem GHG emission breakdown by component………………………... 19 

Figure 4: Vehicle-level GHG results for the baseline scenario………………………………………… 20 

Figure 5: Vehicle-level GHG results for each CAV scenario…………………………………………...22 

Figure 6: Tri-level structure for CAV direct and indirect effects………………………………………. 29 

Figure 7: Framework for evaluating the environmental impacts of AT fleets…………………………. 30 

Figure 8: Acronym key for the nine scenarios analyzed……………………………………………….. 31 

Figure 9: Monthly GHG emissions from 2020 to 2050…………………………………………………39 

Figure 10: Cumulative fleet GHG emissions over the period 2020-2050……………………………… 40 

Figure 11: Expansion of Group A……………………………………………………………………… 41 

Figure 12: Expansion of Group B……………………………………………………………………….42 

  



9 
 

1. Phase 1: Subsystem and Vehicle Levels 

Phase 1 of this thesis focused on the life cycle energy and greenhouse gas emissions of connected and 

automated vehicles at the sensing and computing subsystem and vehicle levels. This study was published 

in Environmental Science and Technology under the title “Life Cycle Assessment of Connected and 

Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects” at DOI 

10.1021/acs.est.7b04576. 

1.1 Abstract 

Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential 

energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known 

about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle 

assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal 

combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that 

CAV subsystems could increase vehicle primary energy use and GHG emissions by 3−20% due to 

increases in power consumption, weight, drag, and data transmission. However, when potential 

operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the 

net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study 

highlights opportunities where CAVs can improve net energy and environmental performance. 

1.2 Introduction 

The connected and automated vehicle (CAV) is an emerging, transformative technology that could 

fundamentally change the current transportation system due to enhanced travel convenience, coordination 

with other communication and infrastructure systems, and the development of new mobility business 

models (Fagnant and Kockelman, 2015). This new mobility future has the potential to either decrease or 

increase energy consumption and emissions depending on implementation (The Transforming Mobility 

Ecosystem, 2017). The major factors that will determine CAV energy outcomes include the following: 
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ecodriving, platooning, lightweighting, and rightsizing, reduced driving to locate parking, ride sharing, 

congestion mitigation, higher travel demand due to reduced travel cost, increased travel by underserved 

populations, and faster highway speeds (Brown et al., 2015). When these factors are combined in a travel 

demand and efficiency framework with a 100% CAV adoption scenario, the resulting impact ranges from 

a 60% reduction in energy consumption up to a 200% increase (Estimated Bounds and Important Factors, 

2016). Integrating these results with EIA reference case projections for the transportation sector produces 

light duty vehicle energy consumption estimates between 7,000 and 18,000 trillion Btu in 2050 compared 

to 16,000 trillion Btu in 2016 (Study of the Potential Energy Consumption, 2017).  

The existing literature on CAV energy implications referenced above focuses primarily on the operational 

impact (Estimated Bounds and Important Factors, 2016). However, little is known about the full life cycle 

implications of CAV deployment. Previous studies have omitted the potential vehicle production life 

cycle impacts with the rationale that they are smaller in magnitude when compared to the travel related 

energy consumption, but no work has been done to date to examine this assumption (Wadud et al., 2016).  

To fill the gap, this study provides a life cycle assessment (LCA) of CAV sensing and computing 

subsystems integrated into both internal combustion engine vehicle (ICEV) and battery electric vehicle 

(BEV) platforms. The LCA quantifies the burdens from the production and use of Level 4 CAV 

subsystems applied to the vehicle platforms. Level 4 CAVs, as defined by SAE International, conduct the 

driving task and monitor the driving environment within defined use cases where the human need not take 

back control (Taxonomy and Definitions, 2016). The potential effect of CAV technology on vehicle 

operation is modeled based on direct operational effects from the literature to investigate the overall 

vehicle-level impacts of CAVs. Only direct effects enabled by or directly related to the CAV technology 

adoption were included. These direct effects were considered to be eco-driving, platooning, intersection 

connectivity, and faster highway speeds. Broader mobility system shifts that could be indirectly 

accelerated by CAV technology but are potentially achievable through other means besides CAV 

deployment (such as congestion mitigation and ride sharing) as well as exogenous influences (such as 
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new policies and regulations) are not included given the technology-focused approach of this study. An 

illustration of the three impact levels and the study boundary is provided in Figure 1. Overall, the 

methodology integrates primary and secondary CAV data and potential direct effects to estimate life cycle 

energy and greenhouse gas (GHG) emission impacts at the subsystem and vehicle levels. The emerging 

nature of CAV technology poses unique challenges for the analysis (Miller and Keoleian, 2015). The 

precision is inherently limited by the available data regarding CAV subsystem architectures, sensor 

production, and real-world operational efficiencies from direct effects. To address the uncertainties, 

sensitivity analyses were conducted to evaluate the impacts of potential input parameter variations. 

Lastly, a set of key design insights was identified to help inform best practices during the early CAV 

design phases where there is the greatest freedom for improvement. 

 

Figure 1. Three CAV impact levels and the boundary of this study 

1.3 Methods 

This study utilizes LCA methodology to consider life cycle energy use and GHG emissions from cradle to 

grave (ISO 2006). The analysis is limited to these two metrics due to the lack of available data for other 
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impacts, such as air pollutant emissions or water consumption, from the production of CAV subsystem 

components. The life cycle phases included are materials production, manufacturing and assembly, use, 

and end of life management. 

Goal. The goal of this work is to estimate the impacts of CAV sensing and computing subsystems on the 

vehicle life cycle energy and GHG emissions. The net impact of CAVs is evaluated at the vehicle level 

after taking into account both direct operational effects and burdens from added component production, 

use, and shredding at end-of-life management. 

Scope. The study provides a comparative analysis between non-CAVs and Level 4 CAVs in the US in 

multiple scenarios in the near-to-medium term. The scenarios consider BEV and ICEV powertrains as the 

two bookends of vehicle electrification. The platform vehicles are then paired with CAV subsystems of 

three different sizes (small, medium, and large) to create the following six scenarios: BEV + Small, BEV 

+ Medium (baseline), BEV + Large, ICEV + Small, ICEV + Medium, and ICEV + Large. The BEV + 

Medium scenario is selected as the baseline since electric powertrains, and small light detection and 

ranging sensors (LiDARs) are used in the majority of today’s prototype Level 4 CAVs. 

1.4 Product System 

The BEV platform is modeled as the 2015 Ford Focus Electric and the ICEV platform is modeled as the 

2015 Ford Focus 4-Cylinder Automatic. Holding the manufacturer and vehicle model constant illustrates 

the impact of powertrain variation. Characteristics of the two platform vehicles are provided in 

Supporting Information (SI) Table S1. The small, medium, and large CAV subsystems are based on the 

configurations in use on the Tesla Model S, Ford Fusion (AV test vehicles), and Waymo’s Chrysler 

Pacifica, respectively (A Look at Tesla’s, Building Ford’s Next-Generation, and Introducing Waymo’s). 

The Level 4 CAV subsystem architectures are summarized in Table 1 and include sensors, computer, wire 

harness, and supporting structures. Images of each CAV subsystem are provided in SI Figure S1. Specific 

sensor models representing each sensor type were chosen from industry leading suppliers with mature 
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product offerings; these do not necessarily represent the specific hardware in use on any specific vehicle. 

Similarly, as details of the computer platforms for automated driving processing and control are typically 

proprietary for CAV development vehicles, the Nvidia Drive PX2 system was considered for all vehicles 

given its published product specs. It was assumed that no 

additional control hardware is needed beyond the existing drive-by-wire systems of the platform vehicles. 

Functional Unit. The functional unit for this study is a passenger car with a service life of 160,000 miles 

traveled over 12 years (GREET Model, 2015). 

Table 1. CAV Sensing and Computing Subsystem Architectures 

 

System Boundary. The life cycle phases included are materials production, manufacturing and assembly, 

use, and end of life management. CAV indirect and exogenous effects at the mobility system level are 

excluded. Only operational efficiencies due to direct effects at the vehicle level are included as described 

in the introduction.  

Environmental Impact Indicators . Two indicators are provided in this analysis based on their 

importance in automotive sustainability assessments (Jasinski et al., 2016). The first is life cycle energy in 

units of megajoules [MJ]. The second is life cycle GHG emissions in units of kilograms of carbon dioxide 

equivalent [kg CO2-eq] on a 100-year GWP basis. 
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Life Cycle Inventory. An attributional approach was used to produce the life cycle inventory for the six 

CAV scenarios. Individual component characteristics and inventories are provided in Table 2 with images 

provided in SI Figure S2. The methods used to estimate each life cycle phase are given below. 

Table 2. CAV Component Weight and Power Characteristics  

 

Materials. The material breakdowns for each CAV sensing and computing component were sourced from 

primary data to the extent possible. Publicly available sensor specification sheets were supplemented by 

supplier interviews when needed (Autonomous Vehicle Uses, NvidiaAI, LRR3, AWG Copper, 

CohdaWireless, Hacking Automotive, DSRC, Antennas Pinwheel, Enclosures PwrPak7-E1, Dragonfly2, 

SavariSW-1000, Ultrasonic Sensor, Puck Hi-Res, and HDL-64E). When primary data were not available, 

materials weights were 

estimated based on geometry and material properties. The resulting material breakdowns can be found in 

SI Table S2. Material energy and GHG emission burdens were taken from the GREET model.13 Material 

burdens for electronic components such as printed wire boards (PWB), integrated circuits (IC), and power 

supplies were derived from LCAs of desktop computers, laptops, and tablets (Teehan and Kandlikar, 

2013). Further details on this method are provided in the Manufacturing section.  

Manufacturing. The manufacturing burden for each CAV sensing and computing component was 

primarily taken from the GREET model. Fabrication processes for steel and aluminum parts include 

rolling and stamping. Copper parts involve wire drawing. Finally, plastics and polymer composites have 

injection and blow molding taken into account. Material loss factors of 1.38 and 1.34 (kg of input 

material/kg of finished part) are applied to manufacturing steps involving aluminum and steel parts, 
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respectively. For electronics, the estimation of materials and manufacturing burdens was combined 

according to the electronics LCAs indicated in the Materials section. Data from Teehan and Kandlikar 

(2013) were used to create component weight allocations specific to small (<0.5 kg), medium (0.5−1 kg), 

and large (>1 kg) electronics boards. The weight allocation across PWB, power supply, IC package, and 

IC die components for the small board is 77.8/20.0/2.0/0.2%, for the medium board is 41.3/55.3/3.3/0.1%, 

and for the large board is 40.6/57.7/1.6/0.1%. The average energy intensities for the PWB, power supply, 

IC package, and IC die components are 1.1, 0.51, 11, and 350 MJ/gram, respectively. The average GHG 

emission intensities are 0.060, 0.030, 0.53, and 24 kg CO2-eq/gram, respectively. Packaging used for 

shipment of the sensor from the supplier manufacturing site to Dearborn, MI for assembly was estimated 

based on geometry and included both cardboard and plywood materials. Delivery impacts were estimated 

based on shipment weight and assuming transport in a Class 8 truck with a fuel intensity of 0.846 gal/100 

ton-mile, which was derived from data published by Argonne National Laboratory (Evaluation of Fuel 

Consumption Potential, 2009). 

