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Abstract 

Brazil’s growing middle class, electrification rates, and urbanization has led to a significant 

uptick in residential appliance adoption. Air conditioner usage, increasingly relevant to both 

average and system peak demand, will have strong environmental and economic impacts to 

the country as a whole. With nearly every Brazilian household connected to the centralized 

electricity grid, increasing temperatures, higher incomes, and vulnerability from reduced 

energy supply; residential cooling demand will have a large impact on Brazilian electricity 

grid reliability and whether or not the country will be able to meet both environmental and 

efficiency goals. Though Brazil’s air conditioner impacts have been referenced anecdotally, 

most detailed studies of cooling demand are focused on countries such as the U.S. This study 

increases temporal resolution to hourly grid impacts as well as improving spatial granularity 

to municipality-level climate and air conditioner adoption predictions. The paper is split into 

two parts with separate models. The first outlines a econometric model that utilizes census 

data (municipality urbanization, household density, household income) and downscaled 

global climate model results (humidity, temperature) to project each municipality’s 

household air conditioner adoption rate showing an increase of 44.6% between 2000 to 2010 

in households with air conditioners, specifically in municipalities with hot climates and high 

average incomes. The second part aggregates adoption numbers up to five regional levels to 

match each region’s hourly grid data with three-hourly climate data to closely study how the 

climate variables impact grid requirements at various temporal levels, showing an increase in 

usage for every degree-increase in heat index and daily peaks shifting to later hours in the 

day. Though this paper is specific to Brazil, it highlights a potential future for other fast-

developing countries in warm regions pertaining to energy demand, grid reliability, and 

environmental consequences. 
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1. Introduction 

1.1 Overview 

In 2016, the top four non-OECD consumers, China, India, Russia, and Brazil, made up 

36.1% of global electricity consumption.1 This trend will likely persist into the future, 

leading to an overall increase of global energy consumption, due to non-OECD countries’ 

increasing access to energy, improving economies, and urbanization.2  

The residential sector drives over 27% of total global electricity demand and exhibits larger 

seasonal demand swings than commercial and industrial sectors,1,3,4 increasing load 

coincident with system peaks.5 Growing middle class populations and urbanization in non-

OECD countries have contributed to a strong increase in residential appliance adoption for 

goods such as refrigerators and air conditioners. Studies of appliance adoption trends, known 

as the “extensive margin,” show dependence on purchasing power and income along with 

others such as migration, policy and personal purchasing decisions.6–10 Lighting, television, 

and refrigeration are often the first household electronics adopted, in that order. As those 

markets reach saturation and economies grow in hot and humid areas, air conditioners are 

likely the next appliance to see strong growth.7 While air conditioner adoption is still fairly 

low in developing countries, global sales increased 13% in just one year between 2010 and 

2011.11  

Studies focusing specifically on air conditioners introduce relationships with climate 

factors,12–18 which become especially important when analyzing how appliance use intensity, 

known as the “intensive margin”, changes.3,5,19–22 Consequently, more cooling degree days 

have proved to be a significant predictor of increased energy usage1.23–29 Though fewer 

heating degree days may offset part of an increased cooling load,12,19,20,24 this offset is not 

sufficient to deter a net load increase.14,21 Overall, demand for cooling may increase three to 

five times by 2050, with adoption and use intensity likely concentrated in quickly-

developing, populous, warm countries.12,30 

Increased residential cooling load will have economic impacts on a country-wide scale down 

to power system ratepayers. Since AC use is often coincident with summertime system peak 

load, it has direct impact on the amount of generating capacity required on the grid.5 Without 

adequate capacity, energy rationing or blackouts may occur and impair economic and social 

conditions. Moreover, even with sufficient generating capacity, spot market prices may rise 

due to increased demand during these times, forcing high compensation oftentimes for 

inefficient thermoelectric generation.31 This would, in turn, impact rates and energy 

affordability for customers.  

                                                 
1 Cooling degree days are often measured by measuring the difference between a day’s higher 
temperature and some set base temperature. For example, using a base of 25 deg. C, one day of 30 
deg. C temperatures would be 5 cooling degree days [deg. C]. A week of them would be 35 cooling 
degree days [deg. C]. Heating degree days are similarly measured between some base and the day’s 
lower temperature. 
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Additionally, the construction of new generating facilities and the use of peaker plants 

(inefficient generators used for infrequent hours of very high demand) will have adverse 

environmental consequences. Resulting greenhouse gas emissions may contribute to a 

positive feedback loop, accelerating a changing climate and increased cooling demand.  

Understanding changes in air conditioner market saturation is complicated and impacted by 

data scarcity. Moreover, large sensitivity variation prevents the ability to generalize adoption 

trends across wide regions or timescale.3,6,15,21 Regardless, a deeper understanding at more 

granular spatial and temporal levels is critical to better grid planning as well as energy 

efficiency policy design to ensure system reliability, affordability, and economic 

development. 

