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ABSTRACT

The top three best-selling vehicles in the United States are pickup trucks, therefore their unique

aerodynamics are of considerable industrial interest. Hybrid RANS-LES turbulence models are

popular in automotive aerodynamics CFD. Papers have examined their performance on simplified

car shapes, but none have done so for a pickup truck shape. Three hybrid RANS-LES turbulence

models—detached eddy simulation (DES), delayed detached eddy simulation (DDES), and im-

proved delayed detached eddy simulation (IDDES)—were examined in incompressible, transient

CFD on a simplified pickup truck shape using OpenFOAM. These models were also benchmarked

against Spalart-Allmaras and k-ω SST steady RANS models. The hybrid RANS-LES turbulence

models differed in values of drag and lift coefficients by up to 0.002 and 0.014, and predicted on

average 0.040 and 0.078 higher than the steady RANS models, respectively. The flow fields of the

hybrid RANS-LES models were largely similar to each other, but differed from the RANS results

downstream of the front fascia and particularly in highly-detached regions, where they predicted

earlier vortex bursting. Wind tunnel test data and flow visualization are required to confirm the

results predicted by the hybrid RANS-LES models.
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CHAPTER I: INTRODUCTION

1.1 Motivation

In the automotive industry, aerodynamics is concerned with the study of how air flows around

a vehicle at speed, and the resultant forces and moments on the vehicle. For consumer vehicles,

the drag force the force component anti-parallel to vehicle velocity is the primary focus. This is

because the power of aerodynamic drag increases with the cube of speed; at freeway speeds, it is

a larger contributor to the engine load than rolling resistance, driveline friction, or accessory load.

Stricter fuel economy and emissions regulations, consumer demand for better fuel economy, and

the advent of electric cars where driving range is at a premium due to limited battery capacity mo-

tivates manufacturers to decrease drag coefficient, Cd , as much as possible. On high-performance

vehicles, low lift coefficient Cl is exploited to yield higher cornering speeds, higher top speeds,

shorter braking distances, and ultimately faster lap times. Cd and Cl are defined as

Cd =
Fd

1/2ρU2
∞A f

(1.1)

Cl =
Fl

1/2ρU2
∞A f

. (1.2)

A f is the projected frontal area of the vehicle, U∞ is the freestream velocity, ρ is the air density,

and ~Fd and ~Fl are the resultant drag and lift forces, respectively.

Traditionally, cars were designed in the wind tunnel; however, continuous advances in CFD

practice and computational power enable engineers to use it as a powerful design tool. In CFD,

airflow over a CAD representation of the vehicle is modeled with the Navier-Stokes equations and

solved on a high performance computer cluster. Compared to wind tunnel tests, CFD simulations

1



are cheaper, faster, and allow deeper insight into the flow behavior. They can drive design op-

timization studies, which increases design iteration speed. In addition, as computer simulations,

they do not abide by the constraints of physical testing, which opens the door to other modeling

possibilities. For instance, instead of building an expensive active flow control device to test in the

tunnel, the effect could be modeled in CFD by imposing a boundary condition on a surface.

Traditional CFD solvers use the finite volume method to linearize, discretize, and approxi-

mately solve the Navier-Stokes equations, although Lattice-Boltzmann methods are also popular.

The turbulence modeling, finite volume schemes, and solver schemes are some of the many set-

tings that must be chosen appropriately. Different models and schemes are well- or ill-suited for a

given problem. Expert knowledge is required to configure the simulation correctly and obtain good

results. Equally critical is the design of the computational mesh used to discretize the domain. The

goal is to find a CFD setup and process that allows CFD models to be rapidly prototyped and ran

with good correlation to the wind tunnel, the streets, and the race track. The less time engineers

spend fiddling with the minutiae of CFD, the more time they have to interpret results and design

better vehicles.

For all its merits, CFD still stands to be improved. Simulations are computationally expensive:

it is common for simulations to run in-parallel on hundreds if not thousands of processors, and still

take days to complete. Even then, predicted force coefficients and flow fields can be inaccurate,

sometimes contradicting test results. These inaccuracies are due to a number of factors the least

of which are mesh discretization error, fidelity of the CAD model, and the shortfalls of turbulence

modeling. The search to make CFD faster and more accurate is ongoing.

This study will survey the performance of various turbulence models applied to the flow over a

simple pickup truck shape. Such vehicles are popular in the North American market. Consequen-

tial flow phenomenon such as vortices, flow separation, pressure recovery, and wake behavior are

directly affected by turbulence model selection. The turbulence models surveyed will be transient

hybrid RANS-LES models, which have been popular in vehicle aerodynamics simulations over the

past 15 years. These types of models are successful because they can resolve the large turbulent

2



length scales found in vehicle aerodynamic flows, while modeling the effect of small length scales

in dissipating turbulent kinetic energy. In the boundary layers, the model transitions to a RANS

formulation, which is effective in simulating the small length scale, attached eddies. Importantly,

these formulations tend to perform well in predicting pressure-induced flow separation.
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CHAPTER II: LITERATURE REVIEW

2.1 Turbulence Modeling

Three different hybrid RANS-LES models were surveyed in this paper: DES, DDES, and

IDDES. Two RANS turbulence models were used for comparison: Spalart-Allmaras and k-ω SST.

k-ω SST is a two-equation turbulence model which is commonly used for pure RANS simulations

in the automotive industry. Spalart-Allmaras is a one-equation turbulence model, which is used as

both the RANS and subgrid stress model in DES, DDES, and IDDES.

2.1.1 Navier-Stokes Equations and the Difficulty of Direct Solution

The isothermal, incompressible, transient Navier-Stokes equations are [1]

∂ui

∂xi
= 0, (2.1)

∂ui

∂ t
+

∂

∂x j

(
uiu j

)
=− 1

ρ

∂ p
∂xi

+ν52 ui (2.2)

Where ui, i = 1,2,3 are the velocity components, p is the pressure, and ρ , ν are the density and

kinematic viscosity of the fluid. In order to accurately simulate a fluid flow field with a discretized

representation, there must be sufficient spatial resolution in all regions to capture the smallest gra-

dients and flow features. Laminar flow is characterized by large, smooth, dissipative flow features,

making it easier to model. Turbulent flow, which is present in nearly every region of interest in ve-

hicle aerodynamics, is chaotic and consists of various eddies of different length scales. According

to Kolmogorov, at high Reynold’s number the smallest length scales are statistically isotropic and

independent of the large-scale eddies. In order to resolve the entire spectrum on discrete mesh, the
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cell size must be as small as the smallest possible length scale. This is the Kolmogorov microscale,

η ∼ L ·Re−3/4. (2.3)

In a typical automotive aerodynamic flow, U = 50ms−1, ν = 1.2×10−5 m2/s, and L = 4m. Then

η ∼ 10−5 m and

N ∼
(

L
η

)3

∼ 1015. (2.4)

Simulations that directly resolve the smallest length scale are called Direct Numerical Simulation

(DNS). On the basis of cell count alone, this problem far exceeds current computational resources.

For quick turnaround time, industrial simulations typically require N ∼ 106.

2.1.2 Reynolds-Averaged Navier-Stokes Equations

For a steady-state solution, it is assumed that ∂ui
∂ t = 0. For a turbulent flow field, u(x, t) and

p(x, t) can be expressed in terms of mean and fluctuating quantities.

u(x, t) = 〈u〉(x)+u′ (x, t) (2.5)

p(x, t) = 〈p〉(x)+ p′ (x, t) (2.6)

Where the averaging operation is defined as

〈u〉(x) = lim
T→∞

1
T

T∫
0

u(x, t)dt (2.7)

〈p〉(x) = lim
T→∞

1
T

T∫
0

p(x, t)dt (2.8)

Averaging the fluctuations around the mean quantities show that 〈u′〉 = 0 and 〈p′〉 = 0. The time

derivative ∂ui
∂ t averages to zero. Applying this operation to the Navier-Stokes equations yields the

5



Reynolds Averaged Navier-Stokes (RANS) equations, see [1].

