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ABSTRACT 

 

 Assessment of high-velocity impact resistance is necessary for light-weight structures that may 

be subjected to the impact loading conditions. Polymer matrix composites are one of the most 

commonly used materials in light weight applications. They are classified into various types based 

on the type of fibers, the quantity of fibers, the orientation of fibers, and type of matrix or resin 

used. The fibers that are generally preferred for the ballistic applications are aramid fibers, carbon 

fibers, and glass fibers. The objective of this research project is to study the ballistic properties of 

glass fiber thermoplastic and thermoset based woven polymer matrix composites using Shield 

Strand S ® / Epoxy, E-glass fibers / Polypropylene (Twintex ®) composites by spherical head and 

sharp nose projectiles. Composites were manufactured with a number of fiber layers using hand 

layup and compression method. Ballistic testing was performed with a single stage gas system, 

and impact velocities ranged between 50 m/s-180 m/s. After each test, impact velocity and impact 

energy was analyzed using a velocity sensor. Modes of failure and ballistic limit of the composites 

were investigated using high-speed cameras (APX-Photron) and digital image correlation, 

maximum transient out of plane displacements at each stage of impact and final back face 

displacement of the specimens after the impact were revealed. Finally, Analytical modeling was 

used to predict the ballistic limit of these composite materials. 
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CHAPTER 1 

INTRODUCTION 

1.1 Composites 

A composite can be defined as a material which is manufactured by combining two or more 

constituents. These materials exhibit better properties than the individual components alone. The 

primary reason for using composites is that they have high stiffness and superior strength when 

compared with metals and their alloys. The weight of composites is also less compared with them 

[1]. Composites can be either natural or artificial. Heavy loads or forces may damage the composite 

materials entirely, or they may ruin a few layers. This phenomenon is referred to as Delamination. 

Depending on the application of composite materials, to predict and prevent the failure, various 

mechanical tests are performed on them [2]. 

 

1.2 A Brief History of Composite Materials 

The first composite material was made by the Egyptians based on straw and mud for construction 

purposes. Wood and bamboo are a few examples of raw materials which were used by the ancient 

humans to make natural composites, also used those composites for the same purpose [2]. Around 

3400 B.C ancient Mesopotamians created plywood by gluing pieces of wood together. Later, in 

between 2181-2055 B.C, ancient Egyptians made a material called Cartonnage which contained 

linen covered with plaster material. Cartonnage was used as a source to make death masks and 

portraits as shown in Figure 1[3,4]. 
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Figure 1. Death mask made of cartonnage [4]. 

In 1500 B.C, people in Egypt and Mesopotamia used straws to reinforce boats and mud bricks. In 

1200 B.C, Mongols made archery bows by combining materials like bamboo, silk, cattle tendons 

and horns [5]. 

In the 1800s, builders experimented laminating the kraft papers with a natural resin called shellac 

to make paper laminate, In a period between 1870-1890, the first synthetic resins were created 

which could be converted from a liquid state to a solid state and included celluloid and melamine 

[5]. 

In the 19th century, plastics like vinyl polystyrene and polyester were developed [3]. In 1907, Leo 

Hedrick Backeland invented Bakelite ® which was used in the Rolls Royce in 1917. In the 1920’s, 

polymer resins were further developed. In the 1930’s, glass fibers were combined with polyester 

by the Owens Illinois Glass company, and the result was a durable and lightweight composite. The 

same company in 1942 used those composites in the manufacturing of boats [6]. 

 Between 1945-1948, during the period of World War-Ⅱ, fiber reinforced plastics were used for 

military applications figure 2 shows World War-Ⅱ military aircraft [6]. In the 1950’s, metal matrix 

composites gained reputation, and they were used in the U.S Navy and U.S Airforce. Advanced 

composites came into light in the 1960’s as they were made with high modulus whiskers and 

filaments. Later the whiskers were replaced with graphite fibers which provided significant 

advantages [7]. 
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Figure 2. World War-Ⅱ Military Aircraft [8]. 

In 1961, carbon fibers were commercially available in the market. By 1970 graphite fiber 

composites became notable. Kevlar® was also developed at the same time. In the 1980’s, military 

equipment was manufactured using aramids. Later, polyethylene and liquid crystal polymers 

replaced aramids since they also exhibited properties like good fatigue resistance, corrosion 

resistance and they were light in weight.  Nomex® and Teflon® were also invented in the same 

period [9]. First microfill composite was developed in the 1990s which was used to fill tooth 

cavities [10]. 

In the early 2000’s, Nanotechnology gained popularity and Carbon nanotubes were created during 

this period. Nanoparticles were mixed with fibers and resins which gave birth to new composites 

[7]. Until 2010, carbon and glass fiber reinforced plastics were the best source available and 

showed excellent performance, but they couldn’t meet the demands of future requirements. To 

overcome that situation, advanced composite materials continue to be developed and research is 

still pursued on them for further development [7]. 

 

1.3 Types of Materials 

1.3.1 Fibers 

Fibers are the primary reinforcing material in composite materials. Fibers possess high specific 

strength and stiffness. Properties of fiber layers vary with direction and orientation. Depending on 

applications or requirements, fiber layers are made in different types of weaves; for example, 

Twill, Satin and Plain weave, etc. Fibers are further classified as long fibers or continuous fibers, 

and short fibers [11]. 
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Glass Fibers 

Glass fibers are one of the most commonly type of reinforcement used in industrial applications 

and they exhibit good impact resistance. They are used in the manufacturing of structural 

composites. Glass fibers are manufactured by melting raw glass along with silica and other 

minerals in a furnace. After melting, these fibers are extruded from small orifices. The material 

obtained from these orifices is referred to as fiber strands. Individual strands are winded together 

to obtain Tows. Depending on the type of weaves required, rows and columns of tows are arranged. 

Fibers are also chopped if small fibers are desired. Glass fibers are classified into E(electrical) 

glass, S(strength) glass, C (chemical) glass, M (modulus) glass, A (alkali) glass, D (dielectric) 

glass, R glass, T glass, ECR glass for military applications R glass, T glass and S glass are used 

[11]. 

Carbon Fibers 

The major constituent of carbon fibers is carbon. Due to the strong covalent bond between the 

carbon atoms they exhibit high specific strength. Depending on the precursor material used, carbon 

fibers have been classified into four types. Precursor material can be defined as organic or 

inorganic compounds from which thin filaments or nanofibers are obtained. PAN-based carbon 

fibers contain acrylonitrile as the primary polymer and little content of other monomers which 

maintains oxidation. Depending on the type of pitch, carbon fibers are classified into isotropic 

pitch, mesophase pitch and anisotropic pitch. Vapor grown carbon fibers contain a minute amount 

of iron deposited on fibers due to pyrolysis of hydrocarbon gas. Cellulose-based carbon fibers were 

one of the oldest types carbon fibers. All the carbon fibers are manufactured using a standard 

technique which includes a high-temperature heat treatment with few changes or pretreatment in 

each method of manufacturing. For example, PAN method starts with the abstraction of fibers 

from wet spun followed by preheating between 200°C to 400°C and finally heated between 1500°C 

to 3000°C [12,13]. 

Aramid fibers 

Aramid fibers are the first organic material used as reinforcement for advanced composites with 

adequate tensile strength and modulus. They are classified into two types: meta-aramid fibers and 

para-aramid fibers. In meta-aramid fibers, the orientation of fibers is improper or randomly, 

whereas in para-aramid fibers the fibers are oriented in a pattern. Kevlar® is an example of meta-
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aramid fibers and Nomex® is an example of para-aramid fibers. The two methods used for 

manufacturing aramid fibers wet spinning and dry spinning processes. In the wet spinning process, 

the mixture of raw materials is spun through water or weak acid to remove inorganic salts whereas, 

in the dry spinning process, raw materials are spun directly which leaves inorganic salts in the 

material. Sulfuric acid is used as a solvent in both the methods and further operations like drawing 

and post curing are also performed. The wet spinning process is preferable for para-aramid fibers, 

and the dry spinning process is used to make weaker meta-aramid fibers. Aramid fibers provide 

excellent impact resistance, but tensile strength is decidedly less compared to glass and carbon 

fibers [14-16]. 

 

1.3.2 Matrix material 

Matrix acts as a continuous phase in a composite. It protects the fiber from physical attacks, 

chemical damages and it also transfers loads to the discontinuous phase in a composite. The matrix 

reduces crack development and cracks propagation. 

Thermoset Polymers 

Thermoset polymers contain long-chain polymers cross-linked in a three-dimensional pattern. 

They are manufactured in two phases In first phase polymerization of long-chain takes place, and 

in the second phase cross-links between the long chain polymers are formed. Unlike 

thermoplastics, in thermosets, curing takes place which cannot be reversed since the bonds 

between mere units are strong. Few thermosets can cure at room temperature, for example, epoxy 

and few thermosets require very high temperature for curing. Thermosets are stable at high 

temperatures. Typical thermosets are epoxies, polyesters, polyamides, silicones, aminos, alkyds, 

and phenolics [17]. 

Thermoplastic polymers 

Similar to thermosets, thermoplastic polymers contain long chained molecules but the bond 

strength between the molecules is lower. Hence, compared with thermoset polymers, thermoplastic 

polymers have lower strength and stiffness. Thermoplastics can be melted by heating beyond their 

glass transition temperature and can be fabricated into any required shape. In thermoplastics, the 

melting and solidification process can be reversed unlike thermosets, but repeated melting and 
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solidification leads to a reduction of properties. Examples of thermoplastics are polystyrene, PVC 

(Poly Vinyl Chloride), polystyrene, polypropylene, polyamides, polyesters, polycarbonates, 

polyethylene, polyimides, arycyclics, ABS(Acrylonitrile-Butadiene-Styrene), cellulosics and 

fluorocarbons [17]. 

 

1.4 Hybrid Composites 

 Research has shown that regular composite materials sometimes do not meet the desired demands 

which lead to the development of hybrid materials [18]. Hybrid composites consists of dissimilar 

materials. Properties of these composites depend upon the composition and the properties of 

individual materials which are used for fabrication [19]. Application of a hybrid composite depend 

on the mechanical, chemical and physical stability of the fibers and matrix system. 

Hybrid composites are classified into several types, these  

1)Tow by Tow composites 

  In tow by tow composites, the tows of different fibers are arranged randomly or in a regular way 

to make a hybrid fiber layer. 

2) Laminated composites 

In the laminated composites, fiber layers with different fiber orientations and distinct types are 

stacked together in the form of piles to obtain a single hybrid composite as shown in Figure 3.  

 

Figure 3. Laminated composites with different ply orientations and distinct fibers [20].  



   
 

7 
 

3) Sandwich composite  

In the Sandwich composites, a core material is sandwiched between two similar or dissimilar 

materials with a resin as shown in Figure 4. 

 

Figure 4. Honeycomb sandwich structures [21]. 

4) Mixed hybrid composite 

In the mixed hybrid composites, a variety of fibers are mixed randomly so that the fibers are 

distinct which can lead to improvement in mechanical properties as shown in Figure 5. 

 

Figure 5. Spread tow fabrics for ultralight composites [19]. 

5) Other types 

There are various types of other composites that are made by using reinforcing metals, ribs, wires 

or the combination of all the materials which are mentioned in either fibers or resins [23]. It was 

suggested that growth in the field of hybrid materials would solve the problems associated with 

manufacturing processes and reduces wastage [24]. Figure 6 shows steel wire mesh reinforced 

polyethylene composite pipe which is one of the example for the other types of hybrid composite 
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                       Figure 6. Steel wire mesh reinforced polyethylene composite pipe [23]. 

 

1.5 Advanced Composites for Military applications 

Composites have been used in defense applications since the 1950’s. They overcame the problems 

associated with using conventional materials individually [25]. Growing demands for better 

properties lead to the development of advanced composite materials. Advanced composites also 

play a vital role in the defense automotive and aviation industry. Latest military automotive and 

aviation applications use composite materials both for interior and exterior components [26]. 

Examples of combat aircraft and vehicles made of advanced composites include Boeing AH-64 

Apache, S-11, F-27 Boeing 787 Dreamliner, Airbus A400M, Boeing 787 Dreamliner, Komatsu 

D355A, C130, C17 and Foxhound [27].  

1.5.1 Polymer Matrix Composites 

A polymer matrix composite is a composite material made by combining fibers and polymer 

matrix [28,29]. Reinforced plastics are a combination of resins and fibers with low stiffness 

whereas the advanced composite materials are a combination of resins and fibers with high 

strength and stiffness [27]. Figure 7 shows polymer matrix composites made of short fibers, 

continuous fibers and particles. Polymer matrix composites usually contain a higher percentage of 

fibers compared to the matrix for better properties. Carbon, graphite, glass and aramids fibers are 

few types of fibers which are regularly used in polymer matrix composites. Depending on the 

requirement and application, the volume fraction of fibers and matrix changes. The polymer matrix 

can be either a thermoset or a thermoplastic polymer. Few examples of thermosets include 
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polyesters, epoxies, polyamides, etc. [27,29] whereas, thermoplastics include polyesters, 

polyphenylene, etc. Thermoplastics have high expectations in future applications they may replace 

epoxy resins which are currently used for regular applications [27,29]. Properties of a polymer 

matrix composite depend on the properties of fibers, the orientation of fibers, the percentage of 

fibers and properties of the matrix [28]. 

 

Figure 7. Polymer matrix composites of short fibers, continuous fibers, and particles [29]. 

 

1.6 Advantages and disadvantages associated with advanced Polymer Matrix Composites 

Advanced composite materials are gaining attention in the automotive, aviation, defense and 

sporting goods industries due to their additional advantages compared with metals, and 

conventional materials [30]. The advantages and disadvantages associated with advanced polymer 

matrix composite materials are: 

Advantages of Polymer Matrix Composites 

- Light in weight.  

- High tensile strength and fracture toughness.  

- Excellent corrosion resistance and can withstand extreme climatic conditions.  

- Possess good abrasion and puncture resistance.  

-Complicated shapes can be easily obtained from these composites.  

- Long service life and lower maintenance cost [28,31,32]. 
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Disadvantages of Polymer Matrix Composites 

- Low thermal resistance, low coefficient of expansion, at high-temperature, cracking takes places 

and debonding between fibers occurs [33,34]. 

- Require experts for mass production and the manufacturing process should be performed with 

extra safety.  

-Delamination occurs where the fiber layers are weakly bonded, and it is challenging to inspect 

the composite since complex inspection techniques are required. 

-Lower compression strength [31,32]. 

