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Abstract 

Accurate, fine-scale agricultural statistics are critical for understanding trends in crop 

production throughout the world. In many areas of the world, however, on-the-ground crop 

area estimates may be difficult to acquire or are only present at state or national scales.  In 

these areas, remote sensing can offer a cost-effective alternative for gathering fine-scale 

agricultural statistics.  Many methods exist for mapping cropped area using remote sensing, 

but the majority of these are done using moderate-to-coarse spatial resolution sensors such as 

MODIS or Landsat. Though often finer in scale than state-level data, these sensors may not 

accurately estimate cropped area in smallholder systems, where a typical agricultural plot can 

be smaller than a single image pixel. The purpose of this study was to examine the tradeoffs 

of using four different sensors—MODIS, Landsat 8, Sentinel-2, and PlanetScope—for 

mapping cropped area in the eastern Indo-Gangetic Plains (IGP) region of India. We used 

NDVI time series imagery from each sensor to map cropped area for the 2017-2018 winter 

growing season, and assessed accuracy using classified maps created using random forest 

classification. We compared each sensor in terms of accuracy, data availability, and ease of 

use. We find that Sentinel-2 and PlanetScope both show increased accuracies compared to 

more commonly used sensors such as MODIS and Landsat 8. This indicates that coarse and 

even moderate resolution sensors, such as MODIS and Landsat 8, may not be sufficient for 

mapping fine-scale cropped area in smallholder systems. Our results highlight the importance 

of appropriate sensor selection when mapping cropped area in smallholder systems.  
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1. Introduction 

1.1 Background 

Accurate, fine-scale agricultural statistics are an important tool for understanding patterns of 

food production across the globe1–3. Such statistics are widely used by researchers and policy 

makers to understand agricultural responses to environmental changes, identify yield gaps, 

and to inform possible solutions to address growing food demand4–6. The Food and 

Agriculture Organization  (FAO) and government censuses produce agriculture statistics for 

many areas, but these are often calculated at the state or national scale7. These statistics, 

while useful for understanding regional and global trends, may miss or obscure finer scale 

patterns that play an important role in food production8. This is especially true in smallholder 

agricultural systems, where agricultural practices and food production are often very 

heterogeneous across even small geographic areas9. Production of fine-scale agricultural 

statistics is therefore of particular importance in smallholder systems. Such statistics better 

inform researchers and policy makers trying to understand the factors affecting food 

production.  

Agricultural production is generally understood as the product of cropped area and 

crop yield. For the purposes of this study we define cropped area as an agricultural area 

under active cultivation during a given year. It is distinct from land reserved for agriculture, 

which may or may not be active at a given time. In order to study trends in agricultural 

production, researchers have historically used satellite imagery to generate data at finer 

spatial scales than would otherwise be available10–12.  Previous studies have shown that 

cropped area and crop yield can be mapped using multi-temporal 500 m MODIS imagery and 

30 m Landsat imagery at finer spatial scales than available from the FAO or government 

censuses which, at their finest, aggregate data at the district level13–15. An additional benefit 

of cropped area maps generated with remote sensing data is that they are spatially explicit 

and therefore provide additional information on location and variation of cropped area within 

a given district. Studies have shown that satellite sensors provide sufficient accuracies for 

crop yield monitoring and economic applications such as commodity pricing, especially in 

areas dominated by relatively large or industrial agriculture practices16. Thus, much of 
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agricultural mapping research has been conducted in regions where cropped areas are 

relatively large and homogenous17–19. 

However, the accuracies from analyses using these sensors may not be sufficient for 

use in food security applications, especially in smallholder systems20–22.  Agricultural plots, 

defined as contiguous areas of land used for growing crops, can be heterogeneous on the 

landscape and quite small (<2 ha) in smallholder systems, and in some cases may be smaller 

than a MODIS (250 m) or even a Landsat (30 m) pixel13,23. Previous studies have 

demonstrated that reliable mapping of smallholder systems may require the use of imagery 

with higher spatial resolution than MODIS or Landsat23–25. For this reason, high or very high 

spatial resolution satellite sensors such as Sentinel-2 (10 m) or PlanetScope (3.7 m) may be 

better suited for applications in smallholder systems.  

