
i 
 

 

Object-based Classification of High Spatial Resolution Remote Sensing 

Images in Ethiopia Using Machine Learning Approaches 

 

 

 

 

By Chuying Lu 

  

  

  

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science (School for Environment and Sustainability) at the 

University of Michigan April 2019 

  

 

Faculty advisors:     

Professor Daniel G. Brown (Chair)        

Assistant Professor Meha Jain 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Abstract  

Remote sensing image classification is the important process of extracting land use and land 

cover (LULC) information and has been widely used in a range of fields. With the 

availability of high spatial resolution images, object-based image analysis together with 

machine learning classification algorithms has received increasing attention and use.   

The main goal of this research is to conduct supervised object-based classification 

experiments based on Random Forest (RF) and Support Vector Machine (SVM) on high 

spatial resolution images in Benishangul (BG), Gambella (GM), Oromia (OR), Ethiopia. 

Performance of the classifiers were compared through analyzing the classification results. 

Multi-variate linear regression models were built to explore the relationships between factors 

and classification performance. Two questions were addressed: Are SVM or RF appropriate 

to be applied to mapping LULC in Ethiopia? and What factors influence classification 

results? Another objective was to explore the possibility to improve classification 

performance in terms of accuracy of features extracted. Temporal features were included and 

the effectiveness of which was examined. When trained the data without temporal features, 

the mean overall accuracy is 0.72 for SVM, 0.74 for RF. The effectiveness of the two 

classification approaches differed by site. They were significantly difference in OR and GM, 

where SVM overperformed RF. Because the dataset was unbalanced, SVM had an 

advantage. The results of the linear regression analysis suggested that the area of class and 

sample counts had notable impacts on classification performance. Inclusion of temporal 

features improved results when using SVM, but had little influence on RF. 
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Introduction 

Background and Literature Review 

The definition of Land use and Land cover (LULC) covers two separate concepts. Land 

cover indicates the physical land type such as forest or open water, whereas land use 

documents how people use the land. (NOAA 2009). 

LULC has been regarded as the part of critical information when addressing the impacts and 

driving forces of LULC change.  

Regarding ecological impacts, LULC changes directly affect the status and integrity of global 

ecosystems and their capacity to supply ecosystem services (Tolessa et al. 2017). For 

example, Rapid urban sprawl has caused loss of habitat and influence accessibility of food. 

Under environmental concern, LULC change can also have negative impacts on 

environment. For instance, increasing agricultural land contributes to the excessive runoff 

released into water, which cause serious water pollution such as eutrophication. (Ahearn et 

al. 2005; Keeney and DeLuca 1993; Johnson et al. 1997).  Considering the case of Ethiopia, 

the destruction and fragmentation of shrubland and natural grassland led to the decline of 

wild plants and, also increased soil erosion, the volume of surface runoff, and sediment 

transport in the landscape and, consequently, affected the levels and water quality of the 

lakes found in the rift floor (WoldeYohannes et al. 2018). 

Along with impacts, it is necessary to consider driver forces of LULC change, especially for 

developing countries like Ethiopia. Generally, LULC change is triggered by a complex 

mixture of political, social, economic and biophysical factors. (Geist et al. 2006). When we 

investigated Ethiopia, rapid population growth and land policy reform are two critical factors 

(Gessesse and Bewket 2014). In one aspect, food demand increased in the past few decades 

as the population experienced exponential growth. In response to the pressure, more and 

more lands are exploited for grazing and farming. (Urgesa et al. 2016; Nyssen et al. 2004; 

Gessesse and Bewket 2014). Secondly, land tenure arrangement affects the utilization of land 

resources and land management investment decisions (Gessesse and Bewket 2014). Before 

the land reform took place in 1975, Ethiopia had a complex and unsafe tenure system. The 

local peasants did not own land rights; arbitrary evictions were common. The extreme 

inequality of the tenure system resulted in the land underutilized and barren. (Deininger 

2008). The land reform changed the ownership and tenure rights of land. In detailed, 

https://paperpile.com/c/a0VZrF/ssHN
https://paperpile.com/c/9dtCyu/5fvF
https://paperpile.com/c/a0VZrF/YkuH+qB6W+Izsu
https://paperpile.com/c/a0VZrF/YkuH+qB6W+Izsu
https://paperpile.com/c/a0VZrF/Mqgj
https://paperpile.com/c/a0VZrF/fobK
https://paperpile.com/c/a0VZrF/aloR
https://paperpile.com/c/a0VZrF/BSsE+TiO1+aloR
https://paperpile.com/c/a0VZrF/BSsE+TiO1+aloR
https://paperpile.com/c/a0VZrF/aloR
https://paperpile.com/c/a0VZrF/3E0s
https://paperpile.com/c/a0VZrF/3E0s
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Residents were allocated land use rights and short-term leasing, or sharecropping was 

allowed. However, land cannot be sold, exchanged, or mortgaged. (Hailu 2016).   

Extracting reliable LULC information is essential for scientists from different fields. Remote 

sensing images have now been widely accepted as the most useful source to extract LULC 

information. Two major approaches included:  manual approaches and computer-assisted 

approaches. The outputs of manual approaches usually rely on analysts’ scientific 

knowledge, general knowledge of the phenomena as well as their experiences. Some 

limitations are associated: It is time-consuming when analysts were required to deal with the 

large quantity of data; the outputs were sometimes affected by analysts’ subjective 

consciousness. ( Photointerpretation and Remote Sensing Methodology). The other approach 

is the computer-assisted approaches which are realized by computer algorithms and able to 

process remote sensing images automatically. The computer-based approaches solved 

problems, which existed in manual approaches, are expected to provide reliable outputs. 

In terms of processing targets, computer approaches can be categorized into pixel-based 

approaches and object-based approaches. Pixel-based approaches focus on each pixel within 

the extent, while object-based approaches concentrate on an object, an aggregating of pixels 

which share the similar properties. 

The relative merits of pixel-based analysis and object-based analysis have been debated a lot. 

However, Object-based image analysis (OBIA) is now believed to have advantages 

compared to pixel-based analysis for the following reasons. Basically, the increased 

variability implicit within high spatial resolution imagery confuses traditional pixel-based 

classifiers resulting in lower accuracies (Hay and Castilla 2006). Also, if carefully derived, 

image objects are closely related to real-world objects. Once these objects are derived, 

topological relationships with other objects, statistical summaries of spectral and textural 

values, and shape characteristics can all be employed in the classification procedures (Platt 

and Rapoza 2008). 

Among all computer approaches, traditional classification algorithms such as Maximum 

Likelihood, K-means, ISODATA, have been used a lot in remote sensing classification 

issues. Whereas previous techniques based on simple data models, which are insufficient to 

be applied to complicated cases.  Moreover, when dealing with recent data sets like high 

spatial resolution image, previous techniques can be limited when considering speed, 

accuracy (Camps-Valls and Bruzzone 2009).   

Commented [db1]: Missing the end of the sentence 

https://paperpile.com/c/a0VZrF/d4EY
https://paperpile.com/c/a0VZrF/oHaR
https://paperpile.com/c/9dtCyu/cpxJ/?locator=1
https://paperpile.com/c/a0VZrF/NjBx
https://paperpile.com/c/a0VZrF/NjBx
https://paperpile.com/c/a0VZrF/DiOu
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Under this concern, more advanced algorithms were needed to solve remote sensing 

classification problem. In my research, Support Vector Machine (SVM) and Random Forest 

(RF) were chosen. In the next section, the reasons why I chose these algorithms would be 

discussed. 

Support Vector Machine 

Gualtieri and Cromp (1999) presented the first SVM application on remote sensing images in 

1998, conducting a classification experiment on hyperspectral images from AVIRIS imaging 

spectrometer.  

After that, SVM received more and more attention due to its ability to reach good 

classification results even with limited training samples, a common limitation for remote 

sensing application (Mountrakis et al. 2011). Not like statistical techniques which rely on the 

prior assumption of the probability of distribution, SVM can minimize classification error on 

unseen data, that is why SVM has an advantage when training data size is small. For 

instance, (Foody and Mathur 2004) showed that only a quarter of the original training 

samples acquired from SPOT HRV satellite imagery was sufficient to produce an equally 

high accuracy for a two-crop classifier when used SVM.  

Furthermore, comparing with traditional classification algorithms, SVM presents advantages 

when regarding the classification accuracies. For example, a study focusing on evaluating the 

performance of SVM, normal Bayes (NB), classification and regression tree (CART) and K 

nearest neighbor (KNN) when conduct object-based classification. The minimum overall 

accuracy of SVM is about 7% higher than DT and KNN. (Qian et al. 2014) 

Another study is about using SVM, GMM(Gaussian Mixture Model ), and ML (Maximum 

Likelihood) to classify TM images. The result showed that the overall accuracy of SVM is 

approximate 10% higher than GMM and ML. (Hermes et al. 1999) 

Recently, SVM has been applied in high spatial resolution image classifications. A study 

used SVM and OBIA to map mangroves forest on WorldView-2 and QuikBird images. From 

their results, overall accuracy is higher than 94%(Heumann 2011). Another example is to 

extract roads from IKONOS images. In their research, a useful framework consisted of 

object-oriented spectral-structural information for road extraction based on SVMs are 

implemented, which allow them to get accuracy as high as 90% (Huang and Zhang 2009). 

 

https://paperpile.com/c/a0VZrF/WW4A
https://paperpile.com/c/a0VZrF/qLy7
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/satellite-imagery
https://paperpile.com/c/a0VZrF/w6KT
http://www.medialab.bme.hu/medialabAdmin/uploads/VITMM225/GMMScherrer07.pdf
https://paperpile.com/c/a0VZrF/yotv
https://paperpile.com/c/a0VZrF/ayPy
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Random Forest 

RF is another classification algorithm which received much attention. Several reasons can 

explain the popularity of RF. Firstly, RF can perform well with even a small number of 

samples (Waske et al. 2012). Secondly, the computing time of RF is fast (Belgiu and Drăguţ 

2016; Du et al. 2015). Moreover, RF can provide the importance rank of variables, which is 

useful regarding the difference between classes, especially when dealing with remotely 

sensed data with high dimensionalities. (Belgiu and Drăguţ 2016).   

When compared with traditional algorithms, RF also shows comparative advantages.  

(Cracknell and Reading 2014) applied RF and other four different algorithms including 

Naive Bayes, k-Nearest Neighbors, Support Vector Machines, and Artificial Neural 

Networks, on Landsat_7 and Landsat_8 images for geological mapping. Their results 

indicated that RF got overall accuracies over 0.9 while the other four classifiers had overall 

accuracies around 0.8.   