 

1.7 Applications of Polymer Matrix Composites 

Polymer matrix composites have been used for defense applications since the 1970s. Applications 

of polymer matrix composites are more significant compared with any other type advanced 

composite material. 

The general applications of polymer matrix composites include sporting goods, commercial 

aircrafts, construction, reciprocating equipment, helicopters, medical devices. 

Some special applications of PMC’s include: 

Space Applications: Space transportation systems, space stations. 

Military: Bioproduction, Air crafts, bulletproof materials, and tanks. 

Futuristic  applications: Rigid-rod molecules, oriented molecules, novel matrices structures, high-

temperature matrices [27]. 

Aerospace: Military aircraft, naval applications, automotive industry [27,33]. 

 

1.8 Requirements of composite materials for Defense Applications 

It has been observed that the materials used for defense applications have undergone several 

changes since the 1500’s until now. The main reason for development or changes in the materials 
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is to improve parameters like reduction in weight, cost, performance, defense, safety and life [34]. 

Designing, analysis, and manufacturing was a tough task in olden days, but with improvements in 

technology like CAD (Computer Aided Design) and CAE (Computer Aided Engineering) tools, 

the job became simple. Apart from the cost and weight of the composites, to design and 

manufacture a composite material for defense applications, the main parameters that are to be taken 

into consideration are [35]. Static tensile strength, stiffness, corrosion resistance, shear strength, 

fatigue resistance, fracture toughness, environmental resistance, compression strength, stability, 

low maintenance, easy to manufacture [36] and crashworthiness [37]. 

 

1.9 Summary 

There are many composites which are used in the manufacturing of materials required for regular 

applications. Polymer matrix composites are one of the most commonly used lightweight materials 

for Defense applications. Polymer matrix composites are advanced materials based on 

thermoplastic and thermosetting resins reinforced with synthetic fibers. The matrix ensures proper 

bonding between the fibers and acts as a load-bearing component. It also behaves as a medium 

that transfers the load to fibers. Due to thin layers of fibers, the weight of these polymer matrix 

composites is lower compared with traditional metals and few other composites. They also exhibit 

properties like excellent fatigue resistance and excellent impact resistance. These factors favor the 

main requirements of materials used for defense applications [29,38]. In industry, polymer matrix 

composites are manufactured using techniques like injection molding, compression molding, sheet 

forming, thermo stamping, filament winding, resin transfer molding, vacuum baggage, 

compression resin transfer molding, and autoclave [39].  
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CHAPTER 2 

LITERATURE REVIEW 

In an attempt to reduce the damage caused by a weapon, in 6th century for the first time, Persians 

and Greeks used linen layer clothes for protection. Later in the 9th-century people from Ellice and 

Gilber islands used coconut palm fibers to make protective layers on clothes.  Later animals hide 

in the form of layers were used by Chinese and Americans as body armor in that period. In 400 

BC Ukraine's developed chain mail armor. Taking it as reference, Romans introduced mail shirts. 

Brigandine armor (made of stacked metal plates in leather) was invented by the Greeks around 

500 B.C. Iron and steel were used in Brigandine armor. With modifications, metal plate armor 

trend continued for a long period [1]. In the 1500s, with advancement in weapon technology, metal 

plate armor could’nt satisfy the desired requirements of protection. In the 1800s, Japenese 

developed silk material which demonstrated good impact resistance, but the cost of material was 

expensive [2]. In 1898 British made the prototype of armored car with iron, by 1902 with 

modifications in materials, armored cars were available in the market [3]. In 1909, Military aircraft 

were made of aluminum, nickel, and titanium by the U.S.A. Later in the same century, those metals 

were replaced with Al-2024 and Al-7075 in the majority of defense aircraft’s [4]. In 1960s, new 

fibers were discovered which was proved to be ballistic resistant. Extending the work on those 

fibers, in 1970’s kevlar fibers were developed. By 1976 kevlar became the source that provides 

excellent ballistic resistance with less weight [1,2]. With the improvement in weapon technology, 

kevlar alone couldn’t meet the desired requirements. In order to overcome the difficulties 

associated with kevlar, hybrid and advanced composite materials were used. There are several 

advanced composites that are used for defense applications like MMC’s(Metal matrix composites), 

CMC’s(Ceramic matrix composites), PMC’s(Polymer matrix composites), FML(Fiber metal 

laminates), newly developing NHAF-X(Nano adaptive hybrid fabric), Central reinforced 

Aluminum, Spider silk fibers, Hybrid composite steel sheets etc [5,6]. 
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 There are many polymer matrix composites manufactured until this decade, but research is 

pursued on them to understand the performance and improve the properties.  Until now many tests 

have been performed on them altering the type of fibers, quantity of fiber layers, orientation of 

fibers and type of matrix or resin. High-velocity impact tests are generally performed using two 

apparatus which are Hopkinson bar setup and Gas gun technique. It is observed that in Hopkinson 

bar setup, shear stresses occurs at the gripping area, and the dimensions of specimens should be 

large for testing whereas newly developed Gas gun systems do not have these disadvantages. 

Force/displacement data can also be obtained from advanced Gas gun systems. They can be used 

to test specimens of various sizes, so they are much preferred for high-velocity impact testing [7].. 

H.L Gower and D.S Cronin studied the high-velocity impact behavior of kevlar 29 and kevlar 129 

with conical and spherical projectiles at velocities 130 m/s and 250 m/s, they observed that back 

face displacement of the specimen after the impact of kevlar 29 was more compared with kevlar 

129 [8]. Xie and Meng performed ballistic testing on carbon/carbon composites at high 

temperatures, they concluded that impact velocity plays a key role in impact resistance of specimen 

rather than the dimensions of projectile and in all conditions impact resistance increased with 

increase in temperature along with ballistic testing, they also performed tensile testing to determine 

the residual strength at high temperatures [9]. Moallemzadeh investigated high-velocity impact 

behavior of E-glass / Polyester under preloading (which includes a tensile load or compressive 

load or combination of both) with a spherical projectile at velocities ranging between 185 m/s – 

235 m/s and they observed that preloading has less effect on impact resistance of the specimens 

[10]. Higuchi and Obake in their work on high-velocity impact behavior on carbon fiber reinforced 

plastics showed various failure modes that can occur in PMC’s during ballistic testing [11]. 

Ramadhan and Abutalib studied Kevlar-29 / Epoxy composites high-velocity impact behavior with 

7.62 mm diameter steel cylindrical projectile at velocities ranging between 180 m/s-400 m/s and 

found that energy absorption increases with increase in velocity of projectile [12]. Alireza and 

Nargis investigated the properties of glass fiber reinforced polymers with a sharp tip projectile at 

velocities ranging between 80 m/s to 160 m/s and revealed composite wave propagation and the 

ballistic performance of woven and cross-ply composites based on E-glass. They found that woven 

composites had better impact resistance compared with cross ply composites [13].   
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Leman and Salman studied the high-velocity impact behavior of the combination of Kenaf / 

Kevlar- 29 fibers and they stated that stacking of fiber layers with different fiber orientations 

affects impact resistance. They have concluded that few orders of stacking of fiber layers with 

different fiber orientations lead to a heavy loss in ballistic properties and few of them lead to 

improvement in properties [14]. Nakamura and Keiji observed independent damages and fan-

shaped delaminations in ballistic testing on carbon fiber reinforced plastics [15]. Gunnarsson and 

Ziemski performed ballistic testing on polycarbonate at velocities ranging from 50.1 m/s to 81.2 

m/s using digital image correlation to monitor the maximum back face displacement of the plates 

during the impact event [16]. Kaboglu and Mohagheghian investigated the high-velocity impact 

behavior of fiber metal laminates also using a digital image correlation system at velocities ranging 

from 116 m/s to 267 m/s in order to understand the full-field out-of-plane displacement, out-of-

plane displacement profile during loading and unloading and as well as central maximum out-of-

plane displacement of the material. They concluded that the energy absorption changes in FML’s 

with an increase in the number of metal and fiber layers [17].  

From the literature review, it is observed that impact resistance varies with the grade of fibers, 

dimensions of projectiles have no effect on impact resistance, but the shape of projectiles effects 

the impact resistance. Failure modes change with different impact energies. Plain weave as well 

as cross-ply weave have better high-velocity impact resistance. Digital image correlation technique 

was used to understand maximum out of plane displacement during an impact event. Considering 

the background review, this work mainly focuses on the ballistic testing of a different grade of 

glass fibers with distinct matrix and different projectiles at varying velocities to understand the 

mechanical properties and failure modes of the composite. 

 

Objectives 

The main objective of this research project is to study the ballistic properties of glass fiber 

thermoset and thermoplastic-based woven polymer matrix composites to understand their 

mechanical behavior so that they can be used in light weight structures that may be subjected to 

the impact loading conditions. Thermoplastic and thermoset based woven composites will be 

manufactured with a number of fiber layers using hand layup and compression method.  
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To study the ballistic properties of these composites, a single stage gas gun system a system will 

be used. Universal projectiles like sharp nose and the spherical head will be used for the ballistic 

testing. After each test, impact velocity and energy of the projectiles will be analyzed with a 

velocity sensor. Failure modes of the composites after each test will be studied, and  the ballistic 

limit of the specimens will be investigated. Using Digital Image Correlation, maximum transient 

out of plane displacements at all stages of impact and final back face displacement of the 

composites after the impact will be revealed. Analytical modeling will be performed to predict the 

ballistic limit of these composite materials. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURE 

3.1 Manufacturing of Composites 

In this research project, woven thermoset and thermoplastic-based composites shown in Figure 8 

were manufactured using Shield Strand S® glass fibers / Fiber glast epoxy [1,2] and E- glass 

fibers/polypropylene (Twintex®), TPP 60 1485 AF [3].  

Where, 

T: fabric 

PP: polypropylene matrix 

60: glass content in weight (%) 

1485: nominal weight (g/m²) 

AF: roving type  

For manufacturing both the composites, fiber layers were cut according to the mold size from its 

raw material (fabric rolls) which was obtained from the manufacturer. 

                                           

(a)                                                                          (b) 

Figure 8. Reinforcements used in this project based on (a) TPP  60 1485 E-glass fibers                         

and (b) Shield Strand S® fibers. 
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The number of fiber layers for manufacturing the composites were considered based on the 

thickness requirements. 

 

3.1.1 Manufacturing of Shield Strand S®/ Epoxy composites 

 In this research project, for both thermoplastic and thermoset based composites, the volume 

fraction of fibers is 60%, and the volume fraction of resin was 40%. After obtaining the total mass 

of fiber layers from the calculations, based on volume fraction, the amount of resin mixture 

required was estimated. Fiber glast epoxy resin 2000 and its respective curing agent or hardener 

(2060) were used in manufacturing of the thermoset composite material. Hardener acts as a catalyst 

that reduces the time taken for the fabrication of composite.  For the calculations, the predefined 

density of epoxy resin was considered, and with the help of volume estimated in calculations, the 

mass of resin mixture was established using density, mass and volume relationship. 

The epoxy and the hardener were mixed in a 3:1 ratio according to the recommendations given by 

the manufacturer To make the resin mixture, the epoxy was poured into measuring cup and 

weighed on a scale; adjustments were made with a spoon until the required quantity was present 

in the cup as shown in Figure 9. Similarly, curing agent was also poured in a new measuring cup 

and weighed on the scale as well until the required amount of curing agent was present. After the 

measurement, the curing agent was slowly poured into epoxy and adequately mixed with the help 

of a stick avoiding the formation of air bubbles. 

 

                               Figure 9. Epoxy resin mixture on a Digital weighing scale. 
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In order to prevent the composite from sticking to the mold, during manufacturing, it was coated 

with Teflon® sticker on the top plate, on the bottom plate and all sides of the mold. To provide 

additional resistance against sticking to the mold, Teflon® spray was also sprayed on all the sides 

and corners of the mold as shown in Figure 10.  

 

Figure 10. Aluminum mold with Teflon coating. 

A Carver hydraulic press shown in Figure 11 was used to apply pressure while curing the 

composite. Press contains two bolsters in which the mold was placed. The bolsters are connected 

to the threaded rods, with the help of lever at the bottom, lower bolster can be either moved up or 

down. A pressure gauge is located near the lever which shows the amount of pressure applied. The 

two Bolsters are connected to the power unit. The power unit helps to control the temperature of 

two bolsters. Depending on the curing temperature of the resin mixture which is recommended, 

the temperature was adjusted in the power unit, and the two bolsters were preheated before placing 

the mold in hydraulic press. 
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Figure 11.  Carver hydraulic press. 

Fiber layers along with resin mixture were placed in the mold using hand lay-up method as shown 

in Figure 12. Here, layers of reinforcements were alternated with the epoxy resin and hand rolled 

to remove the excess resin and any air that could have been trapped. After the required number of 

fiber layers along with resin mixture in between them were stacked in the bottom plate of the mold, 

the top plate of the mold was placed. 

 

Figure 12. Hand layup method (Sheild Strand S® fibers with Epoxy resin). 

The mold was placed in the hydraulic press which was preheated to a temperature of 100°C and 

with the help of lever at the bottom, a pressure of 7 MPa was applied on the mold. The mold was 

left in the hydraulic press for one hour according to the manufacturer recommendations.  
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After curing, the knob at the bottom of the press was rotated in a clockwise direction to release the 

pressure, and the temperature control was switched off. The mold was left in the press until it 

attained room temperature. After this, it was taken out from the press, and the composite was 

extracted from the mold as shown in Figure 13. In order to remove the edges of manufactured 

composite as well as to cut the composite into required dimensions for testing, a Diamond coated 

cutter was used. 

 

Figure 13. Sheild Strand S ® / Epoxy composite. 

 

3.1.2 Manufacturing of  Twintex® composites 

TPP 160 1485 AF (Twintex®) it is a comingled prepreg. For manufacturing, The top plate and 

bottom plate of mold was coated with Teflon® stickers to prevent the composite from sticking to 

the mold and Teflon® spray was also sprayed at the edges and corners of the mold to make sure 

that composite doesn't get attached to the corners and sides of the mold. Depending on the 

thickness requirements, a number of fiber layers were placed in the bottom plate of the mold as 

shown in Figure 14. A thermocouple was used to monitor the temperature of composite. The wire 

of the thermocouple was placed in between the prepreg layers and, the top plate of the mold was 

closed followed by placing the mold in the preheated carver hydraulic press. The hydraulic press 

was preheated at 195°C. A pressure of 7 MPa was applied to the mold during melting and 

solidification.  
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When the thermocouple displayed temperature around 175°C, thermocouple wire was pulled out, 

and the power unit of the hydraulic press was switched off. The mold was left inside the press until 

it attained room temperature (20°C-25°C). When the mold reached the room temperature, the 

pressure of the press was released, and mold was taken out from the press followed by extraction 

of the composite from the mold.The final composite obtained is also shown in Figure 14.  