Recent advancements in remote sensing technology have led to the proliferation of 

high and very high resolution satellite sensors, and with them a vast increase in the quantity 

of geospatial data26. Sentinel-2, for example, was launched by the European Space agency in 

2015 and captures global imagery every 5 days at a resolution of 10 meters. In addition, the 

Planet constellation of Planet Dove satellites includes more than 130 PlanetScope sensors 

each with a 3.7 m resolution, collectively capturing ~346,000,000 km2 of imagery almost 

every day27. The increased spatial and temporal resolution of these sensors offer great 

potential as a tool for researchers studying patterns at fine spatial scales, and have the 

potential to significantly improve current satellite-based estimates of cropped area. 

Mapping cropped area using satellite imagery presents numerous challenges. One 

especially difficult problem is that it is often difficult to separate fallow agricultural areas 

from those under active cultivation in a given year. As a result, many global products that use 

500 m or 250 m MODIS data or 30 m Landsat data lump these two categories together, 

which may lead to biased cropped area estimates, especially in smallholder systems28. There 

is a need, therefore, for the development of cropped area mapping methodologies that utilize 

finer-scale data and are capable of distinguishing fallow from actively cropped pixels even 

across heterogeneous landscapes.  

Recent studies have shown that very high spatial resolution sensors such as SkySat (2 

m) and Worldview-2 (1.85 m) can be used to extract smallholder cropped area measurements 

that are more accurate than moderate and coarse spatial resolution sensors such as Landsat 8 
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or MODIS respectively20,24,25. Few studies, however, have examined the utility of Sentinel-2 

and PlanetScope satellite sensors for such applications. Sentinel-2 offers great potential for 

fine-scale cropped area mapping because it is a free, globally available sensor with a higher 

spatial resolution than MODIS or Landsat 8, and a relatively high temporal resolution (5 

days). Very high-resolution PlanetScope imagery also shows great promise for use in 

smallholder cropped area mapping, as it offers both high temporal (~ 3 days) and spatial (3.7 

m) resolution at a lower cost than most commercial high-resolution products. Both of these 

sensors have the potential to improve current satellite-based estimates of cropped area.  

Smallholder agriculture is found globally13,20,29. A particularly large and important 

global area to consider is the Indian subcontinent. India is one of the largest agricultural 

producers in the world where smallholder agriculture is the primary mode of production30; it 

is estimated that some 70% of India’s rural population rely on agriculture as their primary 

livelihood31. Furthermore, food security in India is predicted to suffer some of the greatest 

negative effects from climate change in the coming decades32,33, highlighting the urgent need 

for accurate, fine-scale agricultural statistics in the region.  The main goal of this study is, 

therefore, to assess cropped area estimates on smallholder farms in the eastern Indo-Gangetic 

Plains (IGP) region of India using MODIS (250 m), Landsat 8 (30 m), Sentinel-2 (10 m), and 

PlanetScope (3.7 m) satellite sensors. In particular, we examine how spatial resolution of 

satellite sensors affects the accuracy of the cropped area estimates in this system. 

1.2 Study Area 

For the purposes of this study we focus on the eastern Indo-Gangetic Plains (IGP) region of 

India. Seasonality in this region is typically characterized in terms of two seasons:  the dry 

winter season (rabi), which takes place from approximately November through April, the 

monsoon season (kharif), which occurs from June through October. In the eastern IGP 

farmers typically grow wheat during the winter season and rice during the monsoon season. 

We only focused on the winter growing season for the purposes of this study because it has 

less precipitation than the monsoon season and as a result it is much easier to obtain a 

sufficient amount of cloud free imagery. 

The IGP is located in the northern part of India, south of the Himalayan mountain 

range. The plains are largely flat and have numerous rivers running through them. The area 

was once open grassland, but is now densely populated and dominated by agriculture as the 
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highly fertile alluvial soil of the IGP make it ideal for cultivation. India is the second largest 

producer of both rice and wheat globally, and the majority of this production occurs though 

smallholder agricultural in the IGP34.  

Because of the small size of smallholder agricultural plots (typically ≤2 ha), mapping 

cropped area in the IGP is particularly challenging24,25,29. This provides motivation for the 

development of more robust methods for satellite-based cropped area mapping in this region. 

