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Abstract

Objectives: m==Todevelop a fully automated deep learning approach for identification of the pectoral
muscle on{ mediolateral obliqueviLO) view mammogramsand evaluate its performee in
comparsonto our_previously developeigxturefield orientation (TFO)methodusing conventional
image feature analysi$ectoral muscle segmentation is an important step for automated image
analysespsuchsas breast density or parenchymal pattern classification, lesion detectiamfiand m

view correlation.

Materials and M ethods: Institutional Review BoardIRB) approval was obtained before data

collection. A dataseof 729 MLO-view mammograms including 637 digitized film mammograms
(DFM) and 92 digital mammograms (DMPom our previous studwere used for the training and
validation of ‘eour'deep convolutional neural network (DCNN) segmentation method. In addition,
we collectel anindependenset of 203DMs from 131 patients for testing The film mammograms
were digitized at @ pixel size of 50n x 50 um with a Lumiscardigitizer. All DMswere acquired
with GE systemat a pixel size of 10@um x 100um. An experiencedMQSA radiologist manually
drewthe pegtoral muscleoundaryon each mammograas the reference standardVe trainedthe
DCNN to estimatea probability map ofthe pectoral muscleegionon mammograms The DCNN
consisted of a‘eentracting path to capture mreliolution image context and a symmetric expanding
path for prediction of the pectoral muscle regioithree DCNN structureswere compared for

autorrated identification of pectoral musclesTenfold crossvalidation was used in trainingf the

This article is protected by copyright. All rights reserved


mailto:jvwei@med.umich.edu�

55

60

65

70

75

DCNNs. After training, we applied the 1@rained modelsduring cross validation to the
independenDM testset. The predictedpectoral muscleegionof eachtest DM was obtained as
the mean probability map by averaging the ensemble of probability maps frd thedels The
DCNN-segmented pectoral muscle wagaluatedby three performance measureslative to the
reference standardl) the percent overlap ea (POA)of the pectoral muscle regign2) the
Hausdorff distance (Hdist)and 3) the average Euclidean distance (AvgDistfween the
boundaries. . The results were compared those obtained with the TFO methagdsed asour
baseline Aftwo-tailed paired ttest was performed to examine the significance in the differences
between the DCNN and the baseline.

Results: Inthe 10 test partitions of the cregalidation setthe DCNN achieved a mean POA
of 96.5+2.9%,a mean Hdist 02.26+1.31 mm, anda mean AvgDist 00.78#.58 mm, while the
corresponding.measures by the baseline method were4989%2, 3.622.48 mm, and 1.31.22
mm, respectively For the independenDM test set the DCNN achieveda mean POA of
93.7%+6.9%amean Hdist 0f3.80+£3.21mm, anda mean AvgDist o0fl.49+1.62mm comparing to
86.9%+16.0%, 7.18+14.22m, and 3.98+14.13 mpmespectivelyby the baselinenethod.

Conclusion: In-comparison to thdFO method,DCNN significantly improved the accuracy of

pectoral muscle identificatioon mammogramgp<0.05).

KEYWORDS:

Mammogram, Mediolateral olgjue(MLO) view, Pectoral muscle, Degpnvolutional neural
network (DCNN)

l. INTRODUCTION
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Breast cancer ithe most common cancer diagnosedAmericanwomen. The American Cancer
Societyestimates that there will be about 266,120 new breast cancer cases and about 40,920 deaths
in the United States for 2018 Early detection increasebe chanceof cancer free survival. At

present, séréening mammography is the most effective method for early detection of bredst cancer
Dens breast parenchyma igiak factor for breast cancer.The combined relative risks of incident

breast cancer in the general populationesmtemated to be about&ttimes higher for women whose
mammograms_have parenchymal densities over 75% of the breashar@amen with less than

5% of parenéhymal densiti&s .

Accurate segmentation of breast region is an essential step for quantitative analysis of breast
parenchyma on“mammogramsHowever, due to thaigh x-ray attenuation opectoral muscle on
mediolateral obligue (MLO) view mammograms, its pixel valogserlap withthe range of the
fibroglandular.tissue in the breast region. If the pectoral muscle is nldegcas a part of the
segmented fibroglandular tissue, thaantitative analysis of breast parenchyora MLO-view
mammogramswill not be consistentwith that on craniocaudal (CC) viewmammograms.
Therefore, acurateidentificationof the pectoral muscle on ML@ew mammograms is important

in quantitative.analysis of breast parenchynaLO-view mammograms.

Automated pctoral muscleidentification on MLO-view mammograms remains a challenging
problem especially forthe improperly positionetreastsand thosethat contain dense glandular
tissue overlapping with the pectoral muscle regiofigure 1 showsmage exampledllustrating
threedifferent ctallengingpectoral muscle patterns

A number of studies have beeonductedto identify the pectoral muscleKarthikeyanet al®
reviewed methods fopectoal muscle segmentation.Some assumed that the intensity of the
pectoral musclevas higher tharthat of the breast tissi2andweresuccessfuto different degrees

by intensitybased segmentation technique&arssemeijel’ estimatedthe edge of the pectoral
muscle withsa' straight linand applied Houglransform to detect the straight liasthe pectoral
muscle. Ma et af' applied graph theory in conjunction with active contour methods for
identifying the pectoral muscle We have previously developed a textiedd orientation (TFO)

method? to estimate pectoral muscle boundary on M&i€&v mammograms. Taghanaki et af®
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combined geometric rules with a region growing algorithm to support the segioerdf all types

of pectoral muscles

Convolution, neural etwork (CNN) was introducedor recognitionof handwritten numeral patterns

in the early 4980%'° andapplied to medical image pattern recognitiorthe early 1990%¢??