A number of studies concentrated on using RF on high spatial resolution satellite images 

analysis. For example, to identify vegetation species and learn high-density biomass on 

WorldView-2 (Immitzer et al. 2012; Mutanga et al. 2012; Ramoelo et al. 2015); to map forest 

structure for wildlife habitat analysis using QuickBird and LiDAR (Hyde et al. 2006). 

Moreover, (Stumpf and Kerle 2011) used RF and object-based image analysis to extract 

landslide areas that caused by the earthquake in four different cities, on QuickBird and 

IKONOS images. Proposed workflow resulted in accuracies between 73% and 87% for the 

affected areas.  

Comparing SVM and RF 

Support Vector Machine (SVM) and Random Forests (RF) have been compared in 

classification issues, especially in object-based remote sensing classification, in terms of the 

accuracy of the classification results, the training time required (Gislason et al. 2006),  

stabilities of  classifiers to changes in the training samples (Chan and Paelinckx, 2008) and 

study areas (Vetrivel et al. 2015; Belgiu and Drăguţ 2016). 

Relative performance of the two approaches depend on research areas, classification target, 

scale, pixel or object approach, and sensors used. Table 1Table 1 shows the examples and 

results of comparison between RF and SVM.  

https://paperpile.com/c/a0VZrF/HFvf
https://paperpile.com/c/a0VZrF/5e4H+ZIP4
https://paperpile.com/c/a0VZrF/5e4H+ZIP4
https://paperpile.com/c/a0VZrF/5e4H
https://paperpile.com/c/a0VZrF/JiB7
https://paperpile.com/c/9dtCyu/XlBe+OOQj+IIZ6
https://paperpile.com/c/9dtCyu/Zusm
https://paperpile.com/c/a0VZrF/8xY8
https://paperpile.com/c/9dtCyu/cVPM
https://paperpile.com/c/9dtCyu/qqNC
https://paperpile.com/c/9dtCyu/BLpA
https://paperpile.com/c/9dtCyu/DGrW
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Table 1  Comparison of SVM and RF in literature 

Literature Pixel-based, 

/Object based 

Sensors 

SVM outperformed RF 

Hyperspectral Remote Sensing Classifications: 

A Perspective Survey 

 (Chutia et al. 2016) 

Object-based Earth Observation 

RF outperformed SVM 

Comparison of support vector machine, random 

forest and neural network classifiers for tree 

species classification on airborne hyperspectral 

APEX images (Raczko and Zagajewski 2017) 

Pixel-based APEX sensor 

Support vector machines to map rare and 

endangered native plants in Pacific islands 

forests (Pouteau et al. 2012) 

Pixel-based Worldview_2 

No obvious difference 

Land-use/cover classification in a 

heterogeneous coastal landscape using 

RapidEye imagery: evaluating the performance 

of random forest and support vector machines 

classifiers (Adam et al. 2014) 

Pixel-based Rapid eye 

Urban Flood Mapping Based on Unmanned 

Aerial Vehicle Remote Sensing and Random 

Forest Classifier—A Case of Yuyao, China 

(Feng et al. 2015) 

Pixel-based Unmanned Aerial 

Vehicle (UAV) 

 

The application in Ethiopia LULC research 

Some scientists were interested in LULC classification in Ethiopia. For example,  Kindu and 

Schneider analyzed land use/land cover (LULC) changes in the landscape of Munessa-

Shashemene area of the Ethiopian highlands throughout 39 years (1973–2012) using images 

https://paperpile.com/c/9dtCyu/w1IO
https://paperpile.com/c/9dtCyu/GbZZ
https://paperpile.com/c/9dtCyu/r2cY
https://paperpile.com/c/9dtCyu/BEWx
https://paperpile.com/c/9dtCyu/qeaM
http://www.mdpi.com/search?authors=Mengistie%20Kindu&orcid=
http://www.mdpi.com/search?authors=Thomas%20Schneider&orcid=0000-0003-1126-2818
http://www.mdpi.com/search?authors=Thomas%20Schneider&orcid=0000-0003-1126-2818
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from Landsat MSS, TM, ETM+, and  RapidEye sensors. (Kindu et al. 2013).  (Eggen et al. 

2016) conducted SVM classification on Landsat images to map LULC on northwestern 

Highlands, Ethiopia, which got overall accuracy with 0.55.  

 Among these researches, most of them are based on images with relatively low spatial 

resolution. The usage of low spatial resolution images makes it hard to identify classes with 

complex spatial characters. Moreover, only limited classification approaches are applied 

when solving LULC in Ethiopia. Under these concerns, the possibility of using advanced 

classification approaches with high spatial resolutions images is worthy to be discussed.   

Research Questions and Objectives   

 There are two primary questions addressed here. 

a. Is SVM or RF appropriate to map LULC in Ethiopia? Which classifier performs better 

when applied with object-based classification? What factors influence the performance 

of classifiers? 

Many articles have recorded the application of RF and SVM on remote sensing 

classification. Some of them discussed the comparison between RF and SVM classifiers. 

However, most of them were associated with the pixel-based classification. The 

application associated with object-based classification is still uncovered. Also, most 

research conducted on a small region, usually with clear boundaries between different 

LULC classes.  Whether the classifier works well on Ethiopia which has particular 

LULC pattern is still uncovered by current research.  

    In most of the cases, researchers paid more attention on classification results, usually 

ignored factors which might influence classification results. The answer to this is helpful 

to see if the specific classifier is appropriate to be used in the real-world case 

b. Is there any possibility to improve the object-based performance of classification in 

Ethiopia?  

c. features extraction, parameters optimization is two processes in object-based 

classification. Whereas, not a lot of articles discussed these parts comprehensively in 

relative research. Moreover, possible improvements associated with two processed are 

seldomly addressed yet.  

To answer questions, the following are major objectives in this research 

a. Train object-based SVM and RF classifiers on data from Ethiopia. Compare the 

classification results of  classifiers. Discuss the eligibility of them on Ethiopia LULC 

Formatted: Indent: Left:  0.31",  No bullets or

numbering

https://paperpile.com/c/9dtCyu/MlId
https://paperpile.com/c/a0VZrF/WzOJ
https://paperpile.com/c/a0VZrF/WzOJ
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research. Build multivariate models to analyze the relationship between multiple factors 

classification results. 

b. Analyze the usefulness of temporal information in improving classification performance 

by comparing the results from different classifiers which trained with different features 

system.   
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Method 

Study Area 

My research focused on Land Use Land Change (LULC) in Ethiopia of Sub-Saharan Africa.  

Ethiopia borders on South Sudan to the west, Djibouti and Eritrea to the north, Somalia to the 

east and Kenya to the south. The total territory area is approximate 1126829 km2 with a total 

population of around 100 million. (The World Factbook).  

Geographically, Ethiopia is a mountainous country with the platinum terrain. It has nine 

major rivers and twelve large lakes. Tropical climate with wide variation makes Ethiopia an 

ecologically diverse country. The landscape change from the desert along the east to the 

tropical forest in the west.  

Ethiopia consists of nine ethnically-based administrative regional states. The dominant land 

use and land cover type is agriculture which accounts for 36% of the total areas. The 

following is Forest which accounts for 12.2%, and other land use covers 51.1 % of total 

areas.  

My experiment sites are in Benishangul (BG), Gambella (GM), Oromia (OR) (Error! 

Reference source not found.). The total areas that experiment cover are around 865 km2. 

There are 11 LULC classes within my research sites. The total areas of each class and the 

percentage are listed in  

 

Table 2Table 2. 

Benishangul Gumuz (BG), covering an estimated area of 49,289.46 km2, with population 

784345. Two experiment sites located on BG, which cover a total area of 203 km2. The 

major LULC class in BG is Small-holder agriculture. 

Gambela (GM) has a total population of approximately three hundred thousand, and the 

estimated area of 29,782.82 km2(Csa 2007).  The experiments cover approximate 509 km2. 

Within the experiment sites, Woodland/Savanna and Bare soil cover the high proportion of 

areas with 26% and 23%.  

Oromia is the region covers the area with approximate 284,538 km2, with the population with 

thirty million. There are two experiments sites in OR with total areas 52 km2. Small-holder 

agriculture accounts for half of the total area.  

 

Formatted: Left

Formatted: No underline, Do not check spelling or

grammar
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Table 2 The total areas and percentage of LULC classes on experiment site 

 

 

LULC Class Area(km2) Percentage (%) 

Small-holder Agriculture 152.43 17.62 

Small-holder 

Agriculture/Settlement 

6.50 0.75 

Intensive Agriculture 62.79 7.25 

Forest 144.08 16.65 

Woodland/Savanna 223.91 25.89 

Shrubland/Grassland 47.88 5.53 

Bare Soil 157.22 18.17 

Rural Settlement 4.93 0.56 

Development 0.25 0.03 

Water 13.62 0.01 

Wetland 51.59 5.96 

Total 865.18 100 
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Figure 1 The research regions and experiment sites 

 

 

Data Sources and Preprocessing  

1) High Spatial Resolution Images 

There are 28 scenes of high spatial resolution images included in my experiment, which were 

acquired from QuickBird, WorldView_2, WorldView_1, Geo-eye, IKONOS sensors.  These 

satellite images are provided by the NASA granted project “Large-Scale Land Transactions 

as Drivers of Land-Cover Change in Sub-Saharan Africa.”  

There are two main steps in image preprocessing. The first step is orthorectifying, which 

purpose is to remove the impact of elevation known as relief displacement. This process was 

accomplished with ERDAS IMAGINE software associated with ground control points 

extracted from Aster 30 meters global digital elevation model products. The second step is 

atmospheric correction. Through Atmospheric correction, it firstly converted the DN to top-

of-atmosphere radiance and then converted to top of atmosphere reflectance. This process 

was written as a function in R, and the required parameters were obtained from metadata and 

Absolute Radiometric Calibration Sheet provided by DigitalGlobe (Kuester et al. 2017).  

2) NDVI Time Series Data 

https://paperpile.com/c/9dtCyu/t7l6
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Normalized Difference Vegetation Index (NDVI) data were obtained to extract seasonal 

vegetation change. NDVI data were downloaded from eMODIS collection in Earth Explore 

website. eMODIS are images composite based on the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data acquired by the National Aeronautics and Space 

Administration's (NASA) Earth Observing System (EOS). It provides 10-day interval and 

250 meters spatial resolution global products. 

The image downloaded have already been orthorectified, and Atmospheric corrected. I sorted 

and stacked the original NDVI images in ArcMap and then calculate the monthly average 

NDVI values of each month between 2011 and 2016. 