1.2 Brazil’s Power Sector 

As a large country experiencing increases in both ambient temperature and household 

income, Brazil’s increasing air conditioner saturation may reach the point at which it impacts 

system peak demand. Brazil used 575 TWh of electricity in 2017, making it the fourth-largest 

non-OECD electricity consumer and eighth-largest worldwide1,32. States in Brazil are nested 

into four grid regions served by the National Interconnected System (SIN): South, 

Southeast/Midwest, North, and Northeast. Due to differences in climate, socioeconomic, and 

other factors, consumption is unevenly distributed throughout regions. For example, while 

the Southeast, with cities such as Rio de Janeiro and Sao Paolo, contains 48% of residential 

customers, it represents 54% of residential usage. In contrast, the Northeast makes up 25% of 

residential customers, but only represents 15% of usage.33 An additional 237 isolated grids, 

located primarily in the Amazons and Northwest portion of the country, make up less than 

1% of total demand.34 While the SIN annual peak most often falls on a summertime workday 

between 2 PM and 4 PM,32 residential cooling demand in the evening is starting to increase 

during these summer months and may soon dictate system peak in wealthier and warmer 

regions.8,9,23,35  

For over three decades, Brazil’s residential demand has grown at an average annual rate 

between 3.5% and 6% due in large part to increased grid interconnections, urbanization, 

increasing incomes, and falling electricity tariffs.8,33 In 2003, Luz para Todos was established 

to enable universal electricity access to electricity. Before the program in 2000, the country-

wide electrification rate was 93%, with only 69% of rural households connected.36 By 2010, 

Brazil had achieved 98.6% electrification, leading to electricity demand in communities 

where there had previously been none. With near full electricity access today, near-term 

annual growth is projected to persist at levels between 2.9% and 4.7% due to Brazil’s 

increasing population, economic activity, and urbanization.37  

Most of Brazil’s demand is met from the country’s large hydroelectric resource, which makes 

up 65% of installed capacity.2,32 This has provided Brazil with large amounts of low-carbon 

generation, but has also exposed the country to shortages due to a changing climate. In recent 

decades, droughts have led to significant economic contraction that have impacted the 

country as a whole. For example, Brazil’s 2001 drought led the government to demand 20% 

load curtailment, stalling development.38 During the next large drought of 2013-2015, 

reservoirs were at levels 17% below those in 2001, but Brazil was able to avoid country-wide 

curtailment through the use of fossil fuel-run thermoelectric plants. Even so, there were 
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smaller-scale economic impacts as temporary electricity cuts affected large cities such as Rio 

de Janeiro and, and spot market prices hit historic highs ten times those in preceding 

years.31,38 Additionally, the heavy use of these thermoelectric generators, constructed as far 

back as the 1960’s with efficiencies below 20%, increased costs, fuel consumption, and 

emissions31 Anticipating further issues with reliability, Brazil is working to diversify grid 

resources primarily through new wind installations and imported natural gas.31 Moreover, 

various studies show that climate introduces large levels of uncertainty for generator 

performance into the future, predicting that rising temperatures may negatively impact both 

thermoelectric and large hydro generators, but may benefit wind.20,31,39–49 To combat aging 

infrastructure, growing demand, and climate uncertainty, planners seek to supplement 

capacity expansion with energy efficiency, revising plans annually.50 

Brazil’s Energy Efficiency National Plan (PNEf) set a goal of 10% (107 TWh) reduction in 

electricity consumption by 2030.50 The government has suggested that 38% of projected 

savings through 2022 would come from the residential sector alone, which only accounts for 

a quarter of total load.37,50 Direct energy efficiency gains of residential air conditioners along 

with other appliances have stemmed primarily from the mandatory minimum energy 

performance standards (MEPS) created in 2001, and secondarily through voluntary Selo 

PROCEL labeling.35 These measures generated an estimated savings of 334 GWh of savings 

in 2007, 6.8% of total air conditioner load, and a 114 MW peak reduction compared to 

business as usual.35 However, Brazil’s MEPS coefficient of performance requirements are 

still less than requirements in similar markets like China, where most of Brazil’s units 

originate.35  

Appliance adoption studies in Brazil are often generalized over large temporal and spatial 

ranges, but consistently show large projected load growth in the residential sector primarily 

due to socioeconomic improvements.8,9,51 Using 30-year average temperatures, capital cities’ 

household consumption was significantly and positively correlated with the interaction term 

between high income and warm temperatures.51 Air conditioners are still considered a luxury 

item for many in Brazil. In 2012, air conditioning represented 5% of total residential 

electricity consumption and, in 2015, were only present in 18% of households.50  

Nevertheless, annual household adoption grew 21% in 2014 and was estimated to grow an 

additional 12% in 2015.52 With increased adoption, air conditioners will have a large impact 

on overall grid demand. 

1.3 Study Objective 

Electric load growth has often been estimated through top-down models that account for 

economic and population growth indicators along with other large-scale trends such as those 

in industry. While climate can be considered, it is often treated as a constant over time, and 

averaged across large ranges temporally and spatially. Recently, literature has started to focus 

on bottom-up models that disaggregate the residential sector.53 In understanding residential 

load growth, research has focused primarily on factors that impact appliance adoption, 

known as the extensive margin, and on those that impact use intensity, known as the 

intensive margin. Due to difficulty obtaining longitudinal data across granular regions in 

non-OECD countries, most literature focuses on OECD countries, or solely in urban areas of 

developing countries.12,23 Unfortunately, due to the nature of adoption patterns and diversity 
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across markets, resources, climate, and population, it is difficult to generate universal 

understanding of appliance adoption and residential consumption across multiple locations.  

