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Abstract 

 

Global climate predictions anticipate increased temperature, variable total precipitation, as 

well as a greater number and intensity of severe precipitation events. Deepening our understanding 

of the complex relationships between climatic factors, tree growth, and edaphic conditions is key 

for predicting future suitable habitat for environmentally and economically salient tree species. 

Jack Pine (Pinus banksiana) provide crucial structural habitat and are an important species for 

timber production in the Upper Midwest. Jack Pine habitat ranges across extremes of an edaphic 

gradient. However, little is known about how these differing conditions influence growth 

performance as a function of oscillating climate. In this study, I assessed the effect of climatic 

variability on the growth of trees under different edaphic conditions (two sites with dry soils and 

one site with wet soils). Using tree core increments from three forest sites in Michigan’s northern 

lower peninsula, tree growth was analyzed as a function of climate, age, and prior growth using a 

hierarchical Bayesian framework. As expected, trees in the wet soils had the highest growth rates. 

Individuals in all sites responded positively to increased spring temperature, whereas those in the 

wet site showed the highest response to increased summer precipitation. However, under predicted 

drier conditions the growth response in the wet site was expected to decline by 33%, while those 

in the two drier sites were expected to decline by 2 and 19%, equalizing growth rates across all 

three sites. Further, the decline in growth associated with drier summers will exceed any benefits 

conferred by warmer spring temperatures in the wet site. Sites near bogs and intermittent wetlands 

are currently associated with high growth performance. However, under the forecasted climate for 

the region, trees growing in these sites will likely lose their advantage.  

 

 

 

 

 

 

 



iii 
 

Acknowledgements 

 This work would not have been possible without the patient and sage advice from my 

adviser, Dr. Inés Ibáñez. It has been a truly rewarding experience to be a part of the lab and learn 

from your example and experience. I would also like to thank my thesis committee member, Dr. 

Don Zak, for taking the time to provide key insight for the improvement of this manuscript as well 

as being a constant source of wisdom and kindness. Members of the Global Change Ecology Lab: 

Kirk Acharya, Dan Katz, Edie Juno, Gwen Keller, Ben Lee, Lais Petri, Sam Schaffer-Morrison, 

and Jordan Tourville were a source of constant encouragement, insight, and laughter. Mr. Mike 

Ravesi and Mrs. Susan Thiel from the Camp Grayling Natural Resources Office and the Michigan 

Department of Natural Resources, respectively, were points of expert knowledge and guided my 

interests to the right locations around Grayling, Michigan. Finally, my wife, Cari, and our son, 

Evan, provided daily encouragement and purpose throughout this process. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Table of Contents 
 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Tables and Figures................................................................................................................v 

Introduction ......................................................................................................................................1 

Methods............................................................................................................................................3 

Study area and site selection ........................................................................................................3 

Field and laboratory methods ......................................................................................................4 

Climate data and analysis ............................................................................................................6 

Results ..............................................................................................................................................7 

Effects of diameter and previous years’ growth on radial growth ..............................................8 

Effects of climate variables on radial growth ..............................................................................8 

Growth simulations ......................................................................................................................8 

Discussion ........................................................................................................................................9 

Tables and Figures .........................................................................................................................14 

Literature Cited ..............................................................................................................................21 

Supplemental Information .............................................................................................................27 

 

 

 

 

 

 

 



v 
 

List of Tables 

Table 1:  List of forest sites sampled. Sampling sites were assessed and data collected in May 

and August 2018. Variable means and SD are reported. 

 

List of Figures 

 

Figure 1: Location of the study area with selected forest sites within Crawford County, 

Michigan. The broader range of Jack Pine (Pinus banksiana) is highlighted in green 

(Little 1971). 

 

Figure 2:  Average growth for each tree per year within the three studied forest sites. 

Individuals in the BOG site had the highest observed growth rates indicating higher 

overall productivity. 

 

Figure 3:  Model results, goodness of fit (R2), comparing predicted vs observed growth. 

 

Figure 4:  Parameter estimates (mean + 95% CI) for the growth model showing the effects of 

April temperature and July PDSI on the growth of individuals within each of the 

three forest stands. Letters indicate statistically different coefficients between 

stands. Credible intervals that do not cross zero are considered statistically 

significant (shown with an asterisk). 

 

Figure 5:  Simulations of radial tree growth (mean - solid lines, and 95% predicted interval - 

dashed lines) under three fixed April temperatures (low: 1.5oC, medium: 7oC, and 

high: 14oC) and a gradient of July moisture (moist-to-dry) measured by July PDSI. 