We focus specifically on the eastern part of the IGP because farmers in the eastern IGP tend 

to be more negatively affected by heat stress and tend to have lower yields and higher yield 

gaps than farmers in the western IGP10. Many organizations are actively working in this area 

to improve yields and they could benefit from more explicit cropped area estimates. 

We selected agricultural areas from two states in the IGP—Bihar, and Uttar 

Pradesh—for analysis in this study (Figure 1). From each state, we identified a 10x10 km 

area that appeared to be representative of the larger region based on visual interpretation of 

very high-resolution imagery available from Google Earth. These areas formed our two study 

sites. The Uttar Pradesh site we selected is a mosaic of active and fallow agricultural plots, 

broken up only by developed or urban areas and roads. The Bihar site is also mostly 

agricultural area with some urban areas interspersed, but also has a river running though it 

and some areas of forest and shrub. Classified land cover maps of the two study areas can be 

seen in Figures 7 and 8.
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2. Methods 

2.1 Data acquisition and preprocessing 

Our approach comparing sensors at multiple-spatial resolutions also relied on multi-temporal 

imagery from these sensors so as to include the full extent of the winter growing season. 

Thus the imagery used in this study was collected from October 1, 2017 to April 15, 2018. 

For MODIS 250 m imagery, we used the 16-day NDVI composite product available on 

Google Earth Engine (GEE)35. Additionally, we used the 30 m Landsat 8 Tier 1 Surface 

reflectance (SR) and the 10 m Sentinel-2 Multispectral Instrument Level 1-C top of 

atmosphere (TOA) reflectance products available through GEE. The Sentinel-2 imagery was 

then manually corrected to surface reflectance using the Py6 method36,37. For Landsat 8 and 

Sentinel-2 imagery, we used the built-in cloud masking algorithms that take advantage of the 

QA band to remove cloudy pixels from each image. Next, we generated composite imagery 

that selected the highest NDVI value for a given pixel for each 16-day increment during the 

growing season. 3.7 m Planet imagery was downloaded using the Planet API27, and two 

cloud-free, high quality images per month were selected as evenly spaced as was possible. In 

total, this resulted in about 12 images from each sensor for each study area.  

For each pixel in the multi-temporal image collections, we fit a cubic smoothing 

spline to the raw NDVI phenology curves in order to smooth the signal and remove any false 

peaks caused by noise or atmospheric effects (Figure 3). Next, we examined unique 

phenological characteristics for different land-cover classes in order to determine an 

appropriate method for distinguishing between cropped pixels and non-cropped pixels 

(Figure 4). Based on our analysis and similar studies using this method13,38, we determined 

that cropped pixels could be identified by a relatively simple algorithm that incorporates a 

few key parameters, which will be discussed in detail in the following section. A full 

workflow from this study can be seen in Figure 2.  

2.2 Phenology based cropped area classification algorithm 

The algorithm we developed for cropped pixel classification first identifies a relative 

minimum followed by a relative maximum within the phenology curve (Figure 3). These 

points roughly correspond to the date of sowing and the peak of the growing season. The first 

derivative of the phenology curve is used to identify these minima and maxima within the 
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NDVI timeseries for each pixel, as at these locations the derivative changes sign. Pixels that 

exhibit a relative minimum followed by a relative maximum are identified as potentially 

cropped. 

Relying on relative minima and maxima alone, however, is not sufficient to map 

cropped area in this system. This is because many areas that are not cropped, especially 

fallow fields, may still exhibit a relative minimum and maximum (Figure 4). It is important, 

then, to include within the algorithm a method to separate fallow and cropped pixels. Many 

phenological features, such Normalized Difference Vegetation Index (NDVI), amplitude, and 

rate of decrease, can be used to separate fallow and cropped pixels28,38. In this study, we 

evaluated the effectiveness of two methods. The first method we examined uses a maximum 

NDVI threshold value. This method has been applied in previous studies measuring cropped 

area across large spatial and temporal scales25.  The second method we explored uses an 

NDVI amplitude threshold. The amplitude, or the difference between the relative maximum 

and minimum in the phenology curve, has been found to be useful for separating fallow and 

cropped pixels for cropped area mapping38.  

In this study, each pixels that exhibit a single relative minimum followed by a relative 

maximum are considered to be potentially cropped (Figure 2). Next, we used the threshold 

values (either maximum NDVI or amplitude) in order to separate cropped from fallow pixels. 

