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Abstract 

 

In this thesis, we utilize a high speed electric linear actuator to provide a bicycle with automatic 

steering capabilities that enable self-balancing when set in motion. Equations of motion of a 

bicycle are derived and a second-order linear system is used to model and simulate the bicycle. A 

PID controller design governs the steering actuation mechanism from lean angle measurements 

collected from a MEMS 6-axis gyroscope and accelerometer. Experimental tests on the feedback 

system are presented. These experimental results are improved upon by using a gain scheduling 

controller scheme. Additional results are presented from experiments conducted on the semi-

autonomous bicycle at various speeds.
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 Chapter 1: Introduction 

 

1.1 Problem Statement 

The initial requirement set for this thesis was to implement a feedback controller on a 

bicycle using an electric linear actuator to achieve self-balancing for at least thirty feet. Because 

a bicycle’s dynamical system is underactuated with unstable non-minimum phase roll dynamics, 

automatic control of a bicycle can be a real challenge. Nonetheless, leveraging certain intrinsic 

properties of a bicycle in motion can simplify the control approach. One such property is a 

bicycle’s tendency to steer into its lean to maintain balance when set in motion uncontrolled. 

Integrating elements of control system design with this basic phenomenon of bicycle stability at 

non-zero speeds makes self-balancing an achievable task.  

1.2 Overview of Existing Self-Stabilization Strategies 

This section summarizes several approaches of bicycle stability by various researchers, including 

physical system designs, plant models, and underlying control strategies. The most widely used 

techniques to achieve self-stability include steering control, gyros, a moving mass, or a 

combination of the aforementioned [1].  

1.2.1 Moving Masses and Gyros 

Several systems have been implemented to stabilize single-track vehicles using spinning gyros 

and moving masses. These methods were most effective in stabilizing at either stationary or low 
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speeds. In moving mass stabilization, lean torque is the primary controlled state, either via an 

inverted pendulum or a laterally moving mass [1]. Another application of moving mass control is 

by Yamakita et al., where two separate controllers, a non-linear stabilizing controller and a 

linearized input-output controller, are utilized for stabilization [1]. In their simulations, 

successful results for stabilization and orientation tracking are shown. However, the use of only 

lean torque requires much larger feedback gains for stabilization compared to steering control, 

making stabilization more difficult for moving mass systems. To improve performance, an H∞ 

controller is added to the feedback loop of their control algorithm [1]. As a result, this technique 

can minimize the closed loop impact of a perturbation, improving stabilization. An example 

where gyroscopic stabilization is thoroughly applied is by Yetkin et al. [2], where control 

moment gyroscope stabilization employs the reactive procession torque of a high speed flywheel 

about an axis that will balance the vehicle. They implement their system using a proportional-

integral-derivative (PID) and sliding-mode controller (SMC) and evaluate the performance 

characteristics of their system. Their experiment results validate that CMG stabilization of a 

single-axis gimbal flywheel can be used to actively control inherently unstable bodies [2].  

1.2.2    Steering Control 

In automatic steering applications, steer torque and angle are generally the controlled variables 

[1]. The first robotic motorcycle with automatic steering capabilities was reported in the 

literature by Ruijs and Pacejka [3], where steer torque control was used to control the steer angle 

of the motorcycle. In order to provide their motorcycle with self-stabilization capabilities, Ruijs 

and Pacejka employed a remote link to set the roll angle. Later, Saguchi et al. [4] employed steer 

torque control for their robotic single-track machines in order to achieve path tracking under 

constant path curvatures. Another example is by Andreo, Cerone, et al. [5], where a setup using a 
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torque-driven servomotor provides a torque on the steering axis. Their system considers three 

degrees of freedom, namely the speed, lean angle, and steering angle. They rely on the Whipple 

model to design and analyze their system, and utilize a linear-parameter-varying (LPV) control 

scheme formulated in terms of a linear matrix inequality feasibility problem [5], with the speed 

v(t) being the time-varying parameter. Experimental tests on their system confirm the effective 

ability to balance a bicycle at low speeds and in spite of external disturbances [5]. Andreo et al. 

