Cols European Journal of
 Inorganic Chemistry

Supporting Information

N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox-Leveling, High Mn Oxidation States, and a $\mathbf{M n}_{2} \mathbf{O}_{2}$ Dimer Competent for Catalytic Oxygen Evolution

Hannah M. C. Lant, Thoe K. Michaelos, Liam S. Sharninghausen, Brandon Q. Mercado, Robert H. Crabtree,* and Gary W. Brudvig*

Table of Contents:

1. Synthesis, Characterization, and Electrochemical Measurements of 1-5.

Figure S1	IR spectra of $\mathbf{2}$ and $\mathbf{3}$.	S2
Figure S2	UV-visible spectrum of $\mathbf{2}$	S3

Figure S2 UV-visible spectrum of 2. S3
Figure S3 UV-visible spectrum of $3 . \quad$ S3
Figure S4 Mass-spectrum of 2. S4
Figure S5 Mass-spectrum of $3 . \quad$ S4
Figure S6 Diagram defining cis v trans geometry of waters in X-ray structure S6
Table S1 Results from a Cambridge Crystallographic Database search to S6 highlight unusual geometry of water binding in 2.
Figure S7 Sample oxygen evolution trace with $\mathbf{1}$ and $\mathbf{2}$. S10
Figure S8 Logarithmic plot of rate of O_{2} evolution on $\left[\mathrm{KHSO}_{5}\right]$ with $2 . \quad \mathrm{S} 10$
Figure S9 Scan rate dependence on CVs of $1 . \quad$ S11
Figure S10 Bulk electrolysis of $\mathbf{1}$ at 1.2 V . S11
Figure S11 Bulk electrolysis of $\mathbf{1}$ at 930 mV . S 12
Figure S12 Scan rate dependence on CVs of $2 . \quad$ S12
Figure S13 Sample O_{2} evolution trace from attempts to probe 2 for S13 electrocatalytic WO catalysis.
Figure S14 CV of 5 and $\mathbf{3}$. S14
Figure S15 Sample chronoamperogram from spectroelectrochemical S14 experiments.
Figure S16 Spectroelectrochemistry of $\mathbf{5}$. S15
Figure S17 Spectroelectrochemistry of 3. S15
2. Crystallographic Information
2.1 Experimental
2.2 Details for Diffraction and Refinement for 2.

Figure S18 Thermal ellipsoid diagram for $\mathbf{2}$ with full numbering scheme. S16
Table S2 Hydrogen bonds for 2 . S17
Table S3 Crystal data and structure refinement for $2 . \quad$ S17
2.3 Details for Diffraction and Refinement for 3.

Figure S19 Thermal ellipsoid diagram for $\mathbf{3}$ with full numbering scheme. S18
Table S4 Hydrogen bonds for 3 S19
Table S5 Crystal data and structure refinement for 3. S19
2.4 Details for Diffraction and Refinement for 4.

Figure S20 Thermal ellipsoid diagram for $\mathbf{4}$ with full numbering scheme. S20
Table S6 Crystal data and structure refinement for $4 . \quad$ S21
3. References

1. Synthesis, Characterization, and Electrochemical Measurements of 1-5.

Figure S1. IR spectra of $\mathbf{2}$, and $\mathbf{3}$.

Figure S2. UV-visible spectrum of $\mathbf{2}$ in MeCN, with inset showing peaks in the UV region. Concentration of solution showing visible features is $4.76 \times 10^{-4} \mathrm{M}$, where the solution for the inset is $1.76 \times 10^{-5} \mathrm{M}$.

Figure S3. UV-visible spectrum of $\mathbf{3}$ in MeCN, with inset showing peaks in the UV region. Concentration of solution showing visible features is $6.13 \times 10^{-4} \mathrm{M}$, where the solution for the inset is $2.27 \times 10^{-5} \mathrm{M}$.

Figure S4. Mass spectrum of 2. The complex, which is observed as a monocation with one triflate counterion but no water ligands, appears to desolvate upon injection into the instrument, as is commonly observed with water-ligated $\mathrm{Mn}_{2}(\mu-\mathrm{O})_{2}$ and $\mathrm{Mn}_{4}(\mu-\mathrm{O})_{5}$ complexes. ${ }^{1,2,3}$

Figure S5. Mass spectrum of 3. The complex, which is observed as a monocation appears to lose the proton on the bipyalk ligand.