Use. Four factors need to be considered to assess the usephase contribution of CAV sensing and 

computing subsystems. First, the CAV components increase the energy consumption of the platform 

vehicle due to their added electricity demand. On a BEV platform, the components draw electricity from 

the on-board battery, which is subsequently recharged from the local electrical grid. For this study, the 

2015 U.S. Average Mix from the GREET model is assumed (34% coal, 32% natural gas, 20% nuclear, 

6% hydro, 5% wind, and 3% other renewable) along with a primary energy to delivered electricity (well 

to tank) efficiency of 46% (GREET Model, 2015). The corresponding carbon intensity of the delivered 

electricity is 0.15 kg CO2-eq/MJ. A 90% battery discharge/charge efficiency is assumed (Cooney et al., 

2013). On an ICEV platform, electrical components are powered using gasoline combustion and an 

alternator. The associated conversion efficiencies are fuel to mechanical energy (30%), belt transmission 

(98%), and mechanical to electrical energy using the alternator (67%) (Where the Energy Goes and 

Commission Implementing Decision). Combining these efficiencies produces an overall conversion 
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efficiency for gasoline combustion energy to electricity of 20%. It is assumed that no additional power 

distribution systems or batteries are required due to the modest power consumption increases included in 

this study. The delivered energy (tank to wheel) to gasoline total fuel cycle energy (well to wheel) ratio 

taken from GREET is 78%. The corresponding well to wheel carbon intensity of the delivered fuel energy 

is 0.093 kg CO2-eq/MJ.13 The total system on time over the lifetime of the CAV is based on the average 

time spent driving per person per year of 17,600 min (Cars are Parked 95% and American Driving Survey 

2016).  

Second, the components increase the weight of the vehicle and increase its fuel consumption. Fuel 

consumption increase values of 0.073 and 0.27 L equivalent per 100 km per 100 kg were used for the 

BEV and ICEV based on a physics-based model and the EPA 5-cycle fuel economy test data (Kim and 

Wallington, 2016). 

Third, exterior mounted components increase the aerodynamic drag. Fuel consumption impacts of roof 

racks were used as a proxy to establish a conservative estimate of drag impacts associated with exterior 

mounted components. Based on their dimensions and placements on the vehicle, we used the 

aerodynamic drag from small and large roof racks to characterize the increased drag from medium and 

large CAV subsystems. The small CAV subsystem has no roof rack effect since all the sensors are 

integrated into the vehicle body, so no additional drag is assumed. It is estimated that small roof racks 

mounted on light duty vehicles increase fuel consumption by 0.5% assuming a 55/45 city/highway split 

(Chen, 2016). The fuel consumption impacts increase to 15.6% for a large roof rack classification. 

Fourth, the burdens associated with map data transmission over wireless networks need to be considered. 

The required map resolution is assumed to be equivalent to typical digital navigation maps. The required 

data transmission is estimated to be 1.4 MB/mile based on data usage from map applications. The degree 

to which future vehicles would be able to store or reuse map data is unclear. Therefore, we adopt a 

conservative approach of assuming no storage and no reuse to give a total requirement of 220 GB over the 

vehicle lifetime. The primary energy intensity of data transmission over the 4G LTE network is 1.25 
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MJ/GB, which includes the power consumption of the base station, telecommunications networks, and 

data centers (The Power of Wireless Cloud, 2013). The 2015 U.S. Average Grid Mix from the GREET 

model was used to compute GHG emissions associated with transmission of the map data.  

End-of-Life . The end-of-life vehicle is assumed to be shredded with its CAV components. The end-of-

life management of BEV batteries is the topic of current research but is beyond the scope of, and was not 

included in, the present work. The energy and GHG intensities of the treatment are 1.08 MJ/kg and 0.076 

kg CO2-eq/kg, respectively (GREET Model, 2015). 

CAV Direct Operational Effects . The operational efficiencies from CAV direct effects are included in 

this study to represent the vehicle-level impacts of the technology. The direct effects that relate to energy 

intensity at the vehicle level are sourced from a 2016 NREL study and are shown in Table 3 (Estimated 

Bounds and Important Factors, 2016). The NREL study applied the potential CAV operational 

efficiencies reported in the literature to the corresponding driving situation and combined the effects 

assuming that each are independent and therefore have a multiplicative impact with all others. The effects 

applicable to the scope of this study were combined using a Monte Carlo simulation with triangular 

random distributions around the median values. The average combined effect is a reduction in fuel 

consumption of 14% with a range of 5−22%. 

The realization of these CAV direct effects in the short to medium term is dependent on the achievement 

of CAV and supporting infrastructure development timelines and on the effective penetration of CAVs 

into the fleet. The range of CAV subsystems combined with the potential direct effects provides a wide 

set of scenarios for this time frame. Also note that faster highway speeds for CAVs is a direct effect 

because it applies to the individual vehicle and impacts its operational efficiency. However, this would 

need to be enabled by increasing speed limits. This study assumes the speed limit changes would happen 

as CAV technology allows for significantly safer travel, thus faster highway speeds are included. If the 

effect was excluded, the average fuel consumption reduction would increase from 14% to 18%. 
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Energy and use intensity effects at the mobility system level (e.g., congestion, ridesharing, mode shift, 

increased travel by underserved populations, etc.) were not included since they are considered indirect 

effects and therefore out of scope. Potential vehicle lightweighting due to reduced crash protection 

requirements as a result of enhanced safety and powertrain resizing were also not included since the study 

scenarios involve addition of a CAV subsystem to an existing platform. 

The operational efficiencies from ICEV CAV direct effects are assumed to be applicable to BEV 

platforms due to the approximately equivalent proportional fuel consumption reduction between the 

powertrain types. This relationship was reported by Michel et al. through the modeling of ecodriving with 

varying CAV powertrain types in the Autonomie software environment (Michel et al., 2016). 

 

Table 3. Individual CAV Direct Effects  

1.5 Results 

The results of the LCA are provided below in terms of GHG emissions. Life cycle energy data are 

contained in the SI. In general, energy and emissions trends are consistent.  

Baseline Scenario. The results of the BEV + Medium subsystem baseline scenario are first reported at 

the subsystem level and then combined with the platform to create vehicle level results. The full set of 

detailed subsystem-level and vehicle-level results for all six scenarios is provided in SI Figures S3−S14. 

Subsystem Level. The total added weight and power associated with the medium CAV subsystem in the 

baseline scenario are 22.4 kg and 240 W, respectively. Breakdowns by component are provided in Figure 

2. The computer has the largest share, contributing 45% of the weight and 80% of the power 

consumption. The supporting structure of the CAV subsystem is also a major weight contributor at 26%. 
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The life cycle GHG emissions associated with the medium CAV subsystem integrated on a BEV platform 

are estimated to be 1,300 kg CO2-eq Breakdowns by component are provided in Figure 3. The computer 

is once again the largest contributor, with the fuel consumption increase from the added sensor weight 

and drag having a notable effect. 

 

Figure 2. Medium CAV subsystem weight and power breakdown by component 

 

Figure 3. Medium CAV subsystem GHG emission (1,300 kg CO2-eq) breakdown by component 

Vehicle Level. The subsystem-level results are combined with an LCA of the platform vehicle to produce 

vehicle-level results in Figure 4. The 2015 Ford Focus Electric is the BEV platform and has a production 

burden of 10,100 kg CO2-eq (Kim and Wallington, 2016). The fuel consumption of the vehicle is 31.5 

kWh/100 miles, resulting in a use phase burden of 27,700 kg CO2-eq over the 160,000-mile lifetime 
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(U.S. Department of Energy, 2015). The end-of-life burden is a minimal contributor at 300 kg CO2-eq. 

The total life cycle GHG emissions of the BEV platform are therefore 38,100 kg CO2-eq. Combining the 

BEV platform results with the medium CAV subsystem results from the previous section gives life cycle 

GHG emissions of 39,400 kg CO2-eq. However, an additional step is needed to take into account the 

CAV direct operational effects. Assuming the 14% reduction in fuel consumption from Table 3, the use 

phase burden is reduced by 3,700 kg CO2-eq. This produces a final estimate of 35,700 kg CO2-eq for the 

CAV in the baseline scenario, which represents a 6% reduction compared to the BEV platform. 

 

Figure 4. Vehicle-level GHG results for the baseline scenario of BEV + Medium Subsystem. 

Scenario Comparison. A comparison across all six scenarios is provided below to illustrate the effects of 

powertrain and CAV subsystem size.  

Subsystem Level. Three CAV subsystem sizes were analyzed in this study: small, medium, and large. 

The total weights of these subsystems are 16.7, 22.4, and 55.4 kg, respectively. The total power 

consumptions are 222, 240, and 327 W. Removal of the small LiDARs and supporting structure mainly 

contributes to the decrease between the medium and small subsystems. The addition of the large LiDAR 

and a more extensive external supporting structure are the main drivers of the significant increase 

between the medium and large subsystems. Turning to GHG emission comparisons, holding the CAV 

subsystem constant, and varying the powertrain illustrate the impacts of the platform. As previously 
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stated, the BEV + Medium Subsystem scenario has life cycle GHG emissions of 1,300 kg CO2-eq, while 

the ICEV + Medium Subsystem is 2× greater at 2,600 kg CO2-eq. This difference is due to the 

inefficiency of an ICEV at producing electricity from fuel combustion by the engine and an alternator, as 

well as the fuel consumption increase from added mass. Therefore, it is shown here that a BEV is a better 

platform for CAV components compared to an ICEV in terms of minimizing environmental impacts. 

Next, holding the BEV platform constant while varying the CAV subsystem size illustrates the impacts of 

the architecture. The life cycle GHG emissions of the small, medium, and large subsystems are 1,000, 

1,300, and 6,300 kg CO2-eq, respectively. Reduced drag due to the removal of exterior mounted 

components is the main contributor to the decrease between the medium and small subsystems. The added 

weight and drag of the exterior mounted sensors and supporting structure are the main drivers of the 

increases between the medium and large subsystems. Detailed comparisons are provided in SI Figures 

S15−S18. 