The CNN structures had relatively few layers in these early applications due to the limitations
computational speed and training sample sizes. CNN applications became much more versatile in
recen years due to the development of more efficient regularization methods argtdialsical
processing ‘units, allowin@NN structures to grow in both depth and width which increase the
learning capacity. tremendouslyThe deep convolution neural netwakDCNN) hadbeen shown

to be particularly successful in the task of classifying natural im@ageghich millions of training
samplescan be collected relatively easity®. A recent conference proceeding paperesented a
preliminary study that trained a deep learning model for pectoral musclesigion using only
136 digital breast, tomosynthesis (DBifages. In contrastto conventional method$CNN can
automatically“@xtract image features through unsupervised or supervised |&aaniagye training

set is available®We hypothestze that DCNN canaccuratelysegment pectoral muscle on MLO
view mammoegrams. To test this hypothesis, waevelop a supervisedeep learning approach for
automatedidentification of the pectoral muscle on ML€@v mammogramsand evaluate its

performance in compan to our previous TFO methodthis study

II. MATERIAESAND METHOD
I[I.A. Datasets

Institutional Review Board (IRB) approval was obtained prior to the collection ofrthgei data.
Two datasets wenased in this study. Dataset | comprised a total of 729 Mie@®-mammograms
including 637digitized film mammogram¢DFMs) and 92digital mammograms¥Ms) that were
used totéstthe TFO methodin our previous stud§. Of the 637 DFMs, 531 from 46Patients
were randomly selected froade4identified data set collectedt the Old Order Amish population of
Lancaster Conty, Pennsylvania, and the remainib@6 from 99 patients were randomly selected

from the patient files at our institution.  All film mammograms were digitized with a LUMISYS 85
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laser film scanner at a pixel size of 50 um x 50um and 12-bit gray levels. The92 MLO-view DMs

from 92 patientswere collected from the patient files at our institution. Datasetith 203 DMs

from 131 patientsvasindependently collected from screening patients at our instituftus.cataset

was kept independent of thraining process and sequestered for testing the trained system after the
training was completkand all parameters were frozen to validegegobustness and generalizability

to unknown casé8 All of the DMs wereacquired with a GE Senographe 2000D system at a pixel
size of 100 pmx 100um and 16 -bit gray levels. The “for presentation” DMs were used in this
study. To reduce prcessing time and noise, the resolution of the DFMs and DMs was reduced to
800 um x 800pm by averaging ever$6 x 16 pixels an@ x 8 adjacent pixels, respectivebgfore

the pectoral muscle analysis.

An in-house developed graphical user interface was used for interactive tracking of pectoral
boundary on.mammograms. An experienced Mammography Quality Standards Q&AM
radiologist used.the interface to draw the pectoral boundary on eachvMisxOnamnogram. The
manually segmented boundary was then used to generate a binary mask separating the pectoral
muscle and the"breast region. For the training set, the binary mask was used to guéd@rnpeof

the DCNN.™=kor the test set, the boundary andthary mask were used as the reference standard

to evaluate'the segmentation accuracy of the performancesafttmeated methods.

I1.B. Methods

Figure 2 shews=our deep learning approach for pectoral muscle identification on-viéwO
mammograms:-We first applied a preprocessing step to an input mammogram, whictiesamed
to normalize“the imagéor reliable feature extraction. For a given image, zero ranks were first
removed Themaximum pixel intensity in each image was determined and used tdlseagmay
level dynamic range to [0.0, 1.0]. Then we resized all imagdsthe reference binary magksa

uniform size of 256 x 256 pixels.

I1. B.1 Deep Convolutional Neural Network
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We configured a DCNN that hasstructure similar to aMet’ to generate the likelihood map of

the pectoral musclen MLO-view mammogram Kerag® with Tensorflow backenavas used to
implement the neural netwarlEigure 3 illustrated the architecture ofrdDCNN. The DCNN
consisted'of a‘contracting path to capture mrelsolution image context and a symmetric expanding
path for prediction of the pectoral muscle region. The reference binary midkpsctoral muscle
region for each training mammogram was used to formulate the loss function tdrguidaning.

