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Abstract 

Objectives: To develop a fully automated deep learning approach for identification of the pectoral 

muscle on mediolateral oblique (MLO) view mammograms and evaluate its performance in 

comparison to our previously developed texture-field orientation (TFO) method using conventional 35 

image feature analysis. Pectoral muscle segmentation is an important step for automated image 

analyses such as breast density or parenchymal pattern classification, lesion detection, and multi-

view correlation. 

Materials and Methods: Institutional Review Board (IRB) approval was obtained before data 

collection.  A dataset of 729 MLO-view mammograms including 637 digitized film mammograms 40 

(DFM) and 92 digital mammograms (DM) from our previous study were used for the training and 

validation of our deep convolutional neural network (DCNN) segmentation method.  In addition, 

we collected an independent set of 203 DMs from 131 patients for testing.  The film mammograms 

were digitized at a pixel size of 50 μm × 50 μm with a Lumiscan digitizer.  All DMs were acquired 

with GE systems at a pixel size of 100 μm × 100 μm.  An experienced MQSA radiologist manually 45 

drew the pectoral muscle boundary on each mammogram as the reference standard.  We trained the 

DCNN to estimate a probability map of the pectoral muscle region on mammograms.  The DCNN 

consisted of a contracting path to capture multi-resolution image context and a symmetric expanding 

path for prediction of the pectoral muscle region.  Three DCNN structures were compared for 

automated identification of pectoral muscles.  Ten-fold cross-validation was used in training of the 50 
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DCNNs.  After training, we applied the 10 trained models during cross validation to the 

independent DM test set.  The predicted pectoral muscle region of each test DM was obtained as 

the mean probability map by averaging the ensemble of probability maps from the 10 models.  The 

DCNN-segmented pectoral muscle was evaluated by three performance measures relative to the 

reference standard: 1) the percent overlap area (POA) of the pectoral muscle regions, 2) the 55 

Hausdorff distance (Hdist), and 3) the average Euclidean distance (AvgDist) between the 

boundaries.  The results were compared to those obtained with the TFO method, used as our 

baseline.  A two-tailed paired t-test was performed to examine the significance in the differences 

between the DCNN and the baseline.  

Results: In the 10 test partitions of the cross-validation set, the DCNN achieved a mean POA 60 

of 96.5±2.9%, a mean Hdist of 2.26±1.31 mm, and a mean AvgDist of 0.78±0.58 mm, while the 

corresponding measures by the baseline method were 94.2±4.8%, 3.69±2.48 mm, and 1.30±1.22 

mm, respectively.  For the independent DM test set, the DCNN achieved a mean POA of 

93.7%±6.9%, a mean Hdist of 3.80±3.21 mm, and a mean AvgDist of 1.49±1.62 mm comparing to 

86.9%±16.0%, 7.18±14.22 mm, and 3.98±14.13 mm, respectively, by the baseline method.  65 

Conclusion

 

: In comparison to the TFO method, DCNN significantly improved the accuracy of 

pectoral muscle identification on mammograms (p<0.05).  

KEYWORDS: 

Mammogram, Mediolateral oblique (MLO) view, Pectoral muscle, Deep convolutional neural 70 

network (DCNN) 

 

 

 

I. INTRODUCTION 75 
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Breast cancer is the most common cancer diagnosed in American women. The American Cancer 

Society estimates that there will be about 266,120 new breast cancer cases and about 40,920 deaths 

in the United States for 20181.  Early detection increases the chance of cancer free survival.  At 

present, screening mammography is the most effective method for early detection of breast cancer2.  80 

Dense breast parenchyma is a risk factor for breast cancer.  The combined relative risks of incident 

breast cancer in the general population are estimated to be about 4-6 times higher for women whose 

mammograms have parenchymal densities over 75% of the breast area than women with less than 

5% of parenchymal densities3,4,5 . 

Accurate segmentation of breast region is an essential step for quantitative analysis of breast 85 

parenchyma on mammograms.  However, due to the high x-ray attenuation of pectoral muscle on 

mediolateral oblique (MLO) view mammograms, its pixel values overlap with the range of the 

fibroglandular tissue in the breast region. If the pectoral muscle is not excluded as a part of the 

segmented fibroglandular tissue, the quantitative analysis of breast parenchyma on MLO-view 

mammograms will not be consistent with that on craniocaudal (CC) view mammograms.  90 

Therefore, accurate identification of the pectoral muscle on MLO-view mammograms is important 

in quantitative analysis of breast parenchyma on MLO-view mammograms.  

Automated pectoral muscle identification on MLO-view mammograms remains a challenging 

problem, especially for the improperly positioned breasts and those that contain dense glandular 

tissue overlapping with the pectoral muscle region.  Figure 1 shows image examples illustrating 95 

three different challenging pectoral muscle patterns.   

A number of studies have been conducted to identify the pectoral muscle.  Karthikeyan et al.6 

reviewed methods for pectoral muscle segmentation.  Some assumed that the intensity of the 

pectoral muscle was higher than that of the breast tissue7-9 and were successful to different degrees 

by intensity-based segmentation techniques.  Karssemeijer10 estimated the edge of the pectoral 100 

muscle with a straight line and applied Hough transform to detect the straight line as the pectoral 

muscle.  Ma et al.11 applied graph theory in conjunction with active contour methods for 

identifying the pectoral muscle.  We have previously developed a texture-field orientation (TFO) 

method12 to estimate pectoral muscle boundary on MLO-view mammograms.  Taghanaki et al.13
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combined geometric rules with a region growing algorithm to support the segmentation of all types 105 

of pectoral muscles.   