Vehicle Level. Looking across the six scenarios, vehicle life cycle GHG emissions increase by 2.8−4.0% 

after the addition of a small or medium CAV subsystem to a platform vehicle. This modest increase rises 

to a significant impact of approximately 20% with a large subsystem. Complete details of the impact in 

each scenario can be found in SI Figures S19 and S20. However, the additional burdens are offset by the 

operational efficiencies from CAV direct effects. The 2.8−4.0% increase in GHGs from the small and 

medium CAV subsystems turns into a net reduction of 6−9% after the average direct effects are applied. 

On the other hand, the 20% increase in GHGs from the large subsystem turns into a modest net increase 

of 5%. The typical impact of CAV subsystems, however, is a net reduction of life cycle GHG emissions 

with a worst case of minor increases, assuming the anticipated operational efficiencies are realized. Figure 

5 illustrates the vehicle-level GHG results across the six scenarios. Vehicle-level primary energy results 

can be found in SI Figure S21. The results include the average direct effects and compare the CAV 

outcomes to the non-CAV platform vehicle. 
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Figure 5. Vehicle-level GHG results for each CAV scenario with average direct effects included. 

Comparison is given to the non-CAV platform vehicle LCA results to illustrate the net impact of the CAV 

subsystem addition. 

 

Sensitivity Analysis. A sensitivity analysis was conducted on the baseline scenario to understand the 

impacts of variations in key parameters. Three special cases were also investigated to illustrate how the 

net impact of CAVs can become negative with high resource use. Finally, a sensitivity analysis on direct 

effects is provided to determine the operational efficiency threshold needed to offset CAV subsystem 

burdens. 

Key Parameters. The following six key parameters were varied by ±20% for the purposes of the 

sensitivity analysis: electrical grid carbon intensity, average vehicle speed, CPU power consumption, 

drag, structure mass, and map data usage. All parameter variations resulted in <0.5% impact on vehicle 

life cycle GHG emissions with the exception of electrical grid carbon intensity. Just a 2% increase in grid 

carbon intensity increased CAV GHG impacts by 1.6%. This illustrates the importance of charging BEVs 

from low carbon sources to achieve their maximum environmental benefit. Additional sensitivity analysis 

data can be found in SI Figure S22. 

Special Cases. Three special cases are included in the sensitivity analysis to illustrate the potential 

unintended consequences of CAV designs. The first special case focuses on power consumption of the 

computing platform. The computing platform used in this study consists of redundant Nvidia Drive PX2 

modules that together consume approximately 200 W. Other recent studies report CAV computing 
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platform power consumption on the order of 2,000 W for experimental research and development 

vehicles (Liu et al., 2017). These prototype power consumption estimates are expected to be reduced by 

approximately an order of magnitude due to advancements in computer processor unit (CPU) and 

graphics processing unit (GPU) design (The Power Demands of Self-Driving). However, if 2,000 W is 

used for the baseline scenario instead of 200 W for illustrative purposes, life cycle GHG emissions 

increase from 35,700 to 39,600 kg CO2-eq, completely eliminating the net emissions reductions. The 

second special case focuses on aerodynamic drag from the exterior CAV components. The design of the 

medium CAV subsystem is analogous to a small roof rack, which has been shown to increase fuel 

consumption by 0.5% (Chen, 2016). If the medium subsystem instead resembled a large roof rack, life 

cycle GHG emissions would increase to 39,200 kg CO2-eq, eliminating the net emissions reductions. The 

third and final special case focuses on the data transmission over 4G LTE networks to support onboard 

maps. This study assumed typical navigation maps would be sufficient for the operation of future Level 4 

CAVs. However, other recent studies highlight the potential need for high definition (HD) maps for 

precise localization (Seif and Hu, 2016). These HD maps could require on the order of 600 MB/mile of 

data to be transmitted to the CAV over wireless communication networks. That amounts to approximately 

100,000 GB over the lifetime of the vehicle. If this large amount of data were transmitted over a 4G LTE 

network, the CAV life cycle GHG emissions would increase to 54,800 kg CO2-eq, resulting in a large net 

increase in emissions. New 5G networks may be operational by the time Level 4 CAVs are deployed, but 

it is not clear if 5G will be less energy and carbon intensive compared to 4G. A plot of the special case 

data contained in this section is available in SI Figure S23. Direct Effects. Throughout this study, the 

direct effect of CAVs is assumed to be a 14% reduction in fuel consumption due to a net increase in 

operational efficiency. However, the full range produced by the Monte Carlo simulation is 5−22%. 

Applying this range to the model results in a ±7% variation from the baseline scenario GHG emission 

results. The threshold for when net emissions reductions are eliminated occurs when the direct effects are 

reduced from 14% to 5%. This high sensitivity highlights the need for CAV efficiencies such as eco-
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driving and platooning to be prioritized in order to achieve environmental benefits from the technology. 

An illustration of the variation in direct effects can be found in SI Figure S24. 

1.6 Discussion 

We present the first detailed assessment of the contribution of CAV sensing and computing subsystems to 

vehicle life cycle energy use and GHG emissions. Five key insights can be drawn from the results of this 

study.  

First, due to the higher GHG burden associated with generating electricity onboard an ICEV compared to 

the U.S. grid mix and the greater sensitivity of fuel consumption to increased mass for an ICEV, the CAV 

subsystem burden is approximately a factor of 2 less for BEVs than for ICEVs. Looking at the vehicle-

level results, CAVs with electrical powertrains have 40% lower life cycle GHG emissions compared to a 

conventional powertrain. 

Second, wireless data transmission for live maps is a significant contributor to life cycle burdens. 

Limiting transmission to existing standard maps results in 35% lower GHG emissions compared to HD 

maps assuming transmission over a 4G LTE network. 

Third, the results are highly sensitive to assumptions for the direct benefits realized in CAV operation. 

Achieving a 14% reduction in fuel consumption due to the operational efficiencies of CAVs produces 

significant environmental benefits in the baseline scenario. However, these benefits erode if only a 5% 

reduction is achieved. This highlights the importance of eco-driving algorithms in CAV design since 

drive cycle smoothing can reduce life cycle GHG emissions by 7−16% compared to typical human-

controlled drive cycles. 

Fourth, the added weight and power demand from the computing platform produces significant impacts. 

At 10 kg and 200 W, the computer contributes nearly half of the total CAV subsystem burden in the 

baseline scenario. If the power demand were instead 2,000 W, as reported for some prototype or 

developmental CAVs, then the contribution would rise and environmental benefits would be eliminated. 
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Fifth, large exterior-mounted CAV components have the potential to significantly increase aerodynamic 

drag. The fuel consumption increase due to drag was found to contribute up to 70% of the large CAV 

subsystem burden, which offsets the environmental benefits. CAV technology is at an early stage of 

development; sensing and computing components will continue to be miniaturized and packaged more 

compactly, but in the near-term the size and shape of exterior-mounted equipment will have tangible 

impacts. 

CAVs are a disruptive technology that will likely transform personal mobility and the built urban 

landscape in the coming decades. Impacts on life cycle energy consumption and GHG emissions from the 

indirect effects of CAV adoption are likely to be significant. Some effects such as shared mobility and 

optimized routing will decrease energy use and emissions, while other effects such as increased mobility 

demand will increase energy use and emissions. The current analysis of CAV subsystem- and vehicle-

level impacts provides an important foundation for future work to explore the broader indirect effects at 

the mobility system level and to develop a more comprehensive sustainability assessment of CAV impact 

on the transportation system. 

2. Phase 2: Mobility System Level 

Phase 2 of this thesis focused on the life cycle energy and greenhouse gas emissions of connected and 

automated vehicles at the mobility system level. This study was submitted for publication to 

Transportation Research Part D under the title “Deep Decarbonization from Electrified Autonomous Taxi 

Fleets: Life Cycle Assessment and Case Study in Austin, TX.” 

2.1 Abstract 

Although recent studies of autonomous taxis (ATs) have begun to explore potential environmental 

implications of fleet deployment, little is known about their impacts over the long term. We present a 

holistic life-cycle assessment framework that incorporates both direct and indirect effects of ATs at the 

subsystem, vehicle, and mobility-system levels. Eco-driving and intersection connectivity are the direct 
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effects analyzed along with indirect effects that include empty kilometers, parking, charging 

infrastructure, powertrain rightsizing, electric vehicle adoption, ride-sharing, and fleet-turnover rates.  A 

case study of an AT fleet in Austin, Texas from 2020 to 2050 with constant travel demand indicates the 

strategic deployment of an electrified AT fleet can reduce cumulative energy and greenhouse gas (GHG) 

emissions by 60% in the base case, with a majority of this benefit resulting from electrified powertrains. 

Further reductions up to 87% can be achieved with accelerated electrical grid decarbonization, dynamic 

ride-share, longer vehicle lifetime, more energy efficient computers, and higher new-vehicle fuel-

consumption rate reductions. We highlight the major opportunities for maximizing the environmental 

performance of AT fleets over the long term. 

2.2 Introduction 

Light-duty vehicles were responsible for 1,083 million metric tons CO2-eq in 2015, making up 60% of 

U.S. transportation emissions and 16% of total U.S. emissions (U.S. EPA, 2017). An emerging 

technology that could reduce these emissions and create a more sustainable transportation system 

(Sweeting and Winfield, 2012) is the connected and automated vehicle (CAV) (Greenblatt and Shaheen, 

2015). Once deployed at scale, CAVs will create ripple effects across the mobility ecosystem that could 

eventually result in wide-reaching societal implications such as changes in energy consumption, safety, 

and social equity (Milakis et al. 2017 and Taiebat et al. 2018). For example, the bounds on nationwide 

energy impacts from CAV deployment have been estimated to be anywhere between a 60% decrease to a 

200% increase (Stephens et al. 2016 and Wadud et al. 2016). CAVs also have natural synergies with 

electric vehicles (EVs) (Greenblatt and Saxena, 2015) and transportation as a service (TaaS) business 

models (Ford, 2012) that could further amplify societal implications. Many of the economic and technical 

barriers to EV adoption (Lieven et al., 2011) can be ameliorated by CAV-enabled mobility services since 

the higher upfront vehicle cost achieves quicker payback from lower operational costs with higher 

utilization. In addition, charging time and driving range issues can be addressed with fleet management 
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(Kley et al., 2011).  Similarly, TaaS business models are more easily implemented due to the profitability 

and fleet repositioning advantages achieved when using CAVs (Kang et al., 2017). 