and Michini and Torrez [6] have recently equipped standard city bicycles with proper sensors 

and actuators in order to achieve automatic self-balancing. In the work by Michini and Torrez 

[6], a chain drive connects the bicycle’s front fork to the steering motor. The use of electric 

linear actuators in robotics applications, such as actuating joints of anthropomorphic robotic 

hands, achieving high speed locomotion in quadrupedal robots, and providing required joint 

torques during walking in powered prostheses is gradually finding more scientific ground [7]. 

Electric linear actuators, with features including good controllability and high force/torque 

densities, can tackle control and performance drawbacks in a variety of robotic systems and 

substitute solutions that rely on heavy machinery.
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Chapter 2: Derivation of the Bicycle Dynamical Model 

 

Figure 1 displays a single-track, moving bicycle with forward velocity U and lateral velocity V, 

lean angle   being the controlled variable, and the yaw rate   being the second angular rotation 

variable. The vehicle’s center of mass (CoM) is at a distance h from the ground plane, with 

vehicle mass m and moment of inertia   . The constants a and b are the distances from the front 

axle and rear axle to the vehicle’s CoM, respectively. 

 

Figure 1. Front-view of a bicycle in motion 

 ̇                   
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 ̇ 
  

  ̇ 

2.1  Derivation of the Equation of Motion 

Using the Euler-Lagrange equation, the equation of motion for a moving bicycle is derived. 

Assuming zero slip angles, the tire lateral forces, that are perpendicular to the tire velocities, can 

be neglected. The expression for the potential energy is just mg times the height h in the gravity 

field [8], given by 

         .     (1) 

The kinetic energy expression is the sum of the translational and rotational motion energy 

components: 

  
 

 
    

 

 
   ̇

 .      (2) 

Figure 2 displays the forward and lateral velocity components of the projection of the bicycle 

CoM. 

   

 

  

The translational kinetic energy is found by evaluating the velocity’s x- and y-components: 
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The Lagrangian equation is then expressed as: 

Figure 2.     Forward and lateral velocity components 
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Partial derivatives with respect to lean angle and lean rate are expressed: 

  

  
     ̇ ̇                         (5) 

  

  ̇
     ̇          ̇     ̇           (6) 
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Substituting Equations (5)-(7) in Euler-Lagrange, 

 

  
(

  

  ̇
)  

  

  
             (8) 

   ̈         ̇ ̇          ̈     ̈     ̇ ̇                        (9) 

         ̈              ̈     . (10) 

The lateral acceleration  ̈ is the sum of the lateral speed derivative and the forward speed times 

the yaw rate   [note that V in Eq. (11) differs from the potential energy expression in Eq. (1)]:   

 ̈   ̇    .            (11) 

Expressions for the turn radius R, lateral velocity V, and yaw rate   are derived in terms of the 

steering angle   using basic geometric considerations [9]: 

   
   

 
         (12) 

    
  

   
          (13) 
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.           (14) 

Using the above expressions in Eq. (10), we obtain the final form of the equation of motion: 

         ̈           
      

   
(   ̇     ).            (15) 

Small angle approximations can be considered with minimal lean angles, i.e. upright orientation: 

         ̈        
  

   
(   ̇     ),               (16) 

where    is the bicycle’s moment of inertia, m is the bicycle’s mass, h the height of the bicycle 

CoM from the ground,   the lean angle,   the steering angle, a and b the distances from the front 

and rear axle to the CoM, respectively, and U the bicycle’s forward speed.  