This thesis aims to analyze the impact of household income, climate, and household 

distribution on air conditioner adoption at the municipality level; understand the consequent 

impact on regional hourly electricity demand; use predictions to understand the point at 

which residential air conditioner load may dictate annual peaks; and relate the results back to 

Brazil’s capacity expansion goals and energy efficiency policies. This will be done using 

both temporal and spatial data to study the extensive margin (i.e., appliance adoption) and 

intensive margin (i.e., usage) of air conditioners in Brazil. While there are industry estimates 

for air conditioner adoption and data on urban adoption rates, there have been no data on 

household penetration of air conditioners at the municipality level since the 2000 Census. 

Currently, studies estimate usage and potential efficiency savings regionally by appliance 

stocks, the number of hours above a specific temperature, and efficiency/capacity of the 

average unit35,54 However, by taking hourly impacts on the grid and municipality-level 

impacts of air conditioner adoption and climate, this study estimates adoption and savings at 

a more granular level that remains inclusive of rural communities. With nearly every 

Brazilian household connected to the centralized electricity grid, increasing temperatures, 

higher incomes, and vulnerability from reduced energy supply, residential cooling demand 

will have a large impact on Brazilian electricity grid reliability and whether or not the 

country will be able to meet both environmental and efficiency goals of 10% reduction by 

2030.50  

To address the central research question, a two-step approach is deployed. First, the extensive 

model utilizes climate and census data to project each municipality’s household air 

conditioner adoption rate. Second, the intensive model aggregates air conditioner adoption 

values up to a regional level and, coupled with load and climate data, offer novel findings on 

increases to residential electricity consumption. This allows better understanding of how 

residential cooling demand may impact overall grid reliability at various temporal levels, 

which may serve to better inform future energy efficiency policy and grid design. Though the 

data and findings are specific to Brazil, the approach can be broadly applied and the results 

underscore the importance of this issue to energy demand, grid reliability, and environmental 

consequences for other fast-developing countries in warm regions. 

2. Extensive Model: Data and Methods 

The extensive model determines each municipality’s household air conditioner adoption 

using census data at the municipality level for household distribution, urbanization levels, 

and household income as well as climate data from a downscaled regional climate model. 

Since air conditioner usage can only occur in households with the appliance, understanding 

the number and distribution of household ownership is critical to better understand the 

magnitude and timing of electricity demand. 

Climate Data 

In order to obtain the spatial and temporal granularity required for this analysis, Princeton 

Hydrology Center’s reanalysis data proved to be the most complete and consistent with the 

Climatic Research Unit TS3.0.55 The downscaled data provided values at a 0.25x0.25 degree 
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level at three-hour intervals for specific humidity [kg water/kg air] and ground level 

temperature [K] for years 1990 through 2010. Temperature and specific humidity were 

combined to one heat index value as per the United States’ Weather Service’s guidelines 

(Equation 1: Heat index as a function of temperature and relative humidity).55 

 
Equation 1: Heat index as a function of temperature and relative humidity 

𝐻𝑒𝑎𝑡 𝐼𝑛𝑑𝑒𝑥 = −42.379 + 2.049 ∗ 𝑇 + 10.143 ∗ 𝑟ℎ − 0.225 ∗ 𝑇 ∗ 𝑟ℎ − 6.838𝐸 − 3 ∗ 𝑇2 − 5.482𝐸 − 2 ∗ 𝑟ℎ2 + 1.228𝐸 − 3 ∗ 𝑇2 ∗ 𝑟ℎ
+ 8.528𝐸 − 4 ∗ 𝑇 ∗ 𝑟ℎ2 − 1.99𝐸 − 6 ∗ 𝑇2 ∗ 𝑟ℎ2 

The resulting heat index at a spatial level of 0.25x0.25 degrees was then aggregated up to 

Brazil municipalities (Figure 1). To then convert heat index values to CDD values, a 25 deg. 

C base was used and 3-hourly values were combined, by day to create a CDD value 

(Equation 2). 25 deg. C was selected due to the common base value of 18 deg. C being too 

cold. A behavioral study showed residents in Brazil turning on their air conditioner unit at 

temperatures closer to 30 deg. C, and another study showed that some considered 26 deg. C 

“chilly”54,56,57. To accurately account for differences in perceived temperature, a base of 25 

deg. C was used. This was done for each year over the course of the decade preceding 2000 

and 2010, respectively and averaged (i.e. 1990-2000 for AC ownership in 2000). By taking a 

decadal average, outliers would not skew data and the final values would more accurately 

reflect the overall perceived climate over a time period that more closely matches the lifespan 

of an AC unit. 

 
Equation 2: Calculating CDD values for municipality i and day j from eight individual three-hourly heat index values 

𝐶𝐷𝐷𝑖,𝑗 = ∑(𝐻𝐼3ℎ𝑟,𝑗 − 𝐶𝐷𝐷𝑏𝑎𝑠𝑒) ∗ 3 ℎ𝑜𝑢𝑟𝑠

8

𝑘=1

∗
𝑑𝑎𝑦

24 ℎ𝑜𝑢𝑟𝑠
 

 

 
Figure 1: 1990-2000 Decadal average annual heat index CDD [base 25 deg C] by municipality  

Using 25 deg. C as a base, decadal average annual CDD values across municipalities 

increased from 360 to 382 between the 1990s and 2000s (Figure 2a). Using a higher base of 

30 deg. C, it becomes clear that temperature increases are concentrated in more extremely hot 
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days. In the 90’s, 73% of municipalities had average CDD values less than 50; by 2010, only 

36% of municipalities were in this low range for cooling loads (base 30 deg. C) (Figure 2b). 