One potential deployment scenario for CAVs that can combine automated driving technology with EVs 

and TaaS business models is a fleet of autonomous taxis (ATs), also known as shared autonomous 

vehicles (SAVs). ATs are defined as fully autonomous vehicles that are capable of driving passengers to 

their destinations on a demand-responsive basis (Brownell and Kornhauser, 2014). Numerous studies 

have investigated the potential for AT fleets to meet urban travel demand using agent-based modeling and 

traffic-flow simulations. Some examples include Burns et al. (2013), who analyzed the performance of an 

AT fleet in three distinct city environments, and Chen et al. (2016), who examined the operation of a fleet 

of electric ATs and the corresponding charging infrastructure in Austin, TX. The key metrics reported 

across each of the AT studies include the fleet size, wait times for passengers, and vehicle kilometers 

traveled (VKT). Results varied substantially due to the differences in modeling assumptions such as 

location, travel demand profile, relocation strategy, powertrain, refueling, congestion modeling, and 

dynamic ride-sharing (i.e. traveler pooling) capability (Fagnant and Kockelman, 2016). The fleet size was 

reduced in every scenario, with each AT replacing between 3 and 10 human-driven vehicles while 

maintaining average wait times between 3 and 30 minutes (Bischoff and Maciejewski 2016, Boesch et al. 

2016, Burns et al. 2013, Chen et al. 2016, Kornhauser 2013, Loeb et al. 2018, Spieser et al. 2014, Wang 

et al. 2006). Total fleet VKT decreased by up to 24% compared to the human-driven vehicle baseline 

when dynamic ride-sharing was included and increased by 8-71% with no ride-share, resulting in higher 

levels of congestion (Burghout et al. 2015, Fagnant and Kockelman 2014, Fagnant et al. 2015, Farhan and 

Chen 2018, Levin et al. 2016, Martinez and Crist 2015, Rigole 2014).  

The environmental implications of AT fleet deployment could be significant due to the changes in fleet 

size, VKT, utilization, vehicle type, congestion, and dynamic ride-sharing observed in previous research. 

Several studies have attempted to quantify the impacts on energy consumption and greenhouse gas 

(GHG) emissions over the short term using published life cycle assessment (LCA) data for human-driven 
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vehicles. Fagnant and Kockelman (2014) took the human-driven vehicle life-cycle inventory estimates 

provided by Chester and Horvath (2009) and applied them to their AT scenario results. They found a 12% 

reduction in life-cycle energy and 5.6% reduction in GHG emissions. Fagnant et al. (2015) applied a 

similar approach to AT scenarios that made use of more realistic travel-demand profiles and found a 14% 

and 7.6% reduction in energy and emissions, respectively. Rigole (2014) used internal combustion engine 

vehicle (ICEV) life-cycle inventory estimates from Hawkins et al. (2013) and found a large range of GHG 

impacts across the six SAV scenarios that included ride-share. Results ranged from a 72% increase 

compared to the business-as-usual case with human-driven vehicles when no travel-time increase was 

allowed, to a 24% decrease when up to a 50% increase in travel time was allowed. This range narrowed 

substantially to a 69%-84% decrease when EVs were modeled. However, these methods focus on the 

short term and do not take into account the added burden from the CAV sensing and computing 

subsystem (Gawron et al. 2018) or operational efficiencies from CAV direct effects such as eco-driving 

and intersection connectivity (Stephens et al. 2016). Greenblatt and Saxena (2015) investigated the 

environmental impacts of electric ATs over the long term by taking into account future decreases in 

electrical-grid carbon intensity and the potential for vehicle rightsizing within the fleet. The results show 

an 87%-94% decrease in US per-mile GHG emissions by 2030; however, this analysis focused only on 

the use phase and ignores fleet characteristics such as materials and manufacturing burdens, empty 

kilometers, parking, and charging infrastructure. Finally, Chen et al. (2017) estimated the fuel-

consumption impact of CAVs using a data-rich approach that includes fleet turnover and fuel-efficiency 

improvement, but the study does not include life-cycle impacts and omits electrification. 

To address these gaps in the literature, we provide a holistic LCA framework for evaluating the energy 

use and GHG emissions of AT fleets over the long term. The framework builds on the results presented 

by Gawron et al. (2018) and includes both direct and indirect effects at the subsystem, vehicle, and 

mobility-system levels. These effects are tailored to an urban environment, where ATs are predicted to be 

first deployed, and include the CAV sensing and computing subsystem, eco-driving, intersection 
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connectivity, empty kilometers, parking, charging infrastructure, powertrain rightsizing, EV adoption, 

ride-share, and fleet turnover. The tri-level structure and corresponding direct and indirect effects are 

summarized in Figure 6. The framework is then used in a case study to answer the question: what is the 

most environmentally sustainable AT fleet design over the long term? 

 

Figure 6. Tri-level structure for CAV direct and indirect effects  

 

 

2.3 Methods 

We evaluate CAV direct and indirect effects and create a framework that evaluates AT fleet energy use 

and GHG emissions from “cradle to grave”. LCA methodology offers a systematic approach to calculate 

the environmental impacts across the materials production, manufacturing and assembly, use, and end-of-

life management phases (ISO, 2006). The framework is illustrated in Figure 7 and the analysis consists of 

four steps and six main components. First, define the goal and scope to constrain the analysis. This 

includes identifying the functional unit, impact indicators, and system boundary. The functional unit is the 

quantified description of the performance requirements that must be fulfilled, which for the AT fleet 

includes the travel-demand profile, wait time, and the scenario timeframe. The impact indicators include 
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the environmental metrics for evaluation (e.g. energy use and GHG emissions). The system boundary 

defines the specific CAV direct and indirect effects for inclusion across the four main life-cycle phases. 

Second, determine the characteristics of the fleet capable of meeting the functional unit through 

simulation or collection of real-world fleet data. Dynamic ride-share can be included to enhance the 

efficiency of the fleet. The key data include the fleet VKT per day, total number of fleet vehicles, and the 

charging infrastructure if the fleet is electrified. Third, calculate the relevant characteristics of the fleet 

vehicles including the impact indicator per distance (e.g. GHG emissions per kilometer) and estimated 

vehicle lifetime, then determine the impacts of the parking and charging infrastructure. Fourth, simulate 

the fleet over the scenario timeframe taking into account fleet turnover, annual improvements in vehicle 

fuel consumption, and electrical grid decarbonization if using EVs.  

  

Figure 7. Framework for evaluating the environmental impacts of AT fleets. Each component is discussed 

in the subsections below. 

 

The framework was applied to a case study evaluation of the AT fleet scenarios for Austin, TX presented 

in Chen et al. (2016). The following subsections provide details on the application of the framework 

components to the case study. 
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2.3.1 Goal and Scope 

The goal is to estimate the CAV direct and indirect impacts of AT fleets on energy use and GHG 

emissions over the period 2020-2050 in Austin, TX. The scope includes a comparative analysis between 

the current human-driven vehicle baseline in Austin, three modified human-driven vehicle scenarios, and 

the five AT fleet scenarios contained in Chen et al. (2016). The scenarios vary the autonomy, powertrain, 

range, charging type, and vehicle lifetime. The nine scenarios along with an acronym key are provided in 

Figure 8. 

 

Figure 8. Acronym key (top) for the nine scenarios (bottom) analyzed 

The functional unit is to service 10% of the current travel demand in Austin with less than 10-minute 

average wait time over a 2020-2050 time period. The service size and wait-time constraints were selected 

based on the modeling parameters used in Chen et al. (2016). The 30-year scenario timeframe was chosen 

to include multiple fleet turnovers and to provide an analysis window to 2050 to facilitate comparison 

with literature studies. The system boundary for the case study includes the following life-cycle phases: 
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materials production, manufacturing and assembly, use, and end-of-life management. All CAV direct and 

indirect effects listed in Figure 6 are included. Platooning and faster highway travel, which are effects that 

have been considered in other work (Stephens et al. 2016), are excluded from the direct effects since they 

are not applicable to an urban environment where the AT fleet operates. Consistent with Chen et al. 

(2016), travel demand was assumed to be static, and changes in congestion were not considered. The 

selected environmental impact indicators are energy use in units of megajoules [MJ] and GHG emissions 

in units of kilograms of carbon dioxide equivalent [kg CO2-eq] on a 100-year GWP basis. The analysis 

focuses on these metrics due to their importance in assessing automotive sustainability (Jasinski et al., 

2016) and due to the limited availability of data for other impacts, such as other air pollutants or water 

consumption. 

2.3.2 Fleet Characteristics 

The key characteristics of the AT fleet scenarios capable of meeting the functional unit defined in Section 

2.1 are shown in Table 4. These data were derived from the agent-based modeling results provided in 

Chen et al. (2016) and were used directly in the framework to determine the environmental impact 

indicators. Note that 2%-4% of trips were unserved across the scenarios when using a 30-minute wait 

time threshold in the modeling. 

Table 4. Key characteristics for each of the nine AT fleet scenarios derived from Chen et al. (2016). 

 1: Baseline 2: 

HV-IC (257) 

3: 

AT-IC 
(321) 

4: 

HV-
EV_SR-II 
(257) 

5: 

AT-EV_SR-
II (321) 

6: 

AT-
EV_SR-DC 
(321) 

7: 

HV-
EV_LR-II 
(257) 

8: 

AT-
EV_LR-II 
(321) 

9: 

AT-
EV_LR-DC 
(321) 

Fleet Size 217,703 217,703 29,939 217,703 57,279 39,593 217,703 41,179 31,859 

# of Chargers
1 

0 0 0 2,245 30,129 16,510 2,245 16,554 2,389 

Average VKT 
Per Vehicle 

Per Day 

52 52 417 52 211 317 52 306 388 

Average VKT 

Per Vehicle 
Per Year

2
 

19,312 19,312 152,139 19,312 76,951 115,712 19,312 111,608 141,565 

Fleet VKT Per 
Day

3 
11,281,182 11,281,182 12,479,177 11,281,182 12,075,792 12,552,595 11,281,182 12,591,523 12,356,574 

Average 
Vehicle 

Lifetime in 
Years

4
 

13.3 13.3 2.1 13.3 4.2 2.8 13.3 2.9 2.3 
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1: Fueling infrastructure for the ICEV scenarios not included since it is assumed it already exists 

2: Human-driven vehicle (HV) scenarios are assigned 19,312 VKT per vehicle per year since it is 

assumed that some rural travel will occur in addition to the 52 km of urban travel per day. For another 

data point, the average annual VKT for cars, SUVs, and light trucks over their first 14 years of life is 

approximately 19,473 km (U.S. DOT, 2009). 

3: Includes empty kilometers for AT scenarios 

4: Lifetimes based on 257,495 VKT lifetime of CV and 321,869 VKT lifetime of AT  

2.3.3 Vehicles 

Vehicle life-cycle energy and GHG emissions data for the baseline scenario were sourced from the 

GREET Model (ANL, 2016a and 2016b). These data for various 2005 vehicle models were combined 

into a single baseline using a weighted average consistent with the U.S. average fleet of 47.2% passenger 

cars, 42.2% SUVs, and 10.7% pickup trucks (U.S. EPA, 2017). The 2005 vehicle models are consistent 

with the average age for U.S. light-duty passenger vehicles of approximately 13 years (Culver, 2016). AT 

vehicle data were derived from Gawron et al. (2018). These data include the burden from the platform 

vehicle, baseline (medium) CAV sensing and computing subsystem, and the impact of operational 

efficiencies from CAV direct effects. The AT fleets are assumed to be comprised of compact cars (i.e. C-

segment cars) similar to either the 2015 Ford Focus or Focus Electric vehicles adapted for the short-range 

and long-range scenarios. The five-person capacity is sufficient to accommodate common dynamic ride-

share scenarios (Farhan and Chen, 2018). It is possible that AT fleets will include other vehicle types. 