The contracting path consisted of repeated application of two 5 x 5 convolution keais
followed byga rectified linear unit (ReLU) and a 2 x 2 max pooling operation wittes2ti Unlike

the original UNet, we applied the same padding to the convolution kernels in order to keep the
spatial dimensions of the output feature map the same as those of the input featurAfteapach

max pooling=eperation, the number of feature channels was doubled to include bopass@ad
low-pass infermation. In the expanding path, each layer consisted of an upsampling afuitee fe
map followed by a 5 x 5 deconvolution operation with a ReLU activation function. Thentwo 5 x5
convolution operationseach followed by a ReLU were applied and the feature map was

concatenated with the corresponding feature map from the contracting path

In order to“investigate thstability of this DCNN with different parametersve conductedtwo
reliability studies: 1) to use different network architectures, and 2) to useediffiess functions.
For the first study, wevaried the number of channels to generate three diffeDEDiNN
architectures.Table 1 sumnmu the parameters of these three architecturkscording to the
total number of parameterthe three differenimodelswere denoted as the large parameter DCNN
(LP-DCNN) mode| the medium parameter DCNN (MEDCNN) model and the small parameter
DCNN (SPDCNN) model. The LP-DCNN, MP-DCNN, and SPDCNN had 15.1 million, 3.8
million and 0.9 million parametersespectively.

Tabled: Thenumber of channels at the different layers of the DCNN for the three
models studied

In our second reliability study, we compared three different loss functions incltitriginary

crossentropy loss functioBCEL), the Dice loss functionDL) andthe percent overlap area loss
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function (POA.) during backpropagation of DCNN training We treated theskss functionsas
the optimizer ina binary classificatiorformulation Let R be the reference foregrouatea with

190 pixel valuesr,, and P be the predicted probabilistic map fiwe foreground area with values,,.
Assuming that the input hasv image pixels, the formulations of three loss functions are expressed

as follows.

1) Binary crossentropy loss functiofl (BCEL):

N
BCEL = —

2|~

[ In(pn) + (1 = 7)In (1 = pp)]

n=
2) Dice loss functioif (DL):

2 Zﬁ:l ™Pn +e& 2 Zﬁ:l(l - 7"n)(]- - pn) + &

DL=1-
gzl(rn + pn) + & gzl(z —Th — pn) +¢€

195 The ¢ termsis'used as a smooth term to make sure the stability of the loss function byggavoidi

the problem,ef dividing by zero.
3) Percent Overlap area loss functtb(POAL):
The percent overlap area of two binary images can be written as

N
P = Yn=1TnPn
Zﬁ=1 T2 +Zﬁ=1 Pn? _271\1’=1 ™mDn

200 P can be differentiatedith respect to thgth pixel of the predictioryielding the gradient

0P _ 1i(En=1m” + Xn=1Pn’ — Xn=1TaPn) — (2p; — 1) Eii=1TPn)
9P (=1 tn? + Tt Pu? = Zheatabn)”

Thereforewe can express the twadass form of POAlas

1 _ Yn=1TnPn+e Tn=1(1-m)(A-pr)+e
POAL =1 {271\1’=1(rn+pn_rnpn)+£ Zﬁ:ﬂz_rn_pn_(1_rn)(1_pn)]+g}

II.B.2 DCNN Training
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The networks weretrained with a minbatched gradient decent algorithmTo alleviate the
limitation of training samples and timprove the invariance and robustness properties of the
networks, we used a combined affine transformation including rotation, shift and zoomlifar

data augmentation. Each combined affinetransformation is a composition of elementary
transformations from the following listt) rotation: rotation of the image by an angle up to 5
degrees?2) shift. vertical or horizontal shift by a distance withi@®of the imagesize 3) zoom:
zoomingof the focal lengthdy a factor between 0.92 and 1.08. Points outside the boundaries of the
input are filled by nearest neighbor interpolatiofror each transformed imagthe corresponding
binary maskis“transformed in the same waWe useda thresholdvalue of 0.5 to keep the
transformed mask binary imagefter the data augmentation transformatiorrevious work* has
demonstrated=that data augmentation using a combinationiné &ffinsformations to manipulate
the training=data was effective to increase the accuaadygeneralizabilityf classification tasks.
Rather than generating and saving augmentation data to hard disk, we generated thefty on the
during training. With online data augmentation, the image after applying a combined affine
transformation replaced the original image in a given epoch of training and each iasmgaried
randomlysfrem=epoch to epochAlthough the training samples did not increase in nuntber,
“jittering” of the image by the combined affine transformation increased the variability of the
training samplesseen by the DCNNthereby reducing the risk of overfitting to the limited training

set Figure 4 shows an image example with different transformations.

All weights of the networkwere initialized byrandomly drawing froma normal distribution witha
meanof 0 anda'standard deviatioof 0.02. The batch size of images was 8 dmallearning rate
was 0.0001 We experimentally chose theumber of epochs for training Figure 5 showsan
example otthe training andalidationlossof DCNN as a function of training epochising the LP
DCNN with:BE€EL functionfrom one of the 14old cross validation cycles We observed that the
loss of the etwerk for the validation set had a broad minimum aro@i epochs&ind increased as
the trainingeontinuedbeyond about 200 epochsdioating a trend of overfitting to the training set
We therefore ¢hese to train with a fixed number of epochs aaridGelectethe best model based

on the validation loss within 100 epodbs each cycle

II. B.3 Boundary Identification of Pectoral Muscle
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The neural network outpw probability map each pixel of which indicated the likelihood of the
pixel being in thepectoral muscleregion We chose 0.5 asthe threshold to segment the
mammogram into a binary image withkking in the pectoral muscle candidate region and 0O
othawise ""A"connected cmponentanalysis was appliet the pectoral muscle candidate region to
identify the(largest connected component as the final pectoral muscle afée boundary of the
pectoral muscle wamengenerated bwapplyingthe MooreNeighbor tracing algorithmmodified by
Jacob's stopping criteritgo the pectoral muscle binarynage The MooreNeighbor tracing
algorithm isgdesignedo find an ordered outline of a contour in an imagklore detai$ of the
algorithm can"beé found ithe literature®.