Simulations showed that growth rates were negatively affected in all three stands 

under drier conditions, but more substantially in the BOG site (~32.8%) as opposed 
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Introduction 

Global climate patterns are changing at an unprecedented rate (IPCC 2014). Future 

predictions call for higher average temperatures, more variable and erratic total precipitation, and 

an increase in the number and intensity of severe precipitation events (IPCC 2014). As climate 

generally becomes warmer, broad expectations are that organisms will migrate to higher latitudes 

and elevations (Parmesan 2006; Parmesan and Yohe 2003). In the past, climatic shifts occurred at 

rates that allowed evolutionary adaptation and migration processes to take place among tree 

species (Davis and Shaw 2001). However, contemporary changes in climate present new 

challenges as current changes may be occurring too quickly for many tree species to effectively 

migrate and/or adapt (Aitken et al. 2008). Thus, understanding how tree populations will respond 

in situ to future conditions will be essential to assess their performance. From a management 

perspective, understanding population level responses to forecasted climatic conditions across 

local environmental gradients can be invaluable for informing efforts aimed at maximizing tree 

growth. 

Investigating how the relationship between tree growth and local environmental conditions 

may change in the near future is particularly relevant for tree species of marked ecological and/or 

economical relevance. Given the long life-span of trees, information about their future 

performance can assist with the development of sound conservation or sustainable management 

plans. Suitable habitat for tree species is determined by a complex combination of abiotic factors 

and biotic interactions. Because of this complexity, substantial variation and non-uniformity in 

tree performance have been consistently shown across many species’ local ranges. However, a 

comprehensive understanding for how local abiotic factors influence tree growth rates and how 

that translates to population performance in the face of extreme climate conditions is lacking 

(Huang et al. 2010; Wilmking et al. 2004).  

The link between climate and tree growth has been strongly established within the field of 

dendroclimatology, and individual and population responses to fluctuating local climatic 

conditions have been used to highlight the influence climate has on growth (Barnes and Wagner 

1981; Fritts 1976). Climate, specifically precipitation and temperature, largely determines the 

length of the growing season and the availability of key resources, influencing individual 
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performance, and ultimately, the range of a particular species. Other physical factors including 

soils, elevation, aspect, and slope shape that performance and determine the outcome at the local 

level (Barnes and Wagner 1981; MacArthur 1972). Accounting for site conditions and/or site 

quality substantially explicates varying growth responses when assessing productivity as a 

function of climatic variables (Forrester et al. 2013; Mina et al. 2018). In one modeling study, 

assessing edaphic and topographic factors allowed researchers to predict species range almost as 

well as solely using climatic factors (Beauregard and de Blois 2014). Additionally, the authors 

found that models using both edaphic and climate factors were generally the most accurate for 

predicting species distributions, and they highlighted an additional constraint for estimating 

species range shifts under projected climate conditions (Beauregard and de Blois 2014).  

My study species, Jack Pine (Pinus banksiana), is an ecologically and economically 

important boreal species that is ubiquitous throughout central, northern, and southeastern Canada 

with a southern range limit in the northern United States, specifically around the Great Lakes and 

in northern Maine (Barnes and Wagner 1981; Elias 1980; Subedi and Sharma 2013). P. banksiana 

is an early successional species, largely defined by its fast growth, shade intolerance, and relatively 

short lifespan (60-80 years). Young P. banksiana stands in the Northern Lower Peninsula of 

Michigan, the focal area for this study, provide critical nesting habitat for the endangered 

Kirtland’s Warbler (Setophaga kirtlandii) (Benzie 1977; Cayford and McRae 1983). Further, wood 

production substantially contributes to Michigan’s economy, employing approximately 25,000 

workers with a valued output of over $7 billion. More specifically, P. banksiana accounted for just 

under 21 million cubic feet of roundwood production, and approximately 8% of saw logs in 2008 

(Haugen et al. 2014). Although P. banksiana is a critical tree species for ecosystems and the timber 

industry in this area, little is known about how environmental factors influence its growth 

sensitivity as a function of oscillating climatic conditions. 

While it is widely established that P. banksiana typically grows in pure, even-aged stands 

on extensively well-drained loamy-sands, it perhaps has a wider range than originally thought 

(Rudolph and Laidly 1990; Yarranton and Yarranton 1975). More recent studies show that P. 

banksiana are often found growing on various soil types where competitor species struggle to 

survive (Barton and Grenier 2008; Rudolph and Laidly 1990). For example, individuals and 

populations have been documented on saturated organic soils in bogs and peatlands in southeastern 
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Quebec (Pellerin and Lavoie 2003). Again, in Maine and notably atypical for P. banksiana, 

populations have been inventoried at both extremes of the moisture gradient: on sandy, well-

drained thin soils and in coastal bogs and wetlands (Barton and Grenier 2008).   