2.2      The Second-order Transfer Function 

By dividing Eq. (16) by mgh, introducing time constants   ,   , and a gain K, the equation 

appears in the form 

   ̈      (   ̇   )        (17) 

where 

   
      

   
            (18) 

   
 

 
           (19) 

   
  

      
            (20) 
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Defining the time constants    and   , and defining the gain factor K puts the transfer function in 

Eq. (21) in standard form, and reveals the parameters affecting the system poles and zeros. More 

precisely, that the poles of the system rely on   , a function of the bicycle’s physical parameters, 

and that the zeros rely on both the bicycle’s physical parameters and the bicycle’s speed. 

Taking the Laplace transform of Eq. (16), the steering angle to lean angle transfer function can 

be found in the standard way: 

    

    
 

         

      
         (21) 

With the transfer function shown in Eq. (21), it can be stated that by introducing lean angle 

feedback to the system with a controller in the open-loop, the steering angle can be accordingly 

actuated in a controlled manner to achieve stability and self-balancing. 
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Chapter 3: Overview of the Self-Balancing System 

 

Hardware selection and configuration on the bicycle are crucial for the functionality and 

performance of the self-balancing system. In this section, we present the physical design, the 

sensors and actuators on the self-balancing system, as well as the electronic control system unit.  

3.1     Physical Design  

Prior to mounting any components on the bicycle, we took into account considerations pertaining 

to balance and stability of the bicycle. In order to maintain uniform mass distribution, the two 

pivot points of the linear actuator are mounted on the right-hand side of the bicycle’s seat tube 

and the left-hand side of the bicycle’s handlebar, as Figure 3 depicts. This configuration helps 

keep steady balance, evenly distributing the linear actuator’s weight on both sides. The mounting 

brackets are placed in their respective positions. The easily removable locks simplify switching 

the modes of operation for the user. The accelerometer is placed on a level surface and centered 

across the vertical plane of the bicycle in order to accurately measure lean angle. For testing 

purposes, training wheels are installed in such a way that they do not touch the ground when the 

bicycle is at a lean angle range of approximately -15⁰ to +15⁰. A battery rack installed above the 

rear wheel locks in place a 48 V battery and provides ample surface area for a control box that 

encloses the bicycle system’s electronics.



 

10 

The battery’s heavy weight of 5.7 kg needs to be positioned along the center of the bicycle’s 

vertical plane for symmetrical mass distribution. Figure 3 shows a detailed description of the 

overall system, including a top-view illustration, while Table 1 lists measurements for the system 

components including mass and respective heights from the ground as well as inertial 

calculations for the overall system.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 1.  Bicycle inertial calculations and measurements 

 

Bicycle Steering Electronics Battery Powered Wheel 

Mass 17.25 kg Mass 3.45 kg Mass 5.7 kg Mass 7.5 kg 

Height 0.038 m Height 0.745 m Height 0.77 m Height 0.33 m 

Width 0.99 m Inertia 1.914 kg∙m
2
 Inertia 3.38 kg∙m

2
 Inertia 0.817 kg∙m

2
 

CG Height 0.648 m Total Mass 33.9 kg 

Inertia 8.47 kg∙m
2
 Total Inertia 14.581 kg∙m

2
 

Figure 3.  Physical structure description: (a) the linear actuator placement topology, (b) the self-

balancing bicycle and its components 

(a) (b) 
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3.2     Actuation 

The first of two actuators used in the system is the MPC LAD-HS10 high-speed linear actuator 

and is used to control the front wheel steering of the bicycle. For this application, high-speed 

actuation is a preferred setting to allow for even the slightest rapid changes in steering angle to 

maintain stability. With a maximum stroke length of 10 inches, the linear actuator can 

accommodate for the desired steering angle range. The second principal actuator of the semi-

autonomous bicycle is a 26-inch electric wheel that replaces the rear wheel of the bicycle. The 

installed e-wheel, which is taken from an e-bike kit, has its own control box that converts the 

48V DC voltage to a 3-phase AC voltage. Turning the installed throttle on the handlebar controls 

the speed of the e-wheel. The motor actuator codes are developed using recommendations 

provided by the supplier of the motor driver. Several tests were performed to find the 

relationship between the duty cycle of the input PWM signals and the actuation speed. The 

microprocessor regulates the speed and direction of the linear actuator via a PWM signal 

transmitted to the motor controller unit. A 12V DC battery is regulated by the motor controller in 

order to power the electric linear actuator accordingly.  