3) Reference Data  

The LULC reference data were products of manually labeling and merging segments by 

researchers in Environment Spatial Analysis Lab in School for Environment and 

Sustainability, University of Michigan. Considering the seasonal change of Land Use and 

Land Cover, Google Earth Engine are used as an extra resource to assist researchers to 

interpret correctly.  

Image Segmentation  

Image segmentation is an image recognition technique which aggregates the pixels with 

similar characters. As the output of the segmentation process, the entire image is divided into 

the set of, not overlap, segments. 

In this research, I used a segmentation technique named Full Lambda Schedule (FLS) in 

ERDAS software. FLS segmentation is one of region growth algorithms, which is an 

efficient way to find the boundary between neighborhood segments and divide the image into 

homogeneous regions.  

The FLS segmentation process was controlled by seven parameters, Shape, Color, Texture, 

Size, Min, Max, Scale, which are needed to be to be defined by the user. Multiple 

combinations of parameters result in different segmentation results. The value of parameter 

represents the relative weight. By giving values, merge cost function in FLS algorithms was 

determined. The higher values of parameter mean segments would be homogeneous in this 

parameter. By contrast, lower value means that the segments would be less homogeneous in 

this parameter.  

After the user defining the initial weight, they are standardized, and the sum of these four 

parameters equals 1. The definition of each parameter was listed in Table 3Table 3 

Commented [db2]: We have moved toward manual 
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To ensure segments is proper for later analysis. I conducted segmentation experiments with 

multiple sets of parameters and visually check the quality of the segments. Through visually 

check, the final parameters I applied to all images are listed in Table 3Table 3 

Table 3 The parameters in FLS segmentation 

Parameter Definition Optimal 

parameter 

value 

Segment Ratio It determines the average size of the segment. The value means 

how many pixels that a segment content 

1800 

Minimum Specify the minimum size of the segment 10000 

Maximum Specify the minimum size of the segment 200000 

Spectral This is measured as the mean of the values of the pixels in the 

segments 

0.9 

Texture This is measured as the standard deviation of the values of the 

pixels 

0.4 

Size This is measured as the number of pixels in the segment 0.2 

Shape This is a proprietary measurement of the boundary complexity of 

the segment 

0.3 

 

Classification  

Classification Features System 

Classification features are measurable properties or characteristics between classes. (Bishop 

2016). Choosing informative, discriminating and independent classification features is a 

crucial step in classification. The desirable features should be independent of each other and 

make classes separable.  

Generally, Spectral features, Spatial features the and Shape features were common choices 

for researchers (Huang and Zhang 2013). In my research, four types of features were 

considered: 1) Spectral features are statistical summaries of spectral reflectance within an 

object extent. 2) Location features, which can indirectly reflect the spatial relationship of 

objects. 3) Shape features, which include area and perimeters of objects were expected to be 

important in distinguish LULC classes. For example, agriculture has a regular shape and 

clear boundaries while land covered by forest or woodland have an irregular shape.  4) 

temporal features, which have not been discussed much yet. In my research, I considered the 

importance of annulling vegetation difference on different LULC classes, which was 

indicated by a statistical summary of monthly average NDVI values within the object extent.  

The Details of each feature was listed in Table 4Table 4 

https://paperpile.com/c/a0VZrF/Ueej
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Table 4 Classification features system 

Category Feature Statistical summary 

Spectral Blue band spectral reflectance Mean, Standard deviation, 

Range, Sum, Min, Max Green band spectral 

reflectance 

Red band spectral reflectance 

NIR band spectral reflectance 

Shape Area(km2)  

Perimeters(km)  

Spatial Centroid Longitude  

Centroid Latitude  

Temporal  Monthly mean NDVI values Mean, Standard deviation, 

Range, Sum, Min, Max 

 

 

 

Data Preprocessing and Features Selection 

1) Data Preprocessing  

In my experiment, the analysis was conducted on objects. Each segment with a unique label 

of LULC class and sets of feature values was regarded as a single object.   

Before the classification stage, data preprocessing was undertaken on objects’ features to 

ensure the data quality. Firstly, features with null values were filled with zero, and the object 

has outlier feature values that are over two standard deviation distances from mean were 

removed.  

Data normalization is the process to adjust features values under different scales to common 

scales. The function of data normalization is to align data into a normal distribution and 

reduce the influence of outliers.  

In general, machine learning algorithms benefit from the standardization of the data set. 

There are several normalization methods in statistics. In this research, I chose the feature 

scaling method described as the equation below, for each variable 

𝑋𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
     (1) 

The feature values are scaled between range 0 to 1 now.  

2) Feature Selection 
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Feature selection is a technique, which chooses or converts original features to a subset of 

indicators that can best reflect the variance in data. Principal components analysis (PCA) is 

one of common dimension reduction techniques which can be used as a feature selection 

method. By processing PCA on features, original features can be transferred to multiple non-

liner-correlated components. The components are ranked by the variance it explained in data. 

The number of components is decided by the accumulated variances. Generally, the numbers 

of components are chosen when the accumulated variances are over 95%. 

Support Vector Machine  

Support vector machine is a supervised classification algorithm. It can be used to learn the 

labeled training data and predicts classes of testing data.   

The objective of SVM is to find p-1dimension optimal hyperplanes based on training data 

sets which are thought to maximize the margin-the distance between the hyperplane and its 

closest point. Generally, SVM performs well in dealing with two classes classification, if the 

target is multiple classes problem, Integration strategies are needed to extend this method to 

classifying multiple classes (Huang et al. 2002). 

To present how SVM work, a linear classifier is firstly discussed in this section to 

demonstrate how SVM works. 

 In a simple linear separable case, n objects which lie on the plane. Each data point has one 

feature with value xi ,and yi is the label of this point with value either -1 or 1.  

 

Figure 2 An example of a linear separable classifier 
Commented [DB4]: Is this your original figure? 
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There are hyperplane H0 and two plane H1, H2. The vector k is perpendicular to H1 and 

point to H2 with unit vector w.  m is the margin and length of k. The k can be written as: 

𝑘 =
𝑤

‖𝑤‖
× 𝑚    (2) 

And the m can be represented with: 

𝑚 =
2

‖𝑤‖
  (3) 

The purpose of SVM is to find the maximum value of m; it is obvious to see the greater value 

of |w|, the smaller value of m. The question can be regarded as an optimization question, 

which is written as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐹(𝑤) =
1

2
× (𝑤′𝑤)   (4) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑦𝑖 ∗ (𝑤 ∗ 𝑥𝑖 + 𝑏) − 1 = 0, 𝑖 = 0,1, … , 𝑛  (5) 

The Lagrangian function is applied to solve the optimization question, which is written as: 

𝐿(𝑤, 𝑏, 𝛼)𝑝𝑟𝑖𝑚𝑎𝑙 =
1

2
(𝑤′𝑤) − ∑ 𝛼𝑖{𝑦𝑖[𝑤′𝑥𝑖 + 𝑏] − 1}𝑛

𝑖=1    (6) 

In this equation, 𝛼𝑖 is a positive Lagrangian multiplier. When solve the ∇L(x,y,λ)=0, the 

minimum value of w can be find when it  meets the constraint 𝑦𝑖 ∗ (𝑤 ∗ 𝑥𝑖 + 𝑏) ≥ 1. then 

minimize Lprimal with respect to w and b to get Wolfe dual Lagrangian (Fletcher 2013) was 

written as:  

𝐿(𝛼) = ∑ 𝛼𝑖 −
1

2

𝑛
𝑖=1 ∑ ∑ 𝜕𝑖𝜕𝑗𝑦𝑖𝑦𝑗(𝑥𝑖

′𝑥𝑗)𝑛
𝑗=1

𝑛
𝑖=1    (7) 

The 𝜕𝑖 ≥ 0. The training data points lies on planes H1, H2 have 𝜕𝑖 greater than 0 and are 

called support vectors. The rest data points have equal to 0, fall on either side of H1 or H2.  

Then, the solution of w and b are: 

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑛𝑠𝑣
𝑖=1   (8) 

In the equation, nsv is the number of support vectors, which is written as:  

𝑏 = −
1

2
𝑤 × (𝑥𝑟 + 𝑥𝑠) (9) 

In this equation, xr is the data points with y equal to 1. xs is the data points with y equal to -1 

Accordingly, the decision rule to separate two classes which can be derived as: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑦𝑖𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝛼𝑖
0(𝑥𝑖

′𝑥) − 𝑏0)   (10) 

The equation above is called the hard margin formulation; it fits the simple linear separable 

case. However, no training errors are allowed in the linear separable classifier, and remote 

sensing classification is a more complicated case. Therefore, linear separable classifier might 

not eligible. Under this consideration, Kernel Based Non-linear SVM was expected more 

https://paperpile.com/c/9dtCyu/dqol
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suitable to be applied. In my research, Polynomial and Radius basis function (RBF) are two 

candidate kernel functions.  

Besides, I chose the one-vs-rest strategy to solve the multi-classes problem. In One-vs.-rest 

strategy a single classifier was trained for per class. Samples from the class were noted as 

positive while the rest of samples were noted as negative. This strategy requires the base 

classifiers to produce a real-valued confidence score for its decision, rather than just a class 

label; discrete class labels alone can lead to ambiguities, where multiple classes are predicted 

for a single sample (Bishop 2006).  

Random Forest  

Random Forest (RF) is an ensemble classification algorithm which is a formed of multiple 

decision trees, each of tree is trained independently (Du et al. 2015). When training the 

classifier, a single decision tree was built based on randomly split features and a subset of 

training samples. In making a prediction, the samples are labeled by each tree in RF, the final 

class of one sample is the majority vote of the decisions from all trees. 

Choosing a subset of data, constructing a single decision tree, obtaining feature importance, 

are the three most crucial part in RF. The method of each part would be demonstrated in the 

following paragraphs. 

1) Boot-strap Strategies 

In a single decision tree, subset data which used as training data is firstly chosen by bootstrap 

aggregating, which is also known as bagging. This process is utilized to reduce variance, avoid 

overfitting, thus leads to "improvements for unstable procedures" (Breiman 2001).  Supposed 

we have the overall training dataset H with size n, Subset 𝐻′ with size 𝑛′  is generated by 

sampling from H uniformly and with replacement.  As the result, 
2

3
  of data in 𝐻′is expected to 

contain unique values from H, and rest of the 𝐻′ are duplicated.  

2) Features Split Criterion  

When constructing a single decision tree, subset features are random select from all features. 

Best split of subsets features are assigned to the division of each node. This can decrease the 

strength of every single tree, but it reduces the correlation between the trees, which reduces the 

generalization error (Breiman 2001).  