II.C. Basdine€Computer Vision Method

We have previously developed a computer vision method, which we referred to a&@he
method?, forrautomated pectoral muscle identification.  In this sttty TFO method was used as

the baseline foreomparisonith our newDCNN approach. Brieflywe first used a gradiebiased
directional 'kernel (GDK) filter to enhance the linear texture structures with the breast region. The
texture orientation image was further enhanced by a second GDKdike&tractthe ridge poinand
remove noise. Finlgl, we applied a shortegath finding method to track the ridge pointsh the
highest cumulated probabilititat were likelylying on the pectoral boundary.

[1.D. Perfaormance Evaluation

We usedthree~quantitativemeasuresto evaluate the performance ohe pectoral muscle
segmentatiorusing the experienced MQSA radiologist's manual segmentation as the reference
standard Let H = {hl, hz,---,hp} be the point set thatcontainsp connected reference standard
points representing the radiologidtawn boundary and D ={d1,d2,---,dq} be the DCNN

identified pectoral boundary point sétat containsg connected points The Euclidean distance

This article is protected by copyright. All rights reserved
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betweena reference standard poiht andapoint d; in D is denoted byDist(h;,d;). The three
performance meases are defined as
1) Percent averlap aréa(POA)

Ay N Ap

H D

where Ay and A, are the reference standard pectoral muscle area and the -RIEhiMied

pectoral muscletarea enclosed byhlbandary point seté¢/ and D, respectively.
2) Hausdorff.distané@ (Hdist)

Hdist = max {le{rlnzaxp}{]e{rlnln {Dist(h;,d;)}}, {rlnzax q}{le{gnzm {Dist(d;, h;)}}}

3) Average Euclidean distarf@éAvgDist)

p q
AvgDist = 1(l min {Dist(h- d)} + l min {Dist(d;, h;)})
2 pZ - . qZ s ie(iz ) g
i= j=

je{1,.2,--.q}
=1

We used betlihetest set within DCNNcrossvalidationtraining and the independent test set for
evaluation of different computer methodslhe twotailed paired test was used to estimate the
statistical significance in the differembetweerthetwo methods and p-value of less than 0.05 is

considered statistically significant.

1. EXPERIMENTSAND RESULTS
[I1.A. DCNN Training

Previously,wé usedatiaset Ifor testingthe TFO method¥. In this study, we usedataset | to
train our DCNNbecause it was relatively largeDuring the training, 1@old crossvalidation was
used to train and evaluate the performance of the DCNN. The training setetbo$isoth FMs

and DMs. We first randomlpartitionedthe DFM set and DM set separatelyinto ten folds, and
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then randomly combined one DFM fold and one DM fold to form Xfdinal folds. In each
training cycle, we used nine folds for training and validation, the remainindotthevas used for
testing. Of the cases thenine folds, 90% of them were randomly selected as training set and the
remaining cases were used for validatiofithe trained model was applied to the-lefit test fold.

The results of the tetestfolds were then pooled togeth&y form a complete sdor performance
evaluationand compared to the baseline TFO metbadthe same test setWe also separately

analyzed the results for the DFM and DM sets for comparison.

Table 2 showed the testswdts during 1€fold crossvalidations in which we compared three
different netwerk configurations. The BCEL function was used in this comparison.The
differences ‘in" performances of both-DENN vs MRDCNN and LPDCNN vs SPDCNN were
statisticaly significant for all three performancmeasures(p<0.05). For the differences in
performance_of MADCNN vs SPDCNN, the POA and Hdist were statistically significant while
AvgDist did.not reach statistical significam We thereforechose the LADCNN as he final
configuration-forithe rest dhe study

Table 2. Comparison of DCNNdentified pectoral muscle boundary with an experien
radiologists manually identified pectoral muscle boundary ontdstimages from 14dold
crossyvalidation using 63KLO-view DFMs and 92 MLGview DMs. The BCEL loss
function.was used for training the DCNNSs.

We comparedhree loss functionsicludingBCEL, DL andPOAL during networkiraining Table
3 summarizedthetest performance measures ftre loss functions The differences in
performancs.ef.both BCEL vs DL and BCELvs POAL were statistically significanfor all three
performancesmeasurgp<0.05). The differences in performance between DL and POAL did not

reach statisticaksignificance.
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Table 3.Comparison of three loss funct®on thetestimages from 1@old cross validation usin
637 MLO-view DFMs and 92 MLG+4ew DMs. The LPDCNN modelwas used.