In other words, pixels that exhibit multiple peaks, lack a relative minimum or relative 

maximum, or have an amplitude or maximum NDVI of less than the threshold value are 

classified as non-cropped pixels by the algorithm. For each site, we determined an optimal 

maximum NDVI threshold and amplitude threshold using a decision tree trained with 

cropped and fallow pixels for each site. We then took the average value across all sensors 

and sites in order to use consistent threshold values throughout our study areas (Table 1). 

Next, we assessed the relative accuracy of both methods individually to determine which of 

the two threshold methods (maximum NDVI threshold or amplitude threshold) was more 

reliable for our study areas. We also performed a sensitivity analysis for each threshold 

method to understand the how sensitive the algorithm was to changes in the threshold value 

(Figure 5). 

After applying the algorithm to each multi-temporal dataset, our method output a 

classified raster layer indicating whether each pixel from a given multi-temporal NDVI 
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image collection was considered “cropped” or “not cropped” (Figure 5 and 6). From these 

raster layers we were then able to analyze the estimated cropped area from each sensor for a 

given study site.  

2.3 Validation using random forest classification 

In order to validate the cropped area maps produced from our phenology-based algorithm, we 

generated a separate classified map using random forest classification (Figures 7 and 8). 

Random forests are a popular method for image classification due to the high accuracies they 

produce and their ability to use a large number of predictor variables without over-fitting39. 

Training and testing polygons were digitized for the random forest model using visual image 

interpretation of a composite image of maximum NDVI values between December and 

March generated from the PlanetScope imagery for each site. Agricultural plots that had 

relatively high maximum NDVI (typically >0.5) during the growing season were considered 

cropped. For each site, multiple distinct land-cover classes were identified for inclusion in 

the model. For each land-cover class, the number of polygons digitized was roughly 

proportional to the area that class occupied relative to the study area.  

The imagery used to predict land-cover type included four PlanetScope images with 

RGB and VIR bands. These four images spanned four months of the growing season, with 

one image included from each month. NDVI for each of these images was also calculated 

and included in the model. Additionally, a maximum NDVI composite from December 

through March was included to capture the peak of the growing season, and a minimum 

NDVI composite from October through December was included to capture the start of the 

growing season. The difference between the maximum and minimum NDVI values was also 

included in the model order to better distinguish between cropped and fallow pixels. Lastly, 

we included the JAXA 30 meter digital surface model in the random forest to help 

distinguish features such as urban areas, which tend to have higher elevation values on 

average than other land-cover classes. A full list of the variables included in the random 

forest, and their relevant properties, can be found in the Table 2.  

We trained the random forest classifier using 70% of the digitized polygons for each 

site, and saved the remaining 30% for testing. For each of the land-cover classes, we 

randomly sampled 3000 pixels for training. Accuracy was examined both for individual land-

cover classes (e.g., urban, cropped, fallow) and also at the aggregate class level of “cropped” 
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or “not cropped” for each site (where all non-cropped classes were labeled “not cropped”). 

We observed accuracies of >99% at the aggregate levels, which we determined to be 

sufficiently high for validating the cropped area classification algorithm (Tables 3 and 4). 

Once a sufficiently accurate random forest classification was developed, we selected 10,000 

random pixels without replacement at each site and assessed the accuracy of the cropped area 

algorithm using the random forest classification as a validation map. 
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3. Results   

3.1 Comparison of methods for separating cropped and fallow fields 

In order to determine if one method would be more reliable for separating cropped and 

fallow fields, we assessed the maximum NDVI and amplitude threshold methods separately. 

In both cases, the optimal threshold value identified by the decision tree was slightly 

different depending on the sensor and site. To account for random variation and to make the 

methods more comparable, we took the average values across all sensors and sites and 

identified an optimal amplitude threshold of 0.26 and an optimal maximum NDVI threshold 

of 0.6 (Table 1).  

Overall, the amplitude threshold and maximum NDVI threshold methods generally 

produced similar overall accuracies when using the optimum value selected by the decision 

tree (Table 5). The maximum NDVI method was slightly more accurate in the Uttar Pradesh 

site, while the amplitude method was slightly more accurate at the Bihar site. A sensitivity 

analysis of each method, however, showed that the amplitude threshold may be a more robust 

method for removal of fallow pixels because it produces more consistent peak accuracies 

across a range of values at both sites (Figure 5). For this reason, we focused mainly on the 

amplitude threshold method for the rest of our analysis. 