The objective of this study is to assess the effect of climatic conditions, specifically in 

drought years, on the growth and performance of P. banksiana stands growing under different 

edaphic conditions in Michigan’s northern lower peninsula. The following specific questions are 

addressed: 1) what dynamics differentiate P. banksiana stands growing near bogs and intermittent 

wetlands from stands located on well-drained sandy soils? 2) Do populations of P. banksiana 

growing in bogs and intermittent wetlands perform better than those located on extensively drained 

sandy sites in years with extreme climatic fluctuations, i.e., drought? In order to better inform 

management decisions for preserving critical habitats that rely on the long-term success of P. 

banksiana populations, we addressed the following questions: 3) how would the future growth of 

individuals be affected under each of these conditions? 4) Should P. banksiana continue to be 

planted in all these sites in the future? Answers to these questions will shed light about how 

sensitive P. banksiana are to extreme climatic conditions, and allow for more accurate predictions 

of performance under anticipated shifts in climate. 

Methods 

Study Area and Site Selection  

The study area is located in the center of Michigan’s northern lower peninsula, USA 

(Figure 1; 44.6614o N, 84.7148o W). The area’s soils are predominantly well-drained sandy 

outwash plains, resulting from Pleistocene glaciation which ended approximately 14,000 years ago 

(Barnes and Wagner 1981). Annual precipitation varies between 770-850 mm, most of which falls 

between May and October (Barnes and Wagner 1981; U.S. Climate Data 2018). Mean winter 

(January) and summer (July) temperatures are -8.5 oC and 19.3 oC, respectively (U.S. Climate Data 

2018). The particular area of interest is generally considered a pine community; the dry-to-mesic 

sites are largely dominated by red and white pine (Pinus resinosa and Pinus strobus) and oaks 

(Quercus), while the extremely dry and excessively drained sites are dominated by Jack Pine 

(Pinus banksiana) (Barnes and Wagner 1981). 
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Because P. banksiana is fire adapted and short lived, Michigan land managers typically 

simulate stand replacement through clearcutting and/or controlled burns, and then trench and 

replant from nursery stock on a 50 to 70-year cycle. This allows for the management of both in-

demand wood products and for the critical natural habitat P. banksiana stands provide (DNR 

2016). Forest sites were selected from an assortment of these types of stands which contain pure, 

even-aged P. banksiana growing under similar conditions of light, density, elevation, and 

approximate age, but that differed in their edaphic conditions. Using the Michigan Department of 

Natural Resources (DNR) open source Geographic Information System (GIS), 24 forest stands 

were initially identified on the Camp Grayling National Guard Military Reservation that fit the 

environmental criteria listed above. Three of these were eventually selected as the final study sites 

(Table 1) (DNR 2018).  

The three stands are within an area that is co-monitored by the Camp Grayling 

Environmental Resources Office and the Michigan Department of Natural Resources (DNR) with 

extensive records of past treatments, natural and anthropogenic disturbances, and original seeding 

events maintained by the latter. All three stands have similar canopy cover, which was used as a 

proxy for assessing light availability, density, approximate age, and are composed of pure, even-

aged P. banksiana. The first stand, BOG (44.6781° N, 84.7689° W; 350 m elevation; Stand 20 

designation from the Michigan Department of Natural Resources (DNR)) was planted in 1979 

(DNR 2018) and is located along the edge of an intermittent wetland/bog. The second stand DRY1 

(44.7342° N, 84.5086° W; Stand 29 in DNR records) and the third stand, DRY2 (44.7503° N, 

84.5669° W; Stand 36 in DNR records) are located on sandy well drained uplands at an elevation 

of approximately 369-375 m, both dry stands were recorded as being naturally regenerated in 1976 

and 1968, respectively (DNR 2018).  

Field and Laboratory Methods 

 Field work was completed in May and August, 2018. During the initial visit in May, the 

descriptive information gathered from the DNR website that was used to select the sites was 

verified using field expedient methods. First, five 10-m x 10-m plots were randomly established 

within each of the three stands, and diameter at breast height (DBH 1.37m) was measured for all 

live trees. The measurements were tallied and averaged to determine the mean basal area of each 
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respective stand. Canopy cover was estimated using the CanopyApp, an iPhone application 

developed by the University of New Hampshire and available from the Apple app store (University 

of New Hampshire 2018). Mean soil moisture content was measured for the sites using a Spectrum 

Technologies FieldScout TDR 300 soil moisture meter. Site level soil moisture was determined by 

recording values at 1.5 m in each cardinal direction from each tree and then averaging the values. 

Soil moisture was assessed during the initial data collection in May and again at the end of August 

in order to compare moisture levels across sites between the beginning and end of one growing 

season. 

Thirty dominant or co-dominant individuals were identified in each of the three stands. 