[11.B. Single-modality vs Mixed-modality Training

300 Our previous stuis in breast cancer detectiand diagnosi&=® demonstratethe strong potential
that DFMs can_be effectiveupplemental training samples for DCNN method in mammographic
breast cancer_detectidlasks when training samplef DMs are limited. To demonstrate the
validity of this approach fathe pectoral muscle segmentation task,ceenpared th@erformane of
the DCNNtrainedon mixed DFMandDM with the performancé&ained on only DFMor DM alone.

305 The LRDCNN and BCEL function were used in this comparisohhe 10 folds generated itl.A
were usedor-the trainingand testing of th&CNN modelsusedin this comparison Each fold
consisted of'both DFMs and DMsFor thetrainingand testingof DCNN on mixed DFMandDM,
the entire fold was used. For tlraining and testingof the DCNN on either DFM or DM alone
only the DFM oronly the DM in eachfold was usedrespectively We also combined th&est

310 results from the DCNN trained on DFdMoneand the DCNN trained on Didlonefor comparison.

Table 4 showed the test results obtained fidhold cross validations in which we compared the
DCNN trained on mixed DFMindDM to the DCNN trained oeitherDFM or DM. The differences
in performance between the DCNN trained on mixed C#FMDM and the DCNN trained on only

DFM or DM, reached statistical significance for any of the three performance metrics (p<0.05).

Table 4. Comparison of the DCNN trained on mixed D&l DM with the DCNN trained on
eitherDEM or DM on the test images from X6ld cross validation. The LBCNN and BCEL
functiomwere used. The test resultf'om the DCNN trained on DFM alone and the DCNN

trained'on"DM alone were also combined into a whata defor comparison.
315

[11.C. DCNN vsBasdline Computer Vision Approach
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We compard the DCNN method with our previous TFO methttéht was based on manually
designedeature extraction techniquekhe LP-DCNN trained with BCEL functiomvas used for the
comparisonTable5 summarized théhree performance measutestweenthe DCNN andthe TFO
methods on datasetdndthe p-values estimated from twiailed paired-test for the differences in
the corresponding performanoeeasures The dfferences in performance between DCNN and

TFO reached statistical significance for any of the three performance metrics (prod@&set.

Table 5. Comparison of DCNN method and TFO method test images from fbld cross
validation using637 MLO-view DFMs and 92 MLGview DMs. The LRDCNN model and
BCEL loss function were used.

Figure6 showedhe cumulative percentage of imagesafunction of a) percenbverlap area(b)
Hausdorff distance, and (c) averagjstanceon the test images fronthe 10fold cross validation
corresponding to. the results in Taldle Of the 637 DFMs, 97.6% (622/637), 99.5% (634/637),
99.8% (636/637) of the DCNidlentified pectoral muscle boundaries had a POA greater than 90%,
85% and 80%yurespectively. For the distance measures, $61/637) and 99.3%(633/637) of
the DCNNidentified pectoral muscle boundaries had Hausdorff distances within 5 and 10 mm from
the reference boundaries, respectivedgd 99.8% (636/637) of the DCNMentified pectoral
muscle boundaries had average distances within 5 mm from the reference bounéand3Ms,
92.3% (85/92), 93.4% (86/92), 95.6% (88/92) of the DGN&htified pectoral muscle boundaries
had a POA greater than 90%, 85% and 80%, respectively. For the distance me&s2es, 9
(83/92) and. 95.6%(88/92) of the DCNNdentified pectoral muscle boundaries had Hausdorff
distances within 5 and 10 mm from the reference boundaries, respectively, and 3 ®2bof the
DCNN-identifiedipectoral muscle boundaries had average destamithin 5 mm from the reference

boundaries!

[11.D. Evaluation on Independent Test Set
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We applied he tenLP-DCNN models trained with the BCEL functidnom the tenfold cross
validation to the203 independertest DMs(dataset II) The independent test set was unknown to
both the DCNN and the TFO methosig that the performance on this test set represented a fair
comparisorandValidation of the robustness and the generalizability of the two m&hotiable6
summarized théhree performance measures obtaibgdcomparing the pectoral muscle boundary
identified_by thetwo methodsto theradiologist-providedeference standard.The DCNN method

was significantly better than the TFO metHodall three performance measu(ps0.05).

Table 6. Camparison of the performance measures obtained with the DCNN method an

method oranindependent test set of 203 DMs.

[11.E. Observer Variability in Identifying Pectoral Muscle on ML O-view Mammogram

To evaluatethe effect of the variability in the radiologist's manually identified pectoral muscle
boundaryon the“relative ranking of the segmentation methagsused a raranly selected subset

of 106 DFMs«for whichthe sameexperienced MQSA radiologisiad manuallydrawnthe pectoral
muscle twice denotedas R1 and R2n an interval oftime separated bgbout one year. Tablé
summarized the agreement between pectoral muscle boundaties bl DCNN trained with the
BCEL function.and the TFO method.

Table7. Effect of the variability in the radiologist's manually identified pectoral muscle boun
The comparison. between pectoral muscle boundarigbebypCNN and TFQmethods using 106
MLO-view.mammograms. R1 and R2 denote the first reading and second reading aohe¢he sa

experienced"MQSA radiologist.