3.2 Cropped area map accuracy assessment 

In general, the overall accuracy of cropped area maps produced in this study increased with 

sensor resolution (Table 5). In order to understand the role of spatial resolution in overall 

accuracy, as opposed to other differences between sensors, we resampled the PlanetScope 

surface reflectance imagery using bilinear interpolation to resolutions that corresponded to 

the other sensors in this study (10 meters, 30 meters, and 250 meters). We found that the 

aggregated PlanetScope imagery displayed similar trends in overall accuracy when 

resampled at coarser resolutions, suggesting that the resolution of the sensors, more so than 

other sensor differences, are driving the differences in accuracy (Table 6). 

3.3 Evaluating sensors in terms of three criteria 

We further evaluated each sensor in terms of three criteria: data availability, accuracy, and 

ease of use (Table 7). Our qualitative analysis of each sensor showed that PlanetScope 

imagery, though highest in accuracy, scores low in ease of use because of high computational 



 
 

10 
 

requirements and additional preprocessing steps such as clipping, downloading, and 

mosaicking. Despite these challenges, the PlanetScope imagery is available at surface 

reflectance and so it does not have to be atmospherically corrected. The PlanetScope imagery 

scored moderate in terms of data availability because it is cheaper than other very high-

resolution sensors, but there is a monthly quota that limits the availability of freely 

downloadable imagery. 

 The imagery from Sentinel-2 scored moderate in terms of accuracy, and was only 

outperformed in accuracy by the PlanetScope imagery. Because it has a five-day global 

repeat time and is freely available, Sentinel-2 scored high in terms of data availability. 

Sentinel-2 received a moderate score for ease of use only because there is not currently a 

surface reflectance product available across the globe. As a result, atmospheric correction 

must be performed on the imagery before it can be used, adding an additional step during 

preprocessing of Sentinel-2 imagery. 

 Though generally lower than Sentinel-2, Landsat 8 also scored moderate for accuracy 

because overall accuracies were in the range of 71-77%. Because Landsat 8 surface 

reflectance products are readily available, Landsat 8 scored high for ease of use. Landsat 8 

scores low, however, for image availability, due to the combination of a low temporal 

resolution (16 days) and the high degree of cloud cover in this region. These factors result in 

sparse Landsat 8 imagery throughout the growing season, which can make it difficult to 

construct accurate NDVI phenology curves.  

 Lastly, MODIS scored high both in terms of image availability and ease of use. The 

daily coverage of the MODIS sensor allows for quality mosaicking of imagery and results in 

almost complete coverage throughout the growing season. Similarly, the 16-day NDVI 

composite product from MODIS is readily available, and can be used with very little 

preprocessing. In terms of accuracy, however, MODIS was the only sensor in this study to 

score low. Despite the advantages of MODIS in terms of image availability and ease of use, 

the low accuracies (in the range of 60-67%) indicate that it may not be suitable for use at fine 

spatial scales, especially in complex or heterogeneous landscapes with small patch sizes.  
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4. Discussion 

4.1 The role of sensor resolution in cropped area mapping in the eastern IGP 

The results of this study add to a growing body of literature that demonstrates the importance 

of fine-scale agricultural statistics in smallholder systems24,25,40. Satellite-based cropped area 

estimates are frequently used in research and can even inform policy decisions or on-the-

ground interventions10. Given the wide range of applications for which these data may be 

used, it is important that cropped area estimates are both accurate and relevant for the scale at 

which they will be used. Our results show that sensor resolution can have dramatic effects on 

the accuracy of cropped area estimates, especially across fine spatial scales. Overall, MODIS 

performed poorly in the two sites examined in this study (60-67% accuracy), and Landsat 8 

performed only somewhat better (71-77% accuracy). Additionally, Sentinel-2 had 

consistently higher accuracies (78-82%) than Landsat 8, while PlanetScope had the highest 

accuracies of all the sensors used in this study (80-87%). 