Gini impurity and Entropy are two common methods to evaluate the split of features.   

a. The Gini impurity index: 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑗
2

𝑗    (11) 
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b. Entropy: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑗𝑙𝑜𝑔2𝑝𝑗𝑗   (12) 

In the above two equations, 𝑝𝑗  is the probability that samples from class j being correctly 

classified. The good split features sets would make two indexes close to 0.  

3) Relative Features Importance 

Relative feature importance is provided as one part of the result from RF classification. To 

better understand how feature importance work, it’s important to understand out-of-bag (OOB) 

error. In bootstrap-aggregating, except the chosen subset data, the rest data are used to evaluate 

the prediction error of RF, in terms of OOB. After OOB being calculated, one of the features 

will be left out while the rest part stays unchanged, OOB will be calculated again to check 

whether accuracy decrease. After looping through all features, the rank of feature importance 

is derived.  

In my research, the RF classifier was trained on the major components produced in PCA 

analysis, so features importance would not be discussed in experiment results part. 

 

Parameters Determination  

SVM and RF are both parametric classifiers. A couple of parameters need to be initiated by 

users. I used a grid search to select the best parameters sets among all candidate sets. 

Grid search simulates all possible parameters combination. On each run, the data were split 

into user-determined folds. Cross-validation was processed, and the main testing over 

accuracies was ranked. The optimal parameters with the highest mean testing overall accuracy 

were then determined. For SVM, the multiple combinations of C and gamma were tested. 

The gamma parameter defines how far the influence of a single training example reaches; 

the C parameter trades off misclassification of training examples (RBF SVM parameters — 

scikit-learn 0.1).  For RF, several estimators and node spit criterion were combined and tested. 

The Candidate parameters for SVM and RF were listed in Table 5Table 5 

 

Table 5 Candidate parameters for SVM and RF 

RF  

Number of estimators 5,10,20,100,1000 

Split Criterion “Entropy” ,  “Gini” 

SVM 

C 1,10,100,1000,10000 

https://paperpile.com/c/9dtCyu/hWfg
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gamma 0.001,0.005,0.01,0.05 ,0.1 

 

 

 

 

 

 

 

 

 

Classification Assessment and Comparison 

1) Classification Assessment 

In the classification process, 50% of data were randomly assigned as training data, the rest of 

data were assigned as testing data.  The classification assessments indexes were calculated 

after the prediction being made.  In order to reduce the effect of randomness, the classifier was 

trained ten times based on different training data set, and the results that used in assessment 

are mean values of indexes. 

There are two categories of classification assessment indexes. The one is used to evaluate the 

overall performances of classifiers, which include Overall Accuracies and Kappa Coefficient. 

The other one is to evaluate the performance of classifiers on single LULC class including 

Producer Accuracy (PA), User Accuracy (UA), F1 score.  

The confusion matrix is used to explore how many samples from different classes been 

classified. It stored the classification results in an n*n matrix. After normalization, values on 

diagonal represent the percentage of samples that were classified correctly, while other values 

mean the percentage of samples been wrongly classified.  

The details of each assessment index are introduced below.  

Overall Accuracy is a common method to evaluate overall performance despite the influence 

of a single class. The labels of lands which is predicted by classifiers would be compared with 
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labels of reference data. A number of samples being correctly classified are counted then. The 

Overall Accuracy can be calculated by dividing the total number of correctly classified samples 

by the total number of testing samples. Overall Accuracy can be written as 

 

𝑂𝐴 =
# 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑚𝑎𝑝𝑙𝑒𝑠

# 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
   (13) 

 

However, a significant problem with OA for is that some cases may have been allocated to the 

correct class purely by chance (Congalton 1991; Pontius 2000; Rosenfield and Fitzpatrick-Lins 

1986; Türk 1979). Out of this concern, KAPPA coefficient is efficient in solving the effect 

caused by occasionally.  It can be calculated as  

 

𝐾̂ =
𝑁 ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 −∑ (𝑥𝑖+∗𝑥+𝑖)𝑟

𝑖=1

𝑁2−∑ (𝑥𝑖+∗𝑥+𝑖)𝑟
𝑖=1

    (14) 

 

In this equation, N is the total number of samples in the testing dataset. r is the total number of 

rows; xii represents the value at diagonal, xi+ represent the values on row i except xii. Similarly, 

x+i represents the values on column i except xii.  

Producer accuracy is used to measure the omission error that how many samples been wrongly 

classified in other classes. It can be calculated as: 

 

𝑃𝐴 =
# 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝑐𝑙𝑎𝑠𝑠 𝑏𝑒𝑒𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

# 𝑡𝑜𝑡𝑎𝑙 𝑠𝑚𝑎𝑝𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑎𝑠𝑠
   (15) 

User accuracy is used to measure the commission error that data with other classes mistakenly 

classified in this class. It can be calculated as:  

𝑈𝐴 =
# 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝑐𝑙𝑎𝑠𝑠 𝑏𝑒𝑒𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

# 𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑏𝑒𝑒𝑛 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑐𝑙𝑎𝑠𝑠
   (16) 

F-1 score is the index which can balance the UA and PA.  It provides a user clear way to 

evaluate the performance of the classifier on individual class. It can be calculated as: 

𝐹1 = 2 ×
𝑈𝐴×𝑃𝐴

𝑈𝐴+𝑃𝐴
   (17) 

2) Classification Accuracy Comparison  
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McNemar’s test is applied to check whether the classifiers perform differently. McNemar’s 

test is a nonparametric test based on standardized normal test statistic calculated from error 

matrices of the two classifiers (Ricotta 2004; de Leeuw et al. 2006). It can be written as: 

𝑍 =
𝑓12−𝑓21

√𝑓12+𝑓21
   (18) 

In (33), f12 denotes the number of samples been correctly classifier in classifier 1 but wrongly 

classified in classifier 2. Conversely, f21 denotes the number of samples been correctly 

classified in classifier 2 but misclassified in classifier 1. After that, chi-squared distribution is 

referenced to check whether two classifiers are significantly different under one degree of 

freedom. (Abdel-Rahman et al. 2014) 

X2, in this case, can be represented as: 

𝑋2 =
(𝑓12−𝑓21)2

𝑓12−𝑓21
   (19) 

 

 

Effects on Classification Performance 

Another question proposed is the effects on classification performance. The total areas of 

class, sample counts of class, area standard deviation within the class, are considered as three 

possible individual factors that can influence classification performance. The syntheses of 

influence from areas and counts are also considered. The null hypothesis for this question is 

that the LULC class accuracy has no relationship with any factors mentioned here.  

Multi-variate linear regression models are built for different classifiers to test the 

relationships. Which can be written as: 

𝐿𝑈𝐿𝐶 𝑐𝑙𝑎𝑠𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦~𝐴𝑟𝑒𝑎 + 𝐶𝑜𝑢𝑛𝑡 + 𝑆𝑡𝑑𝑠𝑖𝑡𝑒_𝑎𝑟𝑒𝑎 +  𝐴𝑟𝑒𝑎 ∗ 𝐶𝑜𝑢𝑛𝑡    (20) 
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Results  

Principal Component Analysis 

The purpose of Principal Component Analysis (PCA) is to convert original features to 

nonlinear correlated components. I conducted PCA on data which contain temporal features, 

which results are shown in Table 6Table 6, and features without temporal features separately. 

The results are shown in Table 7Table 7.  

Table 6 PCA results of features contain temporal features 

Principal 

Component 

BG GM OR 

1 0.3590 0.4712 0.6988 

2 0.1940 0.1439 0.0763 

3 0.0825 0.1026 0.0464 

4 0.0683 0.0872 0.0322 

5 0.0572 0.0416 0.0280 

6 0.0491 0.0238 0.0244 

7 0.0297 0.0218 0.0243 

8 0.0244 0.0178 0.0204 

9 0.0234 0.0137 0.0147 

10 0.0209 0.0125 0.0109 

The values in the table represent the variance that each component explain  

Table 7 PCA results of features without temporal features 

Principal 

Component 

BG  GM OR 

1 0.5184  0.5693 0.6569 
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2 0.2079  0.1553 0.1148 

3 0.0943  0.1383 0.0691 

4 0.0628  0.0413 0.0543 

5 0.0356  0.0270 0.0427 

6 0.0235  0.0173 0.0202 

7 0.0152  0.0138 0.0149 

8 0.0095  0.0084 0.0084 

9 0.0085  0.0063 0.0063 

10 0.0053  0.0054 0.003 

The values in the table represent the variance that each component explain  

In my research, I chose a number of features which make accumulative variance higher than 

95%.  

In Table 6Table 6,  The accumulative variances were over 0.95 when chose ten principal 

components. The results are same for three sites.  In Table 7Table 7,  the accumulative 

variance was over 0.95 when chose five principal components. 

Therefore, ten principal components were selected when trained classifiers based on features 

which contain temporal features, while five features principal components were selected and 

used in training classifier based on data without temporal features. 

Parameters Determination  

Support Vector Machine 

In parameters determination, 5-fold cross-validation was processed on all candidate objects.  

Table 8Table 8 presents the best parameter set when applying SVM of both cases.  The RBF 

kernel performs better than the other two options in all sites. The selection of C values 

depends on the specific case. BG; GM (contain temporal features); GM (without temporal 

features) had their best classifier when C was 1000. BG (without temporal features), OR 

(contain temporal features), OR (without temporal features) had their best classifiers, when C 

is 10000. In most of the situations, the construction of best classifiers with gamma 0.1, OR 

(without temporal features) had its best classifier with gamma 0.05.  

Table 8  Best parameter sets to build SVM classifier by Grid-search analysis  

Site Contain temporal 

features or not 

C Gamma 

parameters 

Kernel  Training 

time(sec) 

Best mean test Overall 

Accuracy (OA) 

BG Features_T 1000 0.1 RBF 1691 0.7 

Features_NT 10000 0.1 RBF 412 0.66 

GM Features_T 1000 0.1 RBF 154 0.75 
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Features_T means data contain temporal features, Features_NT means data without temporal features. 

Different composite of parameters results in different accuracies. FigureFigure3, Figure 

4Figure 4,Figure 5Figure 5, presents the pattern of testing accuracies versus parameters of 

BG, OR, GM respectively. The patterns are similar regardless of sites and temporal features.  

When using Polynomial kernel, accuracy change abruptly from very low accuracy to higher 

when C and gamma increase. When using Linear, the accuracies did not change gradually, it 

increased as C increase but  not influenced by gamma values. When using the RBF kernel, 

the accuracy changed gradually. It changed from lower values to higher values as the C and 

gamma increase. Commonly, the highest accuracy occurred with either the highest C value or 

the highest gamma value.   