Convolution neural network (CNN) was introduced for recognition of handwritten numeral patterns 

in the early 1980’s14,15  and applied to medical image pattern recognition in the early 1990’s16-22.  

The CNN structures had relatively few layers in these early applications due to the limitations in 

computational speed and training sample sizes.  CNN applications became much more versatile in 110 

recent years due to the development of more efficient regularization methods and fast graphical 

processing units, allowing CNN structures to grow in both depth and width which increase the 

learning capacity tremendously.  The deep convolution neural networks (DCNN) had been shown 

to be particularly successful in the task of classifying natural images for which millions of training 

samples can be collected relatively easily23,24.  A recent conference proceeding paper25 presented a 115 

preliminary study that trained a deep learning model for pectoral muscle segmentation using only 

136 digital breast tomosynthesis (DBT) images.  In contrast to conventional methods, DCNN can 

automatically extract image features through unsupervised or supervised learning if a large training 

set is available.  We hypothesize that DCNN can accurately segment pectoral muscle on MLO-

view mammograms.  To test this hypothesis, we develop a supervised deep learning approach for 120 

automated identification of the pectoral muscle on MLO-view mammograms and evaluate its 

performance in comparison to our previous TFO method in this study. 

 

II. MATERIALS AND METHOD 

II.A. Data sets 125 

Institutional Review Board (IRB) approval was obtained prior to the collection of the image data.  

Two datasets were used in this study.  Dataset I comprised a total of 729 MLO-view mammograms, 

including 637 digitized film mammograms (DFMs) and 92 digital mammograms (DMs) that were 

used to test the TFO method in our previous study12.  Of the 637 DFMs, 531 from 463 patients 

were randomly selected from a de-identified data set collected at the Old Order Amish population of 130 

Lancaster County, Pennsylvania, and the remaining 106 from 99 patients were randomly selected 

from the patient files at our institution.  All film mammograms were digitized with a LUMISYS 85 
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laser film scanner at a pixel size of 50 μm × 50 μm and 12-bit gray levels.  The 92 MLO-view DMs 

from 92 patients were collected from the patient files at our institution.  Dataset II with 203 DMs 

from 131 patients was independently collected from screening patients at our institution. This dataset 135 

was kept independent of the training process and sequestered for testing the trained system after the 

training was completed and all parameters were frozen to validate its robustness and generalizability 

to unknown cases26.  All of the DMs were acquired with a GE Senographe 2000D system at a pixel 

size of 100 μm × 100 μm and 16 -bit gray levels.  The “for presentation” DMs were used in this 

study.  To reduce processing time and noise, the resolution of the DFMs and DMs was reduced to 140 

800 μm × 800 μm by averaging every 16 × 16 pixels and 8 × 8 adjacent pixels, respectively, before 

the pectoral muscle analysis.   

An in-house developed graphical user interface was used for interactive tracking of pectoral 

boundary on mammograms.  An experienced Mammography Quality Standards Act (MQSA) 

radiologist used the interface to draw the pectoral boundary on each MLO-view mammogram.  The 145 

manually segmented boundary was then used to generate a binary mask separating the pectoral 

muscle and the breast region. For the training set, the binary mask was used to guide the training of 

the DCNN.  For the test set, the boundary and the binary mask were used as the reference standard 

to evaluate the segmentation accuracy of the performances of the automated methods. 

 150 

II.B. Methods 

Figure 2 shows our deep learning approach for pectoral muscle identification on MLO-view 

mammograms.  We first applied a preprocessing step to an input mammogram, which was designed 

to normalize the image for reliable feature extraction.  For a given image, zero ranks were first 

removed.   The maximum pixel intensity in each image was determined and used to scale the gray 155 

level dynamic range to [0.0, 1.0].  Then we resized all images and the reference binary masks to a 

uniform size of 256 × 256 pixels.   

 

II. B.1 Deep Convolutional Neural Network 
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We configured a DCNN that has a structure similar to a U-Net27 to generate the likelihood map of 160 

the pectoral muscle on MLO-view mammogram.  Keras28 with Tensorflow backend was used to 

implement the neural network. Figure 3 illustrated the architecture of our DCNN.  The DCNN 

consisted of a contracting path to capture multi-resolution image context and a symmetric expanding 

path for prediction of the pectoral muscle region.  The reference binary mask of the pectoral muscle 

region for each training mammogram was used to formulate the loss function to guide the training.  165 

The contracting path consisted of repeated application of two 5 × 5 convolution kernels, each 

followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling operation with stride 2.  Unlike 

the original U-Net, we applied the same padding to the convolution kernels in order to keep the 

spatial dimensions of the output feature map the same as those of the input feature map.  After each 

max pooling operation, the number of feature channels was doubled to include both band-pass and 170 

low-pass information.  In the expanding path, each layer consisted of an upsampling of the feature 

map followed by a 5 × 5 deconvolution operation with a ReLU activation function.  Then two 5 × 5 

convolution operations each followed by a ReLU were applied and the feature map was 

concatenated with the corresponding feature map from the contracting path. 

