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Abstract
Objectives: To develop a tNet based deep learning approackhdl) for bladder segmentation in
computed temographyrography (CTU)as a part of a computassisted bladder cancer detection
and treatment response assessment pipeline
Materials and_Methods. A datasetof 173 cases including 81 cases in traihmafidation set (42

masses21with wall thickening, 18 normal bladders), and 92 cases in the test spta@:s36
with wall thickening, 13 normal bladders) wetsed with Institutional Review Board (IRB)
approval. An_experienced radiologist provided 3D hamdtlinesfor all cases as the reference
standard We™ previously developed a bladder segmentation method that used -kataem
convolution“neural network andevel sets (DCNMNLS) within a useiinput bounding box.
However, some cases with poor image quality or with advanced bladder carealirgpinto the
neighboring, organs caused inaccurate segmentation. We have newly developennatedut)
DL method to stimate dikelihood map of the bladder in CTU. The DL did na require a user
input box and._the level sets for pgsbcessing. To identify the best model for this task, we
compared thefollowing modelgl) 2D UDL and 3D UDL using 2D CT slices andCB CT
volumes, respectively, as input, (2)[Ls using CT images of different resolutions as input, and (3)
U-DLs with and without automated cropping of the bladder as an image preprocessinglbee

segmentation accuracy relative to the reference sthnaas quantified bysix measures: average

This article is protected by copyright. All rights reserved


mailto:lhadjisk@umich.edu�

volume intersection ratio (AVI), average percent volume error (AVE),ageeabsolute volume
error (AAVE), average minimum distance (AMDgyerage Hausdorff distance (AHDgnd the
averagelaccard indexAJIl). As a baselinethe resultdrom our previousDCNN-LS methodwere
used

Reaults: In the.test set, the best 2DL model achieved AVI, AVE, AAVE, AMDAHD, andAJl
values of 93.4+9.5%4.2+14.2%, 9.2+11.5%, 2.7+2.5 mm, 9.7+7.6 n@5,0+11.3% respectively,
while the' 'corresponding measures by the best 3MDLUwere 90.6+11.9%,-2.3£21.7%,
11.5+18.5%,"31£3.2 mml1.4+10.0 mm,and 82.6+14.2%, respectively. For comparison, the
corresponding Vvalues obtained with the baselmethod were 81.9+12.1%,10.2+16.2%,
14.0+£13.0%y 346+2.0 mni,2.8£6.1 mmand 76.2+11.8%, respectively, for the same test Skie
improvement-for all measuresetween the best -DL and the DCNNLS were statistically
significant (p<0.001).

Conclusion: Compared to previous DCNNS method, which depended on a disgut bounding
box, the UDL provided more accurate bladder segmentation and was more automated than the

previous approach.

KEYWORDS. ComputerAided Detection, Deepearning, Segmentation, GJrography, Bladder

l. INTRODUCTION

Bladder.cancer is a common cancer that can cause substantial morbidity andymoitak
American Cancer Societgstimatesthat in 2018 alonethere will beabout 81,190 nevbladder
cancer casesicluding 62,380 in men and 18,810 in womemd about 17,240 deathscluding
12,520 men.and.4,720 wominthe United Statés

Multi-detector row CT (MDCT) urography is the most effective imaging modédity
urinary tractyrassessmentising a combinéion of unenhanced corticomedullaryphase,
nephrographighase and excretophaseseries It can detecta wide range of urinary tract
abnormalities”®. A single MDCT urogram (CTU)can be used to evaluate various application

including the kidneys, intrarenal collecting systears] ureter§”. For eachCTU examinationon
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averageat least 300 slices are generatesing slice reconstructionintervak of 1.25mm (range:
200-600 slices) Each examinatiomay contain multiple lesionas well as a variety different
urinary anomalies Therefore, it usually takes considerable time and effrtradiologists to
interpreta CTU studyaccurately Not surprisingly, tease detection rates are variable. For
example, reported sensitivity rates for detecting bladder cancer hadn@mdgg9% to 9296,

Computeraided detection (CAD) is a technology that may help radiologists in detection of
bladder canceand reducing the workload We are developing a computaded decision support
system for "bladder cancer detection and treatmresponse assessment (CBDBS Accurate
segmentation of the bladdersG@TU is a critical component for CDSE®.

Accuratessegmentation of the bladders in CTU remains a challenging prob@m.
excretory phase imag, the bladder often contains regions filled with and withexdreted
intravascular contrast materialThe boundaries between the bladder wall and the surrounding soft
tissue may be difficult to identify when the adjacent bladder lumen is not opdmitadise of their
low contrast.._In additiordifferent bladder shapesdsizesand different abnormalitiemay cause
inaccurate segmentation.

A number of studies have been conducted to segment the bladakffesant imaging
modalities“=kFor magnetic resonance imaging (MRI), several lseebased segmentation methods
have been.deVeloped to segment the bladaéls. Duan et af® segmented #bladder wall using
a coupled leveset approach on Feighted MR images in 6 patientsChi et al** segmented the
inner bladder wall using a geodesic active contour maadi2-weighted image angegmented the
outer wall usingythe constraint of maximum wall thickness inwElghted image in 11 patients.
Han et al*> segmiented the bladder wall using an adaptive Markov random field model and coupled
levelset informatioron T1-weighted MR image# 6 patients Qin et al.'® proposed an adaptive
shape prior constrained levett algorithm ér bladder walls segmentation ®8-weighted images in
11 patients. These leveket approaches are timmensuming and difficult to define a stopping

criterion. Xu_et al. '

introduced a continuous mdbow framework with global convex
optimization.teachiee more efficient bladder segmentation T2-weighted images in 5 patients.
These methodsieredeveloped for MR imageandonly validated with verysmall datasst Chai

|l5

et al ™ developed a serdutomatic bladder segmentation method for CT images using a statistical

shapebased segmentation approach in 23 patients. Hadjiiski Btd&signed a Conjoint Level set
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Analysis and Segmentation System (CLASS) for bladder settion in81 CTU examinations
However,the limitation of these studies is tls&rong dependence anitialization and the small
validation dataset.