Given the significant influence that sensor resolution can play in accuracy of cropped 

area estimates, it is critical that sensors with an appropriate resolution are chosen when 

mapping cropped area in smallholder systems. Our results show that, in order to produce 

maps with even moderate accuracies, mapping should be done with sensors that have a 

resolution finer than the typical plot size. In the case of smallholder systems in the eastern 

IGP, this suggests that maps at the resolution of MODIS or even Landsat 8 may not be 

appropriate for understanding cropped area. More broadly, while global cropped area 

products can be useful for large-scale studies, such as those at the regional or global level, 

they may not be reliable for studying systems at finer scales or distinguishing features that 

are smaller than the sensor resolution. Our results indicate that this is particularly true for the 

cropped area mapping in the eastern IGP.  Although smallholder agriculture in our study 

areas appears to occur in fairly cohesive patches on the landscape, it is difficult for our 

classification algorithm to distinguish actively cropped pixels from fallow pixels when using 

coarse and moderate resolution sensors. These results highlight the importance of generating 

cropped area maps that are specific to scale of the system in question. When mapping 

cropped area in the eastern IGP, our results indicate a need for fine-scale cropped area maps 
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at the resolution of Sentinel-2 or even PlanetScope. This may also be true for areas in other 

global regions where smallholder agriculture is predominant23.  

4.2 Tradeoffs when mapping cropped area over large geographic areas 

Despite the need for high-resolution sensors for mapping cropped area in smallholder 

systems, there are certain tradeoffs to consider, especially when mapping over large spatial or 

temporal scales. While high-resolution imagery has proliferated in recent years, it still may 

be difficult to acquire sufficient imagery over large spatial areas, and the computational 

requirements of mapping over large spatial areas increase significantly when using high-

resolution imagery. As a result, moderate resolution sensors such as Landsat 8 may be more 

appropriate when mapping over very large areas such as continents or global mapping25. 

These coarser resolution sensors may also work well in agricultural systems where plot sizes 

are larger, such as in industrial agricultural systems. Researchers must consider the tradeoff 

between mapping accuracy at fine spatial scales and ease of use across large geographic 

areas, and should ideally choose the sensor with the highest resolution that can still be 

applied across the area of interest. 

4.3 Further considerations regarding the cropped area algorithm  

Beyond considerations of sensor resolution and accuracy, there are other factors that should 

inform methodology when mapping cropped area. In this study, we used relative minima, 

relative maxima, and amplitude from the phenology curve of a single growing season to map 

cropped area. We were able to develop an algorithm to identify cropped areas using these 

features based on our prior knowledge of phenological patterns in this system. Even still, the 

selection of an optimal amplitude threshold varied somewhat by site. Though less involved 

than gathering training data for a supervised classification, we still had to determine an 

optimal amplitude threshold to separate fallow from cropped pixels for each site. Variability 

in this optimal value could play an important role in mapping accuracy, and further studies 

will be needed to determine if there is a single optimal value for all of the eastern IGP, or if 

the amplitude threshold should be calculated from training data at even finer scales. 

The variability in the optimal amplitude threshold also points to additional questions 

about the application of this automated method in other study areas outside of the eastern 

IGP. Climate, ecosystem type, agricultural practices, and many other factors influence 
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phenology, leading to a great diversity of crop phenological patterns around the world. It 

would not be appropriate then, to apply this method to another region without first 

understanding the phenology of each land-cover type in the region. Studies mapping cropped 

area in western Niger, for example, found that fallow areas typically have higher amplitude 

than cropped areas, the opposite of what we observe in the eastern IGP38. Similarly, a study 

Europe found fallow areas to exhibit a smooth, bell shaped NDVI phenology profile, while 

active farmland was characterized by more irregular NDVI temporal profiles with one or 

more narrow peaks41. These examples highlight the importance of a knowledge-based 

approach to cropped area mapping that takes into consideration the unique features of the 

system in question. 
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5. Conclusions 

We observed that the overall accuracy of cropped area maps increased when using higher 

resolution sensors. In particular, we found that the accuracy of cropped area estimates can be 

greatly improved by selecting a sensor with a resolution smaller in size than a typical 

agricultural plot (<2 ha). MODIS was found to be inaccurate in smallholder systems in the 

eastern IGP, and cropped area mapping at the resolution of MODIS may not be appropriate 

for mapping cropped area in this system. Landsat 8, though better than MODIS, exhibited 

only moderate accuracies and was limited by its temporal resolution. Sentinel-2 showed great 

promise for applications in smallholder systems given its relatively high temporal frequency 

and fine spatial resolution, and PlanetScope produced the most accurate cropped area maps 

but requires more preprocessing than other sensors.   