DBH and Geographic Position System (GPS) coordinates, using a Garmin Foretrex 301 GPS 

device, were recorded. Two tree cores, one from the north and one from the south side, were 

extracted at breast height (1.37m) from each of the 30 trees on each site using a 4.3mm Haglof 

increment borer. After the 180 total increment cores, 60 from each site, were extracted they were 

stored in paper straws and transported to the University of Michigan - Ann Arbor where they were 

dried for a minimum of 24 hours. 

Standard methods for preparing tree increment cores were used (Phipps 1985; Stokes and 

Smiley 1968), beginning by gluing each core to a pre-cut mount and then sanding it with increasing 

grit sandpaper (P150, P320, P600) to achieve a smooth, flat surface to make it easier to measure 

the annual growth rings. The cores were scanned using an Epson Expression graphic arts flatbed 

scanner at 1200 dpi resolution. The annual ring widths (mm) were then measured using two 

complementary programs. First, the scanned image files were measured in CooRecorder (version 

9.3.1) and translated into ring width files to be cross-dated. Both cores per tree and all the cores 

within a site were graphically and statistically cross-dated in CDendro (Version 9.3.1) (Larsson 

2018). Cross-dating was confirmed using the statistical quality control program COFECHA 

(Grissino-Mayer 2001; Holmes 1983). Twenty-five total cores were either broken, damaged, or 

were unable to be accurately cross-dated and were discarded. After being cross-dated, north and 

south ring width measurements were averaged to determine annual radial growth for each tree. 
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Climate Data and Analysis 

 Climate data, including average monthly temperature and total precipitation from 1972 to 

present, was retrieved from the National Oceanic and Atmospheric Administration (NOAA) 

weather station (GHCND: USC00203391), located in Grayling, Michigan (NOAA 2018a). Palmer 

Drought Severity Index (PDSI) data was retrieved from the NOAA divisional time series from 

1972 to present (NOAA 2018b). Annual growth rates for each tree were examined with monthly 

average temperature, total precipitation, and PDSI data in order to determine which monthly 

climate variables were the most correlated with growth. During preliminary analysis, multiple 

combinations of spring (April and May) temperature, summer (June and July) precipitation and 

PDSI, and fall (September and October) temperature, precipitation, and PDSI, and lag effects were 

assessed which indicated that the best fit occurred with April temperature and July PDSI from the 

current year. The natural log of diameter was included in the analysis to account for growth 

variation as a function of size (age) (Cook et al. 1990; Fritts 1976). Because growth and climatic 

conditions from previous years can affect current growth through lag effects (Ogle et al. 2015; 

Peltier et al. 2016), the effect from each of the previous two years (weighted per year) was also 

included in the model (Ibáñez et al. 2018). Each tree’s response was analyzed to account for tree 

random effects in order to capture variation from individual interactions (competition, facilitation, 

and genetic differences etc.). Edaphic conditions were then factored into the model by estimating 

all parameters at the stand level.  

Growth increments for tree i in year y (Gi,y ) were modeled using a normal likelihood: 

Growth i,y ~ Normal (Gi,y , σ
2) 

with process model:  

Gi,y = αi + β1i • ln(dbh(i,y)) + β2i • (ω1stand(i) • growth (i,y-1)+ ω2stand(i) • growth(i,y-2)) 

+ β3i • AprilTempy+ β4i • JulyPDSIy 

Because the variance of the growth data changed with diameter, I estimated the variance of the 

model (σ2) as a function of DBH with the following parameter model: (σi,y = astand(i) + bstand(i) * 

ln(dbhi,y) (Lines et al. 2012). A Bayesian framework was used to estimate parameter values (see 
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Appendix S2 for code); parameters in the process model were estimated at the individual level, 

and these values were then estimated for stand level hyper-parameters, αi ~ Normal (Astand (i), 

σ2
αstand (i)), βi* ~ Normal (B*stand(i), σ

2
β*stand (i)). Finally, non-informative prior distributions were 

used to estimate the stand level parameters: ω*stand  ~ Dirichlet (1), A* and b* ~ Normal (0,0.0001), 

a* ~ LogNormal (1,0.001), 1/σ*2 ~ gamma (0.0001,0.0001). 

Future performance was estimated using the output of the hierarchical model, i.e., 

parameter means, variances and covariances, to simulate growth rates for each stand. Growth was 

forecasted under combinations of increasing April temperatures (from 1.5oC to 14oC; reflecting 

the range of values in the data) and of July moisture conditions (PDSI from -5.5 to 3; range 

observed in the data).  

Analysis was conducted using OpenBUGS (version 3.2.3, Lunn et al. 2009) running three 

chains of a Markov Chain Monte Carlo simulation for 150,000 iterations. Once convergence was 

reached, chains were run for 50,000 iterations more to estimate posterior parameter means, 

standard deviations, and 95% credible intervals.  