Deep convolution neural network (DCNM)an emerging techniqubathas been shown to
be particularly.successful in the task of classifying natural imagesy large training ses *'.
Convolutional neural networkaere successfullyapplied to classify patterns in medical images
1990's*®# =wepreviously explored the application of DCNN to blada@gnsentation in CTU3>
The developed'method used&NN and level sets (DEN-LS) within a usefinput bounding box
The DCNNLS provides a seamless mask to guide level set segmentaftiaine bladder The
DCNN-LS wasssuperior tanany gradienbased segmentation methodsch as CLASS but
inaccurate segmentation occurred in some cases thapdmdmage quality or in caseswhere
advanced bladder cancer had spread into neighboring ofyaesentstudy? reported theraining
of adeep learningpased modethatinvolveda convolutional neural network (CNN) and a 3D fully
connected conditional random fields reemtr neural network (CRRNN) to perform bladder
segmentatiomyusing 100 training and 24 test CT images.

In this study, we developeal newU-Net ** based deep learning {DL) model for bladder
segmentation_in CTU. In comparisonto DCNN-LS, which was trained with ROIs inside and
outside thesbladder within a useput bounding box, tDL usedwhole 2D CTU slices or 3D
volume as input. The DL model did nat require a useinput box and level sets for pest
processing. JTo evaluatethe effectivenes®f U-DL, we compared itperformance to our previous
DCNN-LS methoed and other ndDCNN methods

2. MATERIALSAND METHODS
2.1 Data set
A data_ set including CTWscars from 173 patients was collected from the Abdominal
Imaging Division of the Department of Radiology at the University of Michigdah Institutional
Review Board(IRB)approval.All patients subsequently underwent cystoscopy and biop¥ye
split the datarset into 81 training/validation and 92 independent test cases. fiChéyddf the
cases between the training/validation set and independent test set was balanced wherthrgplitting

Cases.
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All of the CTU scans were acquired with GE Healthcare LightSpeed MDCT scarsiegs
120 kVp and 126280 mA and reconstructed at a slice interval of 1.25 mm or 0.625 mim this
study, we used only the latest obtained congasianced images, uslyaéxcretory phase images,
which were obtained 12 minutes after the initiation of a dynamic intravenousa behlisompf 125
mL of nonionie,contrast injection (Isovue 300, Bracco). In many patients, theezk@@ntrast
material layered/dependently ihe bladder and only patrtially filled the bladder lumen. This was
because patients'were not turned/moved prior to image acquisition.

Of the"81 training/validation cases, 42 tiadal bladder massg2 benign and 40 malignant)
21 had bladder with wall thickening (5 benign and 16 malignant), and the remaining 18 iatl nor
bladders Within, the 81 bladders, 61 bladders were fillgartially with excretedintravenous
contrast materialgight bladders were filleccompletelywith excretedcontrast material, and the
remaining 12 were not filled with anysible excreteadtontrast material. Of the 92 independent test
cases, 43 had focal bladder magdelsenign and 42 malignant), 36 had bladder with wall thickening
(5 benign and 16 alignan), andthe remainingl3 had normal bladders Within the 92 bladders,
85 bladdersswere fillecpartially with excretedintravenous contrast materidgur bladders were
filled completely‘withexcretedcontrast material, and the remainitigee werenot filled with any
visible excretedcontrast material. The conspicuityof the bladdersn both sets was medium to
high.

A graphical user interface was used for interactive tracking of the bladder boundaries in
CTU. An experienced radiologist marked thpproximate first and the last slice enclosing the
bladder for each,case. The first and last CT slice enclosing the bladder wkte approximately
extract a smaller stack of CT slices as input to the 3DLUo reduce processing time and required
GPU nemory during training and testingFor all 173 cases8D handoutlineswere also provided
by the radiologist as reference standardlhe boundaryof the bladder on every 2D slice was
outlined and.then used to generate the 3D surface contour of the bladdemrmanuallysegmented
bounday in each/case wabken used to generadebinary maskwhichseparated the bladder region
and the background region and guided the training of tbd.lU- There were ;629 bladder slices in
the 81 training/validation casesd 8,553 bladder slices in the 92 independent test cases.

2.2 Bladder segmentation using the U-Net based deep learning (U-DL) model
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The segmentation methodge exploredin this studyare basedn the UNet neural network
architecture Kera$® with Tensorflow backendvere usedto implement the neural networkVe
have modified anédjustedthe structure and some parameter&Jefiet in order to obtain the best
structure for the bladder segmentation task. For convenience we referred todifisdnU-Net
neural network.,at)-Net Deep Learning (ADL) in our study.Different U-DL models were trained
to segment the bladderWe have designed antbmpared the followindgJ-DL models:(1) 2D U-
DL and 3D"'YDL"using2D CT slices and 3D CT volumes, respectively, as input, {PLE usng
CT images 'ofdifferent resolutions as input, and (@)IL$ with and without automated cropping of

the bladder as an image preprocessing step.

2.2.12D U-DE

For each \CTU, we configured 2D U-DL structurebased on2D U-Net to estimate a
likelihood map of the bladdeslice by slice The U-DL was trained with the 2D slices of the cases
in the training set.The approximate first and the last slice enclosing the bladdarked by
radiologist wererused to exclude the CTU slieathout bladder for each case to reduce the
processing timeAll 2D CTU slice containing bladdevereused as inpstto the 2D UDL without
theneed fora bounding baround the bladdefhe 2D UDL is trained with the target binary mask
generated.from thmanually segmented bladder boundafyhe same slicasthe expecteadutput.
After training, for a given input 2D slice, the output of 2EDU is a bladder likelihood map of the
slice. The 2D likelihood mapsver the consecutive @Islicesconstitutes a 3D likelihood mayf
the bladders Figure 1 shevexamples of thenput and the corresponding training target binary
maskof the 2D.UDL.

The (architecture of the 2D-DL is illustrated inFigure 2 This network consisteaf a
contractingpath to capturethe context with multiresolution features and a symmetric expanding
path to identify.the bladder region. The repeated application of twd added convolutions
wereused in.the contracting path, each convolution |&ywwed by a rectified linear unit (ReLU)
and a 2x 2 max pooling operation with stride 2 fiature maglownsampling. The same padding
was applied*ta.the convolution kernels in order to keep the spatial dimensions of the outpait feat
map the same dbose of the input feature magphich is a structural difference compared tdNet

Each layer in the expanding path consisted of an upsampling of the feature map follaweck &y
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padded convolutions witthe ReLU activation function (wgonvolution),repeated application of
two 5 x 5 padded convolutions witthe ReLU activation function and a concatenation with the
correspondingly feature map from the contracting path. The concatenatiotwafteonvolution
layers was used for better pixel localization, i.e., a class label is suppobedassigned to each
pixel. This is.another difference from theN&t. One more convolutional layer witthe RelLU
activation functionvas used and a final 1 xcbnvolution wth the sigmoid activation function was
applied to'mapeach multomponent feature vector to the probability of being insidélduder for

each pixel.