Features_NT 1000 0.1 RBF 107 0.73 

OR Features_T 10000 0.05 RBF 158 0.83 

Features_NT 10000 0.1 RBF 117 0.71 
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Figure 3 Patterns of mean test accuracy versus parameters in BG site.  Data contain temporal features (Upper), Data without temporal features(bottom); Polynomial(left), 

Linear(middle)r, RBF (right).   
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Figure 4 Patterns of mean test accuracy versus parameters in GM site.  Data contain temporal features (Upper), Data without temporal features(bottom); Polynomial(left), 

Linear(middle)r, RBF (right). 
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Figure 5 Patterns of mean test accuracy versus parameters in OR site.  Data contain temporal features (Upper), Data without temporal features(bottom); Polynomial(left), 

Linear(middle)r, RBF (right) 
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Random Forest 

Table 9Table 9 presented the best parameter sets for RF. In most cases, best classifiers 

were built with entropy criterion and 1000 of trees. 

Table 9 Best parameter sets to build SVM classifier by Grid-search analysis  

Features_T means data contain temporal features, Features_NT means data without temporal features. 

 

The pattern of parameters versus testing accuracies is plotted in Figure 6Figure 6. The 

testing accuracies increased as the number of trees increased. Primarily, with the number 

of trees increased from 10 to 100, testing accuracies increased steely. With the number of 

trees increased from 100 to 1000, accuracies did not increase a lot. About node split 

criterion, it is hard to tell which one performs better. Since, half of them showed that 

using” Gini” criterion was better, while the rest of them did oppositely. However, only 

slight differences appeared when using two different criterions. 

 

    

 

 

Site  Contain temporal 

features or not 

Split 

criterion 

Number of 

trees 

Training 

time(sec) 

Best mean test Overall 

Accuracy (OA) 

BG  Features_T entropy 1000 410 0.70 

 Features_NT entropy 1000 149 0.68 

GM  Features_T gini 1000 127 0.75 

 Features_NT entropy 1000 101 0.75 

OR  Features_T entropy 100 99 0.86 

 Features_NT entropy 1000 89 0.82 
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Figure 6 Patterns of testing accuracies versus parameters of RF in BG, GM, OR sites 
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Classification Results Analysis 

Overall Classification Accuracy Assessment  

Overall Accuracies and KAPPA coefficients of SVM and RF were listed in Table 10Table 

10. 

Table 10 Overall Accuracy and KAPPA coefficient of different classifiers. 

Site Number of 

training data 

Number of 

testing data 

SVM RF 

Features_NT Features_T Features_NT Features_T 

   OA KAPPA OA KAPPA OA KAPPA OA KAPPA 

BG 2718 2718 0.67 0.56 0.71 0.60 0.68 0.54 0.68 0.54 

GM 1675 1675 0.74 0.69 0.75 0.70 0.75 0.68 0.74 0.68 

OR 1662 1662 0.76 0.51 0.84 0.62 0.80 0.46 0.81 0.47 

Total/Average 6055 6055 0.72 0.59 0.76 0.64 0.74 0.56 0.74 0.56 

Feature _T represents the features which include temporal features, Feature_NT represents features 

without temporal features; OA represents overall accuracy, KAPPA represents kappa coefficients. 

All classifiers had mean overall accuracies (0.68-0.84). SVM (contain temporal features) 

reached the highest mean overall accuracy 0.76; the following were RF (contain temporal 

features) with an accuracy of 0.74, RF (without temporal features) with a mean accuracy 

of (0.74), SVM (without temporal features) with an accuracy of 0.72.  

Regarding the mean KAPPA coefficient, all classifiers got moderate values (0.4-0.6), 

which means some correctly labeled samples were still classified by chance. SVM 

(contain temporal features) had the highest KAPPA values (0.64), While SVM (without 

temporal features) had a little bit lower Kappa (0.59). Two RF classifiers had the lowest 

KAPPA (0.56) when compared overall accuracy and kappa. The overall accuracies were 

significantly higher than kappa.  

Both classifiers achieved the highest mean overall accuracies in the OR site; the GM site 

had relatively lower mean overall accuracies, the BG site had the lowest mean overall 

accuracies for SVM and RF. 
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Site Classification Accuracy Assessment  

In the following section, classification results were analyzed site by site.  F1 scores are 

assisted in evaluating the performance of different classifiers on LULC classes. Also, 

Normalized confusion matrixes are used to analyze misclassification between classes. 

Benishangul-Gumuz (BG) 

The classification results of SVM and RF in the BG site are shown in Table 11Table 11 

Table 11 User Accuracies (UA), Producer Accuracies (PA), F1-scores of different classifiers in BG site 

LULC Class Total 

number 

of 

samples 

SVM RF 

  Features_NT Features_T Features_NT Features_T 

  PA UA F1 PA UA F1 PA UA F1 PA UA F1 

Smallholder 

Agriculture 

1269 0.73 0.74 0.73 0.71 0.80 0.75 0.65 0.80 0.72 0.65 0.80 0.71 

Smallholder 

Agriculture/Settlement 

193 0.42 0.44 0.43 0.60 0.63 0.61 0.72 0.23 0.35 0.75 0.23 0.35 

Intensive Agriculture 66 0.21 0.24 0.22 0.46 0.53 0.49 0.5 0.03 0.06 0.75 0.05 0.09 

Forest 2160 0.85 0.77 0.81 0.82 0.82 0.82 0.77 0.86 0.81 0.76 0.86 0.81 

Wood land/Savanna 1143 0.57 0.60 0.59 0.62 0.60 0.61 0.57 0.57 0.57 0.57 0.57 0.57 

Shrubland/Grassland 322 0.32 0.44 0.37 0.45 0.35 0.39 0.40 0.16 0.23 0.43 0.19 0.26 

Bare Soil 261 0.36 0.37 0.36 0.52 0.37 0.43 0.48 0.18 0.26 0.48 0.18 0.26 

Rural Settlement 9 0.27 0.33 0.30 0.43 0.33 0.38 0.00 0.00 0.00 0.00 0.00 0.00 

Development 13 0.59 0.31 0.38 0.89 0.62 0.73 0.00 0.00 0.00 1.00 0.08 0.14 

Water NA NA NA NA NA NA NA NA NA NA NA NA NA 

Wetland NA NA NA NA NA NA NA NA NA NA NA NA NA 

Average 0.68 0.67 0.67 0.70 0.71 0.70 0.66 0.68 0.65 0.66 0.68 0.65 

Feature _T represents the data which include temporal features, Feature_NT represents data without 

temporal features; PA represents the producer accuracy, UA represents the user accuracy 

SVM 

For both cases, Forest, Smaller-holder Agriculture, Savanna got three highest F1. By 

contrast, Intensive Agriculture, Rural settlement had lowest F1-scores.  

Most of the classes experienced an increase of F1 scores, except for Shrubland/Grassland 

when temporal features were involved. Small-holder Agriculture/Settlement, Intensive 

Agriculture, Development had their F1 scores increased significantly. 
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Figure 7Figure 7 shows how misclassification occurred in BG site, using SVM.   

When temporal features were not included, the obvious pattern are: 1) Small-holder 

Agriculture/Settlement had 28% of samples being misclassified as Small-holder 

Agriculture; 2) Rural Settlement had 33% of samples being misclassified as Small-holder 

Agriculture, 33% of samples being misclassified as Small-holder Agriculture/Settlement; 

3) Development had 31% of samples being misclassified as Bare Soil.  

When temporal features are included, the obvious pattern are: 1) Shrubland/ Grassland 

had 27% of samples being misclassified as Woodland/Savanna; 2) Rural Settlement had 

33% of samples being misclassified as Small-holder Agriculture, 33% of samples being 

misclassified as Small-holder Agriculture/Settlement;  
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Figure 7 Normalized confusion matrix of SVM classifiers in BG site. Feature _T represents the features which include temporal features(left), Feature_NT 

represents features which did not include temporal features(right). 
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RF 

As shown in Table 11Table 11, extreme variances of F1scores occurred between classes, 

when appliing RF (without temporal features), Forest, Small-holder Agriculture, and 

Woodland-Savanna got the highest scores with 0.77,0.72,0.65 respectively. Rural 

Settlement and Development got the lowest scores of F1-scores, which is close to 0.  

When applied RF (contain temporal features), F1-Score of Intensive Agriculture, 

Shrubland/Grassland, increased slightly and F1-Score of rest classes did not change at all.  

Figure 8Figure 8 shows how misclassification occurred in BG site, using RF.  When 

temporal features were not included, the obvious pattern are: 1) All classes have samples 

being misclassified as Small-holder Agriculture, of which, 46% of Small-holder 

Agriculture, 44% of samples Intensive Agriculture, 56% of Rural Settlement, 0.69 of 

Development; 2) All classes had samples being misclassified as Woodland/Savanna, of 

which, 30% of Intensive Agriculture, 28% of Bare Soil.  

When temporal features are included, the pattern were similar to what mentioned above. 
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Figure 8 Normalized confusion matrix of RF classifiers in BG site. Feature _T represents the features which include temporal features(left), Feature_NT 

represents features which didn’t include temporal features(right).
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Gambela (GM) 

The classification results of SVM and RF in the GM site are shown in Table 12Table 12 

Table 12 User Accuracies (UA), Producer Accuracies (PA), F1-scores of different classifiers in GM site 

 Total 

number 

of 

samples 

SVM RF 

  Features_NT Features_T Features_NT Features_T 

  PA UA F1 PA UA F1 PA UA F1 PA UA F1 

Smallholder 

Agriculture 

372 0.57 0.69 0.63 0.66 0.76 0.71 0.65 0.69 0.67 0.64 0.70 0.67 

Smallholder 

Agriculture/Settlement 

12 0.33 0.75 0.46 0.33 0.50 0.40 0.50 0.17 0.25 0.40 0.17 0.24 

Intensive Agriculture 243 0.76 0.79 0.77 0.87 0.83 0.85 0.87 0.75 0.80 0.88 0.73 0.80 

Forest 630 0.86 0.89 0.88 0.83 0.85 0.84 0.88 0.82 0.85 0.87 0.83 0.85 

Wood land/Savanna 841 0.73 0.70 0.72 0.69 0.73 0.71 0.68 0.76 0.71 0.67 0.75 0.71 

Shrubland/Grassland 162 0.59 0.51 0.54 0.63 0.52 0.57 0.71 0.36 0.48 0.71 0.37 0.49 

Bare Soil 676 0.78 0.78 0.78 0.81 0.78 0.79 0.77 0.84 0.80 0.76 0.84 0.80 

Rural Settlement 54 0.70 0.65 0.67 0.75 0.76 0.75 0.76 0.54 0.63 0.78 0.54 0.64 

Development 11 0.29 0.18 0.22 0.50 0.09 0.15 0 0 0 0 0 0 

Water 67 0.74 0.52 0.61 0.76 0.46 0.57 0.93 0.39 0.55 0.93 0.39 0.55 

Wetland 282 0.79 0.70 0.74 0.76 0.67 0.71 0.69 0.78 0.73 0.70 0.76 0.73 

Average 0.75 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.74 0.74 

Feature _T represents the data which include temporal features, Feature_NT represents data without 

temporal features; PA represents the producer accuracy, UA represents user accuracy. 