Results 

Descriptive information collected from the DNR’s GIS website, including canopy cover, 

stand density, and soil moisture were confirmed through field measurements. Canopy cover and 

basal area were approximately the same across all three sites (Table 1). The BOG site had more 

variable soil moisture ranging from 18.8% in May to 4.03% in August. Soil moisture was more 

consistent in the other two stands, ranging in DRY 1 from 10.7% in May to 6.7% in August and 

3% in August in DRY 2 (Table1). I was unable to collect soil moisture measurements at DRY 2 in 

May due to restricted access on military training land.  

A total of 90 trees were sampled, thirty from each site, and 155 of the 180 increment cores 

collected were used in the final analysis. Average tree diameter ranged from 16.2 to 21.4 cm; 

individuals in the BOG site being both the largest and youngest (mean + SD in Table 1; Figure 2). 

The final model fit (R2 representing goodness of fit between observed and predicted data) was 0.70 

(Figure 3). Parameter estimates and descriptions are displayed in Appendix S1.  
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Effects of diameter and previous years’ growth on radial growth 

 As expected, increasing diameter had a statistically significant negative effect on the 

growth of all individuals in each of the three stands, recorded as -0.27 and -0.59 in DRY 1 and 

DRY 2, and -3.61 in the BOG (parameter β1; Appendix S1). Previous years’ growth had a 

significantly positive effect on the current year growth, recorded as 0.41 in the BOG, and 0.75 and 

0.58 in DRY 1 and DRY2 (parameter β2; Appendix S1). Growth during the previous year had the 

strongest effect on the current year growth, ranging from 0.81 in DRY 2 to 0.96 in DRY 1 

(parameter ω1; Appendix S1). 

Effects of climate variables on radial growth 

 Increasing temperature in April had a statistically significant positive effect on the growth 

of individuals in all three forest sites, ranging from 0.04 in DRY 1 to 0.07 in the BOG (parameter 

β3; Figure 4; Appendix S1). Increasing summer moisture, measured by July PDSI, had a 

statistically significant positive effect on the growth of individuals in the BOG and DRY 2, 

recorded as 0.07 and 0.04, but was not significant in DRY 1, recorded as 0.004 (parameter β4; 

Figure 4; Appendix S1). 

Growth simulations 

 The growth simulations show that individuals in all three stands positively respond to 

warmer April temperatures, with growth being consistently higher in the BOG site. Further, while 

growth is negatively impacted in all three sites by drought conditions, the effect is the most 

pronounced in the BOG. Growth in DRY 1 and DRY 2 is predicted to decline by 2 and 19%, 

respectively, while growth in the BOG is predicted to decline by 33% under the anticipated drier 

conditions (Figure 5). The second simulation confirmed that increasing April temperatures 

somewhat mediate the effect of drier July conditions. The growth rate decline between the moist 

and dry July scenarios was 7% less in the BOG at the highest April temperature, whereas the 

difference in the two DRY sites was 1 and 5%. This highlights that while the effect of dryer 

conditions is slightly more pronounced at lower temperatures, the effect of moisture is still the 

most distinct in the BOG (Figure 6). 
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Discussion 

Global warming is rapidly changing the conditions under which plants are growing. As tree 

populations cope with these changes, understanding how plant growth may be differently impacted 

across areas in the landscape becomes critical for assessing future productivity and well-being of 

the affected species. In this study, I determined how climatic shifts may affect growth in even-

aged P. banksiana stands differing in their edaphic conditions. Individuals in all of the sites 

responded positively to increased April temperature while those in the wet site showed the highest 

positive response to increased July moisture. As expected, average growth rates were highest in 

the wet site, indicating higher productivity under these conditions (Figure 2). However, the 

simulations also showed that under predicted drier summer conditions the growth response in the 

wet site could rapidly decline, curtailing any benefits conferred by warmer spring temperatures. 

Sites near bogs and intermittent wetlands are currently associated with high growth performance, 

but trees growing in these sites will likely lose their advantage under future predicted shifts in 

regional climate. 

As with most tree species, growth rates of P. banksiana can be strongly influenced by the 

availability of soil resources (Green and Grigal 1979; Hamilton and Krause 1985). My results 

revealed this trend in these sites. Individuals in the BOG had the largest average diameter by age, 

indicating consistently higher growth rates and overall productivity (Figure 2). The oldest 

individuals, in DRY 2, are just slightly smaller than those in the BOG, which is approximately 10 

years younger, whereas those in DRY 1 are the smallest albeit almost the same age. This indicates 

a gradient of productivity driven by site-specific access to additional resources which may be best 

explained by moisture availability during the growing season. Soil moisture has been shown to be 

a relatively accurate variable for predicting P. banksiana population productivity (Beland and 

Bergeron 1996); and, as my results show, it is essential for categorizing growth variation between 

these forest stands. 