 

(a) 

 

(b) 

Figure 14. (a)  Prepreg method and (b) Twintex® composite. 
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3.2 Cutting of Composites 

In order to prepare specimens for testing, a diamond coated cutter [4] shown in Figure 15 was used 

for cutting and performing surface finishing operations on both the thermoplastic and thermoset 

based composites. To cut the composite, motor and laser guideway was switched ON, and the 

sliding table with composite secured on it was moved towards the cutter and when the composite 

was cut, the sliding table was pulled back followed by taking out the composite, similar procedure 

was followed for cutting all the composite specimens required for testing. 

 

Figure 15. Rigid 7 Inch Wet Tile Saw. 

For ballistic testing, all the specimens were cut into 100 mm x100 mm panels taking ASTM 7136-

M and ASTMD 8101 standards as reference [5,6]. 

 

3.3 Drilling  

In order to hold the composite specimens in the fixture for high-velocity impact testing, holes were 

made in them using a Mx8 solid carbide drill bit. Eight holes were drilled in each specimen so that 

it could be securedly fastened to the fixture with the help of bolts. Holes were drilled in a circular 

pattern provided by the fixture design.  
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To obtain the circular holes pattern,a Jet 690179 Jim-4vs-1 Mill shown in the Figure 16 was used. 

Here, a program was selected in the end mill to get the circular holes pattern. Specimens were 

clamped on the mill table with a set of toggle clamps, and holes were punched continuously as per 

the hole pattern  by the mill. 

 

Figure 16. Endmill drilling holes in composite speciemens. 

 

3.4 Design and Manufacturing of Projectiles 

In this research project, two types of projectiles will be used for high-velocity impact testing. The 

spherical head and sharp nose projectiles shown in Figure 17 were designed using CATIA V5 and 

fabricated using a Jet GHB-1340A geared head bench lathe. Projectiles were made from a stainless 

steel rod. The rear diameter of both the projectiles was 11.90 mm which was proposed according 

to the radius of gas gun barrel. 

The mass of Spherical head projectile was 23.6 grams 

The mass of Sharp nose projectile was 16.8 grams  
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(a) 

 

(b) 

Figure 17. Manufacturing of projectiles (a) Bench Lathe machining the projectile (b) Spherical 

head and Sharpnose Projectiles. 

 

3.5 Single stage gas gun Setup 

 In order to perform low-velocity, high-velocity impact testing, an in-house developed pneumatic 

system ( gas gun ) was used. The  single stage gas gun setup is shown in Figure 18. This system 

contains a compressor that is connected to a valve that is used to operate the air flow, The gas 

booster is used to increase the pressure of compressed air in the pressure chamber. The solenoid 
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valve controls the release of the air pressure required for the test.  A digital pressure meter was 

located near the solenoid valve displays the pressure inside the pressure chamber. Depending on 

the required velocity for the impact test, the pressure of compressed air inside the pressure chamber 

was adjusted using the valve. The system also includes a safety valve to release the excess amount 

of compressed air present in the pressure chamber. The solenoid valve is connected to a barrel with 

a length of approximately 1.82 m. The test specimens were clamped in the fixture prior to testing 

an placed in the impact chamber which prevents any damage to surroundings caused by the 

projectile during and after a test as shown in Figure 18. A velocity sensor was also placed in the 

impact chamber to detect the impact velocity of the projectile just before impact . Two APX-RS 

Photron high-speed cameras were placed at the back of the impact chamber to capture the impact 

test. A pair of high beam focusing 150W LED lights, and 250W lamps were placed close to the 

impact chamber to increase the brightness to be able to record the event as shown in Figure 18. 

 

 

(a) 
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(b) 

 

(c) 

Figure 18. Pictures of Single stage gas gun system and equipment of high-velocity impact testing 

(a) Impact chamber (b) Arrangement of high-speed cameras (c) Single stage gas gun system. 
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3.6 Photron Fastcam Viewer 

The Photron fast cam viewer is a software used for Photron APX-RS cameras (high-speed 

cameras). These cameras can capture 1-100,000 frames per second. They were connected to two 

control units, and these control units were connected to a system with the help of IEEE 391 cable. 

The two cameras are named as camera 1 and camera 2. Both camera 1  and camera 2 were located 

behind the impact test chamber. Camera 1 acts as the master camera and camera 2 acts as a slave 

camera. A 20 mm focal lens was used in the cameras. After connecting the two cameras to the 

computer, the control units was switched ON. Images of the specimen were observed in the 

software while focussing. A frame rate of  30,000 frames per second and a resolution of 256 x 256 

was used for all the tests in this project [7]. Apx photron high speed camera shown in Figure 19. 

 

Figure 19. Apx photron high speed camera. 

 

 3.7 E9800 MK2 Velocity Sensor 

The velocity with which the projectile hits the test specimen is referred to a impact velocity. Here, 

the impact velocity was measured using an E9800 MK2 velocity sensor shown in Figure 20. It 

contains a screen which displays the impact velocity and energy values in required units [8]. It 

works on a simple mechanism which is based on a distance and time relationship of the projectile.  
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Figure 20.  E9800 MK2 Velocity sensor. 

 

3.8 Impact Energy 

The impact energy of the projectiles was found using the velocity sensor. Here, the impact energy 

is given by  

Impact energy =
1

2
𝑚𝑣2 

where, 

m = Mass of the projectile 

v = Velocity of projectile 

 

3.9 Ballistic limit 

The ballistic limit can be defined as the velocity at which the projectile perforates through the 

material by at least 50% of the time. In other terms, at the velocity below the ballistic limit, the 

projectile doesn't pierce or perforate through the specimen. 
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3.10 Digital Image Correlation 

Digital image correlation is a non-contact type deformation measurement technique. DIC can be 

used to measure the displacement and time relationship which can be used to calculate strain [9]. 

Aramis V6-1.0.1-2 software was used [10]. Before taking the images for measuring the 

displacement, the cameras were calibarted. Depending on the dimensions of the specimen for 

which the deformation needs to be measured, the calibration panel was selected. In this project, 

the calibration panel used to calibrate the high-speed cameras was of  250 x 200 millimeters shown 

in Figure 21. 

 

Figure 21.  250 x 200 millimeters DIC calibration panel. 

After the calibration, the position of the cameras was readjusted to focus on the test specimen. A 

frame rate of 30,000 fps and a resolution of  256x256. “Trigger mode” was set to manual. To 

obtain the deformation data, specimens were spray painted with a unique speckle pattern. This 

pattern contained big dots of two coatings of black paint and two coatings of white paint 

alternatively as shown in Figure 22. 



   
 

35 
 

 

Figure 22. Speckle pattern. 

Specimens with the pattern were clamped in the fixture, and initially two images were captured 

before testing. These images were imported to the DIC software. The pretest was performed to 

ensure that the cameras were monitoring the target area shown in Figure 23. After the completion 

of the impact test, the required images were selected from the PFV software and were saved in 

“.Tiff ” format. The saved data was imported to DIC software. After the data was computed, an 

option in the software was selected to obtain displacement plot at all the stages. Stage points were 

set on the 3D deformation data to understand the change in displacement at various stages. A graph 

between Z displacement and stage was obtained from the software after completion of each test. 

 

Figure 23. Sample pretest results using DIC. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

4.1 Pressure and velocity relationship for the spherical head and sharp nose projectiles 

The objective of this research project is to investigate the ballistic properties of thermoplastic and 

thermoset based composite materials. High velocity impact testing was conducted using a single 

stage gas-gun with spherical head and sharp nose projectiles. First, to estimate the velocity of the 

projectile required for the test, the pressure and velocity calibration relationship was investigated. 

Spherical head and sharp nose projectiles were propelled under different pressures towards wood 

blocks placed in the impact chamber until the pressure vs velocity calibration relationship was 

established. It was noticed that for the spherical head projectile, the pressure required to attain 

certain velocity was higher than the pressure required to reach that velocity for the sharp nose 

projectile. Considering the pressure vs velocity relationship for the two projectiles are plotted in 

figures 24 and 25 

 

Figure 24. Pressure vs velocity relationship for the spherical head projectile. 
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Figure 25. Pressure vs velocity relationship for the sharp nose projectile. 

4.2 Ballistic Testing 

Once the pressure vs velocity calibration was established for both the projectiles, the high velocity 

impact response of the woven thermoplastic and thermoset composites was investigated using a 

single stage gas gun setup as shown in Figure 18. 

 A frame rate of 30,000 fps was used by the high speed camears during all the impact testing 

events. For all the composites which were tested, displacement vs strain stage graph were plotted 

where, each strain stage is approximately 0.000033 s. 

Impact velocities were increased until complete perforation of the specimens was achieved. 

Figure 26 shows the range of velocities used in the research study with a spherical head projectile. 

Included in the figure are the impact energies associated with impact event. 

 

Figure 26.  Impact velocities used to test the composites with the spherical head projectile. 
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Table 1 shows the summary of the results of the high velocity impact testing on the woven 

thermoplastic and thermoset composites using a spherical head projectile. 

 

Figure 27 shows the range of velocities used in the research study with a sharp nose projectile. 

Included in the figure are the impact energies associated with impact event. 

 

Figure 27. Impact velocities used to test composites with the sharp nose projectile. 
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Table 2 shows the summary of the results of the high velocity impact testing on the woven 

thermoplastic and thermoset composites using a sharp nose projectile. 

 

 

Figure 28 shows the relationship between impact velocity and maximum transient out of plane 

displacement for Twintex® based 2.5 mm thick composites impacted with the spherical head  and 

sharp nose projectile. At a velocity 93.86 m/s, Twintex® based 2.5 mm composite attained its 

ballistic limit  and when impacted with the sharpnose projectile, the composite reached its ballistic 

limit at a velocity of 92.1 m/s. 

 

Figure 28. The relationship between Maximum displacement and Impact velocity for Twintex® 

2.5 mm thick composites impacted with the spherical head projectile and sharpnose projectile 
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Figure 29 shows the relationship between impact velocities and maximum transient out of plane 

displacements for Twintex® 4.5mm thick composites impacted with the spherical head projectile 

and the sharp nose projectile. At a velocity 107.8 m/s, composite attained its ballistic limit and 

when impacted with the sharpnose projectile, the composite reached its ballistic limit at a velocity 

of 103.25 m/s.  

 

Figure 29. The relationship between Maximum displacement and Impact velocity for Twintex® 

4.5 mm thick composites impacted with the spherical head projectile and sharp nose projectile. 

From the figures 28 and 29, it is evident the maximum out of plane displacement is more when the 

Twintex® composites were impacted with the spherical head projectile.  

 

Figure 30 shows the relationship between impact velocities and maximum transient out of plane 

displacements for Shield Strand S ®/ Epoxy based 2.5 mm thick composites impacted with the 

spherical head projectile and the sharp nose projectile. At a velocity 118.5 m/s, Shield Strand S ®/ 

Epoxy based 2.5 mm thick composite attained its ballistic limit and when impacted with the 

sharpnose projectile, the composite reached its ballistic limit at a velocity of 125.1 m/s. 
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Figure 30. The relationship between Maximum displacement and Impact velocity for Shield 

Strand S ®/ Epoxy based 2.5 mm thick composites impacted with the spherical head and sharp 

nose projectile. 

 

Figure 31 shows the relationship between impact velocities and maximum transient out of plane 

displacements for Shield Strand S ®/ Epoxy based 4.5 mm thick composites impacted with the 

spherical head projectile and the sharp nose projectile. At a velocity 164.5 m/s, Shield Strand S ®/ 

Epoxy based 4.5 mm thick composite attained its ballistic limit and when impacted with the 

sharpnose projectile, the composite reached its ballistic limit at a velocity of 173.4 m/s.  

 

Figure 31. The relationship between Maximum displacement and Impact velocity for Shield 

Strand S® / Epoxy 4.5 mm thick composites impacted with the spherical head projectile and 

sharp nose projectile. 
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From figures 30 and 31, it is also evident that the maximum out of plane displacement is more 

when composites were impacted with the spherical head projectile. Maximum out of plane 

displacement is less in Shield Strand S® / Epoxy based composites when compared to Twintex® 

composites and it is also fascinating to note that Shield Strand S® / Epoxy 2.5 mm thick 

composites and Twintex® 4.5 mm thick composites showed approximately same maximum out 

of plane displacement at same velocities when impacted with both the projectiles even though 

Twintex® 4.5 mm thick composites has less impact resistance compared to the Shield Strand S® 

/ Epoxy 2.5 mm thick composites. 

 In order to get a better understanding of the mechanical behavior of the woven thermoplastic and 

thermoset composite materials when subjected to high velocity impact loading conditions a 

detailed examination will be presented. First results will be given for the 2.5 mm thick Twintex® 

based composites impacted with spherical head and sharp nose projectile. Then experimental 

results for the 2.5 mm thick Shield Strand S® / Epoxy based composites impacted also with 

spherical and sharp nose projectile will be detailed. Following this experimental results will be 

offered for the 4.5 mm thick thermoplastic and thermoset based composites subjected to high 

velocity impact testing with spherical head and sharp nose projectiles. 

 

4.2.1 Impact behaviour of Twintex® 2.5 mm thick composites with the Spherical head 

projectile 

Figure 32 shows the low magnification optical images of the Twintex® based 2.5 mm thick 

specimen impacted with the spherical head projectile at a velocity of 67.28 m/s. It is observed that 

on the side of impact there are multiple slits with no signs of major damages. On the opposite side, 

no damage is evident. 
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Figure 32. Twintex® based 2.5 mm thick composite impacted at a velocity of 67.28 m/s with the 

spherical head projectile. 

 

Figure 33 shows the variation of the maximum transient out-of-plane displacement with stage time 

for the specimen illustrated in Figure 32. In this case, the maximum out of plane displacement was 

close to 11.14 mm. Vibrations are noticed which depicts that specimen had absorbed most of the 

impact energy of the spherical head projectile without showing signs of major damage. 
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Figure 33. Displacement vs Stage graph of Twintex® based 2.5 mm thick composite impacted at 

velocity 67.28  m/s with the spherical head projectile. 

 

Figure 34 shows some deformation stages representing the impact event on the 2.5 mm thick 

Twintex® based composites tested at a velocity of  67.28 m/s with the spherical head projectile. 