Thus, fleets may offer further rightsizing opportunities, which would result in lower energy and GHG 

emissions. Several vehicle factors were modified from the Gawron et al. (2018) study to customize the 

data for the urban environment of Austin. First, city fuel consumption rates of 9.1 and 2.0 Le/100 km 

were used for the Focus and short range Focus Electric, respectively, instead of the original combined 

rates of 7.5 and 2.2 Le/100 km (U.S. DOE, 2015). Second, the fuel-consumption increase from the 

medium CAV subsystem aerodynamic drag was changed from 0.5% to 0% due to the lower speeds of city 
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driving. Third, the platooning and faster highway travel direct effects were excluded in this analysis since 

these do not apply in the urban environment. Finally, the CAV subsystem computer power consumption 

was changed from 192 W to an exponentially decreasing trend between 2020 and 2050. In the base case, 

the power consumption begins at 2,000 W in 2020 and decreases to 192 W in 2039, after which it remains 

constant through 2050. These beginning and ending values were chosen based on the sensitivity-analysis 

bounds from Gawron et al. (2018). Recent data suggest that peak-computation energy efficiency doubles 

every 2.7 years (Koomey et al., 2017).  We consider that some efficiency gains will be offset by the desire  

to process higher fidelity data as Level 4 software matures, thus we assume a doubling in CAV 

computation efficiency every 5.4 years. In the optimistic scenario, the power consumption begins at the 

same starting value of 2,000 W in 2020, but decreases by half every 2.7 years to a value of 192 W in 

2030. Power consumption data for both the conservative and optimistic scenarios can be found in Tables 

A4 and A5 in the Supplementary Material. 

The battery electric vehicle (BEV) scenarios consist of both 137 km short-range and 322 km long-range 

powertrain options. The short-range BEV includes a 24 kWh battery and a fuel consumption rate of 2.0 

Le/100 km (U.S. DOE, 2015). The long-range BEV includes a 68 kWh battery with a higher fuel 

consumption rate of 2.4 Le/100 km due to the added 555 kg from the larger battery and a fuel increase 

rate of 0.073 Le/(100 km 100 kg) (Kim et al., 2016a). The added 44 kWh of battery capacity also 

increases the production burden by 85,836 MJ and 6,233 kg CO2eq (Kim et al., 2016b). Larger batteries 

may be used in ATs in the future; however, the two battery sizes included in this case study successfully 

illustrate the impacts from the tradeoff between battery size and recharging frequency. The lithium 

nickel−cobalt manganese oxide (NCM) battery assumed in this study has a predicted lifetime of 3,000 

cycles (Majeau-Bettez et al., 2011). If each cycle uses an average of 80% of its total range, then the 

battery lifetime will be 321,869 km for the short-range BEV and 772,485 km for the long-range BEV. 

The lifetime for conventionally driven ICEV and BEV powertrains is assumed to be 257,495 km (160,000 

miles) (U.S. DOT, 2006 and ANL, 2016b). The lifetime for ATs is assumed to be 321,869 km (200,000 
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miles) for the conservative scenario used in the base case due to the higher mileage typically achieved 

with fleet vehicles (NYC, 2013 and Greenblatt & Saxena, 2015). A sensitivity analysis is included where 

the lifetime is increased to miles 643,738 km (400,000 miles) in an optimistic scenario to account for the 

time-based dependency for high-utilization vehicles in addition to mileage. For example, the time-based 

lifetime in Scenario 3 increases from 2.1 years to 4.2 years when the mileage-based lifetime increases 

from 321,869 to 643,738 km, which may be more consistent with daily cycle fatigue capability. The 

643,738-km lifetime results in one battery replacement being required for the short-range BEV powertrain 

based on the battery lifetimes listed above. No battery replacement is required for the long-range BEV 

powertrain due to fewer charge/discharge cycles. Note that BEV powertrains may be more likely to 

achieve the 643,738 km lifetime compared to ICEV powertrains; however, further research using 

empirical data is required to fully characterize this relationship. 

The vehicle energy use and GHG emissions for each of the nine scenarios are provided in Table 5. These 

data assume a 0.1821 kg CO2eq / MJ electrical grid carbon intensity for the U.S. Central and Southern 

Plains region in 2020 from the GREET model, which is chosen as an approximation for Austin (ANL, 

2016a). Impacts due to a reduction in grid carbon intensity through 2050 are discussed in Section 2.6. 

Table 5. Vehicle life-cycle energy and GHG emissions per km in 2020 for each of the nine AT Fleet 

scenarios included in the case study. Vehicle data for Scenario 1 were sourced from ANL (2016a and 

2016b), while data for Scenarios 2 to 9 were derived from Gawron et al. (2018). 

 1: Baseline 2:  
HV-IC 
(257) 

3:  
AT-IC 
(321) 

4:  
HV-
EV_SR-II 

(257) 

5:  
AT-
EV_SR-II 

(321) 

6:  
AT-
EV_SR-DC 

(321) 

7:  
HV-
EV_LR-II 

(257) 

8: 
AT-
EV_LR-II 

(321) 

9: 
AT-
EV_LR-DC 

(321) 

Life-Cycle Energy (MJ / km) 
Materials & Manufacturing  0.445 0.393 0.337 0.541 0.455 0.455 0.874 0.722 0.722 

Use 4.886 3.718 4.402 1.615 1.923 1.923 1.944 2.205 2.205 

End of Life 0.016 0.016 0.012 0.016 0.012 0.012 0.021 0.017 0.017 

Total 5.347 4.129 4.751 2.172 2.390 2.390 2.839 2.943 2.943 

Life-Cycle GHG Emissions (kg CO2eq / km) 

Materials & Manufacturing  0.033 0.028 0.024 0.039 0.033 0.033 0.063 0.052 0.052 

Use 0.355 0.269 0.318 0.116 0.138 0.138 0.140 0.158 0.158 

End of Life 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

Total 0.389 0.298 0.342 0.157 0.171 0.171 0.204 0.212 0.212 
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2.3.4 Parking 

A surface parking spot has an estimated life-cycle energy and GHG emissions burden of 926 MJ/m2 and 

76 kg CO2eq/m2, respectively (Horvath, 2003). A typical parking spot has an area of 16.7 m2 (Parking 

facility, 2016). Therefore, a parking space burden is 15,480 MJ/space and 1,270 kg CO2eq/space. This 

burden was applied to the total number of parking spots required in each scenario to determine the overall 

impact of parking. Each conventional vehicle and autonomous taxi was assumed to require one parking 

spot. Parking burden reduction due to smaller fleet size was assumed to be realized through reduced 

demand for construction of new parking spaces as urban populations increase. 

2.3.5 Charging Infrastructure 

The BEV charging infrastructure consists of both Level II and DC fast chargers. Level II chargers 

produce a charging time of 240 minutes in the Chen et al. (2016) model, while DC fast chargers reduce 

the charging time to just 30 minutes. The Level II charger assumed in this study is 1,255 kg, rated at 22 

kW, and has a lifetime of 6 years. Its associated burden is 4,290 MJ/charger and 250 kg CO2eq/charger 

(Lucas et al., 2012). In contrast, the DC fast charger has a weight of 3,250 kg, rated power of 50 kW, 

lifetime of 12 years, and burdens of 54,300 MJ/charger and 2,500 kgCO2eq/charger (Lucas et al., 2012). 

The burdens for the chargers were applied to the required infrastructure in each scenario while taking into 

account the estimated lifetime of the charger and the scenario timeframe. Note that frequent DC fast 

charging may accelerate battery degradation and reduce battery lifetime. This secondary effect was not 

included in the modeling since the extent of the impacts is still being studied. The production burden of 

gas stations was not included since it is assumed this refueling network already exists for the baseline 

scenario. 

2.3.6 Fleet Turnover 

Fleet turnover is included in the framework since the vehicle lifetime is shorter than the 30-year scenario 

timeframe from 2020 to 2050. Replacement of the entire fleet was assumed when the vehicles reach their 

design lifetimes. This assumption works well for the AT scenarios since the service would most likely 
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begin on a given start date with a new fleet of vehicles. To account for the heterogeneous fleet in the 

baseline scenario, older model-year vehicles from ANL (2016a and 2016b) were used. When fleet 

turnover occurs, the replacement vehicles have lower use-phase fuel-consumption rates due to technology 

maturation. This leads to step changes in use-phase burden with a frequency dependent on vehicle 

lifetime. The annual reduction (Reduction) was applied to the initial fuel consumption (FC0) using 

Equation 1 to obtain the estimated future fuel consumption (FCT) in year T. 

Equation 1:                         𝐹𝐶𝑇 = 𝐹𝐶0 ∗ (1+ 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)𝑇 

The annual reductions for new ICEV and BEV fuel consumption rates through 2050 are provided in Table 

6. The conservative scenario is used in the base case, while the optimistic scenario is used in the 

sensitivity analysis. 

Table 6. New vehicle fuel consumption for 2010 to 2050 for conservative and optimistic scenarios 

(Committee on Transitions et al., 2013). 

 
Powertrain Type Fuel Consumption (Le/100 km) 2010-2030 

Annual Reduction 
2030-2050 

Annual Reduction 2010 2030 2050 

Conservative 

ICEV 7.60 3.67 2.70 3.6% 1.5% 

BEV 1.62 1.25 0.96 1.4% 1.2% 

Optimistic 

ICEV 7.60 3.18 2.14 4.3% 2.0% 

BEV 1.62 1.11 0.80 2.1% 1.5% 

 

The anticipated decarbonization of the electrical grid will reduce the use phase burden over time for the 

BEV scenarios. In the conservative scenario used in the base case, the current carbon intensity for the 

U.S. Central and Southern Plains region of 0.1821 kg CO2eq / MJ undergoes a 22% reduction by 2050, 

which is consistent with the predicted reduction for the U.S. Mix in that same timeframe (ANL, 2016a). 