In order to investigate the stability of this DCNN with different parameters, we conducted two 175 

reliability studies: 1) to use different network architectures, and 2) to use different loss functions. 

For the first study, we varied the number of channels to generate three different DCNN 

architectures.  Table 1 summarized the parameters of these three architectures.  According to the 

total number of parameters, the three different models were denoted as the large parameter DCNN 

(LP-DCNN) model, the medium parameter DCNN (MP-DCNN) model and the small parameter 180 

DCNN (SP-DCNN) model. The LP-DCNN, MP-DCNN, and SP-DCNN had 15.1 million, 3.8 

million and 0.9 million parameters, respectively.   

 

Table 1. The number of channels at the different layers of the DCNN for the three 

models studied 185 

In our second reliability study, we compared three different loss functions including the binary 

cross-entropy loss function (BCEL), the Dice loss function (DL) and the percent overlap area loss 
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function (POAL) during back-propagation of DCNN training.  We treated these loss functions as 

the optimizer in a binary classification formulation.  Let R be the reference foreground area with 

pixel values ��, and � be the predicted probabilistic map for the foreground area with values ��.  190 

Assuming that the input has � image pixels, the formulations of three loss functions are expressed 

as follows. 

1) Binary cross-entropy loss function29 (BCEL):  

���� = − 1��[�� ln(��)

�
�=1 + (1− ��)ln (1− ��)] 

2) Dice loss function30 (DL): 

�� = 1− � 2∑ ������=1 + �∑ (�� + ��)��=1 + � +
2∑ (1 − ��)(1− ��)��=1 + �∑ (2− �� − ��) + ���=1 � 

The � term is used as a smooth term to make sure the stability of the loss function by avoiding 195 

the problem of dividing by zero. 

3) Percent overlap area loss function31 (POAL):  

The percent overlap area of two binary images can be written as 

� =
∑ ������=1∑ ��2+∑ ��2−∑ ������=1��=1��=1  . 

P can be differentiated with respect to the j-th pixel of the prediction, yielding the gradient 200 ����� =
��(∑ ��2 + ∑ ��2 − ∑ ����)��=1��=1��=1 − (2�� − ��)(∑ ������=1 )

(∑ ��2 + ∑ ��2 − ∑ ����)��=1��=1��=1 2  . 

Therefore, we can express the two-class form of POAL as  

���� = 1 − � ∑ ������=1 +�∑ (��+��−����)��=1 +� +
∑ (1−��)(1−��)��=1 +�∑ [2−��−��−(1−��)(1−��)]��=1 +�� . 

 

II. B.2 DCNN Training 
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The networks were trained with a mini-batched gradient decent algorithm.  To alleviate the 205 

limitation of training samples and to improve the invariance and robustness properties of the 

networks, we used a combined affine transformation including rotation, shift and zoom for online 

data augmentation.  Each combined affine transformation is a composition of elementary 

transformations from the following list: 1) rotation: rotation of the image by an angle up to 5 

degrees; 2) shift: vertical or horizontal shift by a distance within 0.08 of the image size; 3) zoom: 210 

zooming of the focal lengths by a factor between 0.92 and 1.08. Points outside the boundaries of the 

input are filled by nearest neighbor interpolation.  For each transformed image, the corresponding 

binary mask is transformed in the same way. We used a threshold value of 0.5 to keep the 

transformed mask a binary image after the data augmentation transformations.  Previous work32 has 

demonstrated that data augmentation using a combination of affine transformations to manipulate 215 

the training data was effective to increase the accuracy and generalizability of classification tasks.  

Rather than generating and saving augmentation data to hard disk, we generated them on the fly 

during training.  With online data augmentation, the image after applying a combined affine 

transformation replaced the original image in a given epoch of training and each image was varied 

randomly from epoch to epoch.  Although the training samples did not increase in number, the 220 

“jittering” of the images by the combined affine transformation increased the variability of the 

training samples seen by the DCNN, thereby reducing the risk of overfitting to the limited training 

set.  Figure 4 shows an image example with different transformations. 

All weights of the network were initialized by randomly drawing from a normal distribution with a 

mean of 0 and a standard deviation of 0.02.  The batch size of images was 8 and the learning rate 225 

was 0.0001. We experimentally chose the number of epochs for training.  Figure 5 shows an 

example of the training and validation loss of DCNN as a function of training epochs using the LP-

DCNN with BCEL function from one of the 10-fold cross validation cycles.  We observed that the 

loss of the network for the validation set had a broad minimum around 100 epochs and increased as 

the training continued beyond about 200 epochs, indicating a trend of overfitting to the training set.  230 

We therefore chose to train with a fixed number of epochs at 100 and selected the best model based 

on the validation loss within 100 epochs for each cycle. 

II. B.3 Boundary Identification of Pectoral Muscle 
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The neural network output a probability map, each pixel of which indicated the likelihood of the 

pixel being in the pectoral muscle region.  We chose 0.5 as the threshold to segment the 235 

mammogram into a binary image with 1 being in the pectoral muscle candidate region and 0 

otherwise.  A connected component analysis was applied to the pectoral muscle candidate region to 

identify the largest connected component as the final pectoral muscle area.   The boundary of the 

pectoral muscle was then generated by applying the Moore-Neighbor tracing algorithm modified by 

Jacob's stopping criteria to the pectoral muscle binary image.  The Moore-Neighbor tracing 240 

algorithm is designed to find an ordered outline of a contour in an image.  More details of the 

algorithm can be found in the literature33. 