∂ 〈ui〉
∂xi

= 0 (2.9)

∂

∂x j
〈uiu j〉=−

1
ρ

∂ 〈p〉
∂xi

+ν52 〈ui〉 (2.10)

Expanding the nonlinear term 〈uiu j〉 yields the Reynolds stress tensor τi j, so-called because it has

the effect of turbulent momentum transport added to the transport produced by the viscous stress.

τi j ≡ 〈ui
′u j
′〉= 〈uiu j〉−〈ui〉〈u j〉 (2.11)

The final RANS equations can then be expressed in terms of the averaged field variables and τi j

∂ 〈ui〉
∂xi

= 0 (2.12)

∂

∂x j

(
〈ui〉〈u j〉

)
=− 1

ρ

∂ 〈p〉
∂xi

+ν52 〈ui〉−
∂τi j

∂x j
. (2.13)

The Reynolds stress is unknown as a function of the mean flow field 〈u〉(x, t) and 〈p〉(x, t), so

the function of turbulence modeling in RANS is to model τi j. All the RANS turbulence models

surveyed in this paper are eddy viscosity models. These models assume that the Reynolds stress

obeys the Boussinesq eddy viscosity hypothesis

τi j ≡ 〈ui
′u j
′〉=−2νt〈Si j〉+

2
3

δi jk (2.14)

The mean strain-rate tensor 〈Si j〉 is

〈Si j〉=
1
2

(
∂ 〈ui〉
∂x j

+
∂ 〈u j〉
∂xi

)
(2.15)
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and the turbulent kinetic energy k is

k ≡ 1
2
〈ui
′u j
′〉= 1

2
〈ux
′ux
′+uy

′uy
′+uz

′uz
′〉. (2.16)

Thus in order to model the Reynolds stress τi j, the turbulence model must provide the eddy vis-

cosity νt and turbulent kinetic energy k.

2.1.3 Spalart-Allmaras

The Spalart-Allmaras turbulence model is a one-equation eddy viscosity turbulence model,

empirically calibrated to free-shear flows.[2]

∂ ν̃

∂ t
+u j

∂ ν̃

∂x j
= cb1 [1− ft2] S̃ν̃ +

1
σ

{
∇ · [(ν + ν̃)∇ν̃ ]+ cb2|∇ν̃ |2

}
−
[
cw1 fw−

cb1

κ2 ft2
](

ν̃

d

)2

+ ft1∆U2

(2.17)

νt = ν̃ fv1 (2.18)

fv1 =
χ3

χ3 + c3
v1

(2.19)

fv2 = 1− χ

1+χ fv1
(2.20)

χ =
ν̃

ν
(2.21)

S̃≡ S+
ν̃

κ2d2 fv2 (2.22)

fw = g

[
1+ c6

w3

g6 + c6
w3

]1/6

(2.23)

g = r+ cw2(r6− r) (2.24)

r ≡ ν̃

S̃κ2d2
(2.25)

(2.26)
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where

ft1 = ct1gt exp
(
−ct2

ω2
t

∆U2 [d
2 +g2

t d2
t ]

)
(2.27)

ft2 = ct3 exp(−Ct4χ
2) (2.28)

S =≡
√

2Ωi jΩi j (2.29)

Ωi j ≡
1
2

(
∂ui

∂x j
−

∂u j

∂xi

)
(2.30)

gt ≡min(0.1,∆U/ωt∆x) (2.31)

The standard Spalart-Allmaras constants are as follows:

σ = 2/3

cb1 = 0.1355

cb2 = 0.622

κ = 0.41

cw1 = cb1/κ
2 +(1+ cb2)/σ

cw2 = 0.3

cw3 = 2

cv1 = 7.1

ct1 = 1

ct2 = 2

ct3 = 1.1

ct4 = 2
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2.1.4 k-ω Shear Stress Transport

k-ω SST (Shear Stress Transport) [3] is a two-equation eddy viscosity turbulence model where

k is the turbulent kinetic energy and ω is the rate of kinetic energy dissipation. It is a hybrid model

that becomes Wilcox k-ω [4] in the inner 50 % of the boundary layer, then transitions to k-ε in

the free shear layer. The model also includes a provision to model transport of shear stress τ by

assuming that τ is proportional to k.

∂k
∂ t

+
∂ (U jk)

∂x j
= P̃k−β

∗
ωk+

∂

∂x j

(
Γk

∂k
∂x j

)
(2.32)

∂ω

∂ t
+

∂ (U jω)

∂x j
=

γ

ρνt
Pk−βω

2 +
∂

∂x j

(
Γω

∂ω

∂x j

)
+(1−F1)2σω2

1
ω

∂k
∂x j

∂ω

∂x j
(2.33)

Γk = ν +
νt

σk
(2.34)

Γk = ν +
νt

σω

(2.35)

Pk = τi j
∂Ui

∂x j
(2.36)

P̃k = min
(

Pk;
c1ε

ρ

)
(2.37)

νt =
a1k

max(a1ω;S ·F2)
(2.38)

where S is the magnitude of the strain rate [5]. Note that k and ω are ultimately used to calculate

νt . Any coefficient φ of the model is a function of F1, with φ = F1φ1 +(1−F1)φ2, with φ1, φ2

representing the coefficients in the k-ε and k-ω models, respectively.

σk1 = 1.176 (2.39)

σω1 = 2.000 (2.40)

κ = 0.41 (2.41)

γ1 = 0.5532 (2.42)

β1 = 0.0750 (2.43)

β
∗ = 0.09 (2.44)
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c1 = 10 (2.45)

σk2 = 1.000 (2.46)

σω2 = 1.168 (2.47)

γ2 = 0.4403 (2.48)

β2 = 0.0828 (2.49)

F1 is a blending function which is equal to 1 near the wall, then decreases to 0 in the outer half of

the boundary layer and into the free shear layer. This facilitates the transition from Wilcox k-ω

(F1 = 1) to k-ε (F1 = 0).

F1 = tanh
(
arg4

1
)

(2.50)

arg1 = min

(
max

( √
k

β ∗ωγ
;
500ν

γ2ω

)
;
4ρσω2k
CDkωy2

)
(2.51)

CDkω = max
(

2ρσω2
1
ω

∂k
∂x

∂ω

∂x j
;1.0e−10

)
(2.52)

F2 = tanh
(
arg2

2
)
= max

(
2

√
k

β ∗ωy
;
500ν

y2ω

)
(2.53)

arg2 = max

(
2

√
k

β ∗ωy
;
500ν

y2ω

)
(2.54)

τi j = νt

(
∂Ui

∂x j
+

∂U j

∂xi
− 2

3
∂Uk

∂xk

)
− 2

3
kδi j (2.55)

k-ω SST has several benefits over its constitutive models. Wilcox k-ω performs better in adverse

pressure gradient flows than k-ε , which over-predicts τ and delays separation. For this reason,

k-ω SST uses Wilcox k-ω in the inner boundary layer. However, unlike Wilcox k-ω , the behavior

of k-ω SST in the boundary layer is insensitive to freestream values of ω . k-ω SST transitions

to k-ε in the free shear layer because k-ε performs well there. Wilcox k-ω can predict spreading

rates incorrectly in the free shear layer. Finally, k-ω SST does better in adverse pressure gradient

flows than Wilcox k-ω because it accounts for shear stress transport effects, unlike eddy viscosity
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Figure 2.1: Turbulent kinetic energy cascades from the inertial to dissipative length scales. (source:
[1])

models.