In the optimistic scenario used in the sensitivity analysis, the current carbon intensity undergoes a 92% 

reduction by 2050, which is consistent with the “Stretch Tech, CP20” scenario reported in Appendix A of 

U.S. DOE (2017). Further data on electrical grid carbon intensity and primary energy predictions can be 

found in Tables A1 to A3 in the Supplementary Material. 
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2.4 Results 

The GHG-emission results for the base case are provided in Section 2.4.1. The base case uses the 

conservative AT lifetime, annual new-vehicle fuel-consumption rate reduction, computer power-

consumption reduction, and electrical-grid decarbonization rate inputs outlined in Section 2.3. In contrast, 

the baseline scenario refers to the current fleet of human-driven vehicles in Austin. Energy data are 

contained in Figures A4 and A5 in the Supplementary Material and the energy and emissions trends are 

consistent. Section 2.4.2 discusses the implications of adding dynamic ride-share to the case study. 

Finally, Section 2.4.3 provides a sensitivity analysis that discusses the impacts of using the optimistic 

inputs. The impacts of varying other key parameters, such as CAV-subsystem size and direct effects, are 

also reported. 

2.4.1 Base Case Results 

The base case results begin with a time series to illustrate fleet turnover, then breaks down the results for 

each scenario by direct and indirect effect to determine the major drivers. Figure 9 provides the GHG 

emissions in a time series from 2020 to 2050. Production and end-of-life emissions are amortized over the 

life of the vehicle while the use-phase emissions are attributed to the time of generation. The step changes 

are due to fleet turnover since the replacement vehicles have reduced fuel-consumption rates and 

computer-power consumption according to the conservative scenario in Section 2.3.6. The frequency of 

the step changes for the AT fleets is much higher than for the human-driven vehicle scenarios due to the 

higher utilization rates and corresponding shorter lifetimes. The gradual decrease evident in the BEV 

scenarios is a function of the conservative electrical-grid decarbonization for Austin discussed in Section 

2.3.6. Also note that the AT scenarios initially have higher monthly GHG emissions in the 2020-2026 

timeframe due to the high CAV-subsystem computer-power consumption. However, these emissions 

levels drop below the human-driven vehicle scenarios after 2026 due to more energy-efficient computing. 
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Figure 9. Monthly GHG emissions from 2020 to 2050 modeled using the conservative fleet turnover and 

electrical-grid decarbonization inputs for the base case. Legend listed in order of decreasing GHG 

emissions. 

The cumulative GHG emissions for each scenario over the 30-year scenario timeframe are provided in 

Figure 10. The results are broken out by life-cycle phase as well as the contributions from parking and 

charging infrastructure. The ICEV scenarios (Group A) have lower production burden compared to the 

BEV scenarios (Groups B-E) primarily due to the addition of the battery. However, the ICEV use-phase 

burden is significantly higher since BEV powertrain technology is more energy efficient. Parking burden 

is reduced when transitioning from human-driven vehicles to AT scenarios due to the smaller fleet size. 

Charging-infrastructure burden only applies to the BEV scenarios, is negligible, and is hardly discernable 

in Figure 10. Overall, the cumulative GHG emissions decrease by 60% when transitioning from the 

Baseline to Scenario 5. 
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Figure 10. Cumulative fleet GHG emissions over the period 2020-2050 broken out by life-cycle phase. 

Groups A and B are expanded in Figures 11 and 12, respectively. Groups C, D, & E details are contained 

in Figures A1 to A3 in the Supplementary Material. 

An expansion of Group A is provided in Figure 11 to show the main differences between Scenarios 1, 2, 

and 3. The waterfall starts with the transition between the Baseline and Scenario 2. Shifting from a 

heterogeneous fleet of cars, SUVs, and trucks in the Baseline to a uniform fleet of compact cars in 

Scenario 2 results in decreasing GHGs across all life-cycle phases. Next, transitioning from Scenario 2 to 

3 first results in increasing GHGs due to additional VKT from empty kilometers and due to the added 

burden from the CAV sensing and computing subsystem. However, this is offset by the operational 

efficiencies from CAV direct effects, less parking due to the smaller fleet, and the longer life of the AT 

allowing the production burden to be amortized over more VKT. Finally, transitioning from Scenario 3 

with a conservative 321,869 km lifetime to an optimistic 643,738 km lifetime first results in increasing 

GHGs since the longer lifetime reduces fleet turnover. However, the increase is more than offset by 

amortizing the production burden over the longer lifetime. Overall, the GHG emissions decrease by 7% 

when transitioning from Scenario 2 to Scenario 3 with the 643,738-km lifetime. 
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Figure 11. Expansion of Group A showing the impacts of direct and indirect effects. Includes Scenarios 1 

to 3, as well as a special sensitivity case for Scenario 3 with a 643,738 km lifetime. 

An expansion of Group B is provided in Figure 12 to show the main differences between Scenarios 4 and 

5. The waterfall follows a similar pattern as for Group A. The empty kilometers have less of an impact 

than in the ICEV scenarios since BEVs are more efficient in the use phase. The CAV subsystem also adds 

less burden because the electricity required to run the sensors and computer has lower GHG burden on 

BEV platforms. The direct effects for BEVs are less than for ICEVs because BEVs are already more 

efficient and have less to gain. The longer life of BEVs has a greater impact due to the higher production 

burden that can be amortized over the additional VKT. The charging-infrastructure burden is the only new 

indirect effect, which is reduced because less chargers are needed with a smaller AT fleet. Transitioning 

from Scenario 5 with a 321,869 km lifetime to an optimistic 643,738 km lifetime has a similar impact as 

in Group A. However, the effect from less fleet turnover is smaller due to the lower annual new-vehicle 

fuel-consumption rate reduction. Overall, the GHG emissions decrease by 12% when transitioning from 

Scenario 4 to Scenario 5 with the 643,738 km lifetime. Expansions of Groups C, D, and E are provided in 

Figures A1 to A3 in the Supplementary Material. 
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Figure 12. Expansion of Group B showing the impacts of direct and indirect effects specific to BEV 

powertrains. Includes Scenarios 4 and 5, as well as a special sensitivity case for Scenario 5 with a 643,738 

km lifetime. 

2.4.2 Dynamic Ride-sharing 

Dynamic ride-sharing involves the pooling of multiple travelers with similar origins, destinations, and 

departure times in the same vehicle to further reduce AT fleet size and VKT (Fagnant and Kockelman, 

2016). The results reported above do not include the impact of dynamic ride-sharing since the input data 

derived from Chen et al. (2016) did not incorporate ride-share in the modeling process. Instead, each trip 

was carried out by one AT from origin to destination. After dropping off the passenger, the AT would 

then relocate to the next trip request, resulting in up to an 11% increase in total fleet VKT due to empty 

kilometers. However, AT studies that did include a dynamic ride-sharing feature report decreases in VKT. 

For example, Farhan and Chen (2018) reported up to a 22% decrease in fleet VKT using an agent-based 

model and Austin, TX case study scenario similar to Chen et al. (2016). 

To illustrate the potential impact of dynamic ride-sharing, the life-cycle energy and GHG emissions for 

the short-range electric AT scenarios from Farhan and Chen (2018) were modeled using the framework 
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developed for this study. These three scenarios are identical to Scenario 5 from Chen et al. (2016) except 

for the inclusion of dynamic ride-sharing. The AT ride-share capacity varies across the three scenarios 

from two to four passengers, resulting in VKT reductions from 18% to 22%, respectively. Overall, 

implementing dynamic ride-share with an AT capacity of four passengers in Scenario 5 reduces GHG 

emissions by 23% compared to Scenario 5 with no ride-share. Results for all three scenarios from Farhan 

and Chen (2018) in comparison to Scenario 5 from Chen et al. (2016) can be found in Figure A6 in the 

Supplementary Material. 

2.4.3 Sensitivity Analysis 

Several key inputs included in the base case were varied in a sensitivity analysis to better understand their 

impacts. The first parameter is the CAV subsystem size as reported in Gawron et al. (2018). If a small 

CAV subsystem is used instead of the medium size, the impact on the cumulative life-cycle GHG 

emissions is small at less than 1%. However, the impact from using the large subsystem is much greater 

at 8%-10%. The second parameter is the CAV direct effects. The average fuel-consumption reduction of 

14% due to direct effects is assumed throughout this study. However, if the full range from 9%-19% is 

examined from Stephens et al. (2016), the impact on the cumulative GHG emissions is ±5%. The third 

parameter is the amount of empty kilometers that increase total fleet VKT. The scenarios modeled in this 

case study include up to an 11% increase in VKT due to empty kilometers. However, if VKT increased by 

up to 50% due to empty kilometers, GHG emissions for Scenario 5 would increase by 38% compared to 

the base case. The fourth parameter is the lifetime of the AT fleet vehicles, which was varied between the 

conservative 321,869 km (200,000 miles) in the base case to 643,738 km (400,000 miles). Overall, GHG 

emissions are reduced 3%-8% by increasing the lifetime to 643,738 km, with the BEV powertrains seeing 

more benefit due to the amortization of the higher production burden. The fifth parameter is the annual 

new-vehicle fuel-consumption rate reduction. If optimistic reductions are used instead of the conservative 

reductions, then AT fleets with higher turnover are further rewarded since the replacement vehicles are 

even more energy efficient. For example, Scenario 3 from the base case has a further 6% decrease in life-
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cycle GHG emissions when using the optimistic reductions. The sixth parameter is the CAV-subsystem 

computer power consumption. If optimistic reductions are used following Moore’s Law instead of the 

conservative assumptions, then GHG emissions are reduced 2%-3% across the AT scenarios. The final 

parameter is the electrical-grid decarbonization rate. The base case assumed the conservative scenario 

where the Austin electrical-grid carbon intensity undergoes a 30% reduction by 2050. If the optimistic 

scenario is used instead, then the BEV scenarios will be further rewarded in the use phase due to 

accelerated decarbonization. For example, the comparison between the Baseline and Scenario 5 would 

change from a 60% decrease in GHG emissions under the base case to a 79% decrease by assuming 

stretch technology assumptions with an escalating carbon price (U.S. DOE, 2017). Taking the sensitivity 

one step further, if dynamic ride-share with an AT capacity of four passengers is combined with the 

optimistic AT lifetime, annual new-vehicle fuel-consumption rate reductions, and electrical-grid 

decarbonization rate from the sensitivity analysis, then emissions in Scenario 5 are 87% below the 

Baseline. Further details on the sensitivity analysis can be found in Figures A7 to A14 in the 

Supplementary Material. 