 

II. C. Baseline Computer Vision Method 

We have previously developed a computer vision method, which we referred to as the TFO 245 

method12, for automated pectoral muscle identification.  In this study, the TFO method was used as 

the baseline for comparison with our new DCNN approach.  Briefly, we first used a gradient-based 

directional kernel (GDK) filter to enhance the linear texture structures with the breast region.  The 

texture orientation image was further enhanced by a second GDK filter to extract the ridge point and 

remove noise.  Finally, we applied a shortest-path finding method to track the ridge points with the 250 

highest cumulated probability that were likely lying on the pectoral boundary. 

 

II.D. Performance Evaluation 

We used three quantitative measures to evaluate the performance of the pectoral muscle 

segmentation using the experienced MQSA radiologist’s manual segmentation as the reference 255 

standard. Let � = �ℎ1,ℎ2,⋯ , ℎ�� be the point set that contains � connected reference standard 

points representing the radiologist-drawn boundary, and � = ��1,�2,⋯ ,���  be the DCNN-

identified pectoral boundary point set that contains � connected points.  The Euclidean distance 
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between a reference standard point ℎ� and a point �� in D is denoted by ����(ℎ� ,��).  The three 

performance measures are defined as:  260 

1) Percent overlap area34 (POA)  

���(�,�) =
�� ∩ ���� ∪ �� 

where ��  and ��  are the reference standard pectoral muscle area and the DCNN-identified 

pectoral muscle area enclosed by the boundary point sets � and �, respectively. 

2) Hausdorff distance35 (Hdist) ����� = max { max��{1,2,⋯,�}
{ min��{1,2,⋯,�}

{����(ℎ� ,��)}} , max��{1,2,⋯,�}
{ min��{1,2,⋯,�}

{����(�� ,ℎ�)}}} 

3) Average Euclidean distance36 (AvgDist) 265 

������� =
1

2
(
1�� min��{1,2,⋯,�}

������ℎ� ,�����
�=1 +

1�� min��{1,2,⋯,�}
{����(��, ℎ�)}

�
�=1 ) 

 

We used both the test set within DCNN cross-validation training and the independent test set for 

evaluation of different computer methods.  The two-tailed paired t-test was used to estimate the 

statistical significance in the difference between the two methods and a p-value of less than 0.05 is 

considered statistically significant. 270 

 

III. EXPERIMENTS AND RESULTS 

III.A. DCNN Training  

Previously, we used dataset I for testing the TFO methods12.  In this study, we used dataset I to 

train our DCNN because it was relatively large.  During the training, 10-fold cross-validation was 275 

used to train and evaluate the performance of the DCNN.  The training set consisted of both DFMs 

and DMs.  We first randomly partitioned the DFM set and DM set separately into ten folds, and 
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then randomly combined one DFM fold and one DM fold to form the 10 final folds.  In each 

training cycle, we used nine folds for training and validation, the remaining one fold was used for 

testing.  Of the cases in the nine folds, 90% of them were randomly selected as training set and the 280 

remaining cases were used for validation.  The trained model was applied to the left-out test fold.  

The results of the ten test folds were then pooled together to form a complete set for performance 

evaluation and compared to the baseline TFO method on the same test set.  We also separately 

analyzed the results for the DFM and DM sets for comparison. 

Table 2 showed the test results during 10-fold cross validations in which we compared three 285 

different network configurations.  The BCEL function was used in this comparison.  The 

differences in performances of both LP-DCNN vs MP-DCNN and LP-DCNN vs SP-DCNN were 

statistically significant for all three performance measures (p<0.05).  For the differences in 

performance of MP-DCNN vs SP-DCNN, the POA and Hdist were statistically significant while 

AvgDist did not reach statistical significance.  We therefore chose the LP-DCNN as the final 290 

configuration for the rest of the study.   

 

Table 2. Comparison of DCNN-identified pectoral muscle boundary with an experienced 

radiologist’s manually identified pectoral muscle boundary on the test images from 10-fold 

cross validation using 637 MLO-view DFMs and 92 MLO-view DMs. The BCEL loss 

function was used for training the DCNNs. 

 

We compared three loss functions including BCEL, DL and POAL during network training.  Table 

3 summarized the test performance measures for the loss functions.  The differences in 295 

performances of both BCEL vs DL and BCEL vs POAL were statistically significant for all three 

performance measures (p<0.05).  The differences in performance between DL and POAL did not 

reach statistical significance.   
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Table 3. Comparison of three loss functions on the test images from 10-fold cross validation using 

637 MLO-view DFMs and 92 MLO-view DMs. The LP-DCNN model was used.  

III.B. Single-modality vs Mixed-modality Training 

Our previous studies in breast cancer detection and diagnosis37,38 demonstrated the strong potential 300 

that DFMs can be effective supplemental training samples for DCNN method in mammographic 

breast cancer detection tasks when training samples of DMs are limited.  To demonstrate the 

validity of this approach for the pectoral muscle segmentation task, we compared the performance of 

the DCNN trained on mixed DFM and DM with the performance trained on only DFM or DM alone.  