For the intraobserver variability evaluation, the R2 reading compared to the R1 resthngd a
mean POA of 92.8%.85%, a mean Hdist of 4.42.62 mm, and a mean AvgDist of 1+2331 mm.
Two-tailed paired test was used to examine the differences in the corresponding performance

measures between paokthe comparisons. Witkitherthe radiologist’'s R1 readingr R2 reading
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as the reference standard, the performaridbe LP-DCNN was significanty betterthan theTFO

for any of the three performanoeetrics (p<0.05).

V. DISCUSSION & CONCLUSION

Breast densitysistone of the strong factors for breast cancer risk and motethaf the states in

the United States have passed the density notification law. Quantitative analysis of dnsigt d

will improve the consistency and reproducibility @smpared to visual assessment by radiologists
based on the Breast Imaging Reporting and Data SysterRABES) density categories, and
therefore will-facilitate screening management as well as breast cancer risk estimatomployer
assisted decision support tools. Pectoral muscle segmentation orvigluOnammograms is an
essential process in automated multyglsv mammographic analysis and directly affects the
accuracy of.the quantitative analysis of breast density and parenchytteshga Our previous
study foundsthat'the average difference between the pectoral areas segmented by twaltradition
methods was larger than 160 mand the difference in the estimated percent breast density was
statistically=significant (p<0.05). In this study, we presemteattailed study of the deep learning
approach _fer"automated identification of the pectoral muscle on -Mé® mammograms and
demonstrated that: (1) a DCNN could significantly outperform a previouslyap@aeimethod based

on conventional image processitegghniques, (2) the pectoral muscle segmentation task requires a
U-Net with asrelatively large number of channels to achieve high accuracy, (3) a mixed modality
training appreach using both FFDM and DFMs is effective for the pectoratlenssgmentation

task and could alleviate the limited training sample problem in digital mammography, and (4)
among the three cost functions that were designed for segmentation tasksathectzissentropy

loss function was the most effective for pectoral muscle segtimanta Although UNet is a known
method for image segmentation, to our knowledge, this is the first study apphieg td pectoral
muscle segmentation on ML@ew mammograms and studied the impact of various network

configurations, loss functions, and training with DM and/or DFMs.

Our &perimentalresultsshowedthat the performance of the DCNN wsasperiorto that ofthe

conventionalcomputer vision approaabn both thetest set in cross validaticand an independent
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testset. The differences betweéme DCNN andthe TFO methodswere statistically significant
(p<0.05). In our previous study, we comparedthe TFO method with five reported methods.
The five published methodgerebased on Hough transfotfh Gabor filtef**°, two methods using
graph theory“if” conjunction with active contBurand Radon transforth respectively. The
comparison showed that the TFO method achieved higher performance than the prevnods.met
The results of th currentstudy supporbur hypothesis that DCNManaccurately segmeiuectoral
muscleon MLO-view mammogramsas indicated by the significantly higher performance measures

in comparison tétheseconventional methods.

The false positive rate (FPR) and false negative rate (FWB)e calculatedfor pixel-based
segmentation performanceThe DCNN achieved a me&PR of 0.11+0.11%anda meanFNR of
2.06+4.15% while the correspondingerformance measures farFO were 2.33£3.10% and
2.88+3.19%respectively. In the previous study’ usingGabor filter, pectoral muscle segmentation
was considered.to be accurate when botR BRd FNR were less than 5%, acceptable wheiRFP
and FNR were between 5% and 10%, and unacceptable if bdthafd FNR were more thari0%.
The performance of ourained DCNN is therefore accurate and has better performance than the
conventionakmethods in terms of FPR and FéRshown in Table IV by Zhcat al*2.  As previous
study point*6Ut thapatients withPD less than 5% has about 4 times loivethe relative risks of
breast cancer than those wRID over 75% the improvement of our DCNN is especially useful
differentiate the fatty brea@®D < 5%) from other breasts.

By examning the test results, we fouridat both theDCNN andthe TFO methodsperformed well

even when thereswakin fold in the upper region of the breast mimicking pectoral muscle boundary.
Howeverwinsthescases that dense glandular tissue overlapping wite¢t@al muscle region,
DCNN was 'more robuswhile TFOmight fail. For some cases wieverduzzy boundaries in the
lower region ofthe pectoral muscleneitherDCNN nor TFO provided goodsegmentation This

may be caused by insufficient training of this type of cases, which constituted onlgllafrerction

of the traimng set. Figure 7 showd segmentation results by th&o methods orseveral example

mammograms with threlgpes ofchallenging pectoral musclaerns
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Generally the training of DCNN mode$ need a large number of annotatedta. We hal a
relatively smalltraining set especially DMsto train our DCNN in this study. olovercome té
limitation of training sampleswe used combined affine transformations for online data
augmentatiorin“order to increaséhe robustnessf the DCNN. In addition, we chose the-het
architecture which was trained in pixgise manner so that the localized image features can be
effectively learnedn eachtraining g/cle. The U-Net is trained for pixeWise predictions in which

the value of.each pixéh the output image represents the likelihood that the pixel is in the pectoral
muscle regionThe contracting path ithe U-Net modelwasableto capture multiresolution image
context feature. The averagéraining timeof 100 epobs for this applicationvas1.5 hourausing a