In conclusion, we find that the semi-automated method presented in this study can be 

an effective tool for mapping cropped area in the eastern IGP, and it offers some key benefits 

over other methods. First, it requires less training data than other image classification 

techniques such as random forest classification. Another benefit of this method is that it can 

discriminate between cropped and fallow pixels. Many global cropped area products do not 

separate cropped and fallow pixels, often resulting in an overestimation of active cropped 

area28. In future studies we will apply this method to other sites in the IGP, eventually scaling 

up to the district level to compare our crop area estimates with census data. This method also 

has potential for application in other areas, though the phenological profiles of all land-cover 

types must be well understood before this method can be applied in any novel system.
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Figures 

 

Figure 1. The two sites in this study are located in the states of Uttar Pradesh and Bihar in 

the eastern Indo-Gangetic Plains (IGP). The locations of the study sites are indicated in red. 

Geographic Coordinate System: WGS 1984. 
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Figure 2. Typical phenology curve for a cropped pixel at our study sites. Black points are 

raw 16-day NDVI composite values and the line represents smoothed values. Red points 

indicate relative minimum and maximum.  

 

Figure 3. Typical phenology curves for three common land-cover types found at our study 

sites. All three classes exhibit a relative minimum followed by a relative maximum, but the 

amplitude and maximum NDVI value are highest for cropped pixels.  
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Figure 4. Workflow for prepossessing and analysis of MODIS, Landsat 8, Sentinel-2, and 

PlanetScope Imagery. 
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 Figure 5. PlanetScope imagery false color composite (red=NIR, green=red, blue=green) 

(A) overlaid with cropped area maps produced from MODIS (B), Landsat 8 (C), 

Sentinel-2 (D), and PlanetScope (E) for the Uttar Pradesh site. Datum: WGS 1894. CRS: 

UTM Zone 44N. 
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 Figure 6. PlanetScope imagery false color composite (red=NIR, green=red, blue=green) 

(A) overlaid with cropped area maps produced from MODIS (B), Landsat 8 (C), Sentinel-

2 (D), and PlanetScope (E) for the Bihar site. Datum: WGS 1894. CRS: UTM Zone 45N. 
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Figure 7. Random forest classification of land cover at the Uttar Pradesh site. Datum: WGS 

1894. CRS: UTM Zone 44N. 
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Figure 8. Random forest classification of land cover at the Bihar site. Datum: WGS 1894. 

CRS: UTM Zone 45N. 
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Figure 9. Sensitivity analysis of the two threshold methods used in this study, grouped by 

study site.
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Tables 

Table 1. Optimal amplitude and maximum NDVI for separating cropped and fallow pixels 

according to CART 

 

Sensor Site Amplitude threshold Maximum NDVI threshold 

MODIS Uttar Pradesh 0.26 0.6 

Landsat Uttar Pradesh 0.28 0.6 

Sentinel Uttar Pradesh 0.33 0.71 

Planet Uttar Pradesh 0.23 0.52 

MODIS Bihar 0.28 0.57 

Landsat Bihar 0.25 0.54 

Sentinel Bihar 0.23 0.78 

Planet Bihar 0.2 0.47 

Mean value 0.26 0.60 
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Table 2. Variables included in the random forest classification 

Variable Name Source Imagery date Resolution Description 

Minimum NDVI 
Derived from 

PlanetScope 

October 2017 - 

November 2017 
3.7 meters 

Minimum NDVI value from 

start of growing season 

Maximum NDVI 
Derived from 

PlanetScope 

December 2017 - 

March 2018 
3.7 meters 

Maximum NDVI value from 

peak of growing season 

NDVI Amplitude 
Derived from 

PlanetScope 

October 2017 - 

March 2018 
3.7 meters 

Amplitude of NDVI 

phenology curve. 