As the frequency and intensity of extreme heat events increase, the adoption of air 

conditioners will likely increase, along with their use intensity. 

 
Figure 2: Changing Decadal Average Heat Index Cooling Degree Days from 1990’s to 2000’s, by municipality: (a) Base 25 

deg. C represents the temperature at which consumers turn on the air conditioner (Procel); (b) Base 30 deg. C represents 

increased number of extreme heat events 

Household Data 
This paper utilized the Brazilian government’s Institute of Geography and Statistics’ (IBGE) 

municipality data (n = 5,564) from the national census in 2000 and 2010 to fully capture information 

from all households in Brazil, including those in rural areas.58 For the extensive air conditioner 

adoption model, monthly median income (adjusted to 2010 values to account for inflation) and the 

number of households, both urban and rural, were used as inputs. Overall, census data show that 

municipalities’ monthly household income increased from an average of R$762 to R$1,111 from 

2000 to 2010, adjusted for inflation (  

Figure 3). As incomes increase across municipalities, energy usage may do so as well.33 
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Figure 3: Median monthly household income [R$ 2010] histogram, by municipality in 2000 and 2010 

The most recent, complete dataset for household air conditioner adoption at the municipality 

level is from the 2000 census.58 As shown in Figure 4, adoption rates for air conditioners 

varied greatly, ranging from 0% to 50% penetration. High penetration was most often 

determined by locations with high average monthly incomes (e.g., Rio de Janeiro, Sao 

Paulo).  

 
Figure 4: (a) Income, and (b) AC Adoption Rates across Brazil municipalities in 2000 

Climate factors also played a part in adoption for locations with more cooling degree days 

(e.g., Northwest) (Figure 1: 1990-2000 Decadal average annual heat index CDD [base 25 deg 

C] by municipality). However, peak adoption often requires a combination of the two. In 

areas with lower income, such as the Northeast, adoption remained low despite high 

temperatures and high humidity.  
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Figure 5: AC adoption by municipality's climate and income, organized into quadrants separated by mean values 

Considering climate and household data together, Figure 5 shows municipalities split into 

quadrants by average heat index values and monthly income across the country show 

households with above-average incomes have air conditioner adoption rates averaging 11.3% 

in warmer-than-average municipalities and 8.6% in colder-than average municipalities. For 

municipalities with below-average incomes in warmer and cooler locations, average adoption 

rates drop to 2.0% and 1.8%, respectively (Figure 5). 

To model air conditioner adoption at a municipality level, multiple models were considered 

and analyzed for their predictive power. The linear mixed model selected treated urban and 

rural households separately due to different factors affecting adoption rate including 

electrification rates, cultural norms, and income. Both models, while separate, controlled for 

random effects both at the state and regional levels. Fixed effects included urbanization level, 

total households, and the interaction between the median monthly income and average 

decadal specific heat index (Equation 3). While the random effects, urbanization level, and 

decadal specific heat index were the same for both models, the total household and median 

monthly income varied between urban and rural models (e.g. the urban model uses total 

urban households and urban median monthly income). Appendix 2 describes the different 

models considered along with why they were ultimately rejected. 

 
Equation 3: Linear mixed model for municipality i, state j, region k, number of households, urbanization level, heat index 

cooling degree day value, median household income, and income/heat index cooling degree day interaction. This model was 

run separately for urban and rural household populations in each municipality. 

𝐴𝐶𝐻𝐻𝑖 [%] =  𝛽0 + 𝛽0𝑗 + 𝛽0𝑘 + 𝛽1𝐻𝐻𝑖 + 𝛽2𝐼𝑛𝑐𝑖 + 𝛽3𝑈𝑟𝑏𝐿𝑣𝑙𝑖 + 𝛽4𝐶𝑙𝑖𝑚𝑖 +

𝛽5𝐼𝑛𝑐𝑖|𝐶𝑙𝑖𝑚𝑖 +  𝜀 
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3. Intensive Model: Data and Methods 

The intensive model analyzes households’ air conditioner usage patterns in the larger context 

hourly regional electricity demand. Brazil is made up of 5,564 municipalities nested into 26 

states and one federal district, which are subsequently nested into 5 regions, two of which 

combine to form 4 regional subsystems. Distribution of household air conditioner adoption 

from the extensive model are used to give each municipality a weight that goes towards 

aggregating climate factors from the 5,564 municipality levels to the 4 regional substations. 

Supporting data include the same climate and census variables with additional GDP and 

population data from the census bureau and hourly load data from the system grid 

operator.32,58    

Climate Data 

Using the same dataset and methods for calculating heat index values as the extensive model, 

three-hourly data were used for 2009-2011. These three-hourly data were linearly 

interpolated to hourly heat index values in order to match hourly load data for each 

municipality. Municipality weights represented the percentage of households with air 

conditioners as a fraction of total air conditioners in a municipality’s respective regions. 

These weights were used to aggregate hourly heat index values up to regional levels to match 

hourly load data.  

Table 1: Descriptive characteristics of regions in 2010 

 

Electric Load Data  

Hourly load data by region were provided by the National Electricity Grid Operator (ONS) 

for 2009 through 2011.32 We analyzed a period of three years to reduce bias of any single 

year’s climate or usage variability, but small enough such that 2010 air conditioner adoption 

levels could be assumed as constant. These three years are both sufficiently close to 2010 and 

occur before drought conditions that began in 2013, which led to grid failures.8 The years 

surrounding 2000 were left out due to concerns that consumption would not be representative 

of current trends due to significant changes in appliance adoption, consumer behavior, and 

electrification rates resulting from Luz Para Todos. Additionally, the drought of 2001 and 

subsequent electricity rationing would introduce confounding effects and prediction error. 