256 x 256 inputmage size on an NVIDIA Tesla K40 GPU with cuDNN v3 acceleration

From the study of the effect of loss functions, we found that the DCNN trained usin@Hle B
function performed the best in terms of all three pentorce measures, while the DCNN trained
using the POAL. function did not perform the best in term of the POA mAtiCNN trained with
different parameters may reach different local optima. Since diffémeatfunctions may provide
different gradient during the training process of the DCNN, it is possible th&GINN trained
using the POAL loss function may reach a local optimum that does not perform the teests of
the POA metric. In addition, even if the network trained using the POAL lossdamarformed the
best in terms of the POA metric on the training set, the network may not perfornstlom bee test
set

From the study ointra-observer variability, the agreement betwélem two readings by the same
radiologist is=similar to thagreement between HPCNN andthe radiologist’s R2 reading. Both

the LP-DENN=and the TFO methodhowedbetter agreemenwith the radiologistsR1 reading
Comparedtdhe TFO method, LFDCNN performed better in any of the three performance metrics
with either the radiologist's R1 reading or R2 reading the reference standardThe small
variability of the radiologist's reference standard therefore did rettathe conclusions of our

study.

All the performance measures for the DM set were slightly consistently, lowethan those of the
DFM set. Considering that the majority of the images were D@E@% out of 729),ite DCNNdid
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adapt quite welfor the DMs The DFMs and DMs were images of the same anatomical structures,
although the physical chaateristics of the image detectors were different, which may result in
different gray level contrast, noise, and resolution properties of the images. #rsapipat the

DCNN was able to extract the relevant features despite the differences in the tsvoftypages,
whereas conventional image processimgthods are generally more sensitive to these differeases

also observed from the larger drop in performance in DMs for the TFO method. Thisustbdy
showsthat DFMs can be effective supplementalirting samples foDCNN in mammographic

image analysis tasks when the primary image samples, e.g., DMs, are limited as demonstrated in ou

previous studi?

There areseverallimitations in this study. Firstye usedanunbalanced mix of DFMetand DM
set for the training of DCNN The majority of the training setwere DFMs. Although the
knowledge learned from DFMs transted well to DMs, as discussed abqvene canexpect that
training the.DCNN with a larger set of DMs will makeeiten more robust for DMs. We will
continue to/enlarge oM set toimprovethe DCNN since DMsystens have replacethe screen
film mammography systesrin clinical practice. Second the segmentation of pectoral muscle is
only a first'step_in our image analysis pipeline. One of our applications isliazeiae density
and pattern~ofthe breast parenchyma on mammogram&/e will study the effect of pectoral
muscle segmentation on parenchymal analysis in the next stepd, we did not compare-det to
othe DCNNsarchitecturessuch as FCHf, PSP néf, and SedNet'®. These limitations will be

addressed in future studies.

In summary,we-have developed a DCNN for automated pectoral muscle identification on MLO
view mammegrams. The results demonstrated that the pectoral muscle casefmented
accurately"by“our DCNN method.The mixedmodality approach to training DCNN is effective in
alleviating the limited sample size problem of DM&e trained DCNN is applicable to both DFMs
and DMs, and achieves high accuracy for both modalities.
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Table 1. Thenumber of channels at the different layers of the DCNN for the three

models studied.

Parameter LP-DCNN MP-DCNN SPDCNN

a 32 16 8
b 64 32 16
c 64 32 16
d 128 64 32
e 128 64 32
f 256 128 64
g 256 128 64
h 256 128 64
[ 256 128 64
j 128 64 32
k 128 64 32
| 64 32 16
m 64 32 16

Table 2. Comparison of DCNN-identified pectoral muscle boundary with an experi
radiologist’s manually identified pectoral muscle boundary on the test images from 10-fold
cross validation using 637 MLO-view DFMs and 92 MLO-view DMehe BCEL loss

function'was used for training the DCNNSs.

Method POA (%) Hdist (mm) AvgDist (mm)
LP-DCNN 96.8+2.0 2.18+1.17 0.73+0.41
DFM MP-DCNN 95.7+4.4 2.661.71 0.98+0.99
SP-DCNN 95.5+4.1 2.78+1.64 0.99+0.75
LP-DCNN 94.9+5.0 2.85+1.78 1.11+1.03
DM MP-DCNN 93.9+4.5 3.78+2.70 1.39+1.02
SP-DCNN 93.4+5.1 3.89+2.80 1.42+0.99
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LP-DCNN 96.5+2.9 2.26+1.31 0.78+0.58
Whole dataset” MP-DCNN 95.4+4.8 2.80+2.00 1.03+1.10
SP-DCNN 95.2+4.5 2.92+1.93 1.04+0.85

®Data are mean * standard deviation.

" Two-tailed pairedt-test was used to examine the differences in the pairwise performances in the whole data set between
the DCNN models (LP-DENN vs MP-DCNN, LP-DCNN vs SP-DCNN, and MP-DCNN vs SP-DCNN):

P-values of POA are p<0.001, p<0.001 and p=0.046.