The LP-DCNN and BCEL function were used in this comparison.  The 10 folds generated in III.A 305 

were used for the training and testing of the DCNN models used in this comparison.  Each fold 

consisted of both DFMs and DMs.  For the training and testing of DCNN on mixed DFM and DM, 

the entire fold was used.  For the training and testing of the DCNN on either DFM or DM alone, 

only the DFM or only the DM in each fold was used, respectively.  We also combined the test 

results from the DCNN trained on DFM alone and the DCNN trained on DM alone for comparison. 310 

Table 4 showed the test results obtained from 10-fold cross validations in which we compared the 

DCNN trained on mixed DFM and DM to the DCNN trained on either DFM or DM. The differences 

in performance between the DCNN trained on mixed DFM and DM and the DCNN trained on only 

DFM or DM reached statistical significance for any of the three performance metrics (p<0.05). 

 

Table 4. Comparison of the DCNN trained on mixed DFM and DM with the DCNN trained on 

either DFM or DM on the test images from 10-fold cross validation. The LP-DCNN and BCEL 

function were used.  The test results from the DCNN trained on DFM alone and the DCNN 

trained on DM alone were also combined into a whole data set for comparison.   

 315 

III.C. DCNN vs Baseline Computer Vision Approach 
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We compared the DCNN method with our previous TFO method that was based on manually 

designed feature extraction techniques. The LP-DCNN trained with BCEL function was used for the 

comparison. Table 5 summarized the three performance measures between the DCNN and the TFO 

methods on dataset I, and the p-values estimated from two-tailed paired t-test for the differences in 320 

the corresponding performance measures.  The differences in performance between DCNN and 

TFO reached statistical significance for any of the three performance metrics (p<0.05) on dataset I.   

 

Table 5. Comparison of DCNN method and TFO method on test images from 10-fold cross 

validation using 637 MLO-view DFMs and 92 MLO-view DMs. The LP-DCNN model and 

BCEL loss function were used. 

Figure 6 showed the cumulative percentage of images as a function of a) percent overlap area, (b) 

Hausdorff distance, and (c) average distance on the test images from the 10-fold cross validation, 325 

corresponding to the results in Table 5.  Of the 637 DFMs, 97.6% (622/637), 99.5% (634/637), 

99.8% (636/637) of the DCNN-identified pectoral muscle boundaries had a POA greater than 90%, 

85% and 80%, respectively.  For the distance measures, 95.7% (610/637) and 99.3%(633/637) of 

the DCNN-identified pectoral muscle boundaries had Hausdorff distances within 5 and 10 mm from 

the reference boundaries, respectively, and 99.8% (636/637) of the DCNN-identified pectoral 330 

muscle boundaries had average distances within 5 mm from the reference boundaries.  For DMs, 

92.3% (85/92), 93.4% (86/92), 95.6% (88/92) of the DCNN-identified pectoral muscle boundaries 

had a POA greater than 90%, 85% and 80%, respectively.  For the distance measures, 90.2% 

(83/92) and 95.6% (88/92) of the DCNN-identified pectoral muscle boundaries had Hausdorff 

distances within 5 and 10 mm from the reference boundaries, respectively, and 97.8% (90/92) of the 335 

DCNN-identified pectoral muscle boundaries had average distances within 5 mm from the reference 

boundaries.  

 

III.D. Evaluation on Independent Test Set 
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We applied the ten LP-DCNN models trained with the BCEL function from the ten-fold cross 340 

validation to the 203 independent test DMs (dataset II).  The independent test set was unknown to 

both the DCNN and the TFO methods so that the performance on this test set represented a fair 

comparison and validation of the robustness and the generalizability of the two methods26.  Table 6 

summarized the three performance measures obtained by comparing the pectoral muscle boundary 

identified by the two methods to the radiologist-provided reference standard.  The DCNN method 345 

was significantly better than the TFO method for all three performance measures (p<0.05).   

Table 6. Comparison of the performance measures obtained with the DCNN method and TFO 

method on an independent test set of 203 DMs.   

 

 

III.E. Observer Variability in Identifying Pectoral Muscle on MLO-view Mammogram 

To evaluate the effect of the variability in the radiologist’s manually identified pectoral muscle 

boundary on the relative ranking of the segmentation methods, we used a randomly selected subset 350 

of 106 DFMs for which the same experienced MQSA radiologist had manually drawn the pectoral 

muscle twice (denoted as R1 and R2) in an interval of time separated by about one year.  Table 7 

summarized the agreement between pectoral muscle boundaries by the LP-DCNN trained with the 

BCEL function and the TFO method. 

Table 7. Effect of the variability in the radiologist’s manually identified pectoral muscle boundary.  

The comparison between pectoral muscle boundaries by the DCNN and TFO methods using 106 

MLO-view mammograms.  R1 and R2 denote the first reading and second reading of the same 

experienced MQSA radiologist.    

For the intra-observer variability evaluation, the R2 reading compared to the R1 reading showed a 355 

mean POA of 92.8%±4.85%, a mean Hdist of 4.44±2.62 mm, and a mean AvgDist of 1.73±1.31 mm.  