From the figure, it is evident how the out-of-plane deformation increased until the maximum 

transient out-of-plane displacement was reached in stage 29 with a value of 11.14 mm. Following 

this, the displacement decreased in stage 41 with the final displacement taking a value close to 4.5 

mm in the region of impact. 
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                            Stage 22                                                             Satge 29 

                                          

                          Stage 41                                                               Stage 100 

Figure 34. 3D deformation stages of Twintex® based 2.5 mm thick composite impacted at a 

velocity of 67.28 m/s with the spherical head projectile. 

 

Figure 35 shows the low magnification optical images of the Twintex® based 2.5 mm thick 

specimen impacted with the spherical head projectile at a velocity of 76.12 m/s. From the figure, 

it is evident that on the point of contact of the projectile,  there are multiple splits due to matrix 

cracking and on the opposite side no signs of damage are observed because the amount of impact 

energy is less to fracture or damage the material completely. 
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Figure 35. Twintex® based 2.5 mm thick composite impacted at a velocity of 76.12 m/s with the 

spherical head projectile. 

 

Figure 36  shows the variation of the maximum transient out-of-plane displacement with stage 

time for the specimen illustrated in Figure 29 . For this case, the maximum out of plane 

displacement was measured as 14.5 mm. 
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Figure 36. Displacement vs Stage graph of Twintex® based 2.5 mm thick composite impacted at 

velocity 76.12 m/s with the spherical head projectile. 

 

Figure 37 shows some deformation stages representing the impact event on the 2.5 mm thick 

Twintex® based composites tested at a velocity of  76.12 m/s with the spherical head projectile. 

From the figure, it is evident how the out-of-plane deformation increased until the maximum 

transient out-of-plane displacement was reached in stage 35 with a value of 14.5 mm. Following 

this, the displacement decreased in stage 46 with the final displacement taking a value close to 

10.50 mm in the region of impact.  
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                                    Stage 25                                                         Stage 35                                       

                                

                                Stage 46                                                                Stage 104           

Figure 37. 3D deformation stages of Twintex® based 2.5 mm thick composite impacted at a 

velocity of 76.12 m/s with the spherical head projectile. 

 

Figure 38 shows the Impact behavior of the Twintex® based 2.5 mm thick specimen impacted 

with a spherical head projectile at a velocity of 83.78 m/s. From the figure, it is observed that there 

are multiple splits near the point of impact due to matrix cracking and a small amount of fiber 

ruptures at the point of impact are noticed. On the opposite side, a small fiber rupture is evident.  
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Figure 38. Twintex® based 2.5 mm composite impacted at a velocity of 83.78 m/s with the 

spherical head projectile. 

 

Figure 39 shows the variation of the maximum transient out-of-plane displacement with stage time 

for the specimen illustrated in Figure 29. Here, the maximum out of plane transient displacement 

is 17.2 mm which increased by 2.65 mm compared with the previous specimen which was 

impacted with a velocity of 76.12m/s. Final displacement was around 12 mm at the point of impact. 
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Figure 39. Displacement vs stage graph of Twintex® based 2.5 mm thick composite impacted at 

velocity 83.78 m/s with the spherical head projectile. 

 

Figure 40 shows a number of deformation stages representing the impact event on the 2.5 mm 

thick Twintex® based composites tested at a velocity of  83.78 m/s with a spherical head projectile. 

From the figure, it is evident how the out-of-plane deformation increased until the maximum 

transient out-of-plane displacement was reached in stage 82 with a value of 17.2 mm. Following 

this, the displacement decreased in stage 93 with the final displacement taking a value close to 12 

mm in the region of impact. 
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                        Stage 73                                                                   Stage 82                                        

                                    

                              Stage 93                                                             Stage 130 

Figure 40. 3D deformation stages of Twintex® 2.5 mm thick composite tested at velocity 83.78 

m/s with the spherical head projectile. 

 

Figure 41 shows the impact behavior of the Twintex® based 2.5 mm thick specimen impacted 

with a spherical head projectile at a velocity of 93.86 m/s. At this velocity the woven composite 

reached its ballistic limit which lead to the projectile through the specimen. At the region of contact 

of the projectile, there are multiple splits due to matrix cracking and minute fiber ruptures. At the 

point of the contact of the projectile, fiber ruptures are evident. On the opposite side, fiber ruptures 

and fiber pull outs are noticed at and near the point of impact. This mode of failure of composite 

resembles petaling failure since the tensile strength of the composite was exceded. Figure 41 

includes a number of optical micrograph of the section of the speimen as well as image of the 

impact event obtained from the high speed cameras. 
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(a) 

                                                           

(b) 
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(c) 

Figure 41. (a)  Twintex® 2.5 mm composite impacted at a velocity of 93.86 m/s with the 

spherical head projectile (b) High speed camera image (c) Section of  impacted composite.  

 

4.2.2 Impact behavior of Sheild Strand S® / Epoxy 2.5 mm thick composites with the 

Spherical head projectile 

Figure 42 shows the low magnification optical images Shield Strand S®/epoxy based 2.5 mm thick 

specimen impacted with the spherical head projectile at a velocity of 74.32 m/s. From the figure, 

it is evident that there is a negligible amount of damage at the region and point of contact of the 

projectile along with minute delamination. On the opposite side, no signs of damages were 

observed. The reason for not showing any signs of damage is because the specimen absorbed the 

total impact energy of the projectile. 
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Figure 42.  Shield Strand S® / Epoxy based 2.5 mm composite impacted at a  velocity of 74.32 

m/s with spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen is presented in 

Figure 43. In this case, the maximum out-of-plane displacement reached a value of 8.81 mm. 

Figure 43  also highlights some deformations and vibrations associated with the impact waves after 

the impact event.  
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Figure 43. Displacement vs Stage graph of Shield Strand S® / Epoxy based 2.5 mm thick 

composite impacted at velocity 74.32 m/s with the spherical head projectile. 

 

Figure 44 shows a number of deformation stages representing the impact event on the Shield 

Strand S / Epoxy based 2.5 mm thick composite tested at a velocity of 74.32 m/s with a spherical 

head projectile. From the figure, it is evident how the out-of-plane deformation increased until a 

value of 8.81 mm was reached. Following this, the displacement decreased as shown in stage 88. 

The final displacement was close to 4.00 mm at the point of impact. 
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                     Stage 58                                                                            Stage 63                                 

                                             

                       Stage 88                                                                          Stage 184                                                                                                           

Figure 44.  3D deformation stages of Shield Strand S® / Epoxy based 2.5 mm thick composite 

impacted at velocity 74.32 m/s with the spherical head projectile. 

 

Figure 45 shows the low magnification optical images oof Shield Strand S® / Epoxy based 2.5 

mm thick specimen impacted with the spherical head projectile at a velocity of 88.40 m/s. From 

the figure, a minute amount of delaminations and fiber ruptures are noticed at region and point of 

contact of the projectile. In the opposite side, no damages are observed. Delamination occurred in 

the top layer of the specimen because it absorbed most of the impact energy of the projectile before 

transferring the energy to the other layers. 
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Figure 45. Shield Strand S® / Epoxy based 2.5 mm composite impacted at the velocity of 88.40 

m/s with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for the specimen is presented 

in Figure 46. In this case, the maximum out-of-plane displacement reached a value of 11.2 mm. 

Here, a vibration associated with the impact wave is evident. Due to damage done to the top layer 

of impact, the number of  impact waves were reduced compared to the same specimen impacted 

at a velocity of 74.32 m/s.  
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Figure 46. Displacement vs Stage graph of Shield Strand S® / Epoxy based 2.5 mm thick 

composite impacted at velocity 88.40 m/s with the spherical head projectile. 

 

Figure 47 shows a number of deformation stages representing the impact event on the Shield 

Strand S® / Epoxy based 2.5 mm thick composite tested at a velocity of 88.40 m/s with the 

spherical head projectile. From the figure, it is evident how the out-of-plane deformation increased 

until a value of 11.2 mm was reached. Following this, the displacement decreased as shown in 

stage 56. The final displacement was close to 4.50 mm at the point of impact. Partial deformation 

data in stage 22 could not be captured due to the reflection of lights when it deformed. 

 



   
 

60 
 

                                   

                   Stage 22                                                                                Stage 27                                  

                                         

                    Stage 56                                                                            Stage 120 

Figure 47. 3D deformation stages of Shield Strand S® / Epoxy based 2.5 mm thick composite 

impacted at velocity 88.40 m/s with the spherical head projectile. 

 

Figure 48 shows the low magnification optical images of Shield Strand S®/epoxy based 2.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 94.20 m/s. From the 

figure, it is observed that there are small fiber ruptures at the area of impact along with 

delamination in the top layer, whereas on the opposite side, minute fiber ruptures are evident. This 

impact velocity is close to the ballistic limit impact velocity of the Twintex® based 2.5 mm thick 

specimen impacted with the spherical head projectile.  
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Figure 48. Shield Strand S ®/ Epoxy based 2.5 mm composite impacted at the velocity of 94.20 

m/s with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 49. In this case, the maximum out-of-plane displacement reached a value of 12.01 mm.  
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Figure 49. Displacement vs Stage graph of Shield Strand S® / Epoxy based 2.5 mm thick 

composite impacted at velocity 94.20 m/s with the spherical head projectile. 

 

Figure 50 shows some deformation stages representing the impact event on the Shield Strand S® 

/ Epoxy based 2.5 mm thick composite tested at a velocity of 105 m/s with the spherical head 

projectile. From the figure, it is evident how the out-of-plane deformation increased until a value 

of 12.00 mm was reached. Following this, the displacement decreased as shown in stage 66. The 

final displacement was close to 6.5 mm at the point of impact.  
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                   Stage 29                                                                                  Stage 36                                        

                                                                                      

                         Stage 66                                                                         Stage 119 

Figure 50. 3D deformation stages of Shield Strand S ®/ Epoxy based 2.5 mm thick composite 

impacted at a velocity 94.20 m/s with the spherical head projectile. 

 

Figure 51 shows the low magnification optical images of Shield Strand S®/epoxy based 2.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 101.54 m/s. From the 

figure, it is evident that there are minute fiber ruptures and delamination on the region of impact 

of the projectile. It is noticed that with an increase in the impact velocity, the amount of 

delamination in the top layer increased. On the speckle pattern side, at the point of contact of the 

projectile and a few areas in the same region, fiber ruptures are observed.  
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Figure 51. Shield Strand S® / Epoxy based 2.5 mm thick composite impacted at a velocity of 

101.54 m/s with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 52. In this case, the maximum out-of-plane displacement reached a value of 13.63 mm. 

Here, a vibration associated with the impact wave is evident. In this case, the number of impact 

waves reduced due to the energy absorbing capacity of the specimen.  
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Figure 52. Displacement vs Stage graph of Shield Strand S® / Epoxy based 2.5 mm thick 

composite impacted at velocity 101.54 m/s with the spherical head projectile. 

 

Figure 53 shows a number of deformation stages representing the impact event on the Shield 

Strand S® / Epoxy based 2.5 mm thick composite tested at a velocity of 94.20 m/s with the 

spherical head projectile. From the figure, it is evident how the out-of-plane deformation increased 

until a value of 13.63 mm was reached. Following this, the displacement decreased as shown in 

stage 142. The final displacement was close to 5.50 mm at the point of impact. 
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                      Stage 117                                                                          Stage 125                                                                                                                

                                                                                                                           

                   Stage 142                                                                               Stage 190 

Figure 53. 3D deformation stages of Shield Strand S® / Epoxy 2.5 mm thick composite tested at 

velocity 101.54 m/s with the Spherical head projectile. 

 

Figure 54 shows the low magnification optical images of Shield Strand S®/Epoxy based 2.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 105 m/s. From the 

figure, it is evident that on the point of contact of the projectile, delamination occurred and minute 

matrix cracks are noticed on the area of impact. On the opposite side, minute fiber ruptures are 

present on the point of contact of the projectile along with minute matrix cracks at the area of 

impact. 
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Figure 54. Shield Strand S ®/ Epoxy based 2.5 mm composite impacted at a velocity of 105 m/s 

with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 55. In this case, the maximum out-of-plane displacement reached a value of 15.60 mm. 

Similar to the thermoset based 2.5 mm thick specimen impacted at 94.20 m/s, a vibration 

associated with the impact wave is evident. 
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Figure 55. Displacement vs Stage graph of Shield Strand S ®/ Epoxy based 2.5 mm thick 

composite impacted at a velocity 105 m/s with the spherical head projectile. 

 

Figure 56 shows a number of deformation stages representing the impact event on the Shield 

Strand S ®/ Epoxy based 2.5 mm thick composite tested at a velocity of 101.54 m/s with the 

spherical head projectile. From the figure, it is evident how the out-of-plane deformation increased 

until a value of 15.60 mm was reached. Following this, the displacement decreased as shown in 

stage 95. The final displacement was close to 7.0 mm at the point of impact. 
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                             Stage 58                                                                            Stage 66                                     

                                           

                            Stage 95                                                                          Stage 150 

Figure 56. 3D deformation stages of Shield Strand S® / Epoxy based 2.5 mm thick composite 

impacted at velocity 105 m/s with the spherical head projectile. 

 

Figure 57 shows the low magnification optical images of Shield Strand S®/Epoxy based 2.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 118.5 m/s. At this 

velocity, specimen reached its ballistic limit. From the figure, at the region of impact of the 

projectile, star-shaped delamination is evident with signs of fiber ruptures at the point of impact. 

On the speckle pattern side, fiber ruptures are evident in the region of impact along with heavy 

fiber ruptures at the point of contact. Petaling failure mode is noticed as well as fragmentation was 
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visualized during the test. Figure 57 includes optical micrograph of the section of impacted 

specimen.             

                       

                                          

(a) 

 

(b) 

Figure 57. (a) Shield Strand S ®/ Epoxy based 2.5 mm thick composite impacted at a velocity of 

118.5 m/s with the spherical head projectile (b) Section of impacted composite. 

 

 



   
 

71 
 

4.2.3 Impact behavior of  Twintex® 4.5 mm thick composites with the Spherical head 

projectile 

Figure 58 shows the low magnification optical images of Twintex® based 4.5 mm thick specimen 

impacted with the spherical head projectile at a velocity of 60.91 m/s. It is evident that on the side 

and opposite side of impact, there are no signs of major damages and failure. 

                         

                       

Figure 58. Twintex® based 4.5 mm composite impacted at a velocity of 60.91 m/s with the 

spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for the specimen presented in 

Figure 59. Here, the maximum out-of-plane displacement reached a value of 7.91 mm. Figure 59  

also highlights a impact wave. Here, the amount of impact energy is less to cause major failure in 

material.  
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Figure 59. Displacement vs Stage graph of Twintex® based 4.5 mm thick composite impacted at 

velocity 60.91 m/s with the spherical head projectile. 