SVM 

As shown, When SVM (data without temporal features) was applied,  Forest got the 

highest F1-score (0.88). The following are Bare Soil, Intensive Agriculture, Wetland. 

They have lower scores than forest, but all above 0.7. Rural Settlement and Water had 

F1-score above 0.6, Shrubland/Grassland had F1-score above 0.5. Development had the 

lowest F1-score (0.22). 

Small-holder Agriculture, Intensive Agriculture, Rural settlement experienced a 

significant increase in F1-score (more than 0.07) when temporal features are included, 

Shrubland/Grassland, Bare soil experienced a slight increase in F1-score (0.01-0.04). 

Inversely, the decrease of F1-score happened in Small-holder Agriculture/ Settlement, 

Forest, Woodland/Savanna, Development, Water, Wetland. Of which, 
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Woodland/Savanna, Wetland experienced an only a slight decrease, with 0.01 and 0.03 

respectively; the other classes experienced more than 0.04 decrease. Above all. It is hard  

to conclude whether temporal features are useful when training data from GM.  

Figure 9Figure 9 shows how misclassification occurred in GM site, using SVM.  When 

temporal features were not included, the obvious patterns are: 1) Development had 0.22 

of samples being misclassified as Bare Soil; 2) Water had 0.28 of samples being 

misclassified as Bare Soil.  

When temporal features were included, the obvious patterns are: 1) Small-holder 

Agriculture/Settlement had 33% samples being misclassified as Small-holder 

Agriculture; 2) Development had 64% samples being misclassified as Rural Settlement. 
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Figure 9 Normalized confusion matrix of SVM classifiers in GM site. Feature _T represents the data which include temporal features(left), Feature_NT 

represents features without temporal features(right). 
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RF 

Table 12Table 12 shows the results when using RF (data without temporal features) to make 

a prediction, Forest, Intensive Agriculture, Bare Soil had the three highest F1-scores, with 

0.85,0.80,0.80 respectively. The following were Small-holder Agriculture, Woodland, 

Rural settlement, Wetland, which have F1-scores above 0.6. Water and Shrubland had 

0.55, 0.48 separately.  Small-holder Agriculture/Settlement had low F1-score with 0.25. 

There was one unexpected result happened on Development, with F1-score equal to 0. 

When temporal features were involved, the results show that only Small-holder 

Agriculture/ Settlement, Shrubland/Grassland, Rural Settlement experienced a slight 

increase. Other classes stayed unchanged in F1-score.  

As shown in Figure 10Figure 10, the most significant pattern is that except Forest and 

Small-holder Agriculture itself, samples from other classes were misclassified in Small-

holder Agriculture. 

Formatted: Font: 12 pt



 

40 
 

 

Figure 10 Normalized confusion matrix of RF classifiers in GM site. Feature _T represents the features which include temporal features(left), Feature_NT 

represents features which did not include temporal features(right) 
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Oromia (OR) 

The classification results of SVM and RF in the OR site are shown in Table 13Table 13. 

Table 13 User Accuracies (UA), Producer Accuracies (PA), F1-scores of different classifiers in GM site 

 Total 

number of 

samples 

SVM RF 

  Features_NT Features_T Features_NT Features_T 

  PA UA F1 PA UA F1 PA UA F1 PA UA F1 

Smallholder 

Agriculture 

2295 0.89 0.82 0.85 0.91 0.93 0.92 0.81 0.98 0.89 0.81 0.98 0.89 

Smallholder 

Agriculture/Settlement 

21 0.14 0.14 0.14 0.21 0.14 0.17 0.00 0.00 0.00 0.00 0.00 0.00 

Intensive Agriculture 45 0.62 0.69 0.65 0.81 0.84 0.83 0.71 0.38 0.49 0.73 0.36 0.48 

Forest 62 0.93 0.92 0.93 0.86 0.89 0.87 0.90 0.87 0.89 0.90 0.87 0.89 

Wood land/Savanna 520 0.59 0.71 0.64 0.72 0.70 0.71 0.75 0.49 0.59 0.75 0.51 0.60 

Shrubland/Grassland 65 0.22 0.15 0.18 0.33 0.28 0.30 1.00 0.03 0.06 1.00 0.03 0.06 

Bare Soil 115 0.29 0.50 0.37 0.58 0.50 0.53 0.89 0.07 0.13 1.00 0.06 0.11 

Rural Settlement 19 0.10 0.16 0.12 0.47 0.47 0.47 0.00 0.00 0.00 0.00 0.00 0.00 

Development 9 0.38 0.33 0.35 0.80 0.44 0.57 0.50 0.11 0.18 0.50 0.11 0.18 

Water 40 0.62 0.50 0.56 0.63 0.42 0.51 0.80 0.20 0.32 0.80 0.20 0.32 

Wetland 30 0.25 0.3 0.27 0.36 0.39 0.38 0.00 0.00 0.00 0.00 0.00 0.00 

Average 0.78 0.76 0.77 0.83 0.84 0.84 0.79 0.80 0.76 0.79 0.81 0.76 

Feature _T represents the features which include temporal features, Feature_NT represents features which 

did not include temporal features; PA represents the producer accuracy, UA represents the user accuracy. 

SVM 

The range of F1-score was from 0.12 of Rural Settlement to 0.93 of Forest, when I 

applied SVM (data contain temporal features), the results in The classification results of 

SVM and RF in the OR site are shown in Table 13. 

The classification results of SVM and RF in the OR site are shown in Table 13. 

 indicates that Forest and Small-holder Agriculture had high F1-score with 0.93 and 0.85 

separately. Intensive Agriculture, Woodland/Savanna, Water, had above 0.5 scores. The 

rest of the classes had F1-score lower than 0.4.  

The effects of temporal features are evident in the OR site when applying SVM. The F1-

scores of Rural Settlement, Development increased 0.35, 0.22 respectively. Intensive 

agriculture, Bare soil, Shrubland/Grassland increased with 0.18,0.16, and 0.12. F1-scores 

of Small-holder agriculture, Small-holder agriculture/Settlement was also had a slight 

increase. 
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Figure 11Figure 11 shows how misclassification occurred in OR site, using SVM.  When 

temporal features were not included, the obvious patterns are: 1) Development had 0.22 

of samples being misclassified as Bare Soil; 2) Water had 0.28 of samples being 

misclassified as Bare Soil.  

When temporal features were included, the obvious patterns were: 1) Except Forest and 

Small-holder Agriculture, other classes all had samples being misclassified as Small-

holder Agriculture, of which, 48% of Small-holder Agriculture/Settlement, 45% of 

Grassland/Shrubland, 44% of Development; 2) Small-holder Agriculture had 33% 

samples being misclassified as Woodland/Savanna. 
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Figure 11 Normalized confusion matrix of SVM classifiers in OR site; left: Features_NT (data without temporal features); right: Features_T (data contain 

temporal features) 
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RF 

When RF (data without temporal features) was applied on data, results in Table 13Table 

13 indicate that severe disparity of F1 scores appeared between classes. Small-holder 

Agriculture and Forest had much higher F1 score than other classes.  By contrast, Bare 

Soil, and Development had only 0.13,0.18 of F1-score. Moreover, samples from Small-

holder Agriculture/Settlement, Rural Settlement, Wetland, were misclassified into other 

classes. When the effect of temporal features was analyzed, we can see that there is no 

increase of F1 score for any class.  

Figure 12Figure 12 shows that Small-holder Agriculture had dominant impacts on most 

of the classes, which made it difficult to separate them apart, under this situation. Only 

one exception is Forest.
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Figure 12 Normalized confusion matrix of SVM classifiers in OR site; left: Data did not include temporal features (Feature_NT); right: Data include temporal features 

(Features_NT)
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Classification Performance Comparison 

To test whether the classifiers perform significantly different, I conducted the McNemar’s 

tests on paired classifiers.   

The results can refer to the chi-squared table with one-degree freedom. So, if the ꭓ2 statistic 

is over 3.84, the difference is at 0.05 level significant.  The test results are shown in Table 

14Table 14. The highlight values represent significant differences between classifiers at 0.05 

level. 

 

Table 14 McNemar's test between classifiers of BG, GM, OR sites 

Site Classifiers  ꭓ2 

BG  SVM(Features_T) vs SVM(Features_NT) 0.7025 

RF(Features_T) vs RF(Features_NT) 1.7857 

SVM(Features_T) vs RF(Features_T) 4.1896 

SVM(Features_NT) vs RF(Features_NT) 0.8120 

GM  SVM(Features_T) vs SVM(Features_NT) 0.1632 

RF(Features_T) vs RF(Features_NT) 0.4285 

SVM(Features_T) vs RF(Features_T) 0.1633 

SVM(Features_NT) vs RF(Features_NT) 1.0464 

OR SVM(Features_T) vs SVM(Features_NT) 72.1153 

RF(Features_T) vs RF(Features_NT) 1.6 

SVM(Features_T) vs RF(Features_T) 38.0802 

SVM(Features_NT) vs RF(Features_NT) 11.4131 

 Feature _T represents the features which include temporal features, Feature_NT represents features which 

didn’t include temporal features.  

Regarding the difference between RF and SVM, the difference was significant at 0.05 level 

when applied BG (data contain temporal features), OR (data contain temporal features), OR 

(data without temporal features).  