Accounting for age and lag effects of previous growth are also critical variables in 

categorizing tree growth; these two factors contribute substantially to a tree’s physiological growth 

limits (Anderegg et al. 2015; Carrer et al. 2004; Szeicz and MacDonald 1994, 1995). Results from 

this analysis showed that increasing diameter had a statistically significant negative effect on the 
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growth of all individuals. This follows the well-established pattern that as trees age (increase in 

size) they allocate more energy towards storage and maintenance than to growth which can be 

represented linearly by log transforming the diameter (Cook et al. 1990). The positive trend shown 

from previous year’s growth illustrates how growth performance along consecutive years are 

related and should be included in tree growth models (Ibáñez et al. 2018). In this case, the positive 

association is likely a reflection of differential growth rates among trees, while the negative 

associations shown in other studies (Ogle et al. 2015; Peltier et al. 2016) are likely linked to the 

depletion of resources; i.e., after a year of high growth trees lack enough stored resources for 

extensive growth in the following year. 

Temperature is an important component for tree growth as it is a principal mediator for 

photosynthetic capacity (Berry and Bjorkman 1980). A positive response to increasing April 

temperatures was observed across all stands, which follows previous findings indicating that 

warmer spring temperatures correspond with a longer growing season and result in higher radial 

growth of P. banksiana (Genries et al. 2012; Subedi and Sharma 2013). Further, conifer species 

are likely better suited to take advantage of warmer conditions in the spring due to their evergreen 

foliage which allows for additional photosynthetic activity (Graumlich 1993). Although the 

responses were not statistically different, the slightly higher growth response in the BOG may be 

indicative of spring water constraints in the two dry sites, even in lieu of water availability from 

snowmelt. The region’s sandy soils drain rapidly and store relatively little water for advantageous 

plant growth. Although moisture levels in the BOG fluctuate widely over the growing season, they 

are much higher in the spring, a result of recent snowmelt accumulation and possibly lower 

drainage (Table 1). As April temperatures increase, these trees are potentially better situated to 

take advantage of the additional moisture. Our soil moisture measures were limited to two discrete 

times during one growing season and could be much improved by continuous monitoring over 

multiple growing seasons in order to more accurately detail the moisture environment trees are 

experiencing throughout the season. 

Water availability is crucial for the growth and performance of trees, although specific 

thresholds vary by species. Contrary to expectations, there was a mixed growth response to 

increasing summer moisture, measured by July PDSI. Because of the typically well-drained sandy 

conditions that P. banksiana are found, we decided to use PDSI as a measure of relative moisture 
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as it accounts for both temperature and precipitation (Palmer 1965). Growth in the BOG site was 

positively affected by increasing moisture, whereas the responses in the two dry sites varied 

between being positive, but less strong than the BOG, and not significant (Figure 4). It may seem 

surprising that a stronger, uniformly positive response to increased summer moisture is not present 

given that water availability can limit tree growth (Brzostek et al. 2014). But, a relatively weak 

signal between growing season moisture and P. banksiana growth has been proposed and reported 

on multiple occasions (Despland and Houle, 1997; Dietrich et al. 2016; Hofgaard et al. 1999; 

Huang et al. 2010). However, the responses along the temperate-boreal boundary can range widely 

across a gradient of interacting effects between temperature and moisture availability (Foster et al. 

2016).  

Identifying the growth response to fluctuating climatic conditions was the main goal of this 

study and allowed us to gather the information necessary to predict growth performance under 

future conditions. Climate in our study area is predicted to change in the future; expectations being 

that spring temperatures will increase between 0.9 - 3.3oC, with more variable summer moisture 

conditions, ranging from slightly wet to extremely dry (Handler et al. 2014). The simulations we 

ran with the predicted conditions showed a slight decline in growth in the two DRY sites and a 

substantial decline in the BOG site. While individuals in the BOG are currently experiencing 

higher growth performance, our predictions show that they may be most affected under future 

drought conditions.  