 

Figure 60 shows a number of deformation stages representing the impact event on the Twintex® 

based 4.5 mm thick composite tested at a velocity of 60.91 m/s with the spherical head projectile. 

From the figure, it is evident how the out-of-plane deformation increased until a value of 7.91 mm 

was reached in stage 64. Following this, the displacement decreased as shown in stage 94.  
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                                Stage 54                                                         Stage 64 

                                            

                                   Stage 94                                                       Stage 150 

Figure 60. 3D deformation stages of Twintex® based 4.5 mm thick composite impacted at a 

velocity 60.91 m/s with the spherical head projectile. 

 

Figure 61 shows the impact behavior Twintex® based 4.5 mm thick specimen impacted with the 

spherical head projectile at a velocity of 75.42 m/s. From the figure, it is evident that there are no 

signs of damage on the point and region of the impact as well as on the opposite side.  
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Figure 61. Twintex® based 4.5 mm composite impacted at a velocity of 75.42 m/s with the 

spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for the specimen presented in 

Figure 62. Here, the maximum out-of-plane displacement reached a value of 8.59 mm. Figure 56  

also highlights some impact waves remaining in the specimen after the impact event. 
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Figure 62. Displacement vs Stage graph of Twintex® based 4.5 mm thick composite impacted at 

velocity 75.42 m/s with the spherical head projectile. 

 

Figure 63 shows a number of deformation stages representing the impact event on the Twintex® 

based 4.5 mm thick composite tested at a velocity of 75.42 m/s with the spherical head projectile. 

From the figure, it is evident how the out-of-plane deformation increased until a value of 8.59 mm 

was reached. Following this, the displacement decreased as shown in stage 47. The final 

displacement was close to 4.00 mm at the point of impact.  
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                          Stage 27                                                                      Stage 33                                      

                                             

                            Stage 47                                                                     Stage 130 

Figure 63. 3D deformation stages of Twintex® based 4.5 mm thick composite impacted at a 

velocity 75.42 m/s with the spherical head projectile. 

 

Figure 64 shows the low magnification optical images of Twintex® based 4.5 mm thick specimen 

with the spherical head projectile at a velocity of 87.45 m/s. From the figure, it is noticed that on 

the point of contact of the projectile, minute splits, as well as signs of minute  matrix cracks are 

evident. On the opposite side, there are no signs of failure.            
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Figure 64. Twintex® based 4.5 mm composite impacted at a velocity of 87.45 m/s with the 

spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for the specimen presented in 

Figure 65. Here, the maximum out-of-plane displacement reached a value of 12.46 mm. Figure 65  

also highlights some impact waves. Here, it was noticed that the number of impact waves are less 

compared to the same composite when impacted at a velocity of 75.42 m/s. 
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Figure 65. Displacement vs Stage graph of Twintex® based 4.5 mm thick composite impacted at 

velocity 87.45 m/s with the spherical head projectile. 

 

Figure 66 shows a number of deformation stages representing the impact event on the Twintex® 

based 4.5 mm thick composite tested at a velocity of 87.45 m/s with the spherical head projectile. 

Here, it is evident how the out-of-plane deformation increased until a value of 12.46 mm was 

reached. Following this, the displacement decreased as shown in stage 40. The final displacement 

was close to 5.00 mm at the point of impact. 
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                      Stage 16                                                                         Stage 23                                                                                                                     

                       

                         Stage 40                                                              Stage 118 

Figure 66. 3D deformation stages of Twintex® based 4.5 mm thick composite impacted at 

velocity 87.45 m/s with the spherical head projectile. 

 

Figure 67 shows the impact behavior Twintex® based 4.5 mm thick specimen with the spherical 

head projectile at a velocity of 98.88 m/s. From the figure, it is noticed that there are minute fiber 

ruptures on the area of impact and on the opposite side, there are no signs of failure. 
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Figure 67. Twintex® based 4.5 mm composite impacted at a velocity of 98.88 m/s with the 

spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for the specimen is presented 

in Figure 68. Here, the maximum out-of-plane displacement reached a value of 13.80 mm. Figure 

68 also highlights a number of impact waves. 
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Figure 69. Displacement vs Stage graph of Twintex® based 4.5 mm thick composite impacted at 

velocity 98.88 m/s with the spherical head projectile. 

 

Figure 69 shows a number of deformation stages representing the impact event on the Twintex® 

based 4.5 mm thick composite tested at a velocity of 98.88 m/s with the spherical head projectile. 

Here, it is evident how the out-of-plane deformation increased until a value of 13.80 mm was 

reached. Following this, the displacement decreased as shown in stage 55. The final displacement 

was observed to be close to 6.00 mm at the point of impact. 
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                             Stage 28                                                                      Stage 35                                   

                                          

                          Stage 55                                                                            Stage 121 

Figure 69. 3D deformation stages of Twintex® based 4.5 mm thick composite impacted at a 

velocity 98.88 m/s with the spherical head projectile. 

 

Figure 70 shows the low magnification optical images of Twintex® based 4.5 mm thick specimen 

with the spherical head projectile at a velocity of 107.8 m/s. At this velocity, the specimen attained 

its ballistic limit. On the area of impact, minute ruptures and matrix cracking are evident along 

with fiber ruptures at the point of impact. On the speckle pattern side, at the point of impact fiber 

ruptures with petaling is observed along with minute fragmentation. Matrix cracks are also evident 

in a few areas on speckle pattern side. Figure 70 includes a optical micrograph of the section of 

the impacted specimen. 



   
 

83 
 

                                    

                                                

(a) 

 

(b) 

Figure 70. (a) Twintex based 4.5 mm composite impacted at a velocity of 107.8 m/s with the 

spherical head projectile (b) Section of impacted composite.   
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4.2.4 Impact behavior of  Shield Strand S® / Epoxy 4.5 mm thick composites with the 

Spherical head projectile 

Figure 71 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 79.35 m/s. At this 

velocity,  it was noticed that at the point of contact of the projectile plus (+) shaped delamination 

occurred with minute matrix cracks on the region of impact. On the speckle pattern side, there are 

no signs of damage. Plus shaped delamination indicates that the primary yarns absorbed the impact 

energy of the projectile.  

                       

                     

Figure 71. Shield Strand S® / Epoxy based 4.5 mm composite impacted at a velocity of 79.35 

m/s with the spherical head projectile. 
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The maximum transient out-of-plane displacement with stage time for the specimen is presented 

in Figure 72. Here, the maximum out-of-plane displacement reached a value of 7.74 mm.  A couple 

of impact waves are highlighted. It is interesting to notice that compared with the point of impact, 

the region near the point of impact took more damage. 

 

 

Figure 72. Displacement vs Stage graph of Shield Strand S® /Epoxy based 4.5 mm thick 

composite impacted at velocity 79.35 m/s with the spherical head projectile. 

 

Figure 73 shows many deformation stages representing the impact event on the Shield Strand S® 

/ Epoxy based 4.5 mm thick composite tested at a velocity of 79.35 m/s with the spherical head 

projectile. Here, it is evident how the out-of-plane deformation increased until a value of 7.74 mm 

was reached. Following this, the displacement decreased as shown in stage 63. The final 

displacement was observed to be close to 3.5 mm at the point of impact. 
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                           Stage 46                                                                        Stage 51                                  

                                            

                             Stage 63                                                                       Stage 100  

Figure 73. 3D deformation stages of Shield Strand S® / Epoxy  based 4.5 mm thick composite 

impacted at velocity 79.35 m/s with the spherical head projectile. 

 

Figure 74 shows the low magnification optical images of Shield Strand S ®/ Epoxy based 4.5 mm 

thick specimen with the spherical head projectile at a velocity of 91.58 m/s. At this velocity, similar 

to the previous thermoset based 4.5 mm thick specimen impacted with the spherical head 

projectile, plus shaped delamination is noticed near the point of contact of the projectile. Here, the 

plus-shaped delamination is more than the previous specimen. On the opposite side, there were no 

signs of failure. 
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Figure 74.  Shield Strand S® / Epoxy based 4.5 mm composite impacted at a velocity of 91.58 

m/s with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for this specimen is presented 

in Figure 75. Here, the maximum out-of-plane displacement reached a value of 8.8 mm.  A couple 

of impact waves are evident in the Displacement Z vs stage graph.  
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Figure 75.  Displacement vs Stage graph of Shield Strand S® / Epoxy based 4.5 mm thick 

composite impacted at velocity 91.58 m/s with the spherical head projectile. 

 

Figure 76 shows many deformation stages representing the impact event on the Shield Strand S® 

/ Epoxy based 4.5 mm thick composite tested at a velocity of 91.58 m/s with the spherical head 

projectile. Here, it is evident how the out-of-plane deformation increased until a value of 8.87 mm 

was reached. Following this, the displacement decreased as shown in stage 68. The final 

displacement was observed to be close to 4 mm at the point of impact. 

  

 

 

 



   
 

89 
 

                                            

                      Stage 45                                                                      Stage 51                                    

                                 

                          Stage 68                                                                  Stage 110 

Figure 76. 3D deformation stages of Shield Strand S® / Epoxy based 4.5 mm thick composite 

impacted at velocity 91.58 m/s with spherical head projectile. 

 

Figure 77 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 mm 

thick specimen with the spherical head projectile at a velocity of 103.7 m/s. From the figure,  plus 

shaped delamination is evident in the region of impact along with signs of matrix cracking. On the 

opposite side, signs of failure are not visible. 
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Figure 77. Shield Strand S®/ Epoxy 4.5 mm composite tested at a velocity of 103.7 m/s with the 

spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for this specimen is presented 

in Figure 78. Here, the maximum out-of-plane displacement reached a value of 10.72 mm.  

Multiple impact waves are highlighted in Dispalcement vs Stage graph. Here, it is interesting to 

observe that the number of  impact waves increased with increase in the projectile velocity 

whereas, for the Twintex based 4.5 mm thick specimens impacted with the spherical head 

projectile, the phenomenon was opposite.  

 



   
 

91 
 

 

Figure 78. Displacement vs Stage graph of Shield Strand S® / Epoxy based 4.5 mm thick 

composite impacted at a velocity 103.7 m/s with the spherical head projectile. 

 

Figure 79 shows some deformation stages representing the impact event on the Shield Strand S® 

/ Epoxy based 4.5 mm thick composite tested at a velocity of 103.7 m/s with the spherical head 

projectile. Here, it is evident how the out-of-plane deformation increased until a value of 10.72 

mm was reached. Following this, the displacement decreased as shown in stage 45. The final 

displacement was observed to be close to 4.5 mm at the point of impact. 
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                              Stage 25                                                               Stage 31                                           

                                               

                                Stage 45                                                          Stage 110 

Figure 79. 3D deformation stages of Shield Strand S® / Epoxy based  4.5 mm thick composite 

impacted at a velocity 103.7 m/s with the spherical head projectile. 

 

Figure 80 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 116.3 m/s. From the 

figure,  on the point of impact fiber ruptures are noticed along with heavy delamination and 

multiple matrix cracks in the region of impact. On the opposite side, no signs of damage are 

noticed.  
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Figure 80. Shield Strand S® / Epoxy based 4.5 mm composite impacted at  a velocity of 116.3 

m/s with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for this specimen is presented 

in Figure 81. Here, the maximum out-of-plane displacement reached a value of 11.88 mm. An 

impact wave is evident in Figure 81.  
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Figure 81. Displacement vs Stage graph of Shield Strand S® / Epoxy based 4.5 mm thick 

composite impacted at a velocity 116.3 m/s with the spherical head projectile. 

 

Figure 82 shows a number of deformation stages representing the impact event on the Shield 

Strand S® / Epxoy based 4.5 mm thick composite tested at a velocity of 116.3 m/s with the 

spherical head projectile. Here, it is evident how the out-of-plane deformation increased until a 

value of 11.8 mm was reached. Following this, the displacement decreased as shown in stage 49. 

The final displacement was observed to be close to 5.5 mm at the point of impact. 
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                         Stage 28                                                                  Stage 33                                         

                                        

                            Stage 49                                                             Stage 120 

Figure 82. 3D deformation stages of Shield Strand S® / Epoxy based 4.5 mm thick composite 

impacted at a velocity 116.3 m/s with the spherical head projectile. 

 

Figure 83 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 126.7 m/s. From the 

figure, delamination is evident in the region of impact along with matrix cracks and fiber ruptures 

which are visible in Figure 83. On the opposite side, delamination is noticed.    
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Figure 83.  Shield Strand S® / Epoxy based 4.5 mm composite impacted at a velocity of 126.7 

m/s with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for this specimen is presented 

in Figure 84. It is evident that the maximum out-of-plane displacement reached a value of 13.99 

mm.  An impact wave is visible in Figure 84.  
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Figure 84. Displacement vs Stage graph of Shield Strand S® / Epoxy based 4.5 mm thick 

composite impacted at avelocity 126.7 m/s with the spherical head projectile. 

 

Figure 85 shows a number of deformation stages representing the impact event on the Shield 

Strand S® / Epoxy based 4.5 mm thick composite tested at a velocity of 126.7 m/s with the 

spherical head projectile. From figure 79, it is evident how the out-of-plane deformation increased 

until a value of 13.99 mm was reached. Following this, the displacement decreased as shown in 

stage 62. The final displacement was observed to be close to 6.5 mm at the point of impact. 
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                                Stage 33                                                             Stage 41                                 

                                             

                             Stage 62                                                                  Stage 120 

Figure 85. 3D deformation stages of Shield Strand S® / Epoxy based 4.5 mm thick composite 

impacted at a velocity 126.7 m/s with the spherical head projectile. 

 

Figure 86 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 mm 

thick specimen with the spherical head projectile at a velocity of 144.8 m/s. From the figure, heavy 

fiber ruptures at point of impact are evident along with delamination and matrix cracking on the 

region of impact. On the opposite side, delamination is noticed.  
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Figure 86. Shield Strand S® / Epoxy based  4.5 mm composite impacted at a velocity of 144.8 

m/s with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for this specimen is presented 

in Figure 87. It is evident that the maximum out-of-plane displacement reached a value of 14.8 

mm.  Similar to the previous two thermoset based 4.5 mm thick specimens which are impacted at 

116.3 m/s and 126.7 m/s with the spherical head projectile, this specimen also demonstrated a an 

impact wave as shown in Figure 87.  
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Figure 87. Displacement vs Stage graph of Shield Strand S® / Epoxy based 4.5 mm thick 

composite impacted at velocity 144.8 m/s with the spherical head projectile. 