2.2.23D U-DL

In CTU, the consecutive 2D slices constitute a 3D volume. In order tevhesher3D
informationcanfacilitate accuratdladder segmentation, we configuredx 3-DL structure baed
on D U-Net *° for bladder segmentatiain CTU. Due to the limitation of the GPU memory, we
cannot input.the entire CTU scan that can exceed 300 slitke 8D UDL. A 3D volume, which
consisted ofrarfixed number of 192 slices, was used as input. The first and the lastc€Thisl
enclose the bladder marked by radiologist were used to select the 3D volumiacKred $92 slices
was centered, automatlbain the z dimension between the first and the last slice of the bladder in
the CTU velumelf the stack exceedethe CTU scanafter the automatic positioning around the
bladder,it was shifted to fit isidethe CTU scan. Thestack 0f192 slices wassufficient to enclose
the entire bladder for all casasd could fit into the memory of our GPThe 3D UDL wastrained
with the3D binary maskof the bladder generatéidm themanually segmented bladder boundasy
expectedoutputzAt deployment, the output ofCBU-DL is the 3D bladder likelihood map of the
stack of192 slices irthe CTU volume

The .architecture of the 3D -DL is illustrated in Figure 3. It was composed ohf
contracting jpath_for context features extraction and a symmetric expgratimgor segmentation
mask construction. In the contracting path, each layer contained two 3 x 3paddgd
convolutions.withthe ReLU activation function and a 2 x 2 x 2 max pooling operation with stride 2
for feature "'map downsampling. The number oftdea channels was doubled at each
downsampling step dhe 3D U-DL. The same padding was applied to the convolution kernels in

order to keep the spatial dimensions of the output feature map the same as thosgaf teature
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map, which is a structurdifference compared to-Net. Each layer in the expanding path had an
up-convolution, which was concatenated witle correspondingly feature map from the contracting
path, followed by two 3 x 3 x 3 padded convolutions wh#hReLU activation function. In the last
layer a 1x 1 x 1_convolution with the sigmoid activation function wasedto map each mulki

component feature vector to the probability of being insidéldwder for each voxel.

2.2.3 Image downsampling and cropping

To evaluae the effe¢ of image resolution on the-DL bladder segmentation, we compared
theU-DL madelswith input image oflifferent resolutios. The entire original 512x532ixel slice
was downsampled to 256x2pékel sliceby convolving the original image with a 2x2 bfiker and
downsampling with stride.Z his process essentially increased the pixel size by a factor of 2.

To study the effect of the surrounding background on bladder segmentation, wedesig
automated cropping preprocessipgpcedureand compared the -DL models with and without
automated ‘cropping preprocessing. In the automated cropping preprocessiigare region
centered atseach slice was automatically extracted. The size of the center regions was 256x256
pixels for the “612x51pixel images ad 128x128 pixels for the downsampled 256xpb&|
images. The.cropped images contained the entire bladde some surrounding backgroumas
removed

An example of the downsampling and cropping process is rshowrigure 4 After
downsampling or cropping, imagesdifferent fields of view odifferent size were generated.

2.2.4 U-DL training

The {UDL was trained using the cases in the 81 training/validation dataset. For
comparisons of differentADL models, imagegenerated bgownsamplingand/or croppindFig. 4)
were used as.input. The input slice size of the 2DLUmay be 512x512, 256x256 or 128x128.
The inputvolumesize of the 3D kDL may be 256x256x192 or 128x128x19he dimensions of
the U-DL output'bladder likelihood mapill correspond to the inpuinagedimensions.

For a®U-DL model and parameter selection, 7 cases representative of the different
appearances of the bladder in CTU were selected from the 81 training/validatieet dad used as

a preliminaryvalidation set. TheU-DL modelwastrained onthe 74 remainingtraining cases~or
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each training epoch the-DL wasdeployed orihe 7 validation casemnd the validation results were
recorded The U-DL parametersesulting inthe bestvalidation resultsvere selected. After the
final U-DL modeland parametensere selectedthe U-DL was retrained with the whole set of 81
training/validation casesusing the selected parameterand then deployed to segment the 92
independent test cases.

During U-DL training,we used anethod for efficient stochastic optimizatioalled Adant’
to optimize“the“networkby minimizing a binary crosentropy ost function. In each training
epoch, the training dataset was randomly divided into-batthes as input to theDL. We used a
Tesla K40c GPU with 12GB memory to train our models. The 3DLUstructure for annput
volume size.0f512x512x192 was too large to fit in our GPU memory. The BD &fructure for an
input volumersize 0£56x256x192 occupied approximately 11GB GPU memory so thdiatoh
size wadimited to, 1. A batch size of 2 was used for 8@ U-DL model with input volume size of
128x128x92. For the 2D kDL models, we used a batch size of 4. Within each epNch,
(number of training samples/mibatch size) iterations were applied.All weights were initialized
by a normalgdistribution with a mean of O aamdtandard deviation of 0.02The learning rate was
selected a9.0001based on the training/validation dataset as a good compromise for obtaining a
satisfactory=accuracyVe have observed that small changes in the learning rate did not influence
noticeablythe training procedure andheé model accuracylThe training was stopped at a fixed
number of epochs that wa®0for 2D U-DL and 400 for 3D kDL, for which2D U-DL and 3D U
DL reached convergence for all experiments

2.2.5 Bladder'segmentation using U-DL bladder likelihood map

Foreach CTU, thaJ-DL models output dladderlikelihood map. Each pixel value of the
map indicated the likelihood of the pixel being in the bladder region. A threshold was teeded
segment thgikelihood map intoa binary image withwo major regions, onenside and the other
outsidethe bladder. Experimentally by using the training and validatiaes, we selectedhe
threshold to.be"0.2More detailsaboutthe threshold selection are presented in sectionARdr. the
bladder candidate regiowas generated, the largest connected component was identified as the
bladder regionand converted to a binary maskhen based on the binarpask the bladder
segmentation contouvasgenerated.
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2.3 Bladder segmentation using the baseline DCNN-L S model

We previously developed a bladder segmentation method usingleepng convolution
neural network and level sets (DCNI$)*? within a user defined input bounding box. In this
study, the DCNNLS model was used as the baseline for comparison with our RBW tdodel.
Briefly, a DCNN.was trained to distinguish between the inside and the outside of the bladder using
regions of interegiROIs) extracted from CTU imagesd labelled according to their locationThe
trained DCNN"was the used to estimateltkelihood of an ROI being inside the bladder for ROls
centered at each voxel in a CTWlume Thresholding and holiling were applied to the
likelihood map to,generate the initial contour for the bladder, which was then refined by 3D and 2D

level sets.