Two-tailed paired t-test was used to examine the differences in the corresponding performance 

measures between pairs of the comparisons.  With either the radiologist’s R1 reading or R2 reading 
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as the reference standard, the performance of the LP-DCNN was significantly better than the TFO 

for any of the three performance metrics (p<0.05). 360 

 

IV. DISCUSSION & CONCLUSION 

Breast density is one of the strong factors for breast cancer risk and more than half of the states in 

the United States have passed the density notification law.  Quantitative analysis of breast density 

will improve the consistency and reproducibility as compared to visual assessment by radiologists 365 

based on the Breast Imaging Reporting and Data System (BI-RADS) density categories, and 

therefore will facilitate screening management as well as breast cancer risk estimation by computer-

assisted decision support tools. Pectoral muscle segmentation on MLO-view mammograms is an 

essential process in automated multiple-view mammographic analysis and directly affects the 

accuracy of the quantitative analysis of breast density and parenchymal patterns.  Our previous 370 

study found that the average difference between the pectoral areas segmented by two traditional 

methods was larger than 160 mm2 and the difference in the estimated percent breast density was 

statistically significant (p<0.05).  In this study, we presented a detailed study of the deep learning 

approach for automated identification of the pectoral muscle on MLO-view mammograms and 

demonstrated that: (1) a DCNN could significantly outperform a previously developed method based 375 

on conventional image processing techniques, (2) the pectoral muscle segmentation task requires a 

U-Net with a relatively large number of channels to achieve high accuracy, (3) a mixed modality 

training approach using both FFDM and DFMs is effective for the pectoral muscle segmentation 

task and could alleviate the limited training sample problem in digital mammography, and (4) 

among the three cost functions that were designed for segmentation tasks, the binary cross-entropy 380 

loss function was the most effective for pectoral muscle segmentation.  Although U-Net is a known 

method for image segmentation, to our knowledge, this is the first study applying U-Net to pectoral 

muscle segmentation on MLO-view mammograms and studied the impact of various network 

configurations, loss functions, and training with DM and/or DFMs.  

Our experimental results showed that the performance of the DCNN was superior to that of the 385 

conventional computer vision approach on both the test set in cross validation and an independent 
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test set.  The differences between the DCNN and the TFO methods were statistically significant 

(p<0.05).  In our previous study12, we compared the TFO method with five reported methods.  

The five published methods were based on Hough transform10, Gabor filter39,40, two methods using 

graph theory in conjunction with active contour11, and Radon transform41, respectively.  The 390 

comparison showed that the TFO method achieved higher performance than the previous methods.  

The results of the current study support our hypothesis that DCNN can accurately segment pectoral 

muscle on MLO-view mammograms, as indicated by the significantly higher performance measures 

in comparison to these conventional methods. 

The false positive rate (FPR) and false negative rate (FNR) were calculated for pixel-based 395 

segmentation performance.  The DCNN achieved a mean FPR of 0.11±0.11% and a mean FNR of 

2.06±4.15%, while the corresponding performance measures for TFO were 2.33±3.10% and 

2.88±3.19%, respectively.  In the previous study39 using Gabor filter, pectoral muscle segmentation 

was considered to be accurate when both FPR and FNR were less than 5%, acceptable when FPR 

and FNR were between 5% and 10%, and unacceptable if both FPR and FNR were more than 10%. 400 

The performance of our trained DCNN is therefore accurate and has better performance than the 

conventional methods in terms of FPR and FNR as shown in Table IV by Zhou et al12.  As previous 

study4 point out that patients with PD less than 5% has about 4 times lower in the relative risks of 

breast cancer than those with PD over 75%, the improvement of our DCNN is especially useful in 

differentiate the fatty breast (PD < 5%) from other breasts.  405 

By examining the test results, we found that both the DCNN and the TFO methods performed well 

even when there was skin fold in the upper region of the breast mimicking pectoral muscle boundary.  

However, in the cases that dense glandular tissue overlapping with the pectoral muscle region, 

DCNN was more robust while TFO might fail.  For some cases with severe fuzzy boundaries in the 

lower region of the pectoral muscle, neither DCNN nor TFO provided good segmentation.  This 410 

may be caused by insufficient training of this type of cases, which constituted only a small fraction 

of the training set.  Figure 7 showed segmentation results by the two methods on several example 

mammograms with three types of challenging pectoral muscle patterns. A
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Generally, the training of DCNN models need a large number of annotated data.  We had a 

relatively small training set, especially DMs, to train our DCNN in this study.  To overcome the 415 

limitation of training samples, we used combined affine transformations for online data 

augmentation in order to increase the robustness of the DCNN.  In addition, we chose the U-net 

architecture which was trained in pixel-wise manner so that the localized image features can be 

effectively learned in each training cycle.  The U-Net is trained for pixel-wise predictions in which 

the value of each pixel in the output image represents the likelihood that the pixel is in the pectoral 420 

muscle region. The contracting path in the U-Net model was able to capture multi-resolution image 

context feature.  The average training time of 100 epochs for this application was 1.5 hours using a 

256 x 256 input image size on an NVIDIA Tesla K40 GPU with cuDNN v3 acceleration.   

From the study of the effect of loss functions, we found that the DCNN trained using the BCEL 

function performed the best in terms of all three performance measures, while the DCNN trained 425 

using the POAL function did not perform the best in term of the POA metric. A DCNN trained with 

different parameters may reach different local optima. Since different loss functions may provide 

different gradient during the training process of the DCNN, it is possible that the DCNN trained 

using the POAL loss function may reach a local optimum that does not perform the best in terms of 

the POA metric. In addition, even if the network trained using the POAL loss function performed the 430 

best in terms of the POA metric on the training set, the network may not perform the best on the test 

set. 