 

Figure 88 shows a number of deformation stages representing the impact event on the Shield 

Strand S® / Epxoy based 4.5 mm thick composite tested at a velocity of 144.8 m/s with the 

spherical head projectile. From Figure 88, it is evident how the out-of-plane deformation increased 

until a value of 14.88 mm was reached. Following this, the displacement decreased as shown in 

stage 64. From Figure 82,  final displacement was observed to be close to 8.00 mm at the point of 

impact. 
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                                Stage 36                                                            Stage 42                                         

                                              

                                Stage 64                                                              Stage 140 

Figure 88. 3D deformation stages of Shield Strand S® / Epoxy based 4.5 mm thick composite 

impacted at a velocity 144.8 m/s with the spherical head projectile. 

 

Figure 89 shows the low magnification optical images of  Shield Strand S® / Epoxy based 4.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 156.1 m/s. From the 

figure, heavy fiber ruptures at the point of impact are evident along with delamination and matrix 

cracking on the region of impact. On the opposite side, at the point of impact fiber ruptures, matrix 

cracks, petaling, as well as fragmentation are noticed. 
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Figure 89. Shield Strand S® / Epoxy based 4.5 mm composite impacted at a velocity of 156.1 

m/s with the spherical head projectile. 

 

The maximum transient out-of-plane displacement with stage time for the specimen is presented 

in Figure 90. It is evident that the maximum out-of-plane displacement reached a value of 15.63 

mm. Due to the partial perforation of the projectile through the specimen, no impact waves are 

evident in Figure 90. 
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Figure 90. Displacement vs Stage graph of Shield Strand S® / Epoxy based 4.5 mm thick 

composite impacted at a velocity 156.1 m/s with the spherical head projectile. 

 

Even though there are damages on the opposite side, fortunately, deformation stages are obtained. 

Figure 91 shows a number of deformation stages representing the impact event on the Shield 

Strand S® / Epxoy based 4.5 mm thick composite tested at a velocity of 156.1 m/s with the 

spherical head projectile. From  Figure 85, it is evident how the out-of-plane deformation increased 

until a value of 15.63 mm was reached. Following this, the displacement decreased as shown in 

stage 55. Due to the serrations in the curve, the final displacement value could not be estimated. 
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                        Stage 30                                                                         Stage 37                                       

                                                

                          Stage 55                                                                      Stage 110 

Figure 91. 3D deformation stages of Shield Strand S® / Epoxy based  4.5 mm thick composite 

impacted at a velocity 156.1 m/s with the spherical head projectile. 

 

Figure 92 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 mm 

thick specimen impacted with the spherical head projectile at a velocity of 164.5 m/s. At this 

velocity, the specimen attained its ballistic limit. On the point of contact of the projectile, heavy 

fiber ruptures are evident along with matrix cracking and delamination in the region of impact. On 

the speckle pattern side, fiber ruptures, petaling, matrix cracking, and delamination are noticed. 

Figure 92 includes a optical micrograph of the impacted specimen. 
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(a) 

 

(b) 

Figure 92. (a) Shield Strand S ®/ Epoxy based  4.5 mm thick composite impacted at a velocity of 

164.5 m/s with the spherical head projectile (b) Section of impacted composite. 
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4.2.5 Impact behavior of  Twintex® 2.5 mm composites with the Sharp nose projectile 

Figure 93 shows the low magnification optical images of the Twintex® based 2.5 mm thick 

specimen impacted with the sharp nose projectile at a velocity of 60.96 m/s. From the figure, it is 

evident that on the point of contact of the projectile, fiber ruptures are noticed along with matrix 

cracks near the point of impact. On the opposite side, fiber ruptures are present as shown in Figure 

93. 

                               

                            

Figure 93. Twintex® based  2.5 mm thick composite impacted at a velocity 60.96 m/s with the 

sharp nose projectile. 

 

Figure 94 shows the variation of the maximum transient out-of-plane displacement with stage time 

for the specimen illustrated in Figure 94. For this case, the maximum out of plane displacement 

was measured as 7.19 mm. Figure 88 also highlights a number of vibrations in stage 0 due to the 



   
 

107 
 

heavy fiber ruptures at the point of contact of the projectile. Multiple impact waves are also 

noticed. 

 

Figure 94. Displacement vs Stage graph of  Twintex® based 2.5 mm thick composite impacted 

at a velocity 60.96 m/s with the sharp nose projectile. 

 

Figure 95 shows a number of deformation stages representing the impact event on the 2.5 mm 

thick Twintex® based composites tested at a velocity of 60.96 m/s with the sharp nose projectile. 

From the figure, it is evident how the out-of-plane deformation increased until the maximum 

transient out-of-plane displacement was reached in stage 38 with a value of 7.1 mm. Following 

this, the displacement decreased in stage 67. Final displacement could not be accurately known, 

but approximately the value is close to 3.00 mm. 
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                           Stage 30                                                             Stage 38                                             

                                     

                            Stage 67                                                           Stage 140 

Figure 95. 3D deformation stage of Twintex® based 2.5 mm thick composite impacted at a 

velocity 60.96 m/s with the sharp nose projectile. 

 

Figure 96 shows the low magnification optical images of the Twintex® based 2.5 mm thick 

specimen impacted with the sharp nose projectile at a velocity of 71.22 m/s. From the figure, it is 

evident that on the point of contact of projectile, fiber ruptures were noticed along with matrix 

cracks near the point of impact. On the opposite side, fiber ruptures are present as well as petaling 

occurred as shown in Figure 96. 
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Figure 96. Twintex® based  2.5 mm thick composite impacted at a velocity 71.22 m/s with the 

sharp nose projectile. 

 

Figure 97 shows the variation of the maximum transient out-of-plane displacement with stage time 

for the specimen illustrated in Figure 96. For this case, the maximum out of plane displacement 

was measured as 7.74 mm. Figure 97 also highlights some vibrations in stage 0 due to the heavy 

fiber ruptures at the point of contact of the projectile. Unlike the previous thermoplastic based 2.5 

mm thick specimen which is impacted with velocity 60.96 m/s, there are a less impact waves. 
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Figure 97. Displacement vs Stage graph of  Twintex® based 2.5 mm thick composite impacted 

at a velocity 71.22 m/s with the sharp nose projectile. 

 

Figure 98 shows many deformation stages representing the impact event on the 2.5 mm thick 

Twintex® based composites tested at a velocity of 71.22 m/s with the sharp nose projectile. From 

the figure, it is evident how the out-of-plane deformation increased until the maximum transient 

out-of-plane displacement was reached in stage 51 with a value of 7.74 mm. Following this, the 

displacement decreased in stage 72. In this case as well, final displacement could not be accurately 

known, but approximately the value is close to 3.50 mm. 
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                         Stage 36                                                                        Stage 51                                                                                                                    

                                                     

                        Stage 72                                                                        Stage 200 

Figure 98. 3D deformation stage of Twintex® based 2.5 mm thick composite impacted  at a 

velocity 71.22 m/s with the sharp nose projectile. 

 

Figure 99 shows the low magnification optical images of the Twintex® based 2.5 mm thick 

specimen impacted with the sharp nose projectile at a velocity of 81.09 m/s. From the figure, it is 

evident that on the point of contact of the projectile, fiber ruptures were noticed along with matrix 

cracks near the point of impact. On the opposite side, heavy fiber ruptures are present with petaling.  
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Figure 99. Twintex® based 2.5 mm thick composite impacted at a velocity of 81.09 m/s with the 

sharp nose projectile. 

 

Figure 100 shows the variation of the maximum transient out-of-plane displacement with stage 

time for the specimen illustrated in Figure 99. For this case, the maximum out of plane 

displacement was measured as 12.64 mm. Figure 100 also highlights a number of vibrations in 

stage 0 due to the heavy fiber ruptures at the point of contact of the projectile, and multiple impact 

are also evident. 
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Figure 100. Displacement vs Stage graph of  Twintex® based  2.5 mm thick composite impacted 

at a velocity 81.09 m/s with the sharp nose projectile. 

 

Figure 101 shows a number of deformation stages representing the impact event on the 2.5 mm 

thick Twintex® based composites tested at a velocity of 81.09 m/s with sharp nose projectile. From 

the figure, it is evident how the out-of-plane deformation increased until the maximum transient 

out-of-plane displacement was reached in stage 103 with a value of 12.64 mm. Following this, the 

displacement decreased in stage 122. The final displacement value could not be estimated due to 

the heavy serrations in the plot as shown in Figure 101. 
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                                Stage 98                                                                 Stage 103                                     

                                                      

                               Stage 122                                                              Stage 300 

Figure 101.  3D deformation stage of Twintex®  based 2.5 mm thick composite impacted at a 

velocity of 81.09 m/s with the sharp nose projectile. 

 

Figure 102 shows the low magnification optical images of the Twintex® based 2.5 mm thick 

specimen impacted with the sharp nose projectile at a velocity of 92.1 m/s. At this velocity, 

specimen reached its ballistic limit. At the point of impact, fiber ruptures are evident along with 

matrix cracks near the point of impact. On the speckle pattern side, heavy fiber ruptures, as well 

as petaling, are noticed. Figure 102 includes a optical micrograph of the section of the impacted 

specimen as well as image of the impact event obtained from the high speed cameras. 
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(a) 

                                                               

     (b) 
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(c) 

Figure 102. (a) Twintex®  based 2.5 mm  thick composite impacted  at a velocity of 92.1 m/s 

with the sharp nose projectile (b) High speed camera image (c)Section of impacted composite. 

 

4.2.6 Impact behavior of  Twintex® 4.5 mm thick composites with the Sharp nose projectile 

Figure 103 shows the low magnification optical images of the Twintex® based 4.5 mm thick 

specimen impacted with the sharp nose projectile at a velocity of 58.07 m/s. Here, at the point of 

impact, fiber ruptures and matrix cracks are evident along with splitting of layers. On the speckle 

pattern side, minute fiber ruptures are noticed. 
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Figure 103. Twintex® based 4.5 mm thick composite tested at a velocity of 58.07 m/s with the 

sharp nose projectile. 

 

Figure 104 shows the variation of the maximum transient out-of-plane displacement with stage 

time for the specimen illustrated in Figure 103. Here, the maximum out of plane displacement was 

measured as 4.87 mm. No impact waves are evident for this specimen. 
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Figure 104. Displacement vs Stage graph of Twintex® based 4.5 mm thick composite impacted 

at a velocity 58.07 m/s with the sharp nose projectile. 

 

Figure 105 shows a number of deformation stages representing the impact event on the 4.5 mm 

thick Twintex® based composites tested at a velocity of 58.07 m/s with the sharp nose projectile. 

From the figure, it is evident how the out-of-plane deformation increased until the maximum 

transient out-of-plane displacement was reached in stage 11 with a value of 4.87 mm. Following 

this, the displacement decreased in stage 25. The final displacement took a value close to 2.8 mm. 
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                              Stage 3                                                               Stage 11                                      

                                                                                                                                                                                 

                          Stage 25                                                                     Stage 110 

Figure 105. 3D deformation stages of Twintex® based 4.5 mm thick composite impacted at a 

velocity of 58.07 m/s with the sharp nose projectile. 

 

Figure 106 shows the low magnification optical images of the Twintex® based 4.5 mm thick 

specimen with the sharp nose projectile at a velocity of 66.35 m/s. Here, at the point of impact, 

fiber ruptures and matrix cracks are evident along with splitting of layers. On the speckle pattern 

side, minute fiber ruptures, as well as fragmentation, were noticed. 
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Figure 106. Twintex based  4.5 mm composite impacted at a velocity of 66.35 m/s with the sharp 

nose projectile. 

 

Figure 107 shows the variation of the maximum transient out-of-plane displacement with stage 

time for the specimen illustrated in Figure 106. Here, the maximum out of plane displacement was 

measured as 6.924 mm. A couple of impact waves are evident in the plot as shown in Figure 107. 
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Figure 107. Displacement vs Stage graph of Twintex® based 4.5 mm thick composite impacted 

at a velocity 66.35 m/s with the sharp nose projectile. 

 

Figure 108 shows a number of deformation stages representing the impact event on the 4.5 mm 

thick Twintex® based composites tested at a velocity of 66.35 m/s with the sharp nose projectile. 

From the figure, it is evident how the out-of-plane deformation increased until the maximum 

transient out-of-plane displacement was reached in stage 51 with a value of 6.92 mm. Following 

this, the displacement decreased in stage 63. The final displacement took a value close to 3.7 mm. 
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                           Stage 40                                                                Stage 51                                   

                                                    

                           Stage 63                                                                  Stage 100 

Figure 108. 3D deformation stages of Twintex® based 4.5 mm thick composite impacted at a 

velocity 66.35 m/s with the sharp nose projectile. 

 

Figure 109 shows the low magnification optical images of the Twintex® based 4.5 mm thick 

specimen with the sharp nose projectile at a velocity of 74.29 m/s. Here, at the point of impact, 

fiber ruptures and matrix cracks are evident along with splitting of layers which is more compared 

with thermoplastic-based 4.5 mm thick specimen impacted at velocity 66.35 m/s with the sharp 

nose projectile. On the speckle pattern side, fiber ruptures and fragmentation are noticed. 
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Figure 109. Twintex® based 4.5 mm composite impacted at a velocity of 74.29 m/s with the 

sharp nose projectile.      

 

Figure 110 shows the variation of the maximum transient out-of-plane displacement with stage 

time for the specimen thermoplastic-based 4.5 mm thick specimen impacted with the sharp nose 

projectile at velocity 74.29 m/s. Here, the maximum out of plane displacement was measured as 

7.00 mm. Less number of impact waves are noticed in the displacement-stage plot. 
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Figure 110. Displacement vs Stage graph of Twintex® based  4.5 mm thick composite impacted 

at a velocity 74.29 m/s with the sharp nose projectile. 

 

Figure 111 shows a number of deformation stages representing the impact event on the 4.5 mm 

thick Twintex® based composites tested at a velocity of 74.2 m/s with the sharp nose projectile. 

From the figure, it is evident how the out-of-plane deformation increased until the maximum 

transient out-of-plane displacement was reached in stage 49 with a value of 7.00 mm. Following 

this, the displacement decreased in stage 62. The final displacement is close to 4.00 mm at the the 

plot at the point of impact. 
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                            Stage 41                                                               Stage 49                                         

                                                      

                             Stage 62                                                                Stage 178 

Figure 111. 3D deformation stage of Twintex® based 4.5 mm thick composite impacted at 

velocity 74.29 m/s with the sharp nose projectile. 