2.4 Performance Evaluation Methods

The ‘bladder segmentatiomperformance was assessedby comparing thecomputer’s
segmentationyresults the radiologist's3D handoutlines. In order to quantifyhe segmentation
accuracywe ‘usedquantitative performancemeasures such abe volume intersection ratio, the
volume error,_the avage minimum distancghe Hausdorff distané® and the Jaccard ind&x
which weresestimated between the handutlines and computesegmented contours The
performance measures atefinedbelow and more detailsan be fond in our previous studi&?.
Let G be the radiologist’'s reference standard contour, i@ the contoubeing evaluated The

performancesmeasures are defined as:

1) Thevolume intersection ratid¢")

_VenVy

R3D
Ve

Vs andVy are the volume enclosed Byand the volume enclosed bly respectively.

2) Thevolumeséefror E°)
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The volume errorepresented the radio of the difference between the two volumes to the reference
volume, which indicates undsegmentation ithe value iositiveand indicates ovesegmentation

if the value is negative. In order to show the actual deviations frometeeence standard, the
absolute errofe®| is alsocalculated.

3) The average minimum distan@&v/DIST)

AVDIST = %(erc min{d(x,y):y € U} N Yyeymin{d(x,y):x € G})

N, Ny

The averagesminimum distance represented the average of the didtetwesn the closest points
of two contourss The number of voxels o andU are denoted bl andNy, respectively. d
denotes the Euclidean distance function. For a given voxel along the c@ntberdistance to the
closest point.along the contouris determinedand the minimum distances obtained for all points
along G are.averaged. The process is repeated by switching the rozamd U and then two
average minimum distances are averaged.

4) The Hausdorff distance (HD)

HD = max {max {min{d(x, y)}}, max {min{d(x, y)}}}
xX€G yey YEU xeg

The Hausdorif, distance measured the maximum distances between the closestopdivo
contours.

5) The Jaccard indeXIACCARD*P)
VenVy
Veu vy

where it isdefined as the ratio of the intersection betwégrandVy to the union of th&/c andVy.

JACCARD?3P =

Using“the” measures defined abotee segmentatiorperformanceof each case can be
guantifiedrelative'to the reference standard’he segmentation accuraop theentiretest setvas
then calculated as the average of each measure over all cases in the set, resulting in the following
five summary measuresverage volume intersection ratio (AVI), average percent volume error
(AVE), averagerabsolute volume error (AAVE), average minimum distance (AMirage
Hausdorff'distance (AHD), and tla@erage Jaccard indeXJl).
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3.RESULTS
3.1 Threshold selection for U-DL
The U-DL models output &ikelihood mapof the bladder in CTU. A threshold was needed
to segment_the likelihood map into a binary image. Figure 5 shovexampleof the bladder

segmentatiomesultsusing UDL from a case in the test set.

For the“likelihood map generatéy U-DL, different thresholds providedlightly different
results. In orderto select ththreshold wecompared different threshold resuits 2D U-DL and
3D U-DL trainedion 74 training cases and tested on the 7 selected validation cases. Table 1
summarizessthesresults with different threskadd the validation set.

Based‘on'the performanceeasuresn Table 1, the best performance was obtained around
thresholds of 0.1or 0.2 for both the 2D and 3D modeks s@lected the threshabdl 0.2 for both U

DL to be consistent and also to avoid using the somewhat extreme low value of 0.1.

3.2 Compar isenwaf different U-DL models

In this “study we designed and compared the followindlU models for bladder
segmatation:(1) 2D U-DL and 3D UDL using 2D CT slices and 3D CT volumes, respectively, as
input, (2) UDLs using CT images of different resolutions as input, and {BLE with and without
automated cropping of the bladder as an image preprocessing step

Initially we evaluatedhe segmentatioperformancey training on the 74 training cases and
evaluatingop~the, 7selectedvalidation cases. Table 2summarizes the results for the different
models on the«validation set. Based on the segmentation performarioce v@lidation set, the
parameterdor the final UDL modd were selected The selected model was-trained with the
whole set of 81 training/validation casts maximize the training setnd thenwas deployed to
segment the 92 independent test casable 3summarizes the results for the different models on
the independenttest set.

As shewnin Table 2 for the samesonditions of image resolution and preprocessing, the 2D
U-DL always*performed better than 3DML. Similar trends were observen the Table 3vhen

the UDL models were tested on the independent test set.
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For different image resolutiomve compared images with 54212 pixels to 256x256 pixels
in the sameconditions ofinput dimension and preprocessing. Th®U segmentation of the full
resoldion images with 512512 pixels was always slightly better than the downsampled2Z&5
pixel imageson thevalidation set Similar trends were observed when theDU models were
tested on the.independent test set.

For the comparison of preprocessing with and without automated cropping on each slice, the
results of UDL"segmentation were similaior the same conditionsf image resolution and
preprocessingn the validatiorset Also, similar trends were observed whée DL models
were tested on the independent test set.

Although=the segmentatiorperformancesvere similar the preprocessing with automated
cropping was‘able to reduce the computation time of trainii@e computation time of trainingn
epoch fordifferent U-DL models are shown in Table 4Since preprocessing with automated
cropping was_able to save computation time of training, we used the automated croppireg fo
final U-DL model.

Overallpsthe best DL model for bladder segmentation was the 2EDU model with

512x512-pixel resolution and automated cropping.

3.32D U-Dlrand 3D U-DL vsBaseline DCNN-L S

We compared theD U-DL and 3D UDL with our previousdevelopedDCNN-LS method
that was based"@dDCNN and level sets (DCNHNS) within a useiinput bounding box. From the
comparison of different UDL models, we observed that using input imagesbb?x512pixel
resolution and automated cropping were befter both the2D and the 3D kDL bladder
segmenation models. Table Ssummarizedhe resultsusing thebest 2D UDL, the best 3DU-DL
and theDENN-LS methodson the independent test set. The improvement in all performance
measures by the best 2DML model compared to the DCNNS modelwasstatistically significant
(p<0.001). “The differences in AVI, AVE and AJl by the best 3EDIU model compared to
DCNN-LS*model werealso statistically significant (p<0.001).The differences in AVIAMD,
AHD and AJl by'the best 2D-DL model compared to theest 3D UDL model were statistically
significant (p<0.00%
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The histograms of the best 2D and 3D results compared to the R GNidseline model are

shown inFigure 6

3.4 U-DL vsnon-deep learning (non-DL) methods

We compared the DL with two nonDL methods, the conjoint level set analysis and
segmentation system with local contour refinement (CLASR) method® and tte level sets
method using Haaeaturebased likelihood map (L-8F) method® Most exising nonDL methods
for bladder segmentation were based on leeel algorithm.The CLASSLCR was further
developed fronthe CLASS method, which had been shown to be more acdinatean edgéased
level set method®. All methods were evaluated relative to the 3D haedmented refence
contours.Table 6. summarized the results using the best ZDLthe best 3D kDL, the CLASS
LCR, and theLS-HF methods on the independent test etvas found that the 2D and 30-DL

methodswere better than thevo nonDL methoddor all performace measures.