3.3      Electronics and Control System Unit 

The first of two essential sensors used in this system is the InvenSense MPU6050 6-axis 

gyroscope and accelerometer. This motion processing unit can calculate the yaw, pitch, and roll 

rate of a moving object, as well as the object’s acceleration in the x, y, and z axes. The 

MPU6050 was used to measure the roll angle and roll rate of the bicycle. Based on good reviews 

for quality and vast support, the MPU6050 was deemed the best sensor for this project. The 

accelerometer uses I
2
C protocol to communicate with the microcontroller. First attempts to use 
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the MPU6050 chip resulted in inconsistent angle readings, leading to considerable time spent on 

calibrating the sensor.  

To measure speed, a hall-effect sensor mounted on the chain stay of the rear wheel sends an 

interrupt to the microcontroller when any of the four magnets on the wheel cross the sensor’s 

path. The hall-effect sensor thus enables travel distance calculation. By incorporating a timer, the 

bicycle’s speed can be measured. Figure 4 shows a block diagram of the electronic control 

system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.     Block diagram of the electronic control system of the semi-autonomous bicycle
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Chapter 4: Control and Experimental Results 

 

In this section, the results of the experiments conducted on the self-balancing system are 

displayed, including open-loop tests, experiments with a single PID controller, and 

improvements to the experimental results with an upgraded, gain scheduling controller.  

4.1     Open-loop Tests  

 4.1.1     Steering Actuation Model 

The electric linear actuator drives the steering angle of the bicycle. A PWM-controlled motor 

controller regulates the speed and direction of extension of the linear actuator. Open-loop tests 

are conducted in order to map the driving PWM signal to the linear actuator extension speed. 

Using the obtained mapping and the law of cosines, the rate of change of the steering angle can 

be expressed as a function of the duty cycle of the applied PWM signal. Figure 5 depicts the 

functional relationship between the duty cycle of the input PWM signal and the extension speed 

of the linear actuator. The resulted profile shows that maximum achievable extension speed for 

the linear actuator is equal to 6.2 cm/s. Figure 6 depicts the time profile of the steering angle 

response of the semi-autonomous bicycle. 
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Using the law of cosines and from Figure 3a, the geometric relationship between the linear 

actuator length, i.e.,     , and the reference steering angle      , is given by 

         
    

                         (22)               

where the two fixed-length segments of the triangle are given by l1 and l2, respectively. In 

addition,       and      denote the angle between the lengths l1 and l2, and the actuator length 

(plus the length of the mounting brackets) as a function of time t, respectively. Using the 

principle of virtual work, the relationship between actuating force and steering torque is given by 

         
  

   
     

       (     )

√  
    

          (     )

         (23)  

where      is the force generated by the electric linear actuator and      is the generated steering 

torque. Furthermore, using Eq. (4), the relationship between the rate of change of the reference 

steering angle, i.e.,  ̇    , and the linear actuator extension speed, i.e.,  ̇   , is given by 

 ̇      
   

  
 ̇    

√  
    

                 

       (     )
 ̇        (24) 

A realistic linearized dynamic model of the lean angle should take into account the non-

minimum phase nature of the bicycle steering. In particular, the non-minimum phase bicycle lean 

dynamics should reflect the intuitive fact that steering becomes ineffective for balancing the 

bicycle at rest or at very low speeds. Once the bicycle reaches a certain speed, the automatic 

steering system can be used for making the bicycle follow a desired path.  