 

Figure 112 shows the low magnification optical images of of the Twintex® based 4.5 mm thick 

specimen impacted with the sharp nose projectile at a velocity of 93.77 m/s. Here, at the point of 

impact, fiber ruptures and matrix cracks are evident along with splitting of layers. On the speckle 

pattern side, fiber ruptures, fragmentation, and petaling are noticed. 
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Figure 112.  Twintex based 4.5 mm thick composite impacted at a velocity of 93.77 m/s with the 

sharp nose projectile. 

 

Figure 113 shows the variation of the maximum transient out-of-plane displacement with stage 

time for the specimen thermoplastic based 4.5 mm thick specimen impacted with the sharp nose 

projectile at velocity 93.77 m/s. Here, the maximum out of plane displacement was measured as 

8.29 mm. There were a less number of impact waves. 
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Figure 113. Displacement vs Stage graph of Twintex® based 4.5 mm thick composite impacted 

at a velocity 93.77 m/s with the sharp nose projectile. 

 

Figure 114 shows a number of deformation stages representing the impact event on the 4.5 mm 

thick Twintex® based composites tested at a velocity of 93.77 m/s with sharp nose projectile. From 

the figure, it is evident how the out-of-plane deformation increased until the maximum transient 

out-of-plane displacement was reached in stage 44 with a value of 8.29 mm. Following this, the 

displacement decreased in stage 59. The final displacement could not be estimated due to the 

vibrations in stage 0 of the plot. 

 

 

 



   
 

128 
 

                                                      

                          Stage 34                                                                    Stage 44                                      

                                                                                                                      

                         Stage 59                                                                   Stage 150 

Figure 114. 3D deformation stage of Twintex® based 4.5 mm thick composite tested at a 

velocity of 93.77 m/s with the sharp nose projectile. 

 

Figure 115 shows the low magnification optical images of the Twintex® based 4.5 mm thick 

specimen impacted with the sharp nose projectile at a velocity of 103.25 m/s. At this velocity, 

specimen reached its ballistic limit and at the point of impact of the projectile, fiber ruptures are 

evident along with matrix cracking near the point of impact. On the speckle pattern side, heavy 

fiber ruptures, as well as petaling are noticed along with fragmentation. Minute damages in a few 

areas of speckle pattern are evident due to matrix cracks. Figure 115 includes a optical micrograph 

of section of the impacted specimen. 
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(a) 

 

(b) 

Figure 115. (a) Twintex® based 4.5 mm composite impacted  at a  velocity of 103.25 m/s with 

the sharp nose projectile (b) Section of impacted composite. 
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4.2.7 Impact behavior of  Shield  Strand S®/ Epoxy 2.5 mm thick composites with the Sharp 

nose projectile 

Figure 116 shows the low magnification optical images of Shield Strand S®/Epoxy based 2.5 mm 

thick specimen impacted with the sharp nose projectile at a velocity of 56.7 m/s. From the figure, 

it is evident that on the point of contact of the projectile, minute fiber ruptures are present and close 

to the point of impact, delaminations are also present. On the opposite side (speckle pattern) of the 

point of contact of the projectile, minute fiber ruptures are evident along with minute 

fragmentation. 

                   

                    

Figure 116. Shield Strand S® / Epoxy based 2.5 mm composite impacted at a velocity of 56.7 

m/s with the sharp nose projectile. 
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The maximum transient out-of-plane displacement with stage time for the specimen presented in 

Figure 117. In this case, the maximum out-of-plane displacement reached a value of 5.09 mm. 

Figure 117 also a couple of impact waves. 

 

 

Figure 117.  Displacement vs Stage graph of Shield Strand S® / Epoxy  2.5 mm thick composite 

tested at a velocity 56.7 m/s with the sharp nose projectile. 

 

Figure 118 shows a number of deformation stages representing the impact event on the 

thermosetting-based composite tested at a velocity of 56.7 m/s with the sharp nose projectile. From 

the figure, it is evident how the out-of-plane deformation increased until a value of 5.09 mm was 

reached. Following this, the displacement decreased as shown in stage 83. The final displacement 

was close to 2.00 mm at the point of impact. 
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                     Stage 62                                                                   Stage 68                                       

                                            

                       Stage 83                                                            Stage 200 

Figure 118. 3D deformation stage of Shield Strand S® / Epoxy based 2.5 mm thick composite 

impacted at a velocity 56.7 m/s with the sharp nose projectile. 

 

Figure 119 shows the low magnification optical images of Shield Strand S®/Epoxy based 2.5 mm 

thick specimen impacted with the sharp nose projectile at a velocity of 68.50 m/s. From the figure, 

it was evident that on the point of contact of the projectile, fiber ruptures are present and close to 

the point of impact, delamination is also present. On the speckle pattern side of the point of contact 

of projectile minute, fiber ruptures are evident along with fragmentation. 
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Figure 119. Shield Strand S® / Epoxy based 2.5 mm thick composite impacted at a velocity of 

68.50 m/s with the sharp nose projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented is in 

Figure 120. Here, the maximum out-of-plane displacement reached a value of 6.2 mm. The plot in 

Figure 120 also highlights a number of impact waves. 
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Figure 120. Displacement vs Stage graph of Shield Strand S® / Epoxy based b 2.5 mm thick 

composite impacted at a velocity 68.50 m/s with the sharp nose projectile. 

 

Figure 121 shows some deformation stages representing the impact event on the thermosetting 

based composite tested at a velocity of 68.50 m/s with the sharp nose projectile. From the figure, 

it is evident how the out-of-plane deformation increased until a value of 6.28 mm was reached in 

stage 42. Following this, the displacement decreased as shown in stage 56. Due to multiple 

vibrations in the stage 0 at the displacement-stage plot as shown in Figure 121, final displacement 

could not be estimated. 
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                      Stage 36                                                                   Stage 42                                 

 

                                         

                      Stage 56                                                                     Stage 148 

Figure 121. 3D deformation stages of Shield Strand S® / Epoxy based 2.5 mm thick composite 

impacted at a velocity 68.50 m/s with the sharp nose projectile. 

 

Figure 122 shows the low magnification optical images of Shield Strand S®/Epoxy based 2.5 mm 

thick specimen impacted with the sharp nose projectile at a velocity of  79.28 m/s. From the figure, 

it was noticed that on the point of contact of the projectile, fiber ruptures are present and close to 

the point of impact, delamination is present which is more compared with the previous two 

thermoset based 2.5 mm thick specimens which were impacted at 56.7 m/s and 68.50 m/s with 

sharp nose projectile. On the speckle pattern side of the point of contact of projectile, fiber ruptures 

are evident along with traces of fragmentation. 
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Figure 122.  Shield Strand S ®/ Epoxy based 2.5 mm thick composite impacted at a velocity of 

79.28 m/s with the sharp nose projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 123. Here, the maximum out-of-plane displacement reached a value of 7.6 mm. The plot in 

Figure 123 highlights a couple of impact waves. 
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Figure 123. Displacement vs Stage graph of Shield Strand S / Epoxy based 2.5 mm thick 

composite impacted at a velocity 79.28 m/s with the sharp nose projectile. 

 

Figure 124 shows some deformation stages representing the impact event on the Shield Strand 

S®/Epoxy based composite tested at a velocity of 79.28 m/s with the sharp nose projectile. From 

the figure, it is evident how the out-of-plane deformation increased until a value of 7.67 mm was 

reached in stage 32. Following this, the displacement decreased as shown in stage 45. Due to 

multiple vibrations in stage 0 at the displacement-stage plot as shown in Figure 124, final 

displacement could not be estimated. Approximately the value is observed to be close to 3.00 mm. 
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                               Stage 25                                                                    Stage 32                                     

                                                          

                             Stage 45                                                                         Stage 170 

Figure 124. 3D deformation stages of Shield Strand S® / Epoxy based 2.5 mm thick composite 

impacted at a velocity 79.28 m/s with the sharp nose projectile. 

 

Figure 125 shows the low magnification optical images of Shield Strand S®/Epoxy based 2.5 mm 

thick specimen impacted with the sharp nose projectile at a velocity of  90.57 m/s. From the figure, 

it was noticed that on the point of contact of the projectile, fiber ruptures are present and close to 

the point of impact, heavy delamination is present. On the speckle pattern side of the point of 

contact of the projectile, fiber ruptures and petaling are evident along with of fragmentation. 

Damages in the speckle pattern area were also noticed due to matrix cracking. 
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Figure 125. Shield Strand S® / Epoxy based 2.5 mm composite impacted at a velocity of 90.57 

m/s with the sharp nose projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 126. Here, the maximum out-of-plane displacement reached a value of 7.6 mm. The plot in 

Figure 126 highlights few impact waves. 
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Figure 126. Displacement vs Stage graph of Shield Strand S® / Epoxy  2.5 mm thick composite 

tested at velocity 90.57 m/s with the sharp nose projectile. 

 

Figure 127 shows some deformation stages representing the impact event on the Shield Strand 

S®/Epoxy based 2.5 mm thick composite tested at a velocity of 90.57 m/s with the sharp nose 

projectile. From the figure, it is evident how the out-of-plane deformation increased until a value 

of 7.99 mm was reached. Following this, the displacement decreased as shown in stage 52. Final 

displacement could not be accurately known. 
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                         Stage 29                                                                   Stage 35                                    

                                                       

                              Stage 52                                                              Stage 160 

Figure 127. 3D deformation stages of Shield Strand S® / Epoxy 2.5 mm thick composite 

impacted at a velocity 90.57 m/s with the sharp nose projectile. 

 

Figure 128 shows the low magnification optical images of Shield Strand S® / Epoxy based 2.5 

mm thick specimen impacted with the sharp nose projectile at a velocity of 114.4 m/s. From the 

figure, it is evident that on the point of contact of the projectile, fiber ruptures are present and close 

to the point of impact, delaminations are also present. On the opposite side (speckle pattern) of the 

point of contact of the projectile, fiber ruptures and petaling are evident along with delaminations. 

Also, heavy fragmentation was observed during the impact. 
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Figure 128. Shield Strand S® /Epoxy based 2.5 mm composite impacted at a velocity of 114.4 

m/s with the sharp nose projectile. 

 

Due to the heavy fragmentation and fiber ruptures which affected the speckle pattern, DIC could 

not process complete deformation and stage time data for this specimen. Only, initial stages of 

deformation could be obtained as shown in Figure 129. 
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                Initial Stage                           Stage just before heavy fragmentation and ruptures occurred 

Figure 129. 3D deformation stages of Shield Strand S ®/ Epoxy  2.5 mm thick composite 

impacted at a velocity 114.4 m/s with the sharp nose projectile. 

 

Figure 130 shows the low magnification optical images of the Shield Strand S® / Epoxy based 2.5 

mm thick specimen with the sharp nose projectile at a velocity of 125.1 m/s. At this velocity, 

specimen reached its ballistic limit. At the point of impact of the projectile, fiber ruptures are 

evident along with matrix cracking as well as delamination near the point of impact. On the speckle 

pattern side, heavy fiber ruptures, as well as petaling are noticed along with fragmentation. Minute 

damages in the speckle pattern are evident due to matrix cracks in a few areas. Figure 130 includes 

optical micrograph of section of the impacted specimen. 
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(a) 

 

(b) 

Figure 130. (a) Shield Strand S® / Epoxy based 2.5 mm composite impacted at a velocity of 

125.1 m/s with the sharp nose projectile (b) Section of impacted composite. 
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4.2.8 Impact behavior of Shield  Strand S®/ Epoxy 4.5 mm thick composites with the Sharp 

nose projectiles 

Figure 131 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 

mm thick specimen impacted with the sharp nose projectile at a velocity of  80.50 m/s. From the 

figure, it is noticed that on the point of contact of the projectile, minute fiber ruptures are evident 

along with minute matrix cracks as well as minute delamination in the region of impact. On the 

speckle pattern side, no damages are noticed.. 

                             

                       

Figure 131. Shield Strand S® / Epoxy based 4.5 mm composite impacted at a velocity of 80.50 

m/s with the sharp nose projectile. 

The maximum transient out-of-plane displacement with stage time for specimen presented is in 

Figure 132. Here, the maximum out-of-plane displacement reached a value of 5.08  mm in stage 

86. A couple of impact waves are also highlighted in Figure 132. 
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Figure 132. Displacement vs Stage graph of Shield Strand S® / Epoxy based 4.5 mm thick 

composite impacted at velocity 80.50 m/s with the sharp nose projectile. 

 

Figure 133 shows some deformation stages representing the impact event on the Shield Strand S® 

/ Epoxy based 4.5 mm thick composite impacted at a velocity of 80.50 m/s with the sharp nose 

projectile. From the figure, it is evident how the out-of-plane deformation increased until a value 

of 5.08 mm was reached. Following this, the displacement decreased as shown in stage 100. Final 

displacement took a value close to 1.5 mm at the region of impact. 
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                          Stage 84                                                                      Stage 86                                 

                                                     

                             Stage 100                                                                 Stage 130 

Figure 133. 3D deformation stages of Shield Strand S® / Epoxy based 4.5 mm thick composite 

impacted at velocity 80.50 m/s with sharp nose projectile. 

 

Figure 134 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 

mm thick specimen impacted with the sharp nose projectile at a velocity of  95.69 m/s. From the 

figure, it is evident that on the point of contact of the projectile, minute fiber ruptures are noticed 

along with minute matrix cracks as well as minute delamination in the region of impact. On the 

speckle pattern side, minute fiber ruptures are observed as shown in Figure 134. 
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Figure 134. Shield Strand S® / Epoxy based 4.5 mm composite impacted  at a velocity of 95.69 

m/s with the sharp nose projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 135. From the figure , the maximum out-of-plane displacement reached a value of 5.527 

mm in stage 36. A couple of impact waves are evident in Figure 135.  
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Figure 135. Displacement vs Stage graph of Shield Strand S® /Epoxy based 4.5 mm thick 

composite impacted at a velocity 95.69 m/s with the sharp nose projectile. 

 

Figure 136 shows some deformation stages representing the impact event on the Shield Strand S® 

/ Epoxy based 4.5 mm thick composite impacted at a velocity of 95.69 m/s with the sharp nose 

projectile. From the figure, it is evident how the out-of-plane deformation increased until a value 

of 5.527 mm was reached. Following this, the displacement decreased as shown in stage 45. Final 

displacement took a value close to 3.00 mm at the region of impact. 
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                           Stage 30                                                                  Stage 36                                    

                                                         

                        Stage 45                                                                      Stage 155 

Figure 136. 3D Deformation stages of Shield Strand S® / Epoxy based 4.5 mm thick composite 

impacted at velocity 80.50 m/s with the sharp nose projectile. 