4. DISCUSSION

In _thiS study, a new approach of usingDll for segmenting bladdersn CTU was
developed. On excretory phase CTU images, as performed at our institution, most bladder
either partially or entirely filled with excretemntrast material; however, occasional bladders do not
contain any“contrastnhanced urine. Segmentation of these variably opacified bladders is a
challenge because the segmentation may need to cross portions of the bladder that are opacified a
portions that are not opacified. Previously, we used DCNNS within a user defined input
bounding bex to alleviate the problem. Howevkeuser defined input bounding baxno longer
needed using=the newly developedDU approach The contribution of this work is that it
investigated.different conditions to construct bettddlUmodel and the results demonstrate that the
selected LDLsis more accurate andbesnot depend on a usarput bounding box compared to the
previous DCNNLS method ona validation setand an independentest set All performance
measures ar@nproved using tDL compared to DCNMNLS for the independent test sefThe
differences between thé-DL andDCNN-LS methodsarestatistically significant (p<O@y).
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By examining the results, we observed that thBlUperformsbetterthan the DCNNLS
methods in most situationsFigure 7 shows examples of segmented bladders ugiegdifferent

models.

Both'DCNNLS and UDL were able to provide good segmentation intneddy simple
caseqFigure7 (f)). However, there are some difficaisesn our dataset. Severaf themwere
of poor image~quality due tooise caused by large patient size or the presence girbgtheses
An example of such as casesisown in Figurée/ (a), 2D UDL and 3D UDL performed better in
this case, where, DCNNLS undersegmented the bladderThe strong boundary between the two
regions filled.with intravenous contrast and without contrampacted the segmentation
performance Figure 7 (b) shows thaDCNN-LS and 3D UDL created bladder outlines have
leaked into_adjacent bondxecauseof strong boundary between the opacified and unopacified
portions of the bladder and the bones and the unopacified portions of the bladde2D UHaL
generated outline was able to avtits erroneouseak. Furthermore, the boundaries between the
bladder wall"and*the surrounding soft tissue are difficult to identify beaditbe small difference
in gray level As observed in Figuré& (c), the DCNN-LS methodwas able to avoid théeakage
between the bladder wall and the surrounding soft tissue but not in Figure 7 (d), vibilevds
slightly leakingin, Figure 7 (c) but was able to avoidlgekagen Figure 7(d). Usually the lesion
area ofthesbladder had similar gray leseas the surrounding soft tissue, which may cause
inaccurate segmentationAs shown in Figur& (e), DCNNLS undersegmented the lesion area of
the bladderwhile 2D and 3D-DL provided good segmentationThe apex and the base of the
bladder usually were difficult to segment due to the small bladder aegular bladder boundary
intersecting the CT slice and reduced bladder contrast due to partial volume effects. Figure 7(Q)
shows that DCNNLS, 2D and 3D DL undersggmented the apex of the bladder while Figure 7(h)
shows that.they.provided relatively good segmentation for the base of the bladder.

Although UDL provided accurate bladder segmentation in the majority of cases, there wer
several cases insthedependent test dataset for which the segmentation was suboptimal. For the
best UDL 'model, two of 92 cases achieved volume intersection ratio less than 50% vayidiem
considered for a major contour adjustment. Three of 92 cases achieved volumetioterago

between 50% and 80% which may be considered for a minor adjustment.
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When D U-DL was used instead of 2D-DL, performance measures generally deteriorated
in the bladder segmentation taskOne possible reason may be that the traisiagplesze was
smallwhen3D volumes were usedsaninput. The number of the input samples was 81 for 3D U
DL compared to 7629 for 2D-DL. Generdy, the training of DCNN model needdargeamount

of labeleddatas

When'the fuall resolution images with 512x512 pixelere used as inpubr the UDL
model,the segmentation performances were always slightly better than theasopled 256x256
pixel images. orboth the validation set and independent test sedigher resolution can provide
more detailed.information. However, compared t612x512pixel images, using images with
256x256 pixels redudethe computation time of training by about a factor of 2 to 3 (Table 4).
Nonetheless, wehose full resolution images with 512x512 pixels for thBlUmodel because the

accurate performanseasmore important than the computation time of training in this task.

Whenwe applied automated cropping on each slice in the preprocessing, the segmentat
performances of ADL were similar to preprocessing without automated cropping on the validation
setandtheindependent test set. The cropped images still contained the entire bladder but removed
some surrounding background. The surrounding backdrdarther away from the bladder
boundary did.nb provide an important feature for bladdesegmentation Although the
segmentation performances were similar, the preprocessing with aetionrapping reduckthe

computatiotime of training (Table 4).

We als6"investigated the correlation between the segmentation error and the blaaiahex. vol
We calculatedsthe Pearson correlation coefficients between the bladder volume enclosed by the
hand-outlinesand thequantitative performance measufes the best tDL model. The Pearson
correlation coefficients between AVI, AVE, AAVE, AMD, AHD, AJI anldet bladder volume were
-0.188, 0.364,.0.003, 0.041, 0.107 and 0.052, respectively for the tesheeesults indicated a

slight correlationsonly between AVE and bladder volume.

It was found that the 3D hayalitlines may also show a noticeable difference in superior
inferior direction“for some consecutive slices becauserdbdmlogist drew the boundary of the
bladderslice-by-slice, especially at laions with unclear bladder boundary or adjacent anatomical

structures. Since the 2D-DL was trained by the harmltlines and segmented slice by slice, it is
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possible that the 2D DL segmentation yields discontinuous contours in the supefietor
direction for some difficult cases. For 3D U-DL, the continuity is better thaméo2D® UDL.