2.5 Conclusion 

We present a holistic LCA framework for evaluating the life-cycle energy and GHG emissions of AT 

fleets over the long term. The framework incorporates both direct and indirect effects at the subsystem, 

vehicle, and mobility-system levels. To demonstrate its capabilities, a case study was conducted of an AT 

fleet design in Austin, TX. In the base case, transitioning from a baseline scenario with the current fleet of 

human-driven vehicles to a scenario with a fleet of electric ATs results in a 60% reduction in GHG 

emissions. This reduction is primarily due to electrification (57% decrease compared to the baseline) and 

less parking (1.5% decrease). Additional scenarios were modeled to achieve a further reduction of up to 

87% compared to the baseline. The scenarios include accelerated electrical-grid decarbonization of 92% 

by 2050 (48% decrease compared to the base case), dynamic ride-sharing to reduce VKT up to 22% (27% 

decrease), longer AT lifetime up to 643,738 km (5% decrease), high operational efficiencies of 19% from 
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CAV direct effects (5% decrease), higher new-vehicle fuel-consumption rate reductions for BEVs up to 

2% (4% decrease), optimistic CAV-subsystem computer power consumption (2% decrease) and small 

CAV subsystems (1% decrease). The results provide important policy and design implications for 

maximizing the environmental sustainability of AT fleets by focusing on some of the largest levers such 

as electrification and dynamic ride-share.  

While our modeling elucidates many complex interactions between key model parameters, several 

limitations exist with this study. First, congestion was excluded from the indirect effects since it was not 

included in the Chen et al. (2016) modeling. Congestion could amplify the impact of empty kilometers 

and increase GHG emissions due to longer travel times and the need for larger AT fleets. Second, travel 

demand was assumed to be constant over the 30-year scenario timeframe for tractable modeling purposes 

and due to uncertainty in consumer behavior. On one side, rebound effects from the lower cost of travel 

promised by AT fleets could increase overall travel demand. The resulting fleet VKT may or may not 

increase depending on how the AT fleet optimizes for dynamic ride-sharing and repositioning. 

Conversely, travel demand increases may be offset by consumers’ tendency to reduce travel in a pay-as-

you-go business model that makes the marginal cost of travel more apparent (Chen and Kockelman, 

2016). Third, parking reduction was assumed to have a direct relationship with fleet size. However, the 

vehicle replacement rate from ATs may not directly translate to a parking impact due to multi-modal 

travel, as discussed in Chen and Kockelman (2016). This may be partially offset by a higher parking 

space to car ratio of 3.4 to 1 for the conventional vehicles that do end up being eliminated (Chester et al. 

2010). Fourth, the CAV direct effects on BEV platforms are not yet fully understood. Previous analysis of 

eco-driving and intersection connectivity was conducted for ICEVs. Michel et al. (2016) showed that 

efficiency gains are consistent across powertrains. However, this may vary depending on the engine and 

motor efficiency profile assumed. Finally, the case study assumed a uniform AT fleet of compact cars. 

Further work could be undertaken to assess the impacts of AT-fleet vehicle size and powertrain. Right-

sizing with a heterogeneous fleet could also be incorporated as was done by Greenblatt and Saxena 
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(2015). Suggested future work that could address these limitations involves incorporating this framework 

directly into AT fleet agent-based modeling to optimize the fleet design for environmental outcomes in 

addition to wait time and service level parameters. The charging options could also be expanded to 

include inductive charging. Overall, we illustrate how deep decarbonization and energy-consumption 

reductions can be achieved across the full life-cycle in the transportation sector through the strategic 

deployment of electrified AT fleets.  
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Table S1: Characteristics of the battery electric vehicle (BEV) and internal combustion engine vehicle (ICEV) platforms.1-3 

Characteristic BEV ICEV 

Picture 

  

Model 2015 Ford Focus Electric 2015 Ford Focus 

Curb Weight (lb) 3,690 3,055 

Combined Fuel Economy (mpge) 107 31 

FRV (Le / 100 km 100 kg) 0.073 0.27 

Production Burden: CED (MJ) 139,372 101,132 

Production Burden: GWP (kg CO2-eq) 10,121 7,241 
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Figure S1. Basis for the small CAV sensing and computing subsystem is the Tesla Model S (top), medium subsystem is the Ford Fusion (middle), 

and large subsystem is the Waymo Pacifica (bottom).4-6 
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Figure S2. CAV sensors and components. From top left to bottom right: Point Greg Dragonfly 2, Bosch LRR3, Bosch Ultrasonic, Velodyne HDL-

64E, Velodyne VLP-16 Puck, NovAtel PwrPak7-E1, Cohda MK5 OBU, and Nvidia Drive PX2.7-20 
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Table S2. Materials breakdowns for each CAV component.7-21 

Material Camera Sonar Radar L. LiDAR S. LiDAR GPS/INS DSRC Computer Harness Structure 

Steel       13%    

Cast Iron    7% 1%   2%   

Aluminum    61% 60%  48% 70%  49% 

Copper    6% 1%  1% 6% 100%  

Glass 9%   5% 8%      

Plastic 45% 50% 30% 7% 17% 45% 3% 4%  51% 

Rare Earth    6% 1%   2%   

Electronics* 46% 50% 70% 5% 12% 55% 35% 16%   

 

*Electronic weight further allocated to PWB, power supply, IC package, and IC die components according to Teehan et al. 2013  
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Figure S3. Weight, power, life cycle energy, and GHG emissions for the small CAV subsystem on a BEV 
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Figure S4. Weight, power, life cycle energy, and GHG emissions for the medium CAV subsystem on a BEV 
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Figure S5. Weight, power, life cycle energy, and GHG emissions for the large CAV subsystem on a BEV 
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Figure S6. Weight, power, life cycle energy, and GHG emissions for the small CAV subsystem on an ICEV 
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Figure S7. Weight, power, life cycle energy, and GHG emissions for the medium CAV subsystem on an ICEV 
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Figure S8. Weight, power, life cycle energy, and GHG emissions for the large CAV subsystem on an ICEV 
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Figure S9. Vehicle-level energy and GHG results for the BEV + Small Subsystem scenario 
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Figure S10. Vehicle-level energy and GHG results for the BEV + Medium Subsystem scenario 
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Figure S11. Vehicle-level energy and GHG results for the BEV + Large Subsystem scenario 
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Figure S12. Vehicle-level energy and GHG results for the ICEV + Small Subsystem scenario 
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Figure S13. Vehicle-level energy and GHG results for the ICEV + Medium Subsystem scenario 
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Figure S14. Vehicle-level energy and GHG results for the ICEV + Large Subsystem scenario 
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Figure S15. Weight comparison for small, medium, and large CAV sensing and computing subsystems 
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Figure S16. Power consumption comparison for small, medium, and large CAV sensing and computing subsystems 
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Figure S17. Life cycle energy comparison for the CAV subsystem in all six scenarios 
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Figure S18. GHG emissions comparison for the CAV subsystem in all six scenarios 
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Figure S19. Increase in vehicle life cycle energy when a CAV subsystem is added to the non-CAV platform 
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Figure S20. Increase in vehicle GHG emissions when a CAV subsystem is added to the non-CAV platform 
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Figure S21. Comparison between vehicle life cycle energy of non-CAVs and CAVs across the six scenarios 
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Figure S22. Sensitivity analysis on the baseline scenario for six key parameters 
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Figure S23. Sensitivity special cases on the baseline scenario illustrating the potential for environmental benefits to be eliminated 
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Figure S24. Impacts on GHG results for the baseline scenario as intrinsic effects are varied from -5% to -22%; -14% is the average 
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Appendix A: Supplementary Material 

Electrical Grid Carbon Intensity Predictions 

Table A1 provides the U.S. Mix electrical grid carbon intensity and primary energy predictions for the years 2015 to 2050 sourced from ANL 
(2016a). The GHG emissions reported here include both upstream and downstream emissions. The nuclear primary energy was adapted to 
include upstream inefficiencies according to the US LCI Database provided by NREL. The percentage reductions from 2015 are also provided. 

Table A1: U.S. Mix electrical grid carbon intensity and primary energy predictions for the years 2015 to 2050 
Parameter 2015 2020 2025 2030 2035 2040 2045 2050 

U.S. Mix Carbon Intensity (kg CO2eq/MJ) 0.15097 0.13502 0.12149 0.11332 0.11189 0.10923 0.10720 0.10590 
   Reduction from Year 2015 - 11% 20% 25% 26% 28% 29% 30% 
U.S. Mix Primary Energy (MJ/MJ) 2.63798 2.42755 2.34144 2.28889 2.24802 2.21381 2.17116 2.13229 
   Reduction from Year 2015 - 8% 11% 13% 15% 16% 18% 19% 

The percentage reductions from the U.S. Mix scenario were applied to the 2015 U.S. Central and Southern Plains electrical grid carbon intensity 
sourced from ANL (2016a) and primary energy to produce the predictions shown in Table A2. These predictions were used as the conservative 
scenario for the Austin, TX electrical grid. 

Table A2: Conservative Austin electrical grid carbon intensity and primary energy predictions for the years 2015 to 2050 
Parameter 2015 2020 2025 2030 2035 2040 2045 2050 

 Conservative Austin Carbon Intensity (kg CO2eq/MJ) 0.20363 0.18211 0.16387 0.15285 0.15092 0.14733 0.14459 0.14283 
Conservative Austin Primary Energy (MJ/MJ) 2.75288 2.53328 2.44342 2.38858 2.34593 2.31023 2.26572 2.22516 

The percentage reductions from the “Stretch Tech, CP20” scenario reported in Appendix A of U.S. DOE (2017) were applied to the 2015 U.S. 
Central and Southern Plains electrical grid carbon intensity to produce the predictions shown in Table A3. These predictions were used as the 
optimistic scenario for the Austin, TX electrical grid. 

 

 



Table A3: Optimistic Austin electrical grid carbon intensity predictions for the years 2015 to 2050 
Parameter 2015 2020 2025 2030 2035 2040 2045 2050 

Optimistic Austin Carbon Intensity (kg CO2eq/MJ) 0.20363 0.11179 0.06388 0.04791 0.03593 0.02395 0.01996 0.01597 
Reduction from Year 2015 - 45% 69% 76% 82% 88% 90% 92% 

 
CAV Subsystem Computer Power Consumption 

Table A4 provides the conservative predictions for the CAV subsystem computer power consumption between 2020 and 2050. The power 
consumption begins at 2000 W in 2020 and decreases to 192 W in 2039, after which it remains constant through 2050 due to diminishing 
returns. These beginning and ending values were chosen based on the sensitivity analysis bounds from Gawron et al. (2018). The rate of 
decrease is based on a doubling of computer energy efficiency every 2.7 years (Koomey et al., 2017).  However, to account for an assumed 
increase in computational requirements as Level 4 software matures this decay rate is instead modeled as a doubling of efficiency every 5.4 
years.. 

Table A4: Conservative CAV subsystem computer power consumption predictions for the years 2020 to 2050 
Parameter 2020 2025 2030 2035 2040 2045 2050 

Computer Power Consumption (Watts) 2000 1079 577 314 192 192 192 

Table A5 provides the optimistic predictions. The power consumption begins at the same starting value of 2000 W in 2020, but declines at a rate 
of 50% over 2.7 years to a final value of 192 W in 2030. 