Due to differences in population, climate, income, industry, and other factors, each of the 

four regional grids vary. Each of Brazil’s regions make up a subsystem with the exception of 

the Southeast and Midwest, which are blended into one. As a result, the country’s 

interconnected system (SIN) is composed of four regions: North, Northeast, 

Southeast/Midwest, and South.  
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Figure 6: Three-year normalized load duration curves, by subsystem 

 
Figure 7: Subsystems’ three-year load duration curves using hourly data from Jan 01, 2009 through Dec 31, 2011. Dotted 

line represents the three-year average demand. 

Figure 6 and Figure 7 show the load duration curve for each subsystem. The 

Midwest/Southeast subsystem accounts for the great majority of SIN load, as it holds the 

majority of the population and has higher household incomes. Looking at the slope of each 

line shows the potential that load shifting would have on reducing maximum demand. 

Currently, the peaks in each system occur at the middle of a workday around 3 pm (Figure 

8). With the exception of the North, each subsystem’s peak demand day generally falls 

during a warm month. More information on how hourly demand changes by month and hour 

of the day for each subsystem is illustrated further in Appendix 3. 
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Figure 8: Hourly electricity demand for each subsystem's peak demand day 

During the warmest days, the impact of air conditioners become more apparent. Figure 9 

shows the differences in the hourly load curves’ shapes and magnitudes between the coldest 

and warmest day of each region. During the warmest days, usage begins to increase around 8 

and 9 pm. Patterns and levels of change depend on each region’s climate and socioeconomic 

factors (Table 1). For example, the South and Southeast experience the largest differences in 

temperatures and thus have the most variation in seasonal shapes. The two regions have 

winter peaks in electric shower use in the evenings (due to electric water heaters in 

showerheads), and a summer air conditioner peak in the summer. On the other hand, the 

North and Northeast subsystems are relatively warmer year-round, and have relatively lower 

incomes. This may translate to more inflexible demand. While the residential air conditioning 

contribution during the evening hours does not yet play a role in setting the maximum system 

demand, it is growing in each subsystem with increasing incomes, appliance adoption, and 

ambient temperature. 



12 

 

   

  
        
Figure 9: Hourly load curves for each subsystem's day of maximum and minimum temperatures 

The three-hourly air temperature and specific humidity data were combined as in Equation 1 

to create three-hourly heat index values for each municipality between 2009 and 2011. The 

extensive model’s 2010 air conditioner adoption levels, by municipality, were then used to 

weight climate data for the intensive model as a percentage of the region’s total number of 

households with air conditioners. This allowed for the final regional three-hourly heat index 

values to better capture climate factors that would impact air conditioner usage, specifically. 

To match the hourly regional load data, three-hourly heat index values were linearly 

interpolated to hourly values. The dataset was cleaned of any days where significant faults 

may have tripped off significant load by finding outliers in hourly ramp-down rates. Outage-

affected data points represented only 0.3% of the initial data set. 

With each hour’s per-capita load [Wh/h per capita] as a response variable, predictors 

included the region, hour of the day, whether or not it was a workday, the hour’s heat index 

value, annual regional GDP adjusted to 2010 $R values, and the minimum heat index value 

from the previous 24 hours. Non workdays were considered to be any weekend day or 

Brazilian national holiday. The minimum heat index value from the previous 24 hours was 

included to account for the solar heat gain stored in a home from preceding days. For 

example, if the prior day was warmer, given the same climate profile for the following day, 

usage would likely be higher. 
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The behavior of load is non-uniform and non-linear. As such, a random forest mixed model 

approach was used. Separating out 80% of the data to train and 20% to test, the median error 

value across the test data was 2.5%, demonstrating high predictive capabilities.  

4. Results and Discussion 

For both urban and rural household extensive models predicting adoption rates, all fixed 

effects (i.e. number of households, income level, urbanization level, heat index cooling 

degree day, and income/heat index cooling degree day interaction found in Equation 3) had 

significance. The addition of random effects narrowed the respective model’s variance 

considerably, demonstrating meaningful contribution. A more detailed model summary can 

be found in Appendix 1.  

   
Figure 10: Interaction plots between annual average heat index CDD (base 25 degrees C) and average median monthly 

household income for municipalities with non-zero air conditioner adoption (a) urban extensive model, (b) rural extensive 

model 

Overall, rural households are far less likely than urban households to adopt air conditioners, 

and income must reach a higher value before significant adoption begins (Figure 10). This 

could be due to various factors such as relatively lower incomes or fewer appliances given 

that electrification has occurred only recently.2 Across income levels, adoption remains fairly 

low until heat index cooling degree day values reach ~ 500 (Figure 10). Upon reaching a heat 

index cooling degree day of about 500 C, adoption levels increase across households in 

hotter municipalities (apart from rural households in the first income quartile). Only when the 

income barrier is overcome does adoption rate depend heavily on climate factors, with the 

slopes of adoption curves far steeper for households in the upper income quartile. On two 

ends of the extreme, for households with lower incomes in warmer climates, an air 

conditioner is a luxury regardless of ambient temperature. For households with higher 

incomes in cooler areas, air conditioners may be affordable, but are not useful. Thus, 