 

Figure 137 shows the low magnification optical images of Shield Strand S® / Epoxy based 4.5 

mm thick specimen impacted with the sharp nose projectile at a velocity of  109.4 m/s. From the 

figure, it is evident that on the point of contact of the projectile, heavy fiber ruptures are noticed 

along with minute matrix cracks as well as minute delamination in the region of impact. On the 

speckle pattern side, fiber ruptures are noticed. 
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Figure 137. Shield Strand S® / Epoxy based 4.5 mm composite impacted at a velocity of 109.4 

m/s with the sharp nose projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 138. From the figure , the maximum out-of-plane displacement reached a value of 7.12 mm 

in stage 29. Multiple impact waves are evident in Figure 138. 
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Figure 138. Displacement vs Stage graph of Shield Strand S® / Epoxy based  4.5 mm thick 

composite impacted at a velocity 109.4 m/s with the sharp nose projectile. 

 

Figure 139 shows a number of deformation stages representing the impact event on the Shield 

Strand S/Epoxy based 4.5 mm thick composite impacted at the velocity of 109.4 m/s with a sharp 

nose projectile. From the figure, it is evident how the out-of-plane deformation increased until a 

value of 7.12 mm was reached in stage 29. Following this, the displacement decreased as shown 

in stage 37. Due to serrations in displacement-stage plot, final displacement could not be estimated.  
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                                Stage 20                                                               Stage 29                                                 

                                                                                                                

                                Stage 37                                                              Stage 120 

Figure 139. 3D deformation stages of Shield Strand S ®/Epoxy based 4.5 mm thick composite 

impacted at a velocity 109.4 m/s with the sharp nose projectile. 

 

Figure 140 shows the low magnification optical images of  Shield Strand S®/Epoxy based 4.5 mm 

thick specimen impacted with the sharp nose projectile at a velocity of  121.6 m/s. From the figure, 

it is evident that on the point of contact of the projectile, heavy fiber ruptures are noticed along 

with minute matrix cracks as well as delamination in the region of impact. On the speckle pattern 

side, fiber ruptures are observed, and fragmentation was seen. 
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Figure 140. Shield Strand S® / Epoxy based 4.5 mm composite impacted at a  velocity of 121.6 

m/s with the sharp nose projectile. 

 

The maximum transient out-of-plane displacement with stage time for the specimen presented in 

Figure 141. From the figure , the maximum out-of-plane displacement reached a value of 8.39 mm 

in stage 80. Multiple impact waves are evident in Figure 135. 
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Figure 141. Displacement vs Stage graph of Shield Strand S® /Epoxy based 4.5 mm thick 

composite impacted at a velocity 121.6 m/s with the sharp nose projectile. 

 

Figure 142 shows some deformation stages representing the impact event on the Shield Strand S® 

/ Epoxy based 4.5 mm thick composite impacted at a velocity of 121.6 m/s with the sharp nose 

projectile. From the figure, it is evident how the out-of-plane deformation increased until a value 

of 8.39 mm was reached in stage 80. Following this, the displacement decreased as shown in stage 

90. The final displacement took a value approximately close to 4.00 mm. 
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                            Stage 75                                                                    Stage 80                                                         

                                                                  

                             Stage 90                                                                     Stage 180 

Figure 142. 3D deformation stages of Shield Strand S ®/ Epoxy  based 4.5 mm thick composite 

impacted at a velocity 121.6 m/s with the sharp nose projectile. 

 

Figure 143 shows the low magnification optical images of  Shield Strand S® / Epoxy based 4.5 

mm thick specimen impacted with the sharp nose projectile at a velocity of  134.24 m/s. From the 

figure, it is evident that on the point of contact of the projectile, heavy fiber ruptures are noticed 

along with matrix cracks as well as plus shaped delamination in the region of impact which shows 

that impact energy is absorbed by the primary yarns at this velocity. On the speckle pattern side, 

fiber ruptures are observed, and fragmentation was noticed. 
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Figure 143. Shield Strand S® / Epoxy based 4.5 mm composite impacted at a velocity of 134.24 

m/s with the sharp nose projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 144. From the figure, the maximum out-of-plane displacement reached a value of 11.1 mm 

in stage 66. Multiple impact of waves are evident in the figure. 
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Figure 144. Displacement vs Stage graph of Shield Strand S ®/Epoxy based 4.5 mm thick 

composite impacted at a velocity 134.24 m/s with the sharp nose projectile. 

 

Figure 145 shows a number of deformation stages representing the impact event on the Shield 

Strand S®/Epoxy based 4.5 mm thick composite impacted at a velocity of 134.4 m/s with the sharp 

nose projectile. From the figure, it is evident how the out-of-plane deformation increased until a 

value of 11.1 mm was reached in stage 66. Following this, the displacement decreased as shown 

in stage 81. The final displacement took a value approximately close to 5.50 mm. 
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                              Stage 62                                                                    Stage 66                                       

                                           

                            Stage 81                                                                   Stage 192 

Figure 145. 3D deformation stages of Shield Strand S ®/Epoxy based 4.5 mm thick composite 

impacted at velocity 134.24 m/s with the sharp nose projectile. 

 

Figure 146 shows the low magnification optical images of  Shield Strand S® / Epoxy based 4.5 

mm thick specimen impacted with the sharp nose projectile at a velocity of  152.4 m/s. From the 

figure, it is evident that on the point of contact of the projectile, heavy fiber ruptures are noticed 

along with matrix cracks as well as plus shaped delamination. On the speckle pattern side, fiber 

ruptures are observed, and fragmentation was noticed . Matrix cracking in a few areas of speckle 

pattern side is also evident. 
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Figure 146. Shield Strand S® / Epoxy based 4.5 mm thick composite impacted at a velocity of 

152.4 m/s with the sharp nose projectile. 

 

The maximum transient out-of-plane displacement with stage time for specimen presented in 

Figure 147. From the figure , the maximum out-of-plane displacement reached a value of 12.6  mm 

in stage 33. Few impact waves are evident in Figure 147. 
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Figure 147. Displacement vs Stage graph of Shield Strand S®/ Epoxy based 4.5 mm thick 

composite impacted at a velocity 152.4 m/s with the sharp nose projectile. 

 

Figure 148 shows a number of deformation stages representing the impact event on the Shield 

Strand S®/Epoxy based 4.5 mm thick composite impacted at a velocity of 152.4 m/s with the sharp 

nose projectile. From the figure, it is evident how the out-of-plane deformation increased until a 

value of 12.16 mm was reached in stage 33. Following this, the displacement decreased as shown 

in stage 44. From Figure 148, final displacement could not be estimated due to serrations in the 

curve but approximately it is assumed to be close to 6.00 mm. 
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                            Stage 29                                                                  Stage 33                                     

                                                

                               Stage 44                                                             Stage 154 

Figure 148. 3D deformation stages of Shield Strand S ®/ Epoxy based  4.5 mm thick composite 

impacted at a velocity 152.4 m/s with the sharp nose projectile. 

 

Figure 149 shows the low magnification optical images of the Shield Strand S® / Epoxy based 4.5 

mm thick specimen with the sharp nose projectile at a velocity of 173.4 m/s. At this velocity, 

specimen reached its ballistic limit. At the point of impact of the projectile, fiber ruptures are 

evident, and near the point of impact, matrix cracking, delamination and fiber ruptures are present. 

On the speckle pattern side, heavy fiber ruptures, as well as petaling, are noticed along with heavy 

fragmentation. Damages in the speckle pattern are evident due to matrix cracking in a few areas. 

Figure 149 includes a optical micrograph of section of impacted specimen. 
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                                                                                             (a) 

 

(b) 

Figure 149. (a) Shield Strand S ®/ Epoxy based 4.5 mm composite impacted at a velocity of 173. 

4 m/s with the sharp nose projectile (b) Section of impacted composite. 
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Table 3 shows a summary of the impact energies associated with the impact events for the 

thermoplastic composites subjected to ballistic testing with a spherical head projectile. 

 

 

Figure 150 shows the relation between perforation energy and specific perforation energy for 

Twintex® 2.5 mm and 4.5 mm thick composties impacted with the spherical head and sharp nose 

projectiles. 

 

Figure 150. Relation between perforation energy and specific perforation energy for Twintex® 

composites impacted with the spherical head and sharp nose projectiles. 
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Table 4 shows a summary of the impact energies associated with the impact events for the 

thermoplastic composites subjected to ballistic testing with a sharp nose projectile. 

 

Figure 151 shows the relation between perforation energy and specific perforation energy for 

Shield Starnd S® / Epoxy 2.5 mm and 4.5 mm thick composties impacted with the spherical head 

and sharp nose projectiles. 

 

Figure 151. Relation between perforation energy and specific perforation energy for Shield 

Starnd S® / Epoxy composites impacted with the spherical head and sharp nose projectiles. 
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From these figures, its evident that the Shield Strand S® / Epoxy based composites offer greater 

impact resistance when compared to the Twintex® composites for a similar thickness when 

impacted with the spherical head projectile. Similar conclusions can be drawn from the high 

velocity impact testing with a sharp nose projectile and even when the thickness of the compsites 

was increased to 4.5 mm. 

The specific perforation energy of the composites was calculated by the areal density of the target. 

These results also show that the Shield Strand S® / Epoxy based composites offer superior impact 

resistance to Twintex® based composites when subjected to ballistic loading conditions using 

spherical and for sharp nose projectiles. This can be attributed to the higher tensile and compressive 

properties of this S glass fibers used in the manufacturing of the thermoset based composites 

compared to thye E glass fibers used in the manufacturing of the thermoplastic based composites. 

 

To predict the ballistic limit of the woven composites. In this research, the Reid and Wen  

analytical model was used [1]. The ballistic limit equation [2,3] is given by 

                        𝑉𝑏 =
𝜋Г√𝜌𝑡𝜎𝑒 

4𝑚
𝐷2𝑇 [1 + √1 +

 8𝑚

𝜋Г2𝜌𝑡𝐷2𝑇
]                                             [1] 

 

Where, 

Vb = Velocity at the ballistic limit 

D = Diameter of the projectile 

T = Total laminate thickness 

m = Mass of the projectile 

𝜎e = Quasistatic linear elastic compression limit 

𝛤 = 1.5 (for spherical head projectile), 0.03 (for sharp nose projectile) 

ρt  = Density of laminate 

Here, In order to determine the quasistatic linear elastic compression limit, three-point bending 

tests are performed on the thermoplastic and thermoset based woven composites [3,4]. The 
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dimensions of the specimens for testing were considered according to the ASTM D7264 test 

standard [5] . Testing was performed using a universal testing machine (Instron 5967) at a strain 

rate of 1 mm/min as shown in Figure 152. For calculating the quasistatic linear elastic compression 

limit, the average of  maximum loads obtained from the flexural testing for respective composite 

materials was used. Three-point testing results indicated values of 𝜎e of 470.5 MPa and 300.3 MPa 

for the thermoset and thermoplastic woven composites respectively. 

 

Figure 152. Three point bending testing on composite using an Instron 5967 universal testing 

machine. 

 

Sample Calculation: 

Twintex 2.5 mm thick composite impacted with the spherical head projectile 

Vb =  
∏∗1.5√300.3∗0.00145

4∗23.6
∗ (11.92)2.5 ∗ [1 + √1 +

8∗23.6

∏∗(1.52)∗0.00145∗(11.92)∗2.5
 ] 

     = 96.348 m/s 

Figure 153 and 154 summarize the results following tests on thermoplastic and thermoset based 

woven composites with thickness 2.5 mm and 4.5 mm. Included in the figures are the predictions 

calculated using equation 1. 
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Figure 153 shows the relation between experimental and theoretical ballistic limit for Twintex® 

based 2.5 mm and 4.5 mm thick composites impacted with the spherical head and sharp nose 

projectile. 

 

Figure 153. Relation between experimental and theoretical ballistic limit for Twintex® based 

composites impacted with the spherical head and sharp nose projectile. 

 

Figure 154 shows the relation between experimental and theoretical ballistic limit for Shield Strand 

S® / Epoxy based 2.5 mm and 4.5 mm thick composites impacted with the spherical head and 

sharp nose projectile. 

 

Figure 154. Relation between experimental and theoretical ballistic limit for Shield Strand S® / 

Epoxy based composites impacted with the spherical head and sharp nose projectile. 
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From the figures, it is evident that the ballistic limit increases with increasing composite thickness. 

A similar trend can be observed after testing with the spherical head and sharp nose projectiles. 

Furthermore, the predictions offered by the analytical model are in good agreement with the 

experimental data. These results suggest that the ballistic limit of thermoplastic and thermoset 

woven composites based on E-glass and S glass fibers respectively, using spherical head and sharp 

nose projectiles can be predicted accurately using Reid and Wen’s perforation model [1]. 
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CHAPTER 5 

CONCLUSIONS 

In this project, the ballistic properties of Shield Strand S ® / Epoxy and E-glass fibers / 

Polypropylene (Twintex ®) based woven composites were investigated using spherical head and 

sharp nose projectiles. A single stage gas gun setup was used for ballistic testing and a noncontact 

deformation measurement technique was used to investigate the maximum transient out of plane 

and final back face displacement of the composites. Many failure modes were highlighted. From 

the results, it was evident that the thermoset based woven composites exhibited improved impact 

resistance when compared to the thermoplastic based composites. It was also noticed that the 

Shield Strand S® / Epoxy 2.5 mm thick composites showed superior ballistic properties compared 

with the Twintex 4.5 mm thick composites. Furthermore, E-glass fiber reinforced polypropylene 

exhibited similar values of ballistic limit when subjected to ballistic loading using either the 

spherical head or the sharp nose projectile highlighting the excellent energy absorbing capabilities 

of the composite to localized impact loading. In addition, the Shield Strand S® fiber reinforced 

epoxy exhibited an improved impact response when subjected to ballistic loading using the sharp 

nose projectile compared to the spherical head projectile. Composites projected with the spherical 

projectiles had more maximum out of plane displacement when compared to the composites 

projected with the sharp nose projectiles. It was noticed that thermoset based composites had more 

maximum out of plane transient displacement when compared with the thermoplastic based 

composites. It is fascinating to observe that Shield Strand S® / Epoxy 2.5 mm composites showed 

approximately same maximum out of plane transient displacement when compared to the 

Twintex® 4.5 mm composites at the same velocities. 

An analytical model was successfully used to predict the ballistic limit of the woven composites, 

results from the analytical model were in good agreement with the experimental results. 

 

 