December SR 

image 
PlanetScope December 2017 3.7 meters Red, Green, Blue, NIR 

December NDVI 
Derived from 

PlanetScope 
December 2017 3.7 meters 

NDVI calculated from an 

image in December 

January SR Image PlanetScope January 2018 3.7 meters Red, Green, Blue, NIR 

January NDVI 
Derived from 

PlanetScope 
January 2018 3.7 meters 

NDVI calculated from an 

image in January 

February SR Image PlanetScope February 2018 3.7 meters Red, Green, Blue, NIR 

February NDVI 
Derived from 

PlanetScope 
February 2018 3.7 meters 

NDVI calculated from an 

image in February 

March SR Image PlanetScope March 2018 3.7 meters Red, Green, Blue, NIR 

March NDVI 
Derived from 

PlanetScope 
March 2018 3.7 meters 

NDVI calculated from an 

image in March 

Digital Surface 

Model 

Advanced Land 

Observing 

Satellite 

January 2006 - 

May 2011 
30 meters 

The AVE (Average) band 

from the DSM provided by 

JAXA 
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Table 3. Accuracy assessment of the random forest model at the Bihar site for each class (A) 

and aggregate classes (B) 

A 

       Actual 

Classified 
Cropped Fallow Water 

Forest/

shrub 
Bare Urban 

User's 

Accuracy 

Cropped 910 0 0 0 0 0 1.000 

Fallow 1 562 0 0 0 84 0.869 

Water 5 5 121 7 0 2 0.864 

Forest/shrub 2 0 0 422 0 0 0.995 

Bare 0 18 0 0 196 15 0.856 

Urban 0 83 0 0 0 567 0.872 

Producer's Accuracy 0.991 0.841 1.000 0.984 1.000 0.849 0.926 

B 

    Actual 

Classified 
Cropped Not cropped User’s Accuracy 

Cropped 910 0 1 

Not cropped 8 2082 0.996 

Producer's Accuracy 0.991 1.000 0.997 
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Table 4. Accuracy assessment of the random forest model at the Uttar Pradesh site for each 

class (A) and aggregate classes (B) 

A 

   Actual 

Classified 
Cropped Fallow Urban User’s Accuracy 

Cropped 1289 0 0 1 

Fallow 0 1000 67 0.937 

Urban 0 39 605 0.939 

Producer’s Accuracy 1 0.962 0.900 0.965 

B 

Actual 

Classified 
Cropped Not cropped User’s Accuracy 

Cropped 1289 0 1 

Not cropped 0 1711 1 

Producer’s Accuracy 1 1 1 
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Table 5. Overall accuracy and Kappa values for each site, sensor, and method used in this 

study 

Site Sensor Method Overall accuracy Kappa value 

Bihar MODIS Amplitude 0.67 0.29 

Maximum 0.67 0.31 

Landsat 8 Amplitude 0.77 0.53 

Maximum 0.73 0.44 

Sentinel-2 Amplitude 0.82 0.64 

Maximum 0.63 0.31 

PlanetScope Amplitude 0.87 0.74 

Maximum 0.72 0.37 

Uttar Pradesh MODIS Amplitude 0.60 0.23 

Maximum 0.65 0.29 

Landsat 8 Amplitude 0.71 0.43 

Maximum 0.75 0.50 

Sentinel-2 Amplitude 0.78 0.55 

Maximum 0.74 0.47 

PlanetScope Amplitude 0.80 0.60 

Maximum 0.85 0.69 
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Table 6. Overall Accuracies and Kappa values for PlanetScope imagery resampled at coarser 

resolutions 

Site Resolution Overall Accuracy Kappa 

Bihar 250 m 0.69 0.36 

Bihar 30 m 0.82 0.64 

Bihar 10 m 0.86 0.72 

Uttar Pradesh 250 m 0.63 0.28 

Uttar Pradesh 30 m 0.77 0.54 

Uttar Pradesh 10 m 0.79 0.59 

 

 

Table 7. Evaluating each sensor in terms of three criteria 

Sensor 
Data availability 

Rank 

Ease of Use 

Rank 

Accuracy 

Rank 

Overall 

Accuracy 

MODIS High High Low 60-67% 

Landsat 8 Low High Moderate 71-77% 

Sentinel-2 High Moderate Moderate 78-82% 

PlanetScope Moderate Low High 80-87% 
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