Regarding the effects of temporal features on classifiers, the difference is only significant 

when applied SVM on the OR site.  
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Multiple Effects on Classification Accuracy 

To investigate the relationship between multiple factors and classification accuracies, I built 

four multivariate linear regression models. The results were shown in Table 15Table 15 

Table 15 The relationships between classification accuracies and variables 

Classifier Variable Coefficient t value p-value 

SVM 

(Features_T) 

Area(km2) 0.55 2.476 0.0207 

Counts 0.0002 2.327 0.0287 

Site_Area_std -0.208 -1.055 0.3018 

Area*Count 0.0006 -1.849 0.0768 

(Intercept) 0.54 8.488 1.09e-08 

R2: 0.373            F-statistic:3.57     p-value:0.0202 

SVM 

(Features_NT) 

Area 0.62 2.791 0.0101 

Counts 0.0003 2.714 0.0121 

Site_Area_std -0.021 -0.107 0.9158 

Area*Count -0.0006 -2.108 0.0457 

(Intercept) 0.39 6.031 3.15e-06 

R2: 0.4741            F-statistic:5.409     p-value:0.0029 

RF 

(Features_T) 

Area 0.6440 2.472 0.0209 

Counts 0.0003 2.823 0.0094 

Site_Area_std 0.1987 0.837 0.4106 

Area*Count -0.0007 -1.955 0.0623 

(Intercept) 0.2553 3.314 0.0029 

R2: 0.5031            F-statistic:6.074     p-value:0.001595 

RF 

(Features_NT) 

Area 0.0064 3.890 0.0006 

Counts 0.0003 2.488 0.0202 

Site_Area_std 0.0014 2.717 0.0120 

Area*Count  7.243e-06 0.605 0.5510 

(Intercept) 0.29 -1.918 0.0670 

R2: 0.4881            F-statistic:5.72    p-value:0.002222 

Feature _T represents the features which include temporal features, Feature_NT represents features which 

didn’t include temporal features. 
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To analyze the effects on different cases. The results of each model were discussed 

separately:  1) SVM (data contain temporal features), The overall p-values was less than 

0.05, which means accumulated effects are significant.  The R2 was 0.373 indicated that 

37.3% of the variance is explained by four variables. Based on the single p-values of each 

variable, it can be indicated that area, count and area*count have a significant influence on 

classification accuracies. Of which, area have much more influence than counts and 

area*counts. 2) SVM (data without temporal features), The accumulate influence from four 

variables was significant as p-value was lower than 0.05.  Except for site_area_std, other 

three variables had a significant influence on classification accuracy. The area had a higher 

positive effect on accuracy when compared with other variables. All variables accounted for 

47% of the variance in accuracies. 3) RF (data contain temporal features), accumulated 

effects from four variables was significant as p-value was 0.0015, and 48% difference 

between accuracies are explained. area, Moreover, counts area and count had significant 

effects on classification accuracies, while site_area_std was not significant.  4) RF (data 

without temporal features), the collective effects of four variables was significant and 

explained 48% of the variance between accuracies. Exclude area*count, other variables had 

significant but only a slight influence on accuracies. 

Alone with the effects on different classifiers, the effect caused by the individual variable is 

also worthy to consider. 1) Area, the p-values of the area in four models all indicated that 

area had a significant influence on classification accuracies. It had much more influence than 

the other three variables. 2) Counts, the p-values of counts in four models all indicated that 

count is significantly related to classification accuracies. However, the effect on accuracies 

are small 3) Site_Area_std, this variable is expected to reflect the variance of the area within 

the class. It only had a significant influence when applying RF (data without temporal 

features). 4)Area*Count, the effects are significant, except the case which applying RF (data 

without temporal features). However, the difference was small.  
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Discussion 

Is RF or SVM appropriate to applied on LULC mapping in Ethiopia?   

I conducted experiments on Benishangul (BG), Gambella (GM), Oromia (OR), Ethiopia, 

applying RF and SVM on high spatial resolution satellite images. For each algorithm, two 

classifiers were built depend on whether data included temporal features or not.  

Regarding overall accuracy, the average overall accuracy is 0.72 for SVM (data contain 

temporal features), and 0.76 for SVM (without temporal features). Both scores are lower than 

findings from research, which concentrated on applying object-based SVM and high spatial 

resolution images on smaller scale classification, with overall accuracies around 0.9. 

(Heumann 2011; Li et al. 2010; Li et al. 2011). However, the overall accuracy of SVM is 

higher than findings from research, which focused on using SVM to solve large-scale LULC 

classification in Ethiopia, with an overall accuracy of 0.55 (Eggen et al. 2016). As for RF, the 

average was 0.74 which are lower than findings from other research. For example, 

(Rodriguez-Galiano et al. 2012) applied object-based Random Forest approach to mapping 

LULC classes, Mediterranean. The research areas occupy 12,635 km2, and overall accuracy 

was 0.92. (Watts and Lawrence 2008) 

applied the objected-based RF approaches to map dryland cropping practices within north-

central Montana. They got over accuracies over 0.9. 

 

The McNemar’s test decided whether the two algorithms performed equally or not by 

considering the overall disagreement from all samples regardless of the classes.  According 

to the results, the answer is case dependent. Based on my findings, the only significant 

difference between RF and SVM occurred when fitted to data with temporal features in OR 

site, which SVM out-competed RF. 

Along with the overall performances of classifiers, it is crucial to know how misclassification 

happened.  Some common patterns occurred regardless sites and classifiers: 1) Forest 

achieved high accuracy due to it outstanding characteristics in spectral features; 3) Among 

three classes of agriculture, Small-holder agriculture got the highest accuracy, Small-holder 

Agriculture/Settle and Intensive agriculture were misclassified as Small-holder Agriculture 

4) Woodland/Savanna are likely to be mixed with Forest, and Shrubland/Grassland are likely 

to be mixed with Woodland/Savanna. 5) Bare Soil was easy to be misclassified as savanna. 

The possible reasons which caused misclassification can be summarized by the following 

https://paperpile.com/c/9dtCyu/GB32+hhRP+cN2d
https://paperpile.com/c/9dtCyu/MJnG
https://paperpile.com/c/a0VZrF/zh5P
https://paperpile.com/c/a0VZrF/Vq1e
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points. Firstly, the misclassification occurred in classes which share similar feature values.  

For example, three different classes of agriculture lands are hard to be separated due to their 

similar spectral characters. The second reason is that lands with complicate structures 

frustrate the classifier to make correct decisions. For example, woody plants grow on 

agriculture lands can always confuse the classifiers.  The third reason is related to blur 

boundaries between classes. In detailed, one LULC class transit into another LULC class 

gradually, adjacent areas increase the difficulty of the classifier in identifying. For example, 

there is usually no clear boundaries between Forest and Savanna.  

When analyzing the performances of classifiers, I noticed that samples’ distribution 

influenced the classification accuracy. In my research, the area and count of classes are 

relatively balanced in GM. By contrast, BG and OR both have dominant LULC classes 

which make the samples unbalanced. From my experiment results, when fitting the classifier 

on balanced data, the variance of classification accuracies between classes are small for both 

SVM and RF. Whereas, the extreme situation happened when used RF to fitted unbalanced 

data: The dominant classes achieved remarkably high accuracy, while other classes had very 

low accuracies. This finding supports the idea that SVM has the advantage in dealing with 

unbalanced data. 

On the other hand, when training RF classifiers, training samples were randomly split to the 

node in a decision tree. Random split eliminates the effect of minority class in making a 

prediction. A similar finding has already been reached in other research. For example, Porter 

and YvesMeyer indicated that SVM over-competed  RF when used in mapping rare and 

endangered native plants in Pacific islands forests(Pouteau et al. 2012). Out of this 

consideration, SVM might be a better choice other than RF, when encountering unbalanced 

data. 

To further exploring what factors can influence classification performance.  I build 

multivariate linear models for each classifier to investigate the relationship between accuracy 

of each class and four independent variables including total area, counts of segments, the 

standard deviation of segment areas; combination effects which include area and counts. 

According to the regression results, I found that the area has significant effects on accuracies, 

the larger areas that class cover, the higher accuracy that class can reach. Moreover, counts of 

samples were also proved to have a significant influence on accuracy, but the influence is 

slight. The effects from the combination of area and counts are also significant but ignorable. 

https://www.sciencedirect.com/science/article/pii/S1574954112000210#!
https://www.sciencedirect.com/science/article/pii/S1574954112000210#!
https://paperpile.com/c/9dtCyu/r2cY
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The standard deviation of the segment area did not have a significant influence on accuracy.  

My findings are consistent with the conclusions reached by Waldner and Jacques. They 

claimed that the class proportion of the calibration samples, had a stronger impact on 

classification accuracy than the total number of calibration samples when using machine 

learning algorithms (Waldner et al. 2017).  

There are about 50% of the total variance of accuracies are explained by the four factors 

mentioned above. Therefore, other factors are possible to influence the classification 

performance. For example, different scenarios of each site might account for differences. 

Firstly, three sites have unique geographical conditions which result in a difference of 

distribution and the forms of LULC classes. For example, Baro river flowing across the GM 

region, which creates a lot of seasonal wetlands also benefit the distribution of Small-holder 

Agriculture along the river bank. Furthermore, different forms occurred in the class.  

 

Figure 13 The Small-holder Agriculture in BG, GM, OR 

The example (Error! Reference source not found.) presents the patterns of Small-holder 

Agriculture in different sites. In BG and GM, the Small-holder Agriculture had irregularly 

shaped parcels and had blurred boundaries with surroundings, while in OR, the shape of 

parcels is regular, well sorted and the had clear boundary with others. Besides the 

geographical conditions, the satellites images covered three sites were from multiple remote 

sensors and acquired in different time. Even the digital numbers of all images had been 

https://www.tandfonline.com/author/Waldner%2C+Fran%C3%A7ois
https://www.tandfonline.com/author/Jacques%2C+Damien+C
https://paperpile.com/c/9dtCyu/fCQL
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converted to spectral reflectance, the variance from sensors and time are still possible to 

influence the results. 

Thoroughly, whether the SVM or RF is appropriate to map the LULC classes in Ethiopia 

depends on the specialty of the research site and purposes. As unbalance problem always 

associated with large-scale LULC classification. If the purpose is to map a continuous and 

large area of land. SVM had an advantage. Otherwise, if the purpose is to identify the major 

class within the research area, RF is an excellent choice due to its’ time efficiency. It is 

worthy to notice the differences existed in different locations. When faced with large-scale 

LULC mapping, these differences are unignorable. The recommended solution is to 

investigate the variance in a large region and then convert the large-scale questions to 

multiple smaller scale questions and find a specific strategy for each division. 

Is there any chance to improve classification performance, in aspect to the LULC in 

Ethiopia? 

There are two directions were considered in my research to improve the classification 

performance on high spatial resolution satellite images.  

The first direction is to conduct parameters determination experiments before training 

classifiers. This attempt was motivated by the following reasons: Firstly, SVM and RF are 

constructed based on multiple parameters, the different combination of parameters can 

directly influence the performance of algorithms. Under this consideration, Parameters 

determination is an important process which helps researchers to get best parameter set when 

fitting different data set. However, this process was seldom discussed in most research, when 

using advanced machine learning approaches in remote sensing applications. Secondly, 

parameters determination is restricted by software which the researchers usually choose.  