2.1.5 Large Eddy Simulation

As discussed in Section 2.1.1, turbulent flows contain eddies with a spectrum of length scales.

The largest eddies, that belong to the energy input and inertial ranges of scales, contain nearly all

the kinetic energy. They are non-isotropic and directly influence the flow momentum. According

to Kolmogorov’s self-similarity hypothesis, the smallest length scales, called the dissipative length

scales, are statistically isotropic. Their only contribution is to dissipate kinetic energy to heat. The

large eddies break down into smaller eddies, transferring kinetic energy down the length scales and

eventually to heat. This is known as the turbulent kinetic energy cascade, shown in Figure 2.1.

As demonstrated in Section 2.1.1, it is too computationally expensive to resolve the Kol-

mogorov microscale. Large Eddy Simulation (LES) attempts to overcome this by not resolving

the smallest eddies, instead modeling their energy dissipation. The important inertial length scales
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Figure 2.2: LES truncates the turbulent energy cascade at the filter length ∆. (source: [1])

can then be resolved with a larger cell size, resulting in a lower cell count. This is demonstrated in

Figure 2.2.

To accomplish this, the velocity and pressure field are filtered into resolved and unresolved

portions.

ui = ūi +u′i (2.56)

p = p̄+ p′ (2.57)

The filter function is applied as

ū(x, t)≡
∫

G(r,x)u(x− r, t)dr (2.58)

A box filter is typically used as shown in Figure 2.3. ∆ is taken to be the local cell size. Applying

12



Figure 2.3: A box filter with length ∆. (source: [1])

the filter to the incompressible Navier-Stokes equations yields [6], [7]

∂ ūi

∂xi
= 0 (2.59)

ρ
∂ ūi

∂ t
+ρ

∂

∂x j

(
ūiū j

)
=− ∂ p̄

∂xi
+µ52 ūi−

∂τi j

∂x j
(2.60)

Where τi j = ρuiu j − ρ ūiū j is the subgrid scale (SGS) stress tensor resulting from the filtering

operation. Like the Reynold’s stress, the SGS stress uses an eddy viscosity model

τi j =
1
3

τiiδi j−2µt S̄i j (2.61)

where S̄i j =
1
2

(
∂ ūi
∂x j

+
∂ ū j
∂xi

)
is the filtered strain rate tensor, and µt is the eddy viscosity. LES uses

the Smagorinsky model [7]

µt = ρ(CS∆)2|S̄| (2.62)

where ∆ is the filter width and CS is the empirical Smagorinsky constant.

We can estimate the required cell count using the Taylor microscale. The Taylor microscale is

the length scale below which the eddies are significantly affected by fluid viscosity, which is the
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dissipative range. The Taylor microscale can be approximated as

λ =
√

10η
2/3L1/3 ≈ 3.2mm (2.63)

Then the estimated cell count is

N3 ≈
(

L
λ

)3

∼ 108. (2.64)

Such a simulation would be computationally expensive but obtainable in a research setting. LES

may see mainstream automotive aerodynamics CFD use within 5 to 10 years due to ever-increasing

computational power.

2.1.6 Detached Eddy Simulation

Detached Eddy Simulation (DES) is a hybrid approach that uses Spalart-Allmaras RANS to

model attached, small scale eddies in near wall regions, then switches to LES in detached regions

away from the wall, where large scale eddies can be resolved. Spalart-Allmaras is also used as the

SGS stress eddy viscosity model in this formulation, by replacing wall distance dw in the Spalart-

Allmaras RANS model with d̃w [8]

d̃w ≡min(dw,CDES∆) . (2.65)

DES switches from RANS to LES once dw > CDES∆. By relying on wall distance and grid size,

the LES zones need not be known a priori.

2.1.7 Delayed Detached Eddy Simulation

Occasionally, DES improperly switches to an LES zone when the grid size is ambiguous. The

grid size is ambiguous when the grid size is fine enough that dw > CDES∆ in the boundary layer,

yet the grid size is still too coarse for a properly resolved LES [9]. The eddy viscosity is reduced

as the model switches from RANS to LES mode, however the grid is not fine enough to resolve
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the velocity fluctuations present in LES to replace the modeled viscosity. Shear stress then drops,

a phenomenon called Modeled Stress Depletion (MSD)[9] . Artificially low shear stress in the

boundary layer can then lead to premature flow separation, called Grid Induced Separation (GIS)

[9]. This is a top concern for vehicle aerodynamic flows where separation is a critical. In [9], a

new version of DES is proposed called Delayed Detached Eddy Simulation (DDES) to address this

issue.

lddes = dw− fdmax(0,dw−CDES∆) (2.66)

fd = 1− tanh
∣∣∣(8rd)

3
∣∣∣ (2.67)

rd =
ν +νt

κ2d2
w

√(
∂Ui
∂x j

)2
(2.68)

lDDES is the DDES length scale, and fd is the delaying function. rd is the same quantity from the

Spalart-Allmaras model, which is has the value of 1 at the wall and 0 in the free shear flow. By

redefining the limiter in this way, RANS can be preserved in the boundary layer while still allowing

the switch to LES in the appropriate regions.

2.1.8 Improved Delayed Detached Eddy Simulation

Improved Delayed Detached Eddy Simulation (IDDES) is another hybrid model proposed in

[10] that extends the capability of DDES to Wall-Modeled LES (WMLES) applications. It also

provides a flexible, variable subgrid length scale, ∆. In LES, ∆ is a function purely of the grid size.

This is problematic because the appropriate value of Smagorinsky constant then varies in different

regions of the flow. IDDES redefines ∆ to be

∆ = min{max [Cwdw,Cwhmax,hwn] ,hmax} . (2.69)
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Cw is an empirical constant which does not have to change throughout the flow, and hwn is the grid

spacing in direction normal to the wall. ∆ was chosen to satisfy

∆ f ree = hmax ≡max
{

hx,hy,hz
}

(2.70)

∆wall = ∆(hx,hz) . (2.71)

∆ f ree follows the suggestions of [9] to use the maximum grid spacing, which is acceptable because

cells far away from the wall should be fairly isotropic. Near the wall, ∆ depends only on the x and

z cell spacings. Recall the length scales used in the DDES model,

lRANS = dw (2.72)

lLES =CDESΨ∆ (2.73)

lDDES = lRANS− fdmax{0, lRANS− lLES} . (2.74)

Where Ψ is a low-Re correction term,

Ψ
2 = min

[
100,

1− cb1
cw1κ2 f ∗w

[ ft2 +(1− ft2) fv2]

fv1max(10−10,1− ft2)

]
. (2.75)

Define a new length scale for WMLES as

lWMLES = fB (1+ fe) lRANS +(1− fB) lLES. (2.76)

The first blending function is intended as a switch between RANS and LES modes,

fB = min
{

2exp
(
−9α

2) ,1.0} (2.77)

α = 0.25−dw/hmax. (2.78)
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The model transitions from RANS to LES within dw less than one local hmax of the wall. The

second function fe is intended to prevent log layer mismatch of Reynold’s stresses.

fe = max{( fe1−1) ,0}Ψ fe2 (2.79)

fe1 (dw/hmax) =


2exp

(
−11.09α2) , if α ≥ 0

2exp
(
−9α2) , if α < 0

(2.80)

fe2 = 1.0−max{ ft , fl} (2.81)

ft = tanh
[(

c2
t rdt
)3
]