From the study of intra-observer variability, the agreement between the two readings by the same 

radiologist is similar to the agreement between LP-DCNN and the radiologist’s R2 reading.  Both 

the LP-DCNN and the TFO method showed better agreement with the radiologist’s R1 reading.  435 

Compared to the TFO method, LP-DCNN performed better in any of the three performance metrics 

with either the radiologist’s R1 reading or R2 reading as the reference standard.  The small 

variability of the radiologist’s reference standard therefore did not affect the conclusions of our 

study. 

All the performance measures for the DM set were slightly, but consistently, lower than those of the 440 

DFM set. Considering that the majority of the images were DFMs (637 out of 729), the DCNN did 
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adapt quite well for the DMs. The DFMs and DMs were images of the same anatomical structures, 

although the physical characteristics of the image detectors were different, which may result in 

different gray level contrast, noise, and resolution properties of the images. It appears that the 

DCNN was able to extract the relevant features despite the differences in the two types of images, 445 

whereas conventional image processing methods are generally more sensitive to these differences, as 

also observed from the larger drop in performance in DMs for the TFO method. This study further 

shows that DFMs can be effective supplemental training samples for DCNN in mammographic 

image analysis tasks when the primary image samples, e.g., DMs, are limited as demonstrated in our 

previous study38. 450 

There are several limitations in this study.  First, we used an unbalanced mix of DFM set and DM 

set for the training of DCNN.  The majority of the training set were DFMs.  Although the 

knowledge learned from DFMs transferred well to DMs, as discussed above, one can expect that 

training the DCNN with a larger set of DMs will make it even more robust for DMs.  We will  

continue to enlarge our DM set to improve the DCNN since DM systems have replaced the screen-455 

film mammography systems in clinical practice.  Second, the segmentation of pectoral muscle is 

only a first step in our image analysis pipeline.  One of our applications is to analyze the density 

and pattern of the breast parenchyma on mammograms.  We will study the effect of pectoral 

muscle segmentation on parenchymal analysis in the next step.  Third, we did not compare U-net to 

other DCNN architectures such as FCN42, PSP net43, and SegNet44.  These limitations will be 460 

addressed in future studies.  

In summary, we have developed a DCNN for automated pectoral muscle identification on MLO-

view mammograms.  The results demonstrated that the pectoral muscle can be segmented 

accurately by our DCNN method.  The mixed-modality approach to training DCNN is effective in 

alleviating the limited sample size problem of DMs. The trained DCNN is applicable to both DFMs 465 

and DMs, and achieves high accuracy for both modalities.   
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Table 1. The number of channels at the different layers of the DCNN for the three 

models studied. 

Parameter  LP-DCNN MP-DCNN SP-DCNN  

a 32 16 8 

b 64 32 16 

c 64 32 16 

d 128 64 32 

e 128 64 32 

f 256 128 64 

g 256 128 64 

h 256 128 64 

i 256 128 64 

j 128 64 32 

k 128 64 32 

l 64 32 16 

m 64 32 16 

 

 

Table 2. Comparison of DCNN-identified pectoral muscle boundary with an experienced 

radiologist’s manually identified pectoral muscle boundary on the test images from 10-fold 

cross validation using 637 MLO-view DFMs and 92 MLO-view DMs. The BCEL loss 

function was used for training the DCNNs. 

 
Method POA (%) Hdist (mm) AvgDist (mm) 

DFM 

LP-DCNN 96.8±2.0 2.18±1.17 0.73±0.41 

MP-DCNN 95.7±4.4 2.66±1.71 0.98±0.99 

SP-DCNN 95.5±4.1 2.78±1.64 0.99±0.75 

DM 

LP-DCNN 94.9±5.0 2.85±1.78 1.11±1.03 

MP-DCNN 93.9±4.5 3.78±2.70 1.39±1.02 

SP-DCNN 93.4±5.1 3.89±2.80 1.42±0.99 
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Whole dataset
* 

LP-DCNN 96.5±2.9 2.26±1.31 0.78±0.58 

MP-DCNN 95.4±4.8 2.80±2.00 1.03±1.10 

SP-DCNN 95.2±4.5 2.92±1.93 1.04±0.85 

a
Data are mean ± standard deviation.   

* Two-tailed paired t-test was used to examine the differences in the pairwise performances in the whole data set between 

the DCNN models (LP-DCNN vs MP-DCNN, LP-DCNN vs SP-DCNN, and MP-DCNN vs SP-DCNN): 

P-values of POA are p<0.001, p<0.001 and p=0.046.  

P-values of Hdist are p<0.001, p<0.001 and p=0.044.  

P-values of AvgDist are p<0.001, p<0.001 and p=0.662. 