                                                 
2 In 2000, median monthly income levels across municipalities were R$838 for urban households and 
R$613 for rural households (values inflated to 2010 R$ values) 
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adoption is highest for wealthy, urban households in warm municipalities. These results are 

consistent with literature finding that high adoption rates in hotter, fast-developing countries 

were heavily reliant on both higher incomes and higher perceived temperature.12 Referring to 

Table 1, the North and Northeast subsystems have heat index values far above 500 C, but 

relatively low household incomes. On the other hand, the Midwest/Southeast and South 

subsystems experience lower heat index values, but higher incomes. In the future, the 

increasing incomes in the Northern regions will have the largest impact on country-wide 

adoption with increasing temperatures in Southern regions having a significant secondary 

effect. 

 
Figure 11: Air Conditioner Adoption Rates, by Municipality: (a) Number of households with at least one AC unit and (b) 

Fraction of households with at least one AC unit predicted in 2010 

Brazil’s total household adoption rate for 2010 was predicted at 11.8% up from 7.4% in 2000 

(Figure 4b, Figure 11b), which is consistent with available country-level information. Similar 

to in 2000, most of the households with air conditioners can be found in locations with higher 

incomes and warmer climates (Figure 11a). While there are no data for 2010 municipality-

level adoption rates, Brazil’s HVAC industry group ABRAVA and other sources have 

estimated country-wide adoption rates for comparison (Table 2). ABRAVA announced a 

household adoption rate of 15% nationwide for residential mini-split and window air 

conditioner units four years later in 2014.59 Consistent with our model’s results, Euromonitor 

2010 numbers put adoption rates close to 11%.60 

Moreover, when comparing the results in terms of distribution of total AC stocks, the model 

put most of the air conditioner units in the wealthier Southeast and less in the hotter, but less 

wealthy Northeast. Actual stocks and sales information indicate that the model may have 

overestimated penetration in the Southeast, and underestimated penetration in the Northeast. 

However, it is important to note that this is not a direct comparison, as the model presented in 

this paper estimated the number of households with at least one air conditioner unit, while 

ABRAVA data account for each individual unit. Additionally, distribution in 2010 may have 

been different than 2014 due to increased immigration to Brazil, especially in the North and 

Northeast regions.59 

Table 2: Distribution of air conditioners, a comparison 
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Distribution of Households with Air Conditioners Across Brazil 

Region 2010 (Predicted, authors) 201459 

Northeast 13% 18% 

North 18% 12% 

Midwest 16% 21% 

Southeast 38% 32% 

South 15% 17% 

Creating a predictive model that takes five data points including, and between, each region’s 

hourly median and maximum heat index value, the Wh per capita increase per degree 

increase was quantified for each subsystem. Focusing on weekday consumption, The 

Midwest/Southeast and South subsystems had the largest sensitivities to changes in climate 

factors (Figure 12). This is consistent with results from the extensive model in that the 

wealthier regions are more sensitive to climate when it comes to their electricity usage 

patterns.  

 
Figure 12: Per-capita weekday daily consumption sensitivity to climate, by subsystem 

With the exception of the North subsystem, which showed a slightly positive, non-significant 

relationship, each subsystem showed an increase of overall load as daily median heat index 

increased. Though appearing to be relatively flat, when taking population into consideration, 

each degree-increase in daily median heat index has a sizable impact on total demand, 

especially in the wealthier and more populous regions where electricity demand is more 

flexible (Table 3).  
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Table 3: Daily Wh per capita and total GWh increase per 1 C increase in heat index, by subsystem 

Region Wh per cap. increase per 1C GWh increase per 1C 

Midwest/Southeast 98.85 9.37 

Northeast ~ 0 ~ 0 

North 56.66 0.87 

South 91.06 2.52 

Total 246.57 12.77 

Another consequence of increasing temperatures was the timing of each daily peak in 

addition to the overall increase in magnitude. In the case of the Midwest/Southeast and South 

subsystem, the peak shifted from being determined by an early evening (likely electric 

showers) peak at median temperatures to a midday peak at higher temperatures, likely driven 

by commercial and/or industrial cooling loads. On the other hand, the North and Northeast 

subsystem saw peaks shift from midday commercial loads at median temperatures to late 

evening residential peaks, likely driven by residential air conditioners (Appendix 4). As the 

North and Northeast regions gain purchasing power, and as the Southeast, Midwest, and 

South get warmer, air conditioner adoption will increase far more rapidly and begin to impact 

total and peak consumption at the grid level 

Limitations 

While the extensive model produced very reasonable results, there were a few limitations to 

the study. The main limitation arose due to data availability and quality. Since municipality-

level data for household ownership of air conditioners only existed for 2000, creating a 

predictive model for 2010 assumes that the same adoption behavior and trends that existed in 

2000 were still drivers a decade later and does not account for migration. This is likely a 

good assumption for urban households in 2010, but rural households likely behave far 

differently now that electrification rate has increased due to Luz Para Todos. Additionally, 

household income is quickly growing, and the extensive model can only interpret values that 

it has seen before so as not to extrapolate. This limits the potential for future projections once 

incomes reach levels that were beyond the upper limits in 2000. The beginning of this was 

seen in 11 municipalities that experienced quick increases in both CDD and income when 

predictions indicated full urban household penetration of air conditioners, which is not likely. 