(2.82)

fl = tanh
[(

c2
t rdl
)10
]

(2.83)

rdt =
νt

κ2d2
wmax

{[
∑i j
(
∂ui/∂x j

)2
]1/2

,10−10
} (2.84)

rdl =
ν

κ2d2
wmax

{[
∑i j
(
∂ui/∂x j

)2
]1/2

,10−10
} (2.85)

In order to combine the DDES and WMLES, a new blending function f̃d is defined

f̃d = max{(1− fdt) , fB} (2.86)

where

fdt = 1− tanh
[
(8rdt)

3
]
, (2.87)

then lDDES is redefined as

l̃DDES = f̃dlRANS +
(
1− f̃d

)
lLES (2.88)

Finally, a hybrid length scaled can be defined by combining the definitions

lhyb = f̃d (1+ fe) lRANS +
(
1− f̃d

)
lLES (2.89)
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Figure 2.4: The Ahmed Body used for studying simple bluff body aerodynamics. (source: https:
//grabcad.com/library/ahmed-body-2)

2.2 Applied Automotive Aerodynamics

For automotive aerodynamicists, finding a model geometry for detailed study and experimen-

tation is a non-trivial problem. While there is no shortage of real automobiles, they have many

complex flow features due to myriad components in the hood and underbody, small gaps, seals,

and cooling openings, which makes them difficult to study in a research setting. Fast product de-

velopment cycles prevent automotive manufacturers from spending much time on a single design,

and industry secrecy further disinclines them from sharing. Research has been done on simplified

bluff bodies such as the Ahmed Body [11], which is useful for understanding some basic flow

phenomenon; however the results are ultimately limited because it lacks many of the key fea-

tures that characterize a vehicle aerodynamic flow. Besides its somewhat rounded front end and a

backward-facing ramp on the back, the Ahmed Body doesn’t much resemble an automobile at all,

see Figure 2.4. Aerodynamicists needed a model to fill the gap between overly-simplified shapes

and too-detailed real vehicles. To this end, the DrivAer model was created with the help of car

manufacturers to study the more salient features of automotive aerodynamics [12]. The shape is

based on a genericized car, available with three distinct rear end shapes: fastback, notchback, and

estate. The model geometry was based off two real vehicles; the Audi A4 and the BMW 3-series
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Figure 2.5: The DriAer simplified car model can switch between three rear shapes. (source: http:
//www.aer.mw.tum.de/en/research-groups/automotive/drivaer/)

Figure 2.6: The DriAer model underbody is configurable between smooth or detailed. (source:
https://www.aer.mw.tum.de/en/research-groups/automotive/drivaer/)
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cars. As seen in Figures 2.5 and 2.6, the vehicle shape is highly realistic, and the model has A-

through D-pillars, mirrors, and wheel openings. The underbody is simplified, retaining the larger

components that affect the flow while doing away with small, unimportant details. The DrivAer

model is thus an inspiration for the simple truck shape.

The application of hybrid RANS-LES turbulence models for automotive aerodynamics has

been studied before. In [13], the authors used a similar methodology to this paper – transient

DES simulation using the OpenFOAM toolbox – on several Volkswagen Group vehicles and a

high simplified car shape called the Volkswagen Red Model. The vehicles tested in a wind tunnel

and the results were compared to CFD. The authors found generally good agreement between

overall force coefficients, as well as between the CFD-predicted surface cp and pressure taps on

the vehicle. However, the CFD struggled to predict force coefficients on vehicles with sloped

and/or rounded rear shapes. CFD was not predicting the adverse pressure gradient-driven flow

separation on these surfaces correctly, leading to insufficient pressure recovery and consistently

overpredicted Clr and Cd . The authors also compared the surface flow topology between simulation

and experiment using oil streaks, and found large scale agreement.

In [14], a similar study was undertaken by comparing three different hybrid RANS-LES tur-

bulence models on an Audi A1 car to wind tunnel results. The models were: Partially-Averaged

Navier Stokes (PANS), Delayed Detached Eddy Simulation (DDES), and Very Large Eddy Sim-

ulation (VLES). The paper found similar results to [13], with some discrepancies observed in Cl

and large scale agreement in surface flow topology.
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CHAPTER III: MODEL SETUP

3.1 Mesh

CFD results are only as good as the mesh they were computed on. A well-designed mesh uses

cell count effectively, increasing resolution where there are gradients to resolve, and decreasing

where it is not needed for faster run time. The mesh must have sufficient quality, with cell skew-

ness, aspect ratio, and non-orthogonality under the acceptable limits. The surface mesh needs to

capture the geometry surface with sufficient fidelity, including gaps and edges. The entire model

must have a prism layer mesh with the correct first cell height, growth ratio, and total thickness to

resolve the boundary layer behavior. Critically, the mesh needs to properly resolve the boundary

layer with an appropriate total layer thickness, growth rate, and a first cell height that yields the

desired y+ values. y+ is the dimensionless wall distance defined as

y+ =
uτy
ν

, (3.1)

where y is the actual wall distance, ν is the kinematic eddy viscosity, and uτ is the wall friction

velocity,

uτ =

√
τw

ρ
. (3.2)

The dimensionless velocity u+ is defined as

u+ =
u
uτ

(3.3)
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The flow velocity u+ is prescribed near the wall by Law of the Wall, shown in Figure 3.1. Accord-

ing to Law of the Wall, u+ = y+ in the viscous sublayer where 0 < y+ < 5. 5 < y+ < 30 is the

buffer layer where u+ is unknown. Finally, 30 < y+ < 200 is the log layer, where u+ is prescribed

as

u+ =
1
κ

log(y+)+C. (3.4)

C is a constant approximately equal to 5.1 for smooth walls and κ = 0.41 is the von Kármán

Figure 3.1: Law of the Wall (source: https://www.cfd-online.com/Wiki/Law of the wall))

constant. In order to prescribe the correct u+ near the wall, the y+ of the first cell must be either in

the viscous sublayer or the log layer. Due to the high Reynold’s Number (Re≈ 8.1e6) of this flow,

a y+ in the log layer is targeted to keep cell count reasonable.

For volumetric mesh refinement, the mesh is left coarse far away from the vehicle, where the

flow is largely uniform. The mesh is then refined in blocks with decreasing distance to the vehicle.

Some of the refinement zones extended multiples of vehicle length downstream to capture the

decay of the wake into the freestream flow. Finally, the mesh near the wall consists of thin, higher

aspect ratio cells to resolve boundary layer behavior as previously discussed, see Figure 3.4.