  

 

 

Table 3. Comparison of three loss functions on the test images from 10-fold cross validation using 

637 MLO-view DFMs and 92 MLO-view DMs. The LP-DCNN model was used.  

 
Loss function POA (%) Hdist (mm) AvgDist (mm) 

DFM 

BCEL 96.8±2.0 2.18±1.17 0.73±0.41 

DL 95.8±4.5 2.59±1.96 1.02±1.49 

POAL 96.0±3.5 2.63±1.78 0.93±0.96 

DM 

BCEL 94.9±5.0 2.85±1.78 1.11±1.03 

DL 94.0±4.6 3.58±2.54 1.30±0.94 

POAL 94.1±4.7 3.63±2.76 1.29±0.99 

Whole 

dataset
* 

BCEL 96.5±2.9 2.26±1.31 0.78±0.58 

DL 95.6±4.8 2.72±2.22 1.05±1.53 

POAL 95.7±3.9 2.76±2.08 0.98±1.03 

a
Data are mean ± standard deviation.  

*Two-tailed paired t-test was used to examine the differences in the pairwise performances in the whole data set 

between the loss functions (BCEL vs DL, BCEL vs POAL and DL vs POAL): 

P-values of POA are p<0.001, p<0.001 and p=0.274. 

P-values of Hdist are p<0.001, p<0.001 and p=0.561.  

P-values of AvgDist are p<0.001, p<0.001 and p=0.173. 
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Table 4. Comparison of the DCNN trained on mixed DFM and DM with the DCNN trained on 

either DFM or DM on the test images from 10-fold cross validation. The LP-DCNN and BCEL 

function were used.  The test results from the DCNN trained on DFM alone and the DCNN 

trained on DM alone were also combined into a whole data set for comparison.   

Test Training POA (%) Hdist (mm) AvgDist (mm) 

DFM 
Mixed DFM and DM 96.8±2.0 2.18±1.17 0.73±0.41 

Only DFM 95.7±4.5 2.64±2.15 0.95±1.32 

DM 
Mixed DFM and DM 94.9±5.0 2.85±1.78 1.11±1.03 

Only DM 87.9±11.8 5.41±3.72 2.09±1.54 

Whole 

dataset
* 

Mixed DFM and DM 96.5±2.9 2.26±1.31 0.78±0.58 

Only DFM and only DM 94.7±6.5 2.99±2.57 1.09±1.40 

a
Data are mean ± standard deviation.  

*Two-tailed paired t-test was used to examine the differences in the pairwise performance measures in the whole 

data set between the DCNN trained on mixed DFM and DM and the DCNN trained on either DFM or DM: 

P-values of POA, Hdist and AvgDist are p<0.001, p<0.001 and p<0.001.  

 

  
 

 

 

Table 5. Comparison of DCNN method and TFO method on test images from 10-fold cross 

validation using 637 MLO-view DFMs and 92 MLO-view DMs. The LP-DCNN model and 

BCEL loss function were used. 

 
Method POA (%) Hdist (mm) AvgDist (mm) 

DFM 
LP-DCNN 96.8±2.0 2.18±1.17 0.73±0.41 

TFO 95.0±3.6 3.45±2.16 1.12±0.82 

DM 
LP-DCNN 94.9±5.0 2.85±1.78 1.11±1.03 

TFO 89.3±12.7 5.37±4.74 2.54±4.04 

Whole dataset
* 

LP-DCNN 96.5±2.9 2.26±1.31 0.78±0.58 
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TFO 94.2±6.1 3.69±2.79 1.30±1.69 

a
Data are mean ± standard deviation.   

* 
Two-tailed paired t-test was used to examine the differences in the pairwise performance measures in the whole 

data set between the LP-DCNN and the TFO methods: 

P-values of POA, Hdist and AvgDist are p<0.001, p<0.001 and p<0.001.  

 

  
 

 

 

Table 6. Comparison of the performance measures obtained with the DCNN method and TFO 

method on an independent test set of 203 DMs.   

 

 
Method POA (%) Hdist (mm) AvgDist (mm) 

Independent test set
* 

LP-DCNN 93.7±6.9 3.80±3.21 1.49±1.62 

TFO 86.9±16.0 7.18±14.22 3.98±14.13 

a
Data are mean ± standard deviation.   

*
Two-tailed paired t-test was used to examine the differences in the pairwise performance measures in the  

independent test set between the LP-DCNN and the TFO methods.  

P-values of POA, Hdist and AvgDist are p<0.001, <0.001, and p=0.013.  

 
 

 

 

Table 7. Effect of the variability in the radiologist’s manually identified pectoral muscle boundary.  

The comparison between pectoral muscle boundaries by the DCNN and TFO methods using 

106 MLO-view mammograms.  R1 and R2 denote the first reading and second reading of the 

same experienced MQSA radiologist.    

 
 POA (%) Hdist (mm) AvgDist (mm) 

R1 vs R2 92.8±4.9 4.44±2.62 1.73±1.31 

TFO vs R1 93.3±5.1 4.13±2.60 1.46±1.18 

LP-DCNN vs R1 95.3±4.6 2.80±2.01 0.96±0.87 

TFO vs R2 91.3±6.2 4.28±2.96 1.97±2.09 
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LP-DCNN vs R2 92.0±5.9 3.68±2.43 1.66±1.41 

a 
Data are mean ± standard deviation.   

 
 

 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



mp_13451_f1.tif

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



mp_13451_f2.tif

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



mp_13451_f3.tif

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



mp_13451_f4.tif

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



mp_13451_f5.tif

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



mp_13451_f6.tif

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



mp_13451_f7.tif

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t