Note that this is a small fraction of the 5,564 total municipalities and that this was not an 

issue for rural households, whose predicted adoption rates remained relatively low.  

For the intensive model, the model was able to track with very low error, however, there is 

very limited information regarding load disaggregation in Brazil. Disaggregation by sector is 

available publicly only by month and year as opposed to by day or hour. Additionally, load 

disaggregation by appliance to isolate an air conditioner peak requires data from a smart 

meter or other sensor, which was not available. A 2005 study done by Procel interviewed 
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households and created load curves by region for a typical household, but information on 

usage patterns and sensitivity to seasons was more general and qualitative3.  

Future studies could project this model into the near future to align with Brazil’s proposed 

grid expansion plans, and could include methods to disaggregate appliance load to more 

definitively understand consumption patterns and behavior. This would be valuable to plan 

and prioritize grid expansion, but would require additional data that may not be available. 

This study could be further expanded to include more information on air conditioner unit 

efficiencies and how this may change over time to impact the intensive model. 

5. Conclusion 

Brazil’s total household adoption rate for 2010 was predicted at 11.8% up from 7.4% in 2000 

(Figure 4b, Figure 11b). The country is experiencing increasing temperatures and wealth, 

distributed asymmetrically around the country at the same time it is experiencing challenges 

from aging infrastructure and dwindling hydro capacity. With increasing wealth, households 

become more sensitive to a warming climate when making purchasing decisions about air 

conditioners. As such, growing temperatures in the wealthier Southeast, Midwest, and South 

regions will have a large impact in air conditioner adoption country-wide. These regions have 

higher household incomes and larger population numbers and are thus more climate-

sensitive. However, due to a relatively mild climate, adoption has remained low, indicating 

large adoption potential in the future as these regions warm. On the other hand, the North and 

Northeast regions represent a smaller number of households and air conditioner adoption. 

Due to lower buying power, household adoption has remained flat and electricity demand 

inflexible. As households gain buying power in these regions, sensitivity to their warm 

surroundings will likely increase and spark higher rates of air conditioner adoption. While 

there is not much literature at this level of granularity for Brazil, specifically, these results are 

consistent with similar findings in Mexico and other warm, fast-developing countries.12 

Even at 2010 levels, climate has an impact on overall consumption, peak demand magnitude, 

and time of daily peak consumption. For the Midwest/Southeast, North, and South, a change 

in daily median temperature of 1C resulted in a per-capita weekday daily usage increase of 

around 99 Wh, 57 Wh, and 91 Wh, respectively. This results in a total subsystem impact of 

9.37 GWh, 0.87 GWh, and 2.52 GWh increase, respectively. This amounts to a 0.9, 1.1, and 

1.2 percentage point increase in average daily load per each degree of temperature increase, 

respectively.  

Disaggregating load by sector and/or by appliance would provide more information on how 

climate impacts air conditioner usage intensity. Though one can assume that the late-evening 

peak that shows up only on warm days can be attributed to residential air conditioners, it is 

hard to know for sure. With this information, Brazil may be able to target programs such as 

demand response or energy efficiency standards to ensure that this evening peak does not 

increase to the point where it is dictating system peak during warm days. This in turn would 

benefit emission reductions, economics, and grid reliability, alleviating some need for 

increased generation capacity or reliance on expensive and inefficient peaker plants.  

                                                 
3 Procel 
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With non-OECD countries outside of Brazil experiencing similarly increasing wealth and 

temperatures, trends such as those found in Brazil may be replicated across the globe. With a 

better understanding of air conditioner adoption and use intensity, countries may be able to 

implement mitigation strategies in a proactive manner so as to remain aligned with 

environmental, development, and other goals. 
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6. Appendices 

Appendix 1: Extensive model R outputs  

To predict log-normal air conditioner adoption rates for each municipality, rural and urban 

households were considered separately. A log transform was applied in order to account for 

over-dispersion of the municipality’s number of households with air conditioners.  

Predictor Estimate Std. Error Degrees of 
Freedom 

t-value P Value 

  Urban Households 

(Intercept) -0.4109 0.3003 5.187 -1.368 0.2275 

Total Households 

[log(1000 HH)] 0.1507 0.0173 3153 8.709 4.87E-18 

Median Monthly 
Household Income 

[log(100 $R)] 0.02334 0.008314 3155 2.808 0.005016 

Average Decadal Heat 

Index CDD [100 CDH] 0.003491 0.001039 3112 3.361 0.0007848 

Urbanization Level 
[percentage] 0.002396 0.00103 3154 2.327 0.02003 

Income/Heat Index 

Interaction 0.001051 0.0001051 3154 9.998 3.45E-23 

  Rural Households 

(Intercept) -1.234 0.1353 313.4 -9.116 9.61E-18 

Total Households 
[log(1000 HH)] -0.1878 0.03669 1632 -5.119 3.44E-07 

Median Monthly 

Household Income 

[log(100 $R)] 0.07703 0.01411 1531 5.459 5.58E-08 

Average Decadal Heat 
Index CDD [100 CDH] -0.005114 0.001178 856.2 -4.342 1.58E-05 

Urbanization Level 

[percentage] 0.009761 0.0008975 1633 10.88 1.20E-26 

Income/Heat Index 

Interaction 0.001311 0.0001783 1242 7.355 3.46E-13 
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Appendix 2: Extensive Model Comparison 

A mixed model linear model was ultimately selected for this study, however, a mixed model 

poisson, quasi-poisson, negative binomial, two-step model approach were initially 

considered.  