The last matter is to perform a mesh independence study to ensure the domain is sufficiently
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Figure 3.2: Mesh near the truck, side view

Base mesh size Cd Cl Cell count

3.5 m 0.551 0.342 18×106

2.5 m 0.552 0.345 41×106

2.0 m 0.551 0.347 71×106

1.5 m 0.553 0.335 147×106

Table 3.1: Mesh convergence study averaged force coefficients

refined. This is done by globally decreasing the mesh size by multiples until the solution no longer

changes significantly. To accomplish this, the mesh size is defined as follows. The largest cell size

in the model is called the base size, and all smaller sizes are defined by multiples of the base size

as

refinementn = (base size)
(

1
2

)n

, (3.5)

where n is called the refinement level. By defining mesh size in this way, it is easy to globally

change refinement while not changing the topology of the mesh. Table 3.1 shows the results of

varying the base mesh size. Cd and Cl vary by less than 1 and 5 percent, respectively, demonstrating

acceptable mesh convergence for this study. From these results, a base mesh size of 2.0 m was

chosen. For this mesh, the surface size is 4 mm, and the first cell height is 0.5 mm.
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Figure 3.3: Mesh near the truck, top view

3.2 Geometry

The geometry tested has the profile of a simplified truck. Small details present on real trucks,

such as door handles, body lines, panel gaps, and various underbody components are eliminated,

whereas important features were made to be representative of a real truck. These include: the

shape of the A-pillar, tumblehome, rear header taper, cargo box boattailing, box height, and wind-

shield angle. The overall dimensions of the truck, such as wheelbase, box length, cab length, and

roof height were also chosen to be representative of contemporary trucks. This strategy has a few

benefits. First, simplifying the vehicle makes it easier to mesh and lowers cell count, easing nu-

merical convergence and decreasing simulation time. Second, the extra features introduce noise

into the solution: small flow features which we aren’t really interested in, and vary from truck to

truck. We want to narrow the scope and focus on the characteristic aerodynamic features of a truck

- vortices rolling off the A-pillars, flow off the rear header, downwash into the bed, and so forth

- and how the choice of turbulence model affects them. Finally, it is important the vehicle is not

so simplified that the flow is not representative of a real truck. Some simple models are useful for
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Figure 3.4: Prism layer mesh for resolving the boundary layer

studying specific aerodynamic phenomenon such as the Ahmed Body, which is used to study the

relationship between backlite angle, flow separation, and wake behavior for a bluff body but are

do not capture the true shape of a vehicle, and all of its interacting features. The Drivair Model

[12] is an example of a full featured simplified car model, which also has interchangeable back

ends (hatchback, wagon, and sedan). The front end of the pickup model includes A-pillar and roof

offsets, and roof and hood lead-edges are radiused. All cooling openings are closed, as seen in

Figure 3.5. The model underbody includes a smoothed floorpan and rocker offsets. Engine bay is

open from the bottom, and the model has a simplified engine, transmission, driveline, exhaust, and

frame, as shown in Figure 3.6. The model has B- and C-pillar offsets that are radiused. The roof

rear header has curvature. The wheel base, roof height, box length, and cab length are representa-

tive of a production vehicle. The tires are smooth and intersected 30 mm into the ground (Figures
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Figure 3.5: Front view of simplified truck

Figure 3.6: Underbody view of simplified truck

3.7 and 3.8).

3.3 Initial and Boundary conditions

Both the steady state and transient simulations were initialized using the OpenFOAM solver

potentialFoam, which solves the potential flow equation. The flow is assumed inviscid and irrota-

tional, so then velocity~u is a function of velocity potential φ

~u =5φ . (3.6)
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Figure 3.7: Side view of simplified truck

Figure 3.8: Top view of simplified truck

By the continuity equation, φ must then satisfy the Laplace equation

5· (5φ) =52
φ = 0. (3.7)

The flow domain is simulated as a simple, large box wind tunnel. The model is centered in the

domain, which is sized to have a low blockage ratio, and the model is located multiple vehicle

lengths away from the domain walls. The freestream enters normal through the inlet to yield a

Reynold’s Number of approximately 8.1×106 , using the model wheelbase as the characteristic

length scale. The inlet and outlet faces have special boundary conditions for velocity and pressure

intended to prevent backflow and achieve the target flow rate through the domain. The other walls

of the domain and the pickup model surface have symmetry boundary conditions for pressure.

27



The floor has a translating velocity boundary condition to simulate the road moving under the

vehicle as it travels at the freestream velocity. The other walls of the domain parallel to the floor

have slip velocity boundary conditions. The vehicle body has a no-slip velocity boundary condition

everywhere except for the wheels, which have rotating velocity boundary conditions corresponding

to their respective angular velocities.

3.4 Navier-Stokes solvers

Two different OpenFOAM solvers were used in this study: SIMPLEC (Semi-Implicit Method

for Pressure-Linked Equations Consistent) for steady problems, and PISO (Pressure Implicit with

Splitting Operators) for transient problems. Both are semi-implicit pressure projection methods.

Starting from a solution at time step n with un, pn, the next time step un+1, pn+1 must be calculated.

Rearrange the Navier-Stokes equations as

un+1−un

∆t
=− 1

ρ
5 pn+1−N (un,un)+ν52 un+1 + f n+1 (3.8)

5·un+1 = 0, (3.9)

where N (un,un) are the advection terms [1]. By taking the divergence of the momentum equation,

we obtain the pressure equation

52 pn+1 =−ρ5·
(
−N (un,un)+ν52 un+1 + f n+1) , (3.10)

which is really just the Poisson equation. Rewrite the pressure field as

pn+1 = pn +δ p, (3.11)
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where δ p is the pressure correction. The predictor step of the method calculates the intermediate

velocity u∗

u∗ = un +∆t
(
−N (un,un)+ν52 un+1 + f n+1)− ∆t

ρ
5 pn. (3.12)

Because u∗ is only a prediction, δ p is omitted in order to split the p and u fields. Then, the pressure

equation is solved using u∗ and δ p

52
δ p =

ρ

∆t
5·u∗. (3.13)

Finally, the corrector step updates the u field [1]

un+1 = u∗−∆t5δ p. (3.14)

These methods are called semi-implicit because the predictor step is implicit, while the corrector

step is explicit. The SIMPLEC and PISO algorithms follow this general procedure, but operate on

the discretized and linearized equations. The momentum equation in this form is written

aP(u(m))u∗i,P +∑
l

al,P(u(m))u∗i,l = QP(u(m))−

(
δ p(m)

δxi

)
, (3.15)

where P represents the value at cell P, l represents the contributions from the neighboring cells,

and QP are the right hand side terms. The first step of SIMPLEC and PISO is to evaluate aP,

al,P, and QP at the current time layer. Then use these coefficients to obtain u∗i from the linearized

momentum equation. The values of u and p at the next time layer are represented as

u(m+1)
i = u∗+u′i (3.16)

p(m+1)
i = p∗+ p′i. (3.17)
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The next step is to solve the pressure equation

δ

δxi

(
1

aP(u(m))

δ p′

δxi

)
=

(
δu∗i
δxi

)
+

(
δ ũ′i
δxi

)
, (3.18)

where ũ′i is an unknown function defined by

ũ′i,P = u′i,P +
1

aP(u(m))

(
δ p′

δxi

)
. (3.19)

SIMPLEC approximates ũ′i,P using

ũ′i,P ≈ u′i,P
∑l al,P(u(m))

aP(u(m))
. (3.20)

After solving the pressure equation, solve for velocity corrector

u′i,P =− 1
aP(u(m))

(
δ p′

δxi

)
, (3.21)

then the next time layer u(m+1) and p(m+1) can be calculated. SIMPLEC repeats these steps until

convergence is reached.

The PISO algorithm differs slightly from SIMPLEC. When solving the pressure equation, the

ũ′i,P term is dropped. ũ′i,P is instead calculating using the relationship

ũ′i,P =−
∑l al,P(u(m))u′i,l

aP(u(m))
, (3.22)

and then solving for a second pressure correction

δ

δxi

(
1

aP(u(m))

δ p′′

δxi

)
P
. (3.23)
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Simulation type Steady-state Transient

Solver simplecFoam pisoFoam

Total time 6000s 4.0s

Time step 1s 2×10−4 s

Table 3.2: OpenFOAM solvers and time settings

Operator Scheme

Gradient Gauss Linear

Divergence Gauss Upwind

Laplacian Gauss Linear

Table 3.3: Finite volume schemes

Finally, use the second pressure correction to obtain a second velocity correction

u′′ = ũ′i,P−
1

aP(u(m))

(
δ p′′

δxi

)
P
. (3.24)

The time step and total amount of simulated time for each simulation type are shown in Table 3.2.