There are some major differences between our study and the study reported in féfénence
referencé&’.the.authors used a small test set of 24 cases while in our study the test setccoh9iat
cases. Thesbladders in refereficerere imaged with nowontrastenhanced CT, while in our
experiments the bladders were partially or entirely filled with excreted contrasiahatewithout
any contrast material, which makes the segmentatiae ctwllenging as discussed above. We did
not apply preprocessing of the CT images (such as enhancement density diltexgntour
refinement “of .the tDL contour. In addition, we compared both 2D and 3D basedLU

segmentation While refererféonly studied 3D segentation.

A limitation of our newly developed approach is that it still needs the user to mark the first
and the last'slice enclosing the bladder for each unknown case. Neverthedassertimput may not
be necessary if the GPU memory and processing time are not concerns and-Dltheddel is
retrained with the entire CTU sca@ne reasorior this was that our current GPU does not have
enough memary to process the entire CTU scan that can exceed 300 slices. Wiittitatien,
we couldrnotvevaluat whether the DL may learnto segment the bladder from the volume
automatically by training witla binary mask for the enti@TU volume.However, the user defined
input bounding box was no longer needed feaDUapproach compared to DCNDS.  As a result,
the U-DL was more automated than the previous approach. We intestddiypa fully automated
bladder segmentation methad anext step. Another limitation is that although hgvea larger
dataset than most of the other studies lid@ddersegmentation, the dataetis still small for the

DCNN training==We will continue to enlarge our datet tofurtherimprove DCNNperformance
5. CONCLUSION

We have developed a-DL method for bladder segmentation in CTU. Compareduto
previousDCNN-LS method, which depended on an ts@ut bounding box, the DL provided
more accurate bladder segmentation and was more automated than the previous apfpudhet.
work is underway tdully automatethe segmentation process and to improve tlggnsatation

accuracy.

This article is protected by copyright. All rights reserved



ACKNOWLEDGEMENT

This work is supported bIH Grant UO1CA179106Xiangyuan Ma, B.S. and Yao Lu,
Ph.D. are supported by grants from the China Department of Science and Techrejogsaht
(No. 2016YFB0200602), NSFC (Grant No. 818300%2401601) the Science and Technology
Innovative Proeject of Guangdong Province, China (Grant Nos. 2016B030307003, 2015B010110003,
and 2015B020233008), Guangdong Provincial Science and Technology Key Grant (No.
2017B020210001), Guangzhou Science and Technology Creative Key Grant (No. 201604020003).
The content of this paper does not necessarily reflect the position of the government diwibho of

endorsement of any equipment and product of any companies mentioned should be inferred.

CONFLICT OF INTEREST
The authors have no conflicts to disclose.

REFERENCES
1. American Cancer Societyyww.cancer.org2018, "Key Statistics for Bladder Cancer". In.
2018.
2. Caoilli"EM; Cohan RH, Korobkin M, et al. Urinary Tract Abnormalities: Initial Experience

with Multi-Detector Row CT Urographjradiology. 2002;222(2):353-360.

3. Gupta R, Raghuvanshi S. MultietectorCT Urography in the diagnosis of urinary tract
abnarmalitiesInternational Journal of Medical Research and Review. 2016;4(2):222-226.

4. Akbar,.SA, Mortele KJ, Baeyens K, Kekelidze M, Silverman SG. Multidete@dr
urography: techniques, clinical applications, and pitfésninars in Ultrasound, CT and
MRI: 2004;25(1):41-54.

5. Noroozian,M, Cohan RH, Caoili EM, Cowan NC, Ellis JH. Multislice CT urograplaye sif
the art.The British Journal of Radiology. 2004;77(suppl_1):S74-S86.

6. Park SB, Kim JK, Lee HJ, Choi HJ, Cho-X Hematuria: Portal Venous Phase Multi
Detector Row CT of the Bladder—A Prospective Stiridiology. 2007;245(3):798-805.

7. Sudakoff GS, Dunn DP, Guralnick ML, Hellman RS, Eastwood D, See WA. Multidetector
Computerized Tomography btgraphy as the Primary Imaging Modality for Detecting

This article is protected by copyright. All rights reserved



10.

11.

12.

13.

14.

15.

16.

17.

18.

Urinary Tract Neoplasms in Patients With Asymptomatic Hematurie Journal of
Urology. 2008;179(3):862-867.

Cha KH, Hadjiiski L, Chan HP, Cohan RH, Caoili EM, Zhou C. Detection of urinary bladder
mass in CT urography with SPANledical Physics. 2015;42(7):4271-4284.

Cha KHs,Hadjiiski L, Chan HP, et al. Bladder Cancer Treatment Response Assessment in CT
using,Radiomics with Deepearning.ci Rep. 2017;7:12.

Duan~C;"Liang Z, Bao S, et al. A Coupled Level Set Framework for Bladder Wall
Segmentation With Application to MR CystographfeEE Transactions on Medical
Imaging. 2010;29(3):903-915.

Chi JW Brady M, Moore NR, Schnabel JA. Segmentation of the bladder wall usingccouple
level 'set imethds. Paper presented at: 2011 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro; 30 March-2 April 2011, 2011.

Han H, Li L, Duan C, Zhang H, Zhao Y, Liang Z. A unified EM approach to bladdér
segmentation with coupled levett onstraints Medical Image Analysis. 2013;17(8):1192-
1205

Qin Xy LieX, Liu Y, Lu H, Yan P. Adaptive Shape Prior Constrained Level SetBadder
MR*wlmage Segmentation|EEE Journal of Biomedical and Health Informatics.
2014428(5):1707-1716.

Xu X-p, Zhang X, Liu Y, et al. Simultaneous Segmentation of Multiple Regions in 3D
Bladder MRI by Efficient Convex Optimization of Coupled Surfaces. 2017; Cham.

Chai X;"Herk Mv, Betgen A, Hulshof M, Bel A. Automatic bladder segmentation on CBCT
for multiple plan ART of bladder cancer using a patispécific bladder modePhysics in
Medicine & Biology. 2012;57(12):3945.

Hadjuski L, Chan HP, Cohan RH, et al. Urinary bladder segmentation in CT urography
(CTU),using CLASSMedical Physics. 2013;40(11):111906.

Krizhevsky A, Sutskever |, E. Hinton GmageNet Classification with Deep Convolutional
Neur alsNetworks. Vol 252012.

Lo SBy Lou SA, JykShyan L, Freedman MT, Chien MV, Mun SK. Artificial convolution
neural network techniques and applications for lung nodule deteld6B. Transactions on
Medical Imaging. 1995;14(4):711-718.