Table A5: Optimistic CAV subsystem computer power consumption predictions for the years 2020 to 2050 
Parameter 2020 2025 2030 2035 2040 2045 2050 

Computer Power Consumption (Watts) 2000 620 192 192 192 192 192 
 

  



Expansions of Groups C, D, and E 

An expansion of Group C is provided in Figure A1 to show the main differences between Scenarios 5 and 6. There is a small increase in vehicle 
burden due to the 4% increase in fleet VKT caused by more empty miles from the smaller fleet in Scenario 6. The charging-infrastructure burden 
increases since there is a 900% increase in the burden per charger when using DC fast chargers, which is partially offset by the 45% decrease in 
the total number of chargers required. Finally, there is a decrease in the parking burden due to the 31% decrease in the AT fleet size. Overall, the 
life-cycle GHG emissions increase by 3% when transitioning from Scenario 5 to Scenario 6.  

 

Figure A1: Expansion of Group C showing the impacts of transitioning from the Level II to DC fast charging scenario.  



An expansion of Group D is provided in Figure A2 to show the main differences between Scenarios 7 and 8. The waterfall follows a similar 
pattern when compared to Group B. Overall, the cumulative life-cycle GHG emissions decrease by 10% when transitioning from Scenario 7 to 
Scenario 8 with the 643,738 km lifetime. 

 

Figure A2: Expansion of Group D showing the impacts of direct and indirect effects specific to long range BEV powertrains. Includes Scenarios 7 
and 8, as well as a special sensitivity case for Scenario 8 with a 643,738 km lifetime. 

  



An expansion of Group E is provided in Figure A3 to show the differences between Scenarios 8 and 9. The waterfall follows a different pattern 
compared to Group C since there is a 2% decrease in GHG emissions as opposed to a 3% increase. There is a small decrease in vehicle burden 
due to the 2% decrease in fleet VKT caused by fewer empty kilometers from reduced charging trips. The charging infrastructure burden 
decreases since the 900% increase in the burden per charger when using DC fast chargers is fully offset by the 85% decrease in the total number 
of chargers required. Finally, there is a decrease in the parking burden due to the 22% decrease in the AT fleet size. 

 

Figure A3: Expansion of Group E showing the impacts of transitioning from the Level II to DC fast charging scenario with long-range BEVs. 

  



Life Cycle Energy Results 

The monthly life-cycle energy consumption in a time series from 2020 to 2050 is provided in Figure A4. 

 

Figure A4: Monthly life-cycle energy consumption from 2020 to 2050 modeled using the conservative fleet turnover and electrical grid 
decarbonization inputs for the base case. Legend listed in order of decreasing energy consumption.  



The cumulative life-cycle energy consumption for each scenario over the 30-year scenario timeframe is provided in Figure A5. The results are 
broken out by life-cycle phase as well as the contributions from parking and charging infrastructure. 

 

Figure A5: Cumulative fleet life-cycle energy consumption over 30 year scenario timeframe broken out by life-cycle phase   



Dynamic Ride-Share 
 

The results of including dynamic ride-sharing within Scenario 5 of the base case are provided in Figure A6. Scenarios 5.2, 5.3, and 5.4 vary the AT 
ride-share capacity at levels of 2, 3, and 4, respectively. Higher AT capacity allows for more passenger trips to be combined, reducing both VKT 
and fleet size. 

 

Figure A6: Sensitivity analysis results when adding dynamic ride-sharing to Scenario 5   



Sensitivity Analysis 
 

The results of using the optimistic AT lifetime of 643,738 km instead of the conservative lifetime of 321,869 km in the base case are provided in 
Figure A7. 

 

Figure A7: Sensitivity analysis results when changing the AT lifetime from the conservative 321,869 km to the optimistic 643,738 km   



The results of using the optimistic annual new-vehicle fuel-consumption rate reduction instead of the conservative reductions within the base 
case are provided in Figure A8. 

 

Figure A8: Sensitivity analysis results when changing the annual new-vehicle fuel-consumption rate reduction from the conservative scenario to 
optimistic in the base case 

 

 

 



The results of using the optimistic electrical-grid decarbonization rate instead of the conservative reductions within the base case are provided in 
Figure A9. 

 

Figure A9: Sensitivity analysis results when changing the electrical grid decarbonization rate from the conservative scenario to optimistic in the 
base case 

 

 

 



The results of using the optimistic CAV-subsystem computer power consumption instead of the conservative reductions within the base case are 
provided in Figure A10. 

 

Figure A10: Sensitivity analysis results when changing the computer power consumption from the conservative scenario to optimistic in the base 
case   



The results of combining the optimistic AT lifetime of 643,738 km, optimistic annual new-vehicle fuel-consumption rate reductions, optimistic 
electrical-grid decarbonization rate, and optimistic CAV-subsystem computer power consumption are provided in Figure A11. 

 

Figure A11: Sensitivity analysis results when combining optimistic lifetimes, annual new-vehicle fuel-consumption rate reductions, computer-
power consumption, and electrical-grid decarbonization rates 

  



A summary of the results contained in Figures A6-A11 is provided in Figure A12.  

The results are provided in units of kg-CO2eq in rows 2 to 7 and correspond to those reported in Figures A7-A11. Scenarios 5.2, 5.3, and 5.4 are 
included in accordance with Figure A6. 

The percent reductions from the Base Case (row 2) reported in rows 8 to 13 show the impact of changing a parameter from conservative to 
optimistic. Each case study scenario is impacted differently by the sensitivity analysis. For example, Scenario 2 is not affected by the optimistic 
lifetime in row 9 since it is only applicable to AT fleets, while Scenario 6 has an 8% reduction.  

The percent reductions from the Baseline (column C) are reported in rows 14 to 19 and show the impacts of transitioning from the current fleet 
of human-driven vehicles to any one of the case study scenarios. The emission benefits of the  transitions differ depending on the sensitivity 
analysis scenario. For example, transitioning from the Baseline to Scenario 5 in the Base Case (row 14) results in a 60% reduction in GHG 
emissions. However, the benefit increases to 87% in the combined sensitivity analysis scenario with dynamic ride-share (row 19).  
 

  

Figure A12: Summary of sensitivity analysis results   

A B C D E F G H I J K L M N

1
Sensitivity Analysis Scenario

1
Baseline

2
HV-IC
(257)

3
AT-IC
(321)

4
HV-EV_SR-II

(257)

5
AT-EV_SR-II

(321)

5.2
AT-EV_SR-II

(321)

5.3
AT-EV_SR-II

(321)

5.4
AT-EV_SR-II

(321)

6
AT-EV_SR-DC

(321)

7
HV-EV_LR-II

(257)

8
AT-EV_LR-II

(321)

9
AT-EV_LR-DC

(321)
2 Base Case 4.01E+10 3.08E+10 2.94E+10 1.69E+10 1.60E+10 1.30E+10 1.27E+10 1.24E+10 1.64E+10 2.21E+10 2.11E+10 2.06E+10
3 A7: Optimistic Lifetime of 643,738 km 4.01E+10 3.08E+10 2.85E+10 1.69E+10 1.49E+10 1.21E+10 1.17E+10 1.14E+10 1.51E+10 2.21E+10 1.98E+10 1.92E+10
4 A8: Optimistic Annual Fuel-Consumption Rate Reduction 3.86E+10 2.97E+10 2.77E+10 1.64E+10 1.54E+10 1.25E+10 1.22E+10 1.19E+10 1.58E+10 2.16E+10 2.03E+10 1.98E+10
5 A9: Optimistic Electrical-Grid Decarbonization Rate 4.01E+10 3.08E+10 2.94E+10 9.16E+09 8.26E+09 6.75E+09 6.55E+09 6.40E+09 8.51E+09 1.28E+10 1.18E+10 1.15E+10
6 A10: CAV-Subsystem Computer Power Consumption 4.01E+10 3.08E+10 2.84E+10 1.69E+10 1.56E+10 1.27E+10 1.24E+10 1.21E+10 1.60E+10 2.21E+10 2.07E+10 2.02E+10
7 A11: A7 + A8 + A9 + A10 3.86E+10 2.97E+10 2.61E+10 9.08E+09 6.67E+09 5.39E+09 5.19E+09 5.05E+09 6.76E+09 1.27E+10 9.98E+09 9.68E+09
8 Base Case 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
9 A7: Optimistic Lifetime of 643,738 km 0% 0% 3% 0% 6% 7% 8% 8% 8% 0% 6% 6%

10 A8: Optimistic Annual Fuel-Consumption Rate Reduction 4% 4% 6% 3% 4% 4% 4% 4% 4% 2% 4% 4%
11 A9: Optimistic Electrical-Grid Decarbonization Rate 0% 0% 0% 46% 48% 48% 48% 48% 48% 42% 44% 44%
12 A10: CAV-Subsystem Computer Power Consumption 0% 0% 3% 0% 2% 2% 2% 2% 2% 0% 2% 2%
13 A11: A7 + A8 + A9 + A10 4% 4% 11% 46% 58% 59% 59% 59% 59% 42% 53% 53%
14 Base Case 0% 23% 27% 58% 60% 67% 68% 69% 59% 45% 47% 49%
15 A7: Optimistic Lifetime of 643,738 km 0% 23% 29% 58% 63% 70% 71% 72% 62% 45% 50% 52%
16 A8: Optimistic Annual Fuel-Consumption Rate Reduction 0% 23% 28% 57% 60% 67% 68% 69% 59% 44% 47% 49%
17 A9: Optimistic Electrical-Grid Decarbonization Rate 0% 23% 27% 77% 79% 83% 84% 84% 79% 68% 71% 71%
18 A10: CAV-Subsystem Computer Power Consumption 0% 23% 29% 58% 61% 68% 69% 70% 60% 45% 48% 50%
19 A11: A7 + A8 + A9 + A10 0% 23% 32% 76% 83% 86% 87% 87% 82% 67% 74% 75%%
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The impact of varying the CAV sensing and computing subsystem between the small and large versions described in Gawron et al. (2018) is 
shown in Figure A13. The figure shows the percentage change from the medium CAV subsystem results for both the ICEV and BEV scenarios. The 
impact ranges from <1% for the small CAV subsystem to 8-10% for the large CAV subsystem. 

 

Figure A13: Sensitivity analysis results when varying the size of the CAV sensing and computing subsystem 

 

  



The impact of varying the CAV direct effects between the minimum of 9% fuel consumption reduction to the maximum of 19% described in 
Stephens et al. (2016) is shown in Figure A14. The figure shows the percentage change from the base case results that use the 14% fuel 
consumption reduction. The impact is approximately ±5%. 

 

Figure A14: Sensitivity analysis results when varying the fuel consumption reduction from CAV direct effects 
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