The steady-state time steps are much larger because the solver aims to obtain only the steady-state

solution, rather than being time-accurate like the transient solver.

3.5 Finite volume schemes

With the finite volume approach, each integral term in the Navier-Stokes equations must be

discretized. There are three types of operators to discretize: gradient, divergence, and Laplacian.

The schemes are summarized in Table 3.3. ”Gauss” indicates the use of Divergence Theorem to

transform each volume integral into a surface flux integral. The next term indicates the interpola-

tion scheme used to obtain the cell face values for the surface flux integral. Linear interpolation is

equivalent to central differencing, and upwind interpolation is a simple backward difference [15].
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Variable Solver

p Geometric Algebraic Multigrid

U Biconjugate Gradient Stabilized

ν̃t Biconjugate Gradient Stabilized

k Biconjugate Gradient Stabilized

ε Biconjugate Gradient Stabilized

ω Biconjugate Gradient Stabilized

Table 3.4: Linear solver schemes

3.6 Linear solvers

The reason for linearizing and discretizing the Navier-Stokes equations is so that they can

be recast into various linear systems which can be solved. Due to the large size of the matrices

involved, at minimum n×n where n is the number of cells, direct methods are infeasible. Efficient,

iterative linear solver algorithms are required. These standard OpenFOAM linear solvers [15] used

throughout the simulation are summarized in Table 3.4.
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CHAPTER IV: RESULTS

4.1 Numerical convergence

To test the numerical convergence of each model, the values of Cd and Cl are monitored over

time until they settle into a pattern around a mean value. Additionally, the solution residuals are

monitored to ensure the linear solvers are converging. The mean flow fields are used to compare the

steady and transient runs. For transient runs, the solution is time-averaged from a certain point until

the end time, with a large enough window to capture all periods of oscillation in the solution. For

steady state runs, the latest time step is typically used; however, because the solution still oscilliates

strongly, it too is time-averaged over an interval. This is due to the inherently unsteady nature of

the flow. The steady state runs were averaged from time step 4000 to 6000, and the transient runs

from 2.0s to 4.0s. Figures 4.1 through 4.10 show that each turbulence model achieved convergence

in Cd and Cl . The RANS models converged within +/- 0.010 Cd and Cl , while the transient models

converged within +/- 0.050 Cd and Cl . The transient convergence signals are noisier than the steady

state because the transient solutions are time-accurate. They are capturing the real oscillations in

aerodynamic forces due to turbulence and unsteady flow structures. These are suppressed in the

steady simulations. Figures 4.11 to 4.15 show acceptably low solution residuals.
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Figure 4.1: Spalart-Allmaras model Cd convergence

Figure 4.2: Spalart-Allmaras model Cl convergence
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Figure 4.3: k-omega SST model Cd convergence

Figure 4.4: k-omega SST model Cl convergence
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Figure 4.5: DES model Cd convergence

Figure 4.6: DES model Cl convergence
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Figure 4.7: DDES model Cd convergence

Figure 4.8: DDES model Cl convergence

37



Figure 4.9: IDDES model Cd convergence

Figure 4.10: IDDES model Cl convergence
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Figure 4.11: Spalart-Allmaras residuals vs time

Figure 4.12: k-omega SST residuals vs time
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Figure 4.13: DES residuals vs time

Figure 4.14: DDES residuals vs time
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Figure 4.15: IDDES residuals vs time

Turbulence Model Cd Cl

Spalart-Allmaras 0.512 0.249

k-omega SST 0.513 0.277

DES 0.553 0.333

DDES 0.552 0.343

IDDES 0.551 0.347

Table 4.1: Averaged force coefficients

4.2 Force coefficients and surface Cp

To calculate aerodynamic force coefficients, the time-averaged pressure and shear stress fields

are integrated over the entire model surface. The coefficient is then calculated as

Cx =
Fx

1
2ρU2

∞A f
(4.1)

Where A f is the projected frontal area of the vehicle, and U∞ is the freesteam velocity. Table 4.1

shows the calculated average force coefficients.

The RANS models were within 0.001 Cd and 0.028 Cl of each other. The transient runs pre-

dicted on average 0.040 higher Cd and 0.078 higher Cl than the RANS models as shown in Table
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Figure 4.16: Body Cp y = 0 slice

4.1. The transient models were within 0.002 Cd and 0.014 Cl of each other.

By examining the centerline Cp slice in Figure 4.16 and the surface Cp images in Figures 4.17

to 4.41, the development of Cd over the vehicle can be explained as follows. There is a large

increase at x = 0 due to stagnation on the front of the vehicle, followed by a local decrease due to

lower pressure on the insides of the front wheel wells. Cd starts to increase up through x = 1 due to

air colliding with the engine and front axle; the local Cd effect of the tires is complex due to their

rotation and the ground contact patch behavior. There is a spike then drop near x = 1.2 from engine

bulkhead, rear half of the front wheel wells, and the start of the windshield. Cd then steadily rises

from x = 1.2 to x = 1.6 from the high pressures on the windshield and contribution from the side

mirrors. From x = 1.6 to x = 2 Cd begins to decrease: the curvature of the roof leading edge causes

the air to accelerate and static pressure to drop. From x = 2 to x = 2.6 Cd is unchanged: the roof

and underbody are flat in this region, and the contribution to Cd by surface shear stress is small.

From x = 2.6 to x = 2.8 Cd begins to decrease, due to curvature in the rear roof header causing the

air to accelerate. At x = 2.8 there is a precipitous Cd spike: the passenger cab ends, and the rear
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of the cab sees very low Cp being in the wake. There is a short Cd decrease then increase from

the low pressures on the front face of bed, then the corresponding rear face, respectively. From

x = 3.5 to x = 4.2 Cd increases from air interacting with the rear axle and tires. From x = 4.8 to

the end, there are three separate Cd increases. First, there is a smaller increases from the pressure

on the inside of the tailgate, due to shear layer and air being washed in from C-pillars stagnating,

plus the air recirculating within the bed area. Next, there is a large Cd increase due to the wake and

low pressure on the rear face of the tailgate. Finally, the rear face of the bumper encounters low

surface Cp.

The development of Cl over the vehicle can be explained as follows. There is an initial Cl dip

due to high Cp on the top of the front bumper, plus the low pressure underneath it. Cl is fairly

constant until the windshield and cowl region redirect the flow upwards and experience high Cp,

decreasing Cl . Minimum Cl is reached near the side mirrors, after which Cp becomes negative

on the windshield from and drops sharply on the roof due to the flow accelerating. Cl steadily

increases over the rest of the vehicle from high Cp on the underbody and low Cp on the roof and

bed.

Several differences in the Cp distribution are apparent between the steady Spalart-Allmaras and

transient DES simulations. The distribution is vastly different on faces exposed to wake zones, in

particular the rear glass and tailgate. Cp on the front tires appears unchanged, but is different on

the rear tires. On the sides of the vehicle, the mirror wake is changed and pressure distribution

around the rear wheel wells. Aft of the front axle, the underbody pressures are changed entirely.

The transient DES simulations have generally higher underbody Cp than the steady state RANS.

These are areas of the flow rich in detached, turbulent eddy content. Conversely, the areas which

are the same are at the front of the vehicle before any wakes or detached flow features form (these

are also RANS regions in the DES models).
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Figure 4.17: Body Cp front view, Spalart-Allmaras.

Figure 4.18: Body Cp front view, k-omega SST.
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Figure 4.19: Body Cp front view, DES.

Figure 4.20: Body Cp front view, DDES.
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Figure 4.21: Body Cp front view, IDDES.