Figure S6. Cis versus trans geometry of waters for dimers of the type $\left[\mathrm{Mn}_{2}(\mu-\mathrm{O})_{2}(\mathrm{~L})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ documented in the Cambridge Crystallographic Database, tabulated in Table 1.

Table S1. Results from a search in the Cambridge Crystallographic Database for $\mathrm{Mn}_{2}(\mu-\mathrm{O})_{2}$ dimers. Note that all results except $\mathbf{2}$ feature a trans geometry of bound waters at each Mn center, and all but $\mathbf{2}$ are isolated and crystallized in the $\mathrm{Mn}_{2}{ }^{111, \mathrm{VV}}$ state.
${ }^{a}$ Dimer crystallizes in $\mathrm{P}-1$ spacegroup, but inversion center is not found within the diamond core. ${ }^{b}$ Dimer crystallizes in P -1 spacegroup, features inversion center in the center of diamond such that manganese atoms are crystallographically equivalent.
${ }^{c}$ Dimer crystallizes in $\mathrm{P} 2_{1} / \mathrm{c}$ spacegroup, but inversion center is not found within the diamond core. ${ }^{d}$ Dimer crystallizes in $\mathrm{P}_{1} / \mathrm{c}$ spacegroup, features inversion center in the center of diamond such that manganese atoms are crystallographically equivalent.

4.

cDAPRAP 1
5. $\quad\left[\left(\mathrm{OH}_{2}\right)(\text { EtO-terpy }) \mathrm{Mn}^{\text {II' }}(\mu-\mathrm{O})_{2} \mathrm{Mn}^{\text {IV }}(\text { EtO-terpy })\left(\mathrm{OH}_{2}\right)\right]^{3+} \quad{ }^{b}$ DAPRET 1 91.94, 185.59

6.

${ }^{b}$ DAPRIX 1 94.27, 183.65

7. $\left(\mathrm{OH}_{2}\right)($ terpy $) \mathrm{Mn}^{\text {III }}(\mu-\mathrm{O})_{2} \mathrm{Mn}^{\mathrm{IV}}($ terpy $\left.)\left(\mathrm{OH}_{2}\right)\right]^{3+}$
${ }^{b}$ FIQFIU
94.08,
183.45

8.

${ }^{d}$ GETTOQ 3
93.43, 184.11

9.
$\left(\mathrm{OH}_{2}\right)($ mes-terpy $) \mathrm{Mn}^{\mathrm{III}}(\mu-\mathrm{O})_{2} \mathrm{Mn}^{\mathrm{IV}}($ mesterpy)(OH_{2})] ${ }^{3+}$
93.49, 184.72

10. $\quad\left(\mathrm{OH}_{2}\right)($ bipyalk $) \mathrm{Mn}^{1 v}(\mu-\mathrm{O})_{2} \mathrm{Mn}^{\mathrm{N}}($ bipyalk $\left.)\left(\mathrm{OH}_{2}\right)\right]^{3+}$

This 92.92, work 93.30

Figure S7. Typical oxygen-evolution trace. 2, red, $(50 \mu \mathrm{M})$ is injected into Clark electrode at $t=0$ containing solution of $10 \mathrm{mM} \mathrm{KHSO}_{5}$. This is compared against a typical oxygen evolution trace observed when 1 is "preoxidized" in a concentrated solution of KHSO_{5} prior to being injected into a solution of $10 \mathrm{mM} \mathrm{KHSO}_{5}$ sacrificial oxidant in the Clark electrode chamber such that the final concentration is $50 \mu \mathrm{M}$. The dotted grey line shows the oxygen evolution trace of 2 with product oxygen values divided by two to normalize for total Mn content.

Figure S8. Logarithmic plot of dependence of rate of O_{2} evolution on $\left[\mathrm{KHSO}_{5}\right]$, where $[2]=50 \mu \mathrm{M}$.

Figure S9. Scan rate dependence on CVs of 1. Conditions: 2.5 mM in 0.1 M acetate buffer at pH 4.47 , GC working electrode, Pt wire counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode.