This article is protected by copyright. All rights reserved



19. Chan HP, Lo SCB, Sahiner B, Lam KL, Helvie MA. Computarded detection of
mammographic microcalcifications: Pattern recognition with an artificial neural network.
Medical Physics. 1995;22(10):1555-1567.

20. Lo SCB, Chan HP, Lin JS, Li H, Freedman MT, Mun SK. Artificial convolution neural
network.for medical image pattern recognitibleural Networks. 1995;8(7):1201-1214.

21. Sahiner B, Chan HP, Petrick N, et alClassification of mass and normal breast tissue: a
convolution neural network classifier with spatial domain and texture imdgeE
Transactions on Medical Imaging. 1996;15(5):598-610.

22. ChalKH, Hadijiiski L, Samala RK, Chan-P, Caoili EM, Cohan RH. lary bladder
segmentation in CT urography using déegrning convolutional neural network and level
sets.Medical Physics. 2016;43(4):1882-1896.

23. Xu X, Zhou F, Liu B. Automatic bladder segmentation from CT images using ddépa
3D fully connectedCRFRNN. International Journal of Computer Assisted Radiology and
Surgery. 2018;13(7):967-975.

24. Ronneberger O, Fischer P, Brox T-Nét: Convolutional Networks for Biomedical Image
Segmentation. 2015; Cham.

25. Chollet F. Kerasttps://github.com/fchollet/kera&itHub repository. 2015.

26. CicekO, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3Rell Learning Dense
Volumetric Segmentation from Sparse Annotation. 2016; Cham.

27. Kingma D, Ba JAdam: A Method for Sochastic Optimization. 2014.

28. Rockafellar RT, Wets RB. Variational analysis. Vol 317: Springer-Verlag.; 2005; 117.

29.  Jaccard:PThe Distribution of the Flora in the Alpine Zone. Vol 111912.

30. ChalK, Hadjiiski L, Chan HP, Caoili EM, Cohan RH, Zhou C. CT urography: segmentation
of urinary bladder using CLASS with local contour refinement [published online ahead of
print,05/07].Physics in medicine and biology. 2014;59(11):2767-2785.

Figure Captions

This article is protected by copyright. All rights reserved


https://github.com/fchollet/keras�

Figure 1. (a),(c) Subset of the input CTU slices containing the bladdee (@ihaw) used to train the
U-DL. (b),(d) The corresponding training target binary masks.

Figure 2. Architecture of the 2D U-DL for bladder segmentation in CTUch Bax with number of
channels on.the top corresponds to a nuliéinnel feature map. The size of each feature map is
shown at the lower left edge of the box. The arrows of different colors represamerdiff

operations.

Figure 3. Architecture of the 3D-DL for bladder segmentation in CTU. Each 3D box with
number of echannels on the top corresponds to a -chdinnel 3D feature map. The arrows of

different colors represent different operations.

Figure 4. An_example of the downsampling and croppnogess.

Figure 5. Anyexample of the bladder segmentation results using-BD With 512x512pixel
resolution as input and with automated cropping in preprocessing from a case in seé te3the
dark (blue)=eontour represents the radiologist’s kautline. The lighter (pink) contour represents

segmentationusing 2D U-DL with threshold 0.2.

Figure 6. "Histograms of (a) volume intersection (mean: 2EDLE393.4+9.5%, 3D U
DL=90.6£11:9%; DCNNLS=81.9+£12.1%), (b) volume error (mean: 2B0OWU=-4.2+14.2%, 3D U
DL=-2.3£21.7%yy DCNNLS=10.2+£16.2%), (c) average distance (mean: 2DL32.7+2.5 mm, 3D
U-DL=3.1+3.2 mm, DCNNLS =3.6+2.0 mm), (d) Jaccard index (mean: 2EDU =85.0+£11.3%,
3D U-DL =82.6£14.2%, DCNN-LS=76.2+11.8%), for the 92 test cases.

Figure 7. Examples of bladder segmentation. The light (cyan) contour represgmtentation using
3D U-DL. Therdarker (pink) contour represents segmentation using -ZIL..Urhe darkest (red)
contour represents segmentation using DAMNN The darkest (blue) contour represeithe
radiologist’s hanebutline. (a) 2D UDL and 3D UDL performed better in the case with poor image
quality, where DCNMNLS undersegmented the bladder. (b) DCNI$ and 3D UDL leaked into
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adjacent bones, but 2D-DL was able to avoid the leaking. (cp2J-DL undersegmented the
contrast area at the bottom of the bladder. 2D and 3D Wdver-segmented the bladder boundary
near the middle of the bladder (white arrow). (d) DCNBIoversegmented the contrast area at
the bottom of the bladder. 2D and 3DDL provided good segmentation. (e) DCNUS under
segmented the,lesion area of the bladder. 2D and - drovided good segmentation. (f) Both
DCNN-LS and UDL provided good segmentation. (f)CNN-LS, 2D and 3D WDL under
segmented“the“bladder area of tiladder. (h) DCNNLS, 2D and 3D kDL provided relative
relatively good'segmentation.
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Table 1. The performance measures results using different threshold on the validation set.

Model  Threshold AVI (%)  AVE (%) AAVE (%) AMD(mm) AHD(mm)  AJl (%)

2D U-DL 0.1 93.3+£7.9 1.0+£9.0 5.1+7.2 2.1+1.0 9.1+5.4 88.4+7.6
0.2 92.3+8.5 3.449.3 4.948.5 2.0£1.1 9.245.9 88.5+8.2
0.3 91.4+8.9 5.0+£9.5 5.6+9.2 2.0+1.1 9.2+5.9 88.3+8.7
0.4 90.7+9.3 6.3+9.8 6.4+9.7 2.1+1.2 9.4+6.3 88.0+9.1
0.5 89.9+9.6 7.4+1.0 7.4+1.0 2.1+1.3 9.6+6.4 87.619.4
0.6 89.1+9.9 8.6+10.3 8.6+10.3 2.2+¥1.4 9.8+6.6 87.2+9.7
0.7 88.2+10.3 9.9+10.6 9.9+10.6 2.3%1.4 10.1+6.8 86.6+£10.1
08 87.1+10.7 11.4+10.9 11.4+10.9 2.4£15 10.4+7.0 85.7+£10.5
0.9 85.3%+11.3 13.5+#11.4 13.5+11.4 2.7£1.6 10.8+7.1 84.4+11.1
3D U-DL 0.1 92.6+9.7 1.1+11.8 7.1+9.1 2.2+1.1 9.445.5 87.1+8.6
0.2 91.1+11.2 3.9+12.8 6.5+11.5 2.2+1.3 9.8+6.7 86.8+10.2
0.3 90.0+12.0 5.8+12.0 6.6+£12.9 2.3%1.6 10.3+7.6 86.3+11.2
0.4 89.1+12.4 7.3x13.5 7.4+£13.5 2.3%1.6 10.5+7.8 86.0+11.7
0.5 88.1+12.9 8.8+13.8 8.8+13.8 2.4£1.7 10.8+8.1 85.5+£12.2
0.6 87.1+13.6 10.4+14.4 10.4+14.4 2.5%£1.9 11.3+8.9 84.8+13.0
0.7 86.0+13.8 11.8+14.5 11.8+14.5 2.6+1.9 11.74#9.1 84.1+13.4
0.8 84.8+14.1 13.4+14.6 13.4+14.6 2.7+1.9 12.149.2 83.3+13.7
0.9 83.1+14.3 15.6+14.7 15.6+14.7 3.0+£2.0 12.849.5 82.0+14.1