Figure 4.22: Body Cp top view, Spalart-Allmaras.
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Figure 4.23: Body Cp top view, k-omega SST.

Figure 4.24: Body Cp bottom view, DES.
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Figure 4.25: Body Cp bottom view, DDES.

Figure 4.26: Body Cp bottom view, IDDES.
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Figure 4.27: Body Cp top view, Spalart-Allmaras.

Figure 4.28: Body Cp top view, k-omega SST.
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Figure 4.29: Body Cp top view, DES.

Figure 4.30: Body Cp top view, DDES.
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Figure 4.31: Body Cp top view, IDDES.

Figure 4.32: Body Cp side view, Spalart-Allmaras.
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Figure 4.33: Body Cp side view, k-omega SST.

Figure 4.34: Body Cp side view, DES.
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Figure 4.35: Body Cp side view, IDDES.

Figure 4.36: Body Cp side view, IDDES.
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Figure 4.37: Body Cp rear view, Spalart-Allmaras.

Figure 4.38: Body Cp rear view, k-omega SST.
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Figure 4.39: Body Cp rear view, DES.

Figure 4.40: Body Cp rear view, DDES.
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Figure 4.41: Body Cp rear view, IDDES.

4.3 Qualitative Flow Field Analysis

Figures 4.42 through 4.46 show how the velocity field changes along the y = 0 centerline of the

truck. Flow decelerates as it stagnates on the front fascia and approaches the cowl; it accelerates

as it moves over the hood leading edge, over the roof leading edge, and under the front bumper.

The low speed region behind the cab in the bed is a large recirculation zone, similar to a backward-

facing step. The shear layer demarcating the boundary between the high-speed freestream flow

and the recirculation zone is visible as it descends down from the back of the cab and over the

tailgate. The wake of the vehicle is also visible as a low-speed region behind the tailgate. The

shear layer from the cab and the underbody flow both clearly influence the wake behavior. Moving

further behind the vehicle, the wake dissipates relatively quickly, yet the lower-speed flow extends

for many truck-lengths beyond. The behavior of the wake and shear layer changes significantly

between the Spalart-Allmaras and DES models, but there is no noticeable difference between the

DES models. The shape of the DES wakes behind the tailgate are distinguished from RANS due

to the large scale eddy content being resolved there.
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Figure 4.42: U/U∞ y = 0 slice, Spalart-Allmaras.

Figure 4.43: U/U∞ y = 0 slice, k-omega SST.
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Figure 4.44: U/U∞ y = 0 slice, DES.

Figure 4.45: U/U∞ y = 0 slice, DDES.
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Figure 4.46: U/U∞ y = 0 slice, IDDES.

Figures 4.47 through 4.51 show an XY slice of the velocity field through the middle of the tires.

We can see the wakes being ejected outwards from the wheels influence the flow downstream, as

well as the effect of the underbody component such as the front axle obstructing the flow. Spalart

Allmaras shows greatly exaggerated wakes behind the underbody components , and the initial jet

from the front underbody flow perpetuates further downstream before dissipating, compared to the

DES models.

To visualize the wakes three-dimensionally, we can take isosurfaces of Cpt shown in Figures

4.52 through 4.61. In wake zones, high vorticity causes fluid friction and energy dissipation, re-

flected by decreased Cpt . Therefore, we can visualize the boundaries of the zone by drawing three-

dimensional contours at Cpt = 0, since negative Cpt values will be in the wake. Wake structures are

evident around the mirrors, wheels, cab, tailgate, and axles. Observe the smaller length- and time-

scale content visible in the DES variant isosurfaces which is not present in the RANS simulation.

The front axle and wheel wakes persist seemingly twice as long downstream in Spalart-Allmaras

compared to the DES models. Interestingly, the rear tire wake is asymmetric on the RANS models,
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Figure 4.47: U/U∞ z = 0.16 slice, Spalart-Allmaras.

Figure 4.48: U/U∞ z = 0.16 slice, k-omega SST.
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Figure 4.49: U/U∞ z = 0.16 slice, DES.

Figure 4.50: U/U∞ z = 0.16 slice, DDES.

61



Figure 4.51: U/U∞ z = 0.16 slice, IDDES.

kicking out noticeably on the rear right tire.

We can visualize the vortex structures present in the flow with slices of vorticity. Figures 4.62

through 4.96 reveal the vortex cores and their rotation. See that the A-pillar and mirror vortices

are elongated in Spalart-Allmaras compared to DES. In the DES models, these vortices seem to

burst much earlier. The front wheels show elongated structures as well, and the rear wheels in

particular have several vortex structures which are absent in DES. The asymmetric flow feature on

the rear right tire is obserable again here on the RANS models. See the vortices washing around

the bottom of the C-pillars into the bed. The largest differences in vortex structures are observed

near the rear of the vehicle. The horizontal vortex structure washing over the tailgate is present

in the DES models but completely absent in RANS. The RANS models also have some structures

near the rear tires that do not appear in DES. The vortices rolling off the side of the tailgate and

up from the bumper appear smaller in RANS than in DES. Overall, the DES models showed little

differences between each other.

When flow detaches from the wall, the velocity in the boundary layer approaches zero and then
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Figure 4.52: Cpt isosurface, top, Spalart-Allmaras.

Figure 4.53: Cpt isosurface, top, k-omega SST.
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Figure 4.54: Cpt isosurface, top, DES.

Figure 4.55: Cpt isosurface, top, DDES.
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Figure 4.56: Cpt isosurface, top, IDDES.

Figure 4.57: Cpt isosurface, side, Spalart-Allmaras.
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Figure 4.58: Cpt isosurface, side, k-omega SST.

Figure 4.59: Cpt isosurface, side, DES.
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Figure 4.60: Cpt isosurface, side, DDES.

Figure 4.61: Cpt isosurface, side, IDDES.
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Figure 4.62: Mean x–vorticity x =−0.5 slice, Spalart-Allmaras.

Figure 4.63: Mean x–vorticity x =−0.5 slice, k-omega SST.
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Figure 4.64: Mean x–vorticity x =−0.5 slice, DES.

Figure 4.65: Mean x–vorticity x =−0.5 slice, DDES.
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Figure 4.66: Mean x–vorticity x =−0.5 slice, IDDES.

Figure 4.67: Mean x–vorticity x = 0 slice, Spalart-Allmaras.
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Figure 4.68: Mean x–vorticity x = 0 slice, k-omega SST.

Figure 4.69: Mean x–vorticity x = 0 slice, DES.
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Figure 4.70: Mean x–vorticity x = 0 slice, DDES.

Figure 4.71: Mean x–vorticity x = 0 slice, IDDES.
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Figure 4.72: Mean x–vorticity x = 0.5 slice, Spalart-Allmaras.

Figure 4.73: Mean x–vorticity x = 0.5 slice, k-omega SST.
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Figure 4.74: Mean x–vorticity x = 0.5 slice, DES.

Figure 4.75: Mean x–vorticity x = 0.5 slice, DDES.
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Figure 4.76: Mean x–vorticity x = 0.5 slice, IDDES.

Figure 4.77: Mean x–vorticity x = 1.0 slice, Spalart-Allmaras.
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Figure 4.78: Mean x–vorticity x = 1.0 slice, k-omega SST.

Figure 4.79: Mean x–vorticity x = 1.0 slice, DES.
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Figure 4.80: Mean x–vorticity x = 1.0 slice, DDES.

Figure 4.81: Mean x–vorticity x = 1.0 slice, IDDES.
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Figure 4.82: Mean x–vorticity x = 1.5 slice, Spalart-Allmaras.