Figure S10. Bulk electrolysis at 1.2 V vs. NHE of $\mathbf{1}(2.0 \mathrm{mM})$ in 0.1 M acetate buffer at pH 4.47 with a platinum basket working electrode, platinum mesh counter electrode, and $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. Integrated charge passed is 4.05 C or $2.5010^{19} \mathrm{e}^{-}$. For a two-electron oxidation at this concentration, theoretical number of electrons passed is $2.54 \times 10^{19} e^{-}$.

Figure S11. Bulk electrolysis at 930 mV vs. NHE of $\mathbf{1}(1.0 \mathrm{mM})$ in 0.1 M acetate buffer at pH 4.47 with a platinum basket working electrode, platinum mesh counter electrode, and Ag/AgCl reference electrode. Integrated charge passed is 1.078 C or $6.73 \times 10^{18} \mathrm{e}^{-}$. For a one-electron oxidation at this concentration, theoretical number of electrons passed is $1.15 \times 10^{19} \mathrm{e}^{-}$.

Figure S12. Scan rate dependence on CVs of 2. Conditions: 2.5 mM in 0.1 M acetate buffer at pH 4.47 , GC working electrode, Pt wire counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode.

Figure S13. Sample O_{2} evolution traces from Clark electrode from attempts to probe for electrocatalytic water-oxidation activity of $\mathbf{1}$ showing no O_{2} evolution was observed over background levels. A stock solution of complex, pretreated with 2 equivalents of KHSO_{5} in the blue trace, was injected into the Clark electrode chamber at time $=0$ sec such that the final concentration was $500 \mu \mathrm{M}$. Potential was applied at time $=60 \mathrm{~s}$. Conditions: Pt working electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode, Pt wire counter electrode, $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ at 1.6 V applied potential vs.

NHE. Other conditions assayed included potentials ranging from 1.2 V to 1.8 V , use of glassy carbon working electrode, and 0.1 M acetate buffer. Similar results were seen in other cases, and no O_{2} was observed above background levels in any case.

Figure S14. CV of 5 and $\mathbf{3}$. Conditions: 2.5 mM in 0.1 M tBuN $\mathrm{N}_{4} \mathrm{PF}_{6}$ at in MeCN . GC working electrode, Pt wire counter electrode, Ag wire pseudo reference electrode, referenced against an internal ferrocene standard to express as NHE.

Figure S15. Sample chronoamperogram from spectroelectrochemical experiments. Current plateau by the end of the experiment indicates equilibrium at the applied potential has been reached. The sample CA above is from an electrolysis of 3 as shown in Fig. S 17 above at 2.5 mM in a $0.1 \mathrm{M} \mathrm{NBu}_{4} \mathrm{PF}_{6} / \mathrm{MeCN}$ solution at the intermediate potential of 1.05 V for 15 minutes.

Figure S16. Spectroelectrochemistry of $5(2.5 \mathrm{mM})$ in a $0.1 \mathrm{M} \mathrm{NBu} \mathrm{NF}_{6} / \mathrm{MeCN}$ solution. Potentials were applied for 15 minutes each in increasingly oxidizing steps as indicated. The dashed line shows a normalized spectrum of $\mathbf{3}$ for comparison.

Figure S17. Spectroelectrochemistry of $3(2.5 \mathrm{mM})$ in a $0.1 \mathrm{M} \mathrm{NBu}{ }_{4} \mathrm{PF}_{6} / \mathrm{MeCN}$ solution. Potentials were applied for 15 minutes each in increasingly oxidizing steps as indicated.

2. Crystallographic Information:

2.1 Experimental:

Low-temperature diffraction data (ω-scans) were collected on a Rigaku SCX Mini diffractometer coupled to a Rigaku Mercury275R CCD for structure 2 with Mo Ka radiation ($\lambda=0.71073$ Å). Similar data were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu Ka ($\lambda=1.54178 \AA \AA$) for the structures 3 and 4. The diffraction images were processed and scaled using CrystalClear 2.0 r15 for 2 and 4; Rigaku Oxford Diffraction ver. 1.171.39.16b for 3. The structures were solved with SHELXT and were refined against F^{2} on all data by full-matrix least squares with SHELXL. All non-hydrogen atoms were refined anisotropically. Unless stated otherwise, hydrogen atoms were first found in the difference map and then included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of 2-4 can be found in the full details of the X-ray structure determination (CIF), which are included as Supporting Information. CCDC files 1872330(2), 1872331 (3), and 1872332 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
2.2 Details for Diffraction and Refinement for 2.