The angles      and    denote the lean angle, steering angle, and the reference steering angle, 

respectively. The lean angle dynamics are actuated through the steering angle dynamics. The 
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steering angle, in turn, is actuated through the electric linear actuator. Therefore, we first derive 

the dynamics relating the steering angle to the linear actuator length. In order to so, we note that 

the steering angle speed is equal to the rate of change of the reference steering angle, i.e.,  

 ̇      ̇    

Therefore, using the law of cosines, the relationship 

 ̇    
√  

    
                 

       (     )
 ̇         (6) 

holds between the linear actuator speed, i.e.,  ̇   , and the front-wheel steering angle speed  ̇   .  

 4.1.2     Wheel speed actuation model 

The installed electric wheel provides the bicycle with self-propulsion capabilities under the 

appropriate control system. A PWM-controlled motor controller regulates the desired speed. 

Open-loop tests are conducted in order to map the duty cycle of the driving PWM signal to the 

desired wheel speed. PWM and speed data are collected and curve-fitted in terms of the duty 

cycle to obtain the function shown below. Figure 8 shows the functional relationship between the 

duty cycle of the input PWM signal and the wheel speed.  

                                        . 
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Figure 5.  The relationship between the duty cycle of the input PWM signal and the 

linear actuator extension speed 

Figure 6.  Automatic steering experiments 
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Figure 7. Wheel speed response vs. PWM duty cycle 

Figure 8.  Wheel speed time profile 
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4.2      PID Control 

 4.2.1  PID control loop 

The PID control loop for the controlled system is shown in Figure 9. 

 

 

 

 

The first experiments using this control loop in the code were successful for PID constants 

                     , 

which were experimentally tuned. The error signal feeds into the PID block, and the output of the 

PID block is the PWM signal that will control the electric linear actuator’s extension speed and 

direction. Using an Arduino Uno, the PWM signal ranges between 0 and 255. The PWM signal 

is clipped if that range is exceeded. The sign of the PWM signal determines the direction of 

actuation, i.e., a negative PWM actuates the motor backward to steer left, and a positive PWM 

actuates the motor forward to steer to the right. 

 4.2.2  Gain Scheduling Control and Experimental Results 

In this section, we present a gain scheduling control scheme implemented on the bicycle to 

achieve self-balancing with the aim of being able to balance at different speeds. Since we are 

using an electric linear actuator for automatic steering, we need to take into account the nonlinear 

Figure 9.   Closed-loop system block diagram 
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dynamics given by Eq. (6), which depend on the reference steering angle in a nonlinear manner. 

While we could have used linear matrix inequalities (LMIs) for designing LPV-based control 

strategies as in the work by Andreo et al. [6], we decided to use gain-scheduled PID controllers 

for the preliminary implementation on the bicycle. In the gain scheduling control framework, the 

design plants consist of a collection of linearizations about equilibrium points indexed by a group 

of measurable variables, or scheduling variables. In our experiments, lean angle is the scheduling 

variable that sets the PID controller gains to achieve bicycle self-balancing according to the 

following conditions: 

 ̇              ̇  ∫                    |    |      

and 

 ̇              ̇  ∫                    |    |    , 

where         is the lean angle tracking error. Setting different PID constants for lean 

angles less than ±2⁰ in magnitude allows varying the steering dynamics when the bicycle is close 

to upright orientation. This is helpful when the electric linear actuator is too sensitive to changes 

in lean angle, and less sensitivity could reduce oscillations. Nonetheless, this sensitivity is core to 

the system performance. In order to achieve self-balancing at the upright position,    is set to 

zero. In our experiments, the bicycle is initially manually pushed until reaching a sufficient speed 

level to continue the path of travel balancing itself. Figure 10 depicts snapshots of the 

experiments with the average peak forward speed equal to 3 m/s, while Figure 11 depicts 

snapshots with average peak forward speed at 4 m/s. The lean angle and speed time profiles in 

both experiments associated with faster and slower peak forward speeds are depicted in Figures 

12 and 13, respectively.  
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Figure 10.  Snapshots of the self-balancing experiment with peak forward speed equal to 3 m/s 