Figure 4.83: Mean x–vorticity x = 1.5 slice, k-omega SST.
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Figure 4.84: Mean x–vorticity x = 1.5 slice, DES.

Figure 4.85: Mean x–vorticity x = 1.5 slice, DDES.
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Figure 4.86: Mean x–vorticity x = 1.5 slice, IDDES.

Figure 4.87: Mean x–vorticity x = 2.0 slice, Spalart-Allmaras.
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Figure 4.88: Mean x–vorticity x = 2.0 slice, k-omega SST.

Figure 4.89: Mean x–vorticity x = 2.0 slice, DES.
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Figure 4.90: Mean x–vorticity x = 2.0 slice, DDES.

Figure 4.91: Mean x–vorticity x = 2.0 slice, IDDES.
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Figure 4.92: Mean x–vorticity x = 2.5 slice, Spalart-Allmaras.

Figure 4.93: Mean x–vorticity x = 2.5 slice, k-omega SST.
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Figure 4.94: Mean x–vorticity x = 2.5 slice, DES.

Figure 4.95: Mean x–vorticity x = 2.5 slice, DDES.
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Figure 4.96: Mean x–vorticity x = 2.5 slice, IDDES.

reverses flow. To visualize this, the surface shear stress is plotted. Figures 4.97 to 4.101 show

flow detachment from the mirror and wheel wakes. The shape of the detachment zone is quite

different between Spalart Allmaras RANS and DES: curiously, the Spalart-Allmaras detachment

zones seem to ”streak” across the entire truck, whereas in DES the flow reattaches some distance

downstream. This also holds true for the wheel wakes. The A-pillar vortex re-attachment line

appears similar across all models on the driver side window. The top view in Figures 4.102 to

4.106 unsurprisingly shows completely detached flow in the bed. Across turbulence models, there

is no difference in flow detachment behavior on the rear header of the roof. Finally, from Figures

4.107 to 4.111, we see that the underbody flow is highly detached due to the lack of component

shielding.
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Figure 4.97: Surface shear stress, side, Spalart-Allmaras.

Figure 4.98: Surface shear stress, side, k-omega SST.

86



Figure 4.99: Surface shear stress, side, DES.

Figure 4.100: Surface shear stress, side, DDES.
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Figure 4.101: Surface shear stress, side, IDDES.

Figure 4.102: Surface shear stress, top, Spalart-Allmaras.
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Figure 4.103: Surface shear stress, top, k-omega SST.

Figure 4.104: Surface shear stress, top, DES.
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Figure 4.105: Surface shear stress, top, DDES.

Figure 4.106: Surface shear stress, top, IDDES.
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Figure 4.107: Surface shear stress, bottom, Spalart-Allmaras.

Figure 4.108: Surface shear stress, bottom, k-omega SST.
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Figure 4.109: Surface shear stress, bottom, DES.

Figure 4.110: Surface shear stress, bottom, DDES.
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Figure 4.111: Surface shear stress, bottom, IDDES.
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CHAPTER V: CONCLUSIONS

In this study, three hybrid RANS-LES turbulence models—DES, DDES, and IDDES—were

evaluated in an external aerodynamics CFD simulation of a simplified truck shape. The results

were compared to the Spalart-Allmaras and k-omega SST steady-state RANS models. The hybrid

models yielded similar force coefficients, with both Cd and Cl within 0.002 Cd and 0.014 Cl for all

three. The hybrid models also predicted Cd and Cl 0.040 Cd and 0.078 Cl higher on average than

the steady RANS models, respectively. Surface Cp and near wall velocity were similar between all

the models on the front fascia, hood, windshield, and front half of the front wheel wells. However

they begin to differ downstream of these regions. In particular, surface Cp in highly-detached

zones were significantly different between the RANS and hybrid models. This occurred in critical

areas such as the back of the cab and tailgate, which are large contributors to Cd . Similarly, Cl

was strongly affected by the change in underbody Cp development. Reattachment behavior also

differed, most notably in the mirror wake on the front door windows.

Several flow features such as the front wheel wakes, underbody center jet, and A-pillar vortices

seemed to dissipate much slower in RANS: in some cases, their streamwise length was doubled.

The flow structures behind the rear tires were in some cases completely different. Some structures

were present around the rear tires only in RANS; conversely, there was a horizontal vortex rolling

off the tailgate that was completely absent in RANS.

Flow field differences between DES, DDES, and IDDES were few and subtle. There were no

significant alterations in flow structures between them, and the surface Cp fields were nearly iden-

tical. Though the three models are fundamentally different and increasingly complex, the common

DES strategy and use of Spalart-Allmaras made the results similar. Looking at the differences be-

tween the models, we might expect to find differences where there was adverse pressure gradient
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driven separation, due to problems with modeled stress depletion in DES. However, the general

boxiness of the truck shape and its relatively shallow curvature meant that separation was instead

dictated by trailing edges. In contrast, we might expect to see differences on the rear glass of the

notchback vehicle shown in Figure 2.5, which has a steeper angle.

An important component missing from this study is the wind tunnel. While we do have a

general idea of which schemes are better in CFD from first principles and numerical analysis,

without comparision to physical test results, it is difficult to gauge the true performance of each

turbulence model. On a basic level, it is useful to compare overall force coefficients obtained in

the tunnel to those seen in CFD, and simply see which is closer. However, this metric is deceptive

because in CFD, areas with overpredicted forces can cancel out underpredicted forces, giving a

false sense of security. A better correlation technique is pressure data obtained through taps or

sensors, either on the surface or out in the flow. This enables confirmation of which areas of the

vehicle have forces being predicted correctly, and the others that fall short. This feedback is more

valuable because it narrows the scope of investigation to problem areas in the CFD model.

Flow visualization techniques such as surface oil streaks allow engineers to see surface flow

topology and—critically—separation lines. Comparing separation behavior in the tunnel to CFD

confirms whether boundary layer development is being predicted correctly, which is linked directly

to the turbulence model. Finally, particle image velocimetry (PIV) allows direct visualization of

the instantaneous U field with lasers. In CFD, each turbulence model will predict flow structures

differently. As seen in the results of this study, some structures come completely into and out of

existence depending on the turbulence model. The only way to validate which structures are real,

and which turbulence model is predicting them correctly, is by using PIV or related techniques.

For all the changes caused by turbulence models, the force coefficients and flow fields are

somewhat similar, and so one could argue that the choice of turbulence model is not important.

From the results however, we see that the flow fields are fundamentally changed by the choice

of turbulence model. Notice that regions of the flow field which were sensitive to the choice of

turbulence model tended to overlap with important design areas on the truck. Transient solutions
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take significantly longer to compute than RANS solutions: on the basis of number of steps, each

RANS solution in this study took 6,000 steps, whereas the transient solutions required 20,000

steps. It is tempting to run cheaper RANS solutions at the cost of physical realism, but ultimately

the effort is a waste if the CFD results are compromised by a turbulence model that performs

poorly. While I hypothesize that the transient hybrid RANS-LES models are more realistic than

RANS due to first principles, the vehicle must be physically tested to confirm this.

To continue this study, the most important matter is to obtain wind tunnel results, with ac-

companying pressure data and flow visualization. There are also several more hybrid RANS-LES

models to evaluate. Of the DES-type, there are variants that substitute Spalart-Allmaras with

more sophisticated models such as k-omega SST. There is also Partially-Averaged Navier-Stokes

(PANS), which attempts to smoothly blend together modeled and resolved turbulence instead of

using discrete switching as in DES. Hybrid RANS-LES turbulence models are a popular and suc-

cessful turbulence modeling approach for automotive aerodynamics, and they will likely continue

to be used until computing power grows enough to enable industrial LES simulations.
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