Figure S18. Thermal ellipsoid diagram for $\mathbf{2}$ with complete numbering scheme. Thermal ellipsoids are displayed at the 50% probability level.

Table S2. Hydrogen bonds for $2\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

D-H..A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$O(1)-H(1 B) \ldots O(8)$	$0.82(4)$	$1.80(4)$	$2.617(3)$	$176(4)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(13)$	$0.74(4)$	$2.00(4)$	$2.690(3)$	$156(4)$
$\mathrm{O}(6)-\mathrm{H}(6 \mathrm{~B}) \ldots \mathrm{O}(5) \# 1$	$0.77(4)$	$1.95(4)$	$2.709(3)$	$171(4)$
$\mathrm{O}(6)-\mathrm{H}(6 \mathrm{~A}) \ldots \mathrm{O}(7)$	$0.81(5)$	$1.88(5)$	$2.667(3)$	$164(4)$
$\mathrm{O}(7)-\mathrm{H}(7 \mathrm{~B}) \ldots \mathrm{O}(10) \# 1$	$0.75(4)$	$2.10(4)$	$2.851(3)$	$173(4)$
$\mathrm{O}(7)-\mathrm{H}(7 \mathrm{~A}) \ldots \mathrm{O}(12) \# 2$	$0.75(5)$	$2.00(5)$	$2.748(3)$	$174(4)$

Symmetry transformations used to generate equivalent atoms:

$$
\# 1-x+1,-y+1,-z+2 \quad \# 2-x+2,-y+1,-z+2
$$

Table S3. Crystal data and structure refinement for 2.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Crystal color and habit Diffractometer
Theta range for data collection
Index ranges
Reflections collected Independent reflections
Observed reflections (I > 2sigma(I))
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Solution method
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(l)]
R indices (all data)
mini-16006
C14.50 H17 CI F3 Mn N2 O6.50 S
502.75

93(2) K
0.71075 Å

Triclinic
$\mathrm{P}-1$
$a=11.2035(3) \AA \quad a=96.6660(19)^{\circ}$.
$b=13.6612(3) \AA \quad b=107.783(2)^{\circ}$.
$c=14.3304(3) \AA \quad g=107.945(2)^{\circ}$.
1932.70(9) \AA A

4
$1.728 \mathrm{Mg} / \mathrm{m}$
0.996 mm

1020
$0.200 \times 0.200 \times 0.200 \mathrm{~mm}$
Green Block
Rigaku Mercury275R CCD
1.950 to 26.388°.
$-13<=h<=13,-17<=k<=17,-17<=\mathrm{l}<=17$
31014
$7858[\mathrm{R}(\mathrm{int})=0.0229]$
6986
99.8 \%

Semi-empirical from equivalents
1.00000 and 0.97097

SHELXT-2014/5 (Sheldrick, 2014)
SHELXL-2014/7 (Sheldrick, 2014)
7858 / 0 / 657
1.042
$R 1=0.0408, w R 2=0.0982$
$R 1=0.0477, w R 2=0.1032$

Extinction coefficient Largest diff. peak and hole
n/a
1.260 and -1.603 e. \AA°

2.3 Details for Diffraction and Refinement for 3.

Refinement Details:

In the DCM solvent molecule, Cl 1 is disordered over two positions (40:60). A rigid body (RIGU) restraint was used for $\mathrm{Cl} 1 \mathrm{~A}, \mathrm{C} 27, \mathrm{Cl} 2$ and $\mathrm{Cl1B}, \mathrm{C} 27, \mathrm{Cl} 2$ with sigma for 1-2 distances of $0.004 \AA$ and sigma for $1-3$ distances of $0.004 \AA$. For the DCM molecule, hydrogen atoms were generated with respect to the disordered riding atoms.

Figure S19. Thermal ellipsoid diagram for $\mathbf{3}$ with complete numbering scheme. Thermal ellipsoids are displayed at the 50% probability level.