The two-part mixed model consisted first of a binomial model to first predict whether or not 

a municipality would have at least one household with air conditioner. If a municipality was 

predicted a non-zero adoption rate, a linear model was fit to estimate magnitude of the 

adoption rate. In 2000, across all municipalities, air conditioner penetration was zero (i.e. no 

household in the municipality had an air conditioner unit) in 44.5% of rural households and 

16.7% of urban households. Ultimately, the binomial model was not used because, while the 

accuracy of the urban binomial model was fairly high at 86.01% (95% CI: (83.82%, 

88.01%), it did not surpass the no information rate of 90.37%. Thus, for 2010, all 

municipalities assumed presence of at least one household with an air conditioner. On the 

other hand, the rural logistic model, while lower with an accuracy of 67.21% (95% CI: 

(64.35%, 69.98%), was much higher than the no information rate of 58.04%. However, this 

value was still fairly low and led to a wide 95% confidence interval for predicted values. 

Additionally, low adoption rates in rural areas could have been due to confounding effects of 

low electrification rates. As such, the initial binomial model was omitted in the final analysis.  

Count models such as poisson and negative binomial models were considered so as to not 

separate the process to logistic and linear mixed model regression while still including 

municipalities with zero urban and/or rural households with air conditioners. Unfortunately, 

due to over-dispersion of the households with air conditioners’ counts, models failed to 

converge. While a quasi-poisson distribution fit the data, the inability to account for random 

effects at a regional and state level led to even higher error. This over-dispersion led to 

similar convergence challenges for the binomial model estimating air conditioner adoption 

rate. Using 5-fold cross validation, the poisson, quasipoisson, and binomial models had mean 

squared errors 5.2, 9.8, and 5.0 times higher, respectively, when compared to the linear 

model ultimately selected.  
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Appendix 3: Average load magnitude by month and hour for 

each subsystem 2009 - 2011 
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Appendix 4: Daily total and peak load sensitivity to climate, by 

region 

 

Day's Med. Heat 

Index 

Daily 

Consumption 

Daily 

Consumption2 

Day's Peak 

Load 

Time of 

Peak Region 

C [Wh/day/cap] [GWh/day] [GWh/h] Hour  

22.45241793 8262.1151 783.336974 37.35448718 18 CWSE 

23.36921438 8574.103562 812.9168206 39.42111863 15 CWSE 

24.01803544 8472.543258 803.2878163 38.41029992 16 CWSE 

24.63835549 8582.572136 813.7197321 39.67062043 14 CWSE 

26.67724032 8745.177343 829.1364467 38.59270028 13 CWSE 

22.45241793 7069.68984 670.282292 35.59101605 19 CWSE 

23.36921438 7372.077909 698.9519186 33.38852853 20 CWSE 

24.01803544 7162.787101 679.1089092 34.57060834 21 CWSE 

24.63835549 7960.338144 754.7252874 36.16304587 20 CWSE 

26.67724032 8463.468373 802.4274201 38.36565022 14 CWSE 

25.17378504 3477.2223 186.3485053 8.605420485 20 NE 

25.5260166 3538.275669 189.6204284 8.981265128 19 NE 

25.84503971 3540.46105 189.7375456 8.755032523 15 NE 

26.25037905 3656.553969 195.9591041 9.375965519 15 NE 

27.66324593 3625.07188 194.2719412 9.061940041 20 NE 

25.17378504 3335.763979 178.7675846 8.943263677 19 NE 

25.5260166 3138.522522 168.1971788 8.520296622 19 NE 

25.84503971 3192.169211 171.072169 8.915059779 19 NE 

26.25037905 3178.92385 170.3623343 8.743649113 19 NE 

27.66324593 3271.110633 175.3027343 8.816805772 20 NE 

25.65709031 5701.375224 87.5708885 3.872590042 20 North 

26.01054583 5760.73378 88.48261266 3.89927855 14 North 

26.35470438 5780.750177 88.79005666 3.929632136 15 North 

26.80024898 5802.429679 89.12304531 3.972747737 15 North 

28.10880095 5734.350353 88.07737356 3.865803546 21 North 

25.65709031 5285.366391 81.1811559 3.848883654 19 North 

26.01054583 5573.77753 85.61103794 3.97605498 20 North 
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26.35470438 5496.86958 84.42976198 3.886956751 20 North 

26.80024898 5371.253687 82.5003511 3.806230773 20 North 

28.10880095 5572.702172 85.59452086 3.929845243 21 North 

18.52227321 7660.801599 212.3506635 10.23654435 15 South 

20.37826757 7923.694122 219.6378124 10.77951472 14 South 

21.88561754 8119.056791 225.0530932 11.15985153 14 South 

23.17298248 8339.517316 231.1640645 11.37281556 16 South 

26.83397471 8406.955883 233.0334021 11.52579068 15 South 

18.52227321 6028.390419 167.1016654 9.014370914 18 South 

20.37826757 6422.789415 178.0340577 8.992229961 19 South 

21.88561754 6165.303899 170.8967863 9.170577668 20 South 

23.17298248 6841.061727 189.6281973 9.181283101 21 South 

26.83397471 6982.502321 193.5488058 9.211095683 21 South 
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