Local adaptations to drought have been explained within wide-ranging species by wood 

hydraulic traits and stomatal regulation, a combination of which elucidate the variation recorded 

in drought responses of a related conifer - Pinus contorta – as a function of latitude and local 

conditions (Isaac-Renton et al. 2018; O’Neill et al. 2008). The individuals examined during this 

study were either planted (BOG) or naturally regenerated (DRY sites), thus we are not assuming 

adaptation, but rather, acclimation to the conditions that the trees are growing under (Peltier and 

Ibáñez 2015; Tjoelker et al. 2009). Most likely, individuals in the two DRY sites have acclimated 

to their drier locations. Due to the excessively drained sandy soils and similar climate, the recorded 

responses may be attributed to stomatal regulation, explaining the lower productivity in those sites 

(Isaac-Renton et al. 2018). Perhaps then, the more interesting result is the dynamic response to 

summer moisture in the BOG; where individuals take opportunistic advantage of higher moisture 
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during critical periods, but are also strongly affected by drought conditions. This may also partially 

explain the faster growth rates and larger, albeit younger, individuals observed on that site. Further 

investigation of xylem cellular structure, stomatal regulation, and measured performance of P. 

banksiana under controlled experimental transplant conditions would more clearly determine the 

physiological mechanisms driving variation between sites. Trees planted at the DRY sites, are 

likely to be growing under chronically sub-optimal soil moisture conditions, and their growth rates 

are adjusted to this water scarcity. Hence, the moisture variability between years is less palpable 

in their growth rates, as these are always low. 

This response is consistent with the explanation concerning the lower growth of individuals 

in the two dry sites. Similar results show that acclimation to drought stress may indicate higher 

drought tolerance but lower overall productivity (Montwé et al. 2016). Our predictions indicate 

that under anticipated drought conditions, acclimated individuals in the two dry sites will continue 

assimilating carbon at approximately the same rate as a result of adequate stomatal regulation. 

Contrarily, individuals in the BOG will experience a growth rate decline, equalizing rates with the 

dry sites, as a plastic response to restricted water availability. However, our simulations may have 

underestimated this effect as the duration of drought could have an even more pronounced negative 

impact on unacclimated individuals, depleting stored carbohydrates to maintain growth to the 

detriment of long-term survival (Mitchell et al. 2013). For managers, available sites near bogs and 

intermittent wetlands in Michigan’s northern lower peninsula will likely benefit growth yields for 

P. banksiana stands in the short term. While growth in these sites will continue to be as high or 

higher than those in the drier areas, we expect that the benefits gained from moister locations to 

quickly decline under predicted drier conditions. 

Understanding the physical factors that most substantially influence a tree population’s 

sensitivity to climate fluctuations is particularly important for the development of effective 

management strategies for economically and environmentally important tree species. Answers to 

our proposed questions seek to shed light about the long-term sustainability of P. banksiana 

populations and associated communities. Both Kirtland Warbler habitat and the lumber industry 

in the region rely on the successful and continual growth of P. banksiana. Managers seeking short 

term yield benefits may consider available sites near bogs and intermittent wetlands, but if outputs 

are based on current growth performance, the long-term success of such decisions is questionable 
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due to expected future conditions of summer moisture. Further, induced stress as a result of 

increased temperature and drier conditions has been shown to alter carbon dynamics and 

exacerbate the effects of drought (Adams et al. 2009). These unforeseen changes in the 

physiological response of trees, as well as the possible alteration of community composition, could 

have long-term negative impacts on this system and, therefore, highlight a need for future research. 

Site-specific conditions and season-specific climate predictions provide critical insight into the 

growth performance of P. banksiana, but understanding the distribution and diversity of 

physiological response and genetic adaptation to drought may provide a more comprehensive 

understanding of realistic limits, and species resilience, under prolonged drought conditions. 
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Table 1: List of forest sites sampled. Sampling sites were assessed and data collected in May 

and August 2018. Variable means and SD are reported. 

 

Site 

DNR 

Forest 

Stand 

Latitude/ 

Longitude 

Origin 

Year 

BA 

(100m2) 

Elevatio

n (m) 

Average 

Diameter 

Canopy 

Cover (%) 

Moisture (%) 

May August 

BOG 20 
44.6781° N 

84.7689° W 
1979 228.3 350-354 21.4 + 2.2 52.9 + 12.6 18.8 + 9.4 4.03 + 0.95 

DRY 1 29 
44.7342° N 

84.5086° W 
1968 319.7 368-375 16.2 + 2.2 52.0 + 9.9 10.7 + 2.1 6.7 + 1.4 

DRY 2 63 
44.7503° N 

84.5669° W 
1976 242.5 375-378 20.1 + 1.8 54.3 + 9.4   3.05 + 0.63 
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Figure 1: Location of the study area with selected forest sites within Crawford County, Michigan. 

The broader range of Jack Pine (Pinus banksiana) is highlighted in green (Little 1971). 
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Figure 2: Average growth for each tree per year within the three studied forest sites. Individuals 

in the BOG site had the highest observed growth rates indicating higher overall productivity. 
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Figure 3: Model results, goodness of fit (R2), comparing predicted vs observed growth. 
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Figure 4: Parameter estimates (mean + 95% CI) for the growth model showing the effects of April 

temperature and July PDSI on the growth of individuals within each of the three forest stands. 