P-values of Hdistare p<0.001, p<0.001 and p=0.044.

P-values of AvgDist are p<0.001, p<0.001 and p=0.662.

Table 3. Comparison of three loss functions on the test images from 10-fold cross validatic
637 MLO-view DFMs and 92 MLO-view DMs. The LP-DCNN model was used.

Loss function POA (%) Hdist (mm) AvgDist (mm)
BCEL 96.8+2.0 2.18+1.17 0.73+0.41
DFM DL 95.814.5 2.59+1.96 1.02+1.49
POAL 96.0+£3.5 2.63+1.78 0.93+0.96
BCEL 94.9+5.0 2.85+1.78 1.11+£1.03
DM DL 94.0+4.6 3.58+2.54 1.30+0.94
POAL 94.1+4.7 3.63+£2.76 1.2940.99
BCEL 96.5+2.9 2.26+1.31 0.78+0.58
Whole
. DL 95.6+4.8 2.72+2.22 1.05%£1.53
dataset
POAL 95.7+3.9 2.76+2.08 0.98+1.03

®Data are mean '+ standard deviation.

*Two-tailed paired t-test was used to examine the differences in the pairwise performances in the whole data set
between the loss functions (BCEL vs DL, BCEL vs POAL and DL vs POAL):

P-values of POA are p<0.001, p<0.001 and p=0.274.

P-values of Hdist are p<0.001, p<0.001 and p=0.561.

P-values of AvgDist are p<0.001, p<0.001 and p=0.173.
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Table 4. Comparison of the DCNN trained on mixed DFM and DM with the DCNN traine
either DEM or DM on the test images from 10-fold cross validation. The LP-DCNN and |
functioniwere used. The test results from the DCNN trained on DFM alone and the

trained on. DM alone were also combined into a whole data set for comparison.

Test Training POA (%) Hdist (mm) AvgDist (mm)
Mixed DFM and DM 96.8+2.0 2.18+1.17 0.73+0.41

oM Only DFM 95.7+4.5 2.64+2.15 0.95+1.32
Mixed DFM and DM 94.915.0 2.85+1.78 1.11+1.03

oM Only DM 87.9+11.8 5.41+3.72 2.09+1.54
Whole Mixed DFM and DM 96.5+2.9 2.26+1.31 0.78+0.58
dataset” Only DFM and only DM 94.746.5 2.99+2.57 1.09+1.40

®Data are mean + standard deviation.

*Two-tailed paired t-test was used to examine the differences in the pairwise performance measures in the whole
data set between:the:DCNN trained on mixed DFM and DM and the DCNN trained on either DFM or DM:

P-values of POA, Hdistrand AvgDist are p<0.001, p<0.001 and p<0.001.

Table 5. Comparison of DCNN method and TFO method on test images from 10-fold
validation using 637 MLO-view DFMs and 92 MLO-view DMs. The LP-DCNN model
BCEL loss function were used.

Method POA (%) Hdist (mm)  AvgDist (mm)
LP-DCNN 96.8+2.0 2.18+1.17 0.73+0.41
oM TFO 95.0+3.6 3.45+2.16 1.12+0.82
LP-DCNN 94.9+5.0 2.85+1.78 1.11+1.03
oM TFO 89.3+12.7 5.37+4.74 2.54+4.04
Whole dataset’ LP-DCNN 96.5%2.9 2.26x1.31 0.78+0.58
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TFO 94.2+6.1 3.69+2.79 1.30+1.69

®Data are mean * standard deviation.

" Two-tailed paired t-test was used to examine the differences in the pairwise performance measures in the whole

data set between the LP-DCNN and the TFO methods:

P-values of POA, Hdist and AvgDist are p<0.001, p<0.001 and p<0.001.

Table 6. Comparison of the performance measures obtained with the DCNN method ar
method oranindependent test set of 203 DMs.

Method POA (%) Hdist (mm) AvgDist (mm)
. LP-DCNN 93.716.9 3.80+3.21 1.49+1.62
Independent test set
TFO 86.9+16.0 7.18+14.22 3.98+14.13

®Data are meany#/standard deviation.

"Two-tailed paired t-test was used to examine the differences in the pairwise performance measures in the
independent test set between the LP-DCNN and the TFO methods.

P-values of POA, Hdist and AvgDist are p<0.001, <0.001, and p=0.013.

Table 7. Effect of the variability in the radiologist’s manually identified pectoral muscle boundary.
The comparison between pectoral muscle boundaries by the DCNN and TFO methoc

106 MLO-view mammograms. R1 and R2 denote the first reading and second readin
same experienced MQSA radiologist.

POA (%) Hdist (mm) AvgDist (mm)
R1 vs R2 92.8+4.9 4.44+2.62 1.73£1.31
TFO vs R1 93.3#5.1 4.13+2.60 1.46+1.18
LP-DCNN vs R1 95.3+4.6 2.80+2.01 0.96+0.87
TFO vs R2 91.3+6.2 4.28+2.96 1.974£2.09
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LP-DCNN vs R2 92.0+5.9 3.68+2.43 1.66+1.41

?Data are mean # standard deviation.
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