Figure 11.  Snapshots of the self-balancing experiment with peak forward speed equal to 4 m/s 
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Figure 12.  Lean angle and speed time profile for the 3 m/s experiment 

Figure 13.  Lean angle and speed time profile for the 4 m/s experiment 
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Chapter 5: Self-balancing System Stability 

 

In Karnopp’s Vehicle Dynamics, Stability, and Control, he models bicycle dynamics using a 

2nd-order system. The transfer function of this model, 

 

 

 
 

         

  
     

 

where 

   
      

   
   

   
 

 
   

   
  

      
  

 

relates a moving bicycle’s steering angle to lean angle. The lean angle,  , is the output and   is 

the steering angle or input to the second-order model [3]. The constants a and b are the lengths 

from the front and back wheel, respectively, to the center of gravity, and U represents the
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minimum speed at which the bike can stay balanced. These are variables of the bicycle in terms 

of gravity, center of mass locations, and moving speed. For stability, our controller was designed 

to read the output of the bike model, the lean angle, as input to the control block minus the 

desired lean angle with a reference of zero degree lean, at which the bicycle is unstable at speeds 

under 6 m/s. Karnopp integrates the simplest possible control to the model, defining the steering 

angle as a constant G multiplied by the lean angle error, or the difference between the actual lean 

angle and our desired reference [8]: 

         . 

The new closed-loop transfer function directly relates the bicycle’s lean angle to the desired 

reference lean angle [8]: 

 

 

  
 

         

  
              

  

 

To examine the system’s stability, the eigenvalues of the system are found: 

 

𝜆    
±√      

       
     

      

   
   

 

For the system to be stable, the real components of 𝜆    must be on the left-hand side of the 

complex plane: 

𝜆      

    

   
   

√      
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The above condition only states that if the system is stable, the product of the proportional gain 

G and K should be greater than 1.  Pole-zero and root locus plots are displayed for the 

preliminary experiments conducted on the system, where a standard PID controller with a single 

set of gains succeeds in balancing the bicycle system. Those gains, experimentally tuned, were:  

                     . 

Using a PID controller, rather than a single gain controller to stabilize the system, the new 

system model should include the PID block, depicted in Figure 13. Figure 15 shows the system’s 

pole-zero plot with the controller gains [        ]                 and for a speed of 1 m/s, 

with the poles on the left-hand side of the complex plane, confirming a stable controlled system. 

Root locus plots reconfirm the minimum gain required for stability at different speeds.    

 

 

 

 

 

 

 

 

 

 

Figure 14.  Controlled system pole-zero plot (1 m/s) 
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Figure 15.  Root locus plot for kp with kd = 13.3 and ki = 0.01at a speed equal to 1 m/s 

Figure 16.  Root locus plot for kp with kd = 13.3 and ki = 0.01at a speed equal to 5 m/s 

 



 

26 

The first root locus plot, displayed in Figure 16, shows the trajectory for poles of the system as kp 

increases. A kp value higher than 9.64 would make the system less stable, since the pole labeled 

in green would be on the right-hand side of the complex plane. Similarly, the root locus shown in 

Figure 17 indicates that a kp value higher than 3.19 would cause instability, dragging both poles 

to the right hand of the complex plane. This only reflects that at higher speeds, the system does 

not require a very high gain.  
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Chapter 6: Conclusion & Future Works 

 

This thesis covered the design and control of a semi-autonomous, self-balancing bicycle using an 

electric linear actuator as the primary balancer of the system. Open-loop tests are conducted on 

the system and its components to identify system parameters and relate them accordingly. Using 

the law of cosines, a model for steering dynamics can be applied in future development of the 

system. PID control was the basis of stabilizing the system. At first, a single PID controller with 

select gains succeeds in stabilizing the system at low and medium speeds. A gain scheduling 

control system where PID gains are scheduled depending on the bicycle lean then succeeds in 

balancing the system at medium range speeds. Finally, stability plots confirm the system’s self-

balancing ability at different speeds. 
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