Letters indicate statistically different coefficients between stands. Credible intervals that do not 

cross zero are considered statistically significant (shown with an asterisk). 
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Figure 5: Simulations of radial tree growth (mean - solid lines, and 95% predicted interval - dashed 

lines) under three fixed April temperatures (low: 1.5oC, medium: 7oC, and high: 14oC) and a 

gradient of July moisture (moist-to-dry) measured by July PDSI. Simulations showed that growth 

rates were negatively affected in all three stands under drier conditions, but more substantially in 

the BOG site (~32.8%) as opposed to the DRY 1 and DRY 2 sites (~2.4 and 18.9%, respectively). 
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Figure 6: Simulations of radial tree growth (mean - solid lines, and 95% predicted interval - dashed 

lines) under three fixed July PDSI values (moist: 3.0, intermediate: -1.0, and dry: -5.5) and a 

gradient of April temperature (cold-to-warm). Increasing April temperatures partially mediate the 

effect of drier July conditions. 
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Supplemental Information 

 

S1: Posterior parameter estimates, mean + SD and 95% credible intervals (CI) 

 

            Parameter                BOG             DRY 1              DRY 2 

A: Intersect of model 11.19 + 1.3 (8.94, 13.5) 0.87 + 0.23 (0.38,1.26) 2.0 + 0.28 (1.39, 2.52) 

β1: effect of Size on Growth (log) -3.61 + 0.41 (-4.35, -2.89) -0.27 + 0.08 (-0.42, -0.09) -0.59 + 0.09 (-0.75, -0.40) 

β2: lag effects of previous growth 0.41 + 0.05 (0.29, 0.52) 0.75 + 0.03 (0.7,0.8) 0.58 + 0.04 (0.51, 0.65) 

β3: effect of April temperature 0.07 + 0.01 (0.05, 0.09) 0.04 + 0.01 (0.03,0.06) 0.05 + 0.007 (0.04, 0.07) 

β4: effect of July PDSI 0.07 + 0.01 (0.04, 0.09) 0.004 + 0.01 (-0.02,0.03) 0.04 + 0.01 (0.02, 0.06) 

a: Intercept of standard deviation 

model (log) 
0.15 + 0.18 (7.8E-06, 0.58) 0.28 + 0.12 (5.91E-04,0.51) 0.92 + 0.12 (0.69, 1.16) 

b: effect of diameter on SD 0.02 + 0.06 (-0.13, 0.08) -0.01 + 0.05 (-0.1,0.1) -0.24 + 0.04 (-0.33, -0.16) 

ω1: weighted lag effect of growth 

(y-1) 
0.9 + 0.06 (0.77, 0.99) 0.96 + 0.03 (0.9, 1.0) 0.81 + 0.05 (0.71, 0.91) 

ω2: weighted lag effect of growth 

(y-2) 
0.1 + 0.06 (0.005,0.23) 0.03 + 0.03 (0.002, 0.1) 0.19 + 0.05 (0.09, 0.29) 

Results in bold indicate statistically significant covariate effects (95% CI does not intersect with zero) 
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S2: OpenBUGS Code 

 

model{ 

for(i in 1:86){ 

   for(y in (beg[i]+2):46){ 

 

      rg[i,y]~dnorm(R[i,y],tau0[i,y])#likelihood 

    rg.h[i,y]~dnorm(R[i,y],tau0[i,y])#predictions 

 

  R[i,y]<-alpha[i]+beta [1,i]*log(dbh[i,y])+beta[2,i]*(wG[stand[i],1]*rg[i,y-

1]+wG[stand[i],2]*rg[i,y-2])+beta[3,i]*Apriltemp[y]+beta[4,i]*Julypdsi[y] 

 

tau0[i,y]<-1/var0[i,y] 

var0[i,y]<-a[stand[i]]+b[stand[i]]*log(dbh[i,y]) 
} 

 

alpha[i]~dnorm(A[stand[i]],tau[1,stand[i]]) 

for(k in 1:4){ 

beta[k,i]~dnorm(B[k,stand[i]],tau[k+1,stand[i]]) 

} 

 

} 

 

#priors 

for(i in 1:3){ 

A[i]~dnorm(0,0.0001) 

a[i]~dlnorm(1,0.001) 

b[i]~dnorm(0,0.0001) 

for(k in 1:5){tau[k,i]~dgamma(0.0001,0.0001) 

var[k,i]<-1/tau[k,i] 

  } 

 

for(k in 1:4){B[k,i]~dnorm(0,0.0001)     } 

wG[i,1:2]~ddirich(wGm[i,]) 

 

for(k in 1:2){  

wGm[i,k]<-1 

} 

} 

 

}#end model 

 

 

 

 

 