Table S4. Crystal data and structure refinement for 3.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color and habit
Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed reflections (l > 2sigma(l))
Completeness to theta $=66.991^{\circ}$
Absorption correction
Max. and min. transmission
Solution method
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(l)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

C27 H29 Cl2 F12 Mn N4 O2 P2
857.32

293(2) K
1.54184 Å

Triclinic
P-1
$a=10.3726(4) \AA \quad a=85.762(3)^{\circ}$.
$b=13.0872(5) \AA \quad b=85.181(3)^{\circ}$.
$c=13.7851(5) \AA \quad g=67.805(3)^{\circ}$.
1724.72(12) \AA

2
$1.651 \mathrm{Mg} / \mathrm{m}$
6.327 mm

864
$0.1 \times 0.1 \times 0.05 \mathrm{~mm}$
Red Plate
Rigaku MicroMax-007HF
3.221 to 66.991°.
$-12<=h<=12,-15<=k<=15,-16<=\mathrm{l}<=16$
60764
6046 [R(int) $=0.0579]$
5847
98.1 \%

Semi-empirical from equivalents
1.00000 and 0.71781

SHELXT-2014/5 (Sheldrick, 2014)
SHELXL-2014/7 (Sheldrick, 2014)
6046 / 15 / 469
1.050
$R 1=0.0404, w R 2=0.1032$
$R 1=0.0415, w R 2=0.1040$
n/a
0.667 and -0.614 e. \AA.

Table S5. Hydrogen bonds for 007-15137 [\AA and ${ }^{\circ}$].

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1) \ldots \mathrm{F}(11)$	$0.65(4)$	$2.14(4)$	$2.788(3)$	$175(5)$

2.4 Details for Diffraction and Refinement for 4.

Refinement Details:

Both PF groups are disordered over 2 positions. The disordered positions were first refined independently of each other. The site occupancies of the major and minor components of each PF were found to be nearly identical and were subsequently linked by the same free variable. The four sets of atoms which make up the disordered models are: \{P1 F1 F2A F3A F4A F5A F6A\}, \{P1 F1 F2B F3B F4B F5B F6B \}, \{P2 F7 F8A F9A F10A F11A F12\}, \{P2 F7 F8B F9B F10B F11B F12\}. The atoms of the major and minor components were distinguished with the suffixes "A" and "B", where their site occupancy factors refined to values of $0.70(1)$ and $0.30(1)$, respectively. The program SQUEEZE was used to compensate for the contribution of disordered solvents contained in voids within the crystal lattice from the diffraction intensities. This procedure was applied to the data file and the submitted model is based on the solvent removed data. Based on the total electron density found in the voids (18.6 e/ \AA), it is likely that ~ 2 water molecules are present in the unit cell. See "_platon_squeeze_details" in the CIF for more information.

Figure S20. The complete numbering scheme of 4 with 50% thermal ellipsoid probability levels. The hydrogen, fluorine and phosphorus atoms are shown as circles for clarity. The dashed bonds highlight disordered positions.

Table S6. Crystal data and structure refinement for 4.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(l)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

007-16120
C26 H26 F12 Mn N4 O2 P2
771.39

93(2) K
1.54178 Å

Triclinic
$\mathrm{P}-1$
$a=11.9537(8) \AA \quad a=116.911(4)^{\circ}$.
$b=12.4244(9) \AA \quad \beta=102.591(7)^{\circ}$.
$c=12.5022(13) \AA \quad Y=97.214(5)^{\circ}$.

2
$1.641 \mathrm{Mg} / \mathrm{m}^{*}$
5.379 mm

778
$0.050 \times 0.010 \times 0.010 \mathrm{~mm}$
3.921 to 68.280°.
$-14<=h<=14,-14<=k<=14,-14<=l<=14$
55551
$5518[R($ int $)=0.1839]$
97.6 \%

Semi-empirical from equivalents
1.000 and 0.703

Full-matrix least-squares on F^{2}
5518 / 225 / 511
0.947
$R 1=0.0662, w R 2=0.1671$
$R 1=0.0929, w R 2=0.1805$
0.0040(5)
0.562 and -0.579 e. \AA.

3. References:

[1] H. Chen, R. Tagore, S. Das, C. Incarvito, J. W. Faller, R. H Crabtree, G. W. Brudvig, Inorg. Chem. 2005, 44, 7661-7670.
[2] M. N. Collomb, A. Deronzier, A. Richardot J. Pecaut, New J. Chem. 1999, 23, 351353.
[3] H. Chen, J. W. Faller, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2004, 126, 7345-7349.
[4] H. Yamazaki, S. Igarashi, T. Nagata, M. Yagi, Inorg. Chem. 2012, 51, 1530-1539.