AVI - averagevolume intersection, AVE - average percent volume errofEAfaverage absolute volume error,

AMD - average minimum distancAHD - average Hausdorff distance, AJl - average Jaccard index, Data are mean
standard deviation.

" The 512x512-pixel resolution and automated cropping preprocessing \edranibe UDL.

Table 2. Themperfoermance measures using different models on the validation set.

M odel Resolution  Cropping AVI AVE AAVE AMD AHD AJl
(%) (%) (%) (mm) (mm) (%)
2D U-DL 512x512 With 92.3:8.5 3.4%9.3 4.9+8.5 2.0+£1.1 9.24#5.9 88.548.2

Without 92.8+7.9 1.2+8.8 5.5+6.7 3.0£2.6 10.745.6 87.6+8.0
256x256 With 91.9+11.7 2.3%#144 7.7¥120 2.5+15 10.1#+6.8 86.8+10.4
Without 91.0£10.7 2.4+£125 7.0£104 2.4+1.2 10.446.3 85.5+£9.9
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3D UDL 512x512 With
Without?

256x256 With
Without

91.1+11.2 3.9+12.8

88.6+12.8 2.0+16.8 10.8+12.3 3.1+1.5
90.1+14.4 3.5+16.2

6.5+11.5

8.9+13.5

2.2+1.3

2.4+£15

9.846.7

13.5+7.9
10.348.0

86.8+10.2

812+11.8
84.7+13.4

AVI - average volume intersection, AVE - average percent volume errofEAfaverage absolute volume error,

AMD - averagé minimum distance, AHD - average Hausdorff distaklle average Jaccard index, Data are nmiean

standard deviation:

2The input of 3D U-DL with 192 512x512-pixel slices was too big to fittin@PU.

Table 3. The performance measures using different models on the independent test set.

M odel Resolution  Cropping AVI AVE AAVE AMD AHD AJl
(%) (%) (%) (mm) (mm) (%)

2D UDL 512x512 With 93.419.5 -4.2+142 9.2+115 2.7+25 9.717.6 85.0+11.3

Without  93.0+9.8 -3.0+13.9 8.9+11.1 2.7+2.6 9.948.0 85.1+£10.9

256x256 With 92.9+9.8 -3.1+13.2 9.319.8 2.8+2.4 10.0+7.1  84.5+10.0

Without  93.6£9.5 -5.7+14.2 10.7£10.9 2.9+2.6 10.317.5 84.0+10.6

3D UDL 512x512 With 90.6+11.9 -2.3+21.7 11.5+#185 3.1+3.2  11.4+10.0 82.6+14.2

Without?® - - - - - -
256%x256 With 89.1+13.1 -0.6£19.5 11.9+154 3.4%3.1 11.7+8.8 80.8t13.4
Without  90.1+14.6 -3.1+24.5 13.3+20.8 3.3+3.2  11.5+10.1 81.1+15.7

AVI - average volume intersection, AVE - average percent volume errofEAfaverage absolute volume error,

AMD - average minimum distance, AHD - average Hausdorff distance,@@#rage Jaccard index, Data are mean +

standard deviation.

2The input of 3D U-DL with 192 512x512-pixel slices was too big to fitin@PU.

Table 4. The computation time tiining an epoch for 2D and an epoch for 3D for different U-DL

models
M odel Resolution  Cropping Computation time (minutes)
2D U-DL 512x512 With 18.5
Without 70.0
256x256 With 5.8
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Without 49.5

3D UDL 512x512 With 32.5
Without? -
256x256 With 10
Without 29

2The input of 3D"U=BL with 192 512x512-pixel slices was too big to fitinGPU.

Table 5. The performance measures results using the best 2D U-DL, the best 3D U-DL and theSDCNN-
methods on the independent test set.

model AVI (%) AVE (%) AAVE (%)  AMD (mm)  AHD (mm) AJl (%)

2D U-DL 93.49.5 “4.2+14.2 9.2+11.5 27425 9.7+7.6 85.0+11.3
3D U-DL 90.6+11.9 -2.3+21.7 11.5+18.5 3.1#3.2 11.4+10.0 82.6+14.2
DCNN-LS 81.9+12.1 10.2+16.2 14.0£13.0 3.6+2.0 12.846.1 76.2+11.8

AVI - average volume intersection, AVE - average percent volume errofEAfaverage absolute volume error,
AMD - average minimum distance, AHD - average Hausdorff distance, &@rage Jaccard index, Data are mean +
standard deviation.

Table 6. The performance measures results using the best 2D U-DL, the beBil3Bhgd-CLASS-LCR and
the LS-HF on"the independent test set.

model AVI (%) AVE (%) AAVE (%)  AMD(mm)  AHD (mm) AJl (%)
2D U-DL 93.4%95 -4.2+14.2 9.2+115 2.7£25 9.7+7.6 85.0+11.3
3D U-DL 90.6+11.9 -2.3+21.7 11.5+18.5 3.1#3.2 11.4+10.0 82.6+14.2
CLASSLCR  78.0+14.7 16.5+16.8 18.2+15.0 3.8+2.3 13.146.2 73.9+135
LSHF 74.3+12.7 13.0+22.3 20.5+15.7 5.7+2.6 16.8+7.5 66.7+12.6

AVI - average volume intersection, AVE - average percent volume errofEA%average absolute volume error,
AMD - average minimum distance, AHD - average Hausdorff distance, é\drage Jaccard index, Data are mean *

standard deviation.
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