This software provides the ready-to-use tools, which make remote sensing analysis easy to 

undertake. However, it also blocks the chance of researchers, who have interests to know 

more details of how classifiers work. Moreover, obtaining the authority of software also 

frustrate researchers to get started. 

Fortunately, there are several open-source tools available for researchers to conduct machine 

learning analysis now, such as Scikit-Learn, Tensor-Flow. These tools are easy to get access 

to and have already been applied in a wide range of data analysis efficiently. Moreover, they 

provide tools to conduct parameters determination, which make analysis flexible. In my 
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research, I used grid-search tool provided by Scikit-Learn API to conduct parameters 

determination. 

Based on the results, I found patterns occurred when change parameters. For SVM, the 

accuracies were significantly influenced by gamma and C which represent the influence of a 

single sample and the tradeoff of misclassification in training samples respectively. The 

accuracies increased as C and gamma increased. For RF, the accuracies were influenced by 

some decision trees and split criterions. The former one had great impacts on accuracies, but 

the later one only had little influence on accuracy. However, researchers should be cautious 

when select parameters. Some problems can happen if the parameters are out of specific 

ranges. When researchers training SVM, if gamma and C are too high, the classifier would be 

overfitting. If too many trees are involved in RF, the processing speed could be tardy.  

Overall, parameters determination is an important process in using machine learning 

approached to solve remote sensing problems. Open-source tools provide researchers with 

reliable tools to conduct experiments, also provide researchers with insights into how to get 

the optimal classification results. However, this process should be undertaken carefully and 

depend on the researcher’s knowledge of algorithms.    

The second direction is to add temporal features in original features. There is two motivation 

for raising this question. Firstly, the information extracted from a single image is limited. It 

failed to provide how LULC classes change during a year. For instance, when the agriculture 

lands in fallow seasons, no crops growing on the land. Agricultural lands have no difference 

with bare soil when considering spectral characters. Under this situation, continuous 

temporal information is expected to be useful.  

In my experiment, two classifiers were established for each algorithm. One of them trained 

with data contain temporal features, while another trained with data without temporal 

features. By comparing the classification results, I was able to conclude the effectiveness of 

temporal features.  According to my findings, overall accuracy increased when applying 

SVM but stayed unchanged when applying RF, which indicating that temporal features work 

when used in SVM but influence a little when applied to RF. The possible explanation is the 



 

54 
 

split process in establishing decision trees, break down the continuous time series features, so 

combined effect of temporal features was weakened. 

Results from McNamara’s test showed that the effect of temporal features is site dependent. 

Temporal features significantly improved the classification performances, when trained SVM 

in BG and OR. In both sites, the dominant classes had great impacts on classifying other 

classes. The possible reason is that temporal differences assist classifiers to better separate 

minority classes apart from dominant classes. Whereas the effect of temporal features are not 

significant in GM when used SVM; the possible reason is that GM had relative balance 

dataset, the SVM trained with features not include temporal features was already useful to 

classify classes, thus temporal features might not help.   

The effects of adding temporal features on different LULC class were not identical. The 

effect on Intensive agriculture was apparent which agreed with results from three sites. 

Notably, some misclassified samples of Intensive Agriculture were extracted from 

Smallholder Agriculture. Similarly, the effects on Rural-Settlement were also proved useful 

in most of the cases. Other classes did not show a uniform pattern, but their classification 

accuracies also experienced increases in either of one site. 

Incorporating temporal features in remote sensing classification is still a new topic. From 

current research, it has been proved an efficient way to map canopy  (Karlson et al. 2015). 

The experiment focused on including temporal features in LULC mapping in Ethiopia has 

not been covered yet.  

Research limitations and Future work 

1) The ambiguous definition of classes might influence the classification results. The 

quantitative definition failed to represent the variances between LULC classes. For 

example, it only used ranges of vegetation coverage rate to distinguish Forest, 

Woodland/Savanna, and Shrubland/ Grassland. However, this overlooked the 

complicated vertical on land. In my research area, there is land which had a vertical 

structure with grassland on the bottom of layers and forest on the top of layers.  

Classes with detailed and precise definition are needed. In one aspect, it can guide 

researchers who participate in manual digitization to make a correct judgment, in 

https://paperpile.com/c/9dtCyu/x2kT
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another aspect, it makes it easier for “machine” to understand the boundaries between 

classes. 

2)  In my experiments, all classes are treated at the same level — for example, the 

subdivision of Agriculture, including Small-holder Agriculture, Small-holder 

Agriculture, Intensive Agriculture, which were treated with the same with other 

classes like Water, Bare soil. The differences which were expected to distinguish 

Small-holder Agriculture and Small-holder Agriculture/Settlement could be 

diminished; when compared with the differences between Agriculture and Water, this 

can increase the difficulties to form optimal hyperplane in SVM. The possible 

solution to this is to build multiple hierarchies LULC system and execute 

classification on classes at the same level. 

3) Another problem is associated with the grid-search process. In the grid-search 

process, even it can provide the optimal parameter sets which reached the highest 

testing accuracies. The number of parameters sets still need to be pre-defined by users 

who require users to have a comprehensive understanding of the mechanism behind 

algorithms — also, the selection based on overall accuracies. Through my analysis, 

even with high accuracies, it did not mean the performance of the classifier is “good”.  
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Appendix I 
Proposed LULC classification for large-scale land transaction sites located in Benishangul 

Gumuz, Gambella and Oromia. 

Code Land 

use/cover 

Description 

11 Small-holder 

Agriculture 

Areas allotted to rain fed crop production, 

mostly of cereals in subsistence farming.  

Characterized by small cultivated areas 

(<10ha) with a mosaic of different crop 

types, fallow area, and cycle of crop 

maturity.  

12 Small-holder 

Agriculture/ 

Settlement 

Small-cultivated areas within a mosaic of 

rural settlements and sparse tree cover.  

Cultivated areas in this case tend to be 

“garden” plots adjacent to households. 13 

13 Intensive 

Agriculture 

Large areas under mono-cropped patterns.  

From imagery this can seen as large 

cultivated fields (>10ha) with the same 

pattern of vegetation indicating similar 

sow and harvest cycles.    

21 Forest Areas covered with dense growth of trees 

that formed nearly closed canopies (70–

100%). 

23 Woodland/ 

Savannah 

Areas with sparse trees mixed with short 

bushes, grasses and open areas; less dense 

than the forest with approximately 10-

70% cover.  

31 Shrubland/ 

Grassland 

Areas covered with grasses shrubs, bushes 

and very sparse, small trees (<10%) 

32 Bare/ Exposed 

Soil 

Grassy areas as well as bare land that has 

no other vegetation cover. 
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41 Rural 

Settlement 

Composed of impermeable surfaces 

including roads, factories and dense 

housing.    

42 Development This includes major roads or infrastructure 

that does not fit into a category of urban 

settlements or rural settlements.  The 

minimum mapping unit is 30m. 

51 Water  Natural and artificial water bodies such as 

river, lakes or reservoirs with a minimum 

mapping unit of 30m. 

52 Wetland Areas that are waterlogged and swampy in 

the wet season, and dry in the dry season. 

These are very important for grazing 

during the dry season 
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Appendix II 
 

The information of high spatial resolution images used in experiments 

SENSOR ACQ_TIME BANDS ROWS COLUMNS CLOUDCOVER SUN_ELEV OFF_NADIR SPEC_TYPE COUNTRY 

WV02 2011-11-07T08:37:43.982850 4 8192 9216 0 61.1 2 Multispectral ET 

WV02 2011-11-07T08:38:11.997850 4 8192 9216 0 61.4 12.5 Multispectral ET 

WV02 2011-11-07T08:38:10.755250 4 8192 9216 0 61.3 12.7 Multispectral ET 

WV02 2011-11-07T08:37:45.304050 4 8192 9216 0 61.2 2.2 Multispectral ET 

WV02 2011-11-07T08:37:46.625050 4 8192 9216 0 61.3 2.5 Multispectral ET 

QB02 2006-11-08T08:36:57.294203 4 7312 6876 0.164 60.8 9.6 Multispectral ET 

QB02 2006-04-24T08:30:12.269855 4 7162 6876 0.099 72.9 13.5 Multispectral ET 

QB02 2006-11-08T08:36:53.905797 4 7312 6876 0.058 60.7 8.3 Multispectral ET 

QB02 2006-11-13T08:42:12.032754 4 7201 6876 0.068 59.9 19.4 Multispectral ET 

QB02 2006-11-13T08:42:08.701159 4 7201 6876 0.024 59.8 18.7 Multispectral ET 

QB02 2006-04-24T08:30:08.958551 4 7161 6876 0.196 72.9 13.1 Multispectral ET 

QB02 2011-11-30T07:42:50.668696 4 8192 7168 0 49 5.5 Multispectral ET 

QB02 2006-12-09T08:32:42.900580 4 7240 6876 0 54.2 14.3 Multispectral ET 

QB02 2006-12-09T08:32:43.295362 4 7240 6876 0 54.2 14.3 Multispectral ET 

QB02 2011-11-30T07:42:54.007826 4 8192 7168 0 49.1 4.3 Multispectral ET 

QB02 2006-12-09T08:32:46.647826 4 7241 6876 0 54.3 14.3 Multispectral ET 

QB02 2009-11-03T08:16:56.381159 4 7168 7168 0 61.6 13.2 Multispectral ET 

QB02 2006-12-09T08:33:26.840290 4 4127 6876 0.001 55.8 19.6 Multispectral ET 

QB02 2006-11-21T08:32:24.618841 4 5697 6876 0.038 59 12.6 Multispectral ET 

OV 2006-11-21T08:32:24.618841 4 5697 6876 0.038 59 12.6 Multispectral ET 

WV02 2016-04-13T08:36:57.294203 8 7312 6876 0.164 60.8 9.6 Multispectral ET 

WV02 2016-01-08T08:30:12.269855 4 7162 6876 0.099 72.9 13.5 Multispectral ET 
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WV02 2016-01-27T08:36:53.905797 4 7312 6876 0.058 60.7 8.3 Multispectral ET 

WV02 2016-04-13T08:42:12.032754 8 7201 6876 0.068 59.9 19.4 Multispectral ET 

WV02 2016-01-08T08:42:08.701159 4 7201 6876 0.024 59.8 18.7 Multispectral ET 

QB02 2008-03-01T08:20:21.482609 4 7168 7168 0.002 65.5 12.7 Multispectral ET 

QB02 2006-10-24T08:21:40.137101 4 6787 6876 0 67.2 19.3 Multispectral ET 

QB02 2006-10-24T08:21:37.019420 4 6787 6876 0 67.1 18.3 Multispectral ET 

 

 

 

 

 

 

 

 

 


