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Appendix A Optimization of the Final Period Disease Control

Action

The value function in the last period is given by

VN (℘N ) = min
βN
{E
[
(αN − αN−1)′AN (αN − αN−1)

]
+ βN

′BNβN

+ E
[
(αN+1 − αN )′AN+1 (αN+1 − αN )

]
}. (42)

Replacing E
[
(αN − αN−1)′AN (αN − αN−1)

]
and E

[
(αN+1 − αN )′AN+1 (αN+1 − αN )

]
by their

values given by Lemmas 3 and 4 in Appendix B respectively, and combining terms results in

VN (℘N ) =
(
α̂N |N − α̂N−1|N

)′
AN

(
α̂N |N − α̂N−1|N

)
+ α̂′N |N

(
(TN − I)′AN+1(TN − I)

)
α̂N |N

+ tr
[
AN

(
Σ̂N |N + Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′ +QN

)]
+ min

βN
{βN ′(GN ′AN+1GN +BN )βN + βN

′(GN
′AN+1(TN − I)α̂N |N )

+ (α̂′N |N (TN − I)′AN+1GN )βN}, (43)

where tr represents the trace of the matrix. Let the minimization term in Eq. 43 be denoted by

J̃N . That is, let

J̃N = min
βN
{βN ′(GN ′AN+1GN +BN )βN + βN

′(GN
′AN+1(TN − I)α̂N |N )

+ (α̂′N |N (TN − I)′AN+1GN )βN}. (44)

This minimization can be performed by completion of squares as described in Lemma 5 in Appendix

B. Eq.’s 45 - 48 give the optimum disease control β∗N and the result of minimization J̃N . The

optimum disease control at time N is given by

β∗N = −UN α̂N |N , (45)

where the control law of last time period, UN , is given by

UN =
(
GN
′AN+1GN +BN

)−1
GN
′AN+1(TN − I), (46)

and the result of minimization over βN is given by

J̃N = −α̂′N |N P̃N+1α̂N |N , (47)
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where

P̃N+1 = (TN − I)′AN+1GN (G′NAN+1GN +BN )−1G′NAN+1(TN − I). (48)

Substitution of Eq. 47 into Eq. 43 yields

VN (℘N ) =
(
α̂N |N − α̂N−1|N

)′
AN

(
α̂N |N − α̂N−1|N

)
+ α̂′N |N

(
(TN − I)′AN+1(TN − I)− P̃N+1

)
α̂N |N

+ tr
[
AN

(
Σ̂N |N + Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′

)]
+ tr [AN+1QN ] . (49)

Defining PN as follows,

PN = (TN − I)′AN+1(TN − I)− P̃N+1, (50)

and also replacing tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′

)]
by its simpler form as identified in Lemma

6 in Appendix B, we can further simplify Eq. 49 as follows.

VN (℘N ) =
(
α̂N |N − α̂N−1|N

)′
AN

(
α̂N |N − α̂N−1|N

)
+ tr

[
AN Σ̂N |N

]
+ α̂′N |NPN α̂N |N + tr

[
PN Σ̂N |N

]
+ tr

[
AN

(
Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
P̃N+1Σ̂N |N

]
+ tr [AN+1QN ] . (51)
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Appendix B Lemmas

In the derivation of optimal control the following lemmas are needed.

Lemma 1. For any symmetric n ∗ n matrix A, the following holds.

E
[
x′Ay

]
= x̄′Aȳ + tr [AVx,y] . (52)

Where

x̄ = E[x], (53)

ȳ = E[y], (54)

Vx,y = E
[
(x− x̄)(y − ȳ)′

]
. (55)

Proof of Lemma 1:

Proof. By writing the matrix operations in terms of summations we will have

x′Ay =
n∑
i=1

n∑
j=1

xiAijyj . (56)

Hence

E
[
x′Ay

]
=

n∑
i=1

n∑
j=1

AijE[xiyj ], (57)

but

E[xiyj ] = E[xi]E[yj ] + E [(xi − E[xi]) (yj − E[yj ])] = x̄iȳj + Vxi,yj . (58)

When Eq. 58 is substituted in Eq. 57:

E
[
x′Ay

]
= x̄′Aȳ +

n∑
i=1

n∑
j=1

AijVxi,yj = x̄′Aȳ + tr [AVx,y] , (59)

where tr [M ] stands for trace of M (i.e., sum of diagonal terms).
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Lemma 2. With information up to time t, we have the following covariance relations.

Cov(αt, αt+1|℘t) = Σ̂t|tTt
′, (60)

Cov(αt+1, αt|℘t) = TtΣ̂t|t, (61)

Cov(αt, αt−1|℘t) = Tt−1Σ̂t−1|t, (62)

Cov(αt−1, αt|℘t) = Σ̂t−1|tTt−1
′. (63)

Proof of Lemma 2:

Proof. Before we start proving these equations note that

Cov (αt, αt|℘t) = E
[
αtαt

′]− E [αt]E[αt]
′ → E

[
αtαt

′] = Σ̂t|t + α̂t|tα̂
′
t|t. (64)

Therefore,

Cov(αt, αt+1|℘t) = E
[
αtαt+1

′]− E [αt]E[αt+1]′

= E
[
αt(Ttαt +Gtβt + ηt)

′]− E [αt]E[Ttαt +Gtβt + ηt]
′

= E
[
αtαt

′]Tt
′ + α̂t|tβt

′Gt
′ − α̂t|t

(
α̂′t|tTt

′ + βt
′Gt
′
)

=
(

Σ̂t|t + α̂t|tα̂
′
t|t

)
Tt
′ − α̂t|tα̂′t|tTt

′

= Σ̂t|tTt
′, (65)

and similarly

Cov(αt+1, αt|℘t) = TtΣ̂t|t. (66)

Furthermore,

Cov(αt, αt−1|℘t) = E
[
αtαt−1

′]− E [αt]E[αt−1]′

= E
[
(Tt−1αt−1 +Gt−1βt−1 + ηt−1)αt−1

′]− E [Tt−1αt−1 +Gt−1βt−1 + ηt−1]E[αt−1]′

= Tt−1E
[
αt−1αt−1

′]+Gt−1βt−1α̂
′
t−1|t − Tt−1α̂t−1|tα̂

′
t−1|t −Gt−1βt−1α̂

′
t−1|t

= Tt−1

(
Σ̂t−1|t + α̂t−1|tα̂

′
t−1|t

)
− Tt−1α̂t−1|tα̂

′
t−1|t

= Tt−1Σ̂t−1|t, (67)

and similarly

Cov(αt−1, αt|℘t) = Σ̂t−1|tTt−1
′. (68)
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Lemma 3. With information up to time t, the expected quadratic penalty of disease progression

from period t− 1 to t can be calculated as follows.

E
[
(αt − αt−1)′At (αt − αt−1) |℘t

]
=
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]
. (69)

Proof of Lemma 3:

Proof. Using Lemma 1 and Lemma 2,

E
[
(αt − αt−1)′At (αt − αt−1) |℘t

]
= E

[
αt
′Atαt|℘t

]
+ E

[
αt−1

′Atαt−1|℘t
]

− E
[
αt
′Atαt−1|℘t

]
− E

[
αt−1

′Atαt|℘t
]

= α̂′t|tAtα̂t|t + tr[AtΣ̂t|t] + α̂′t−1|tAtα̂t−1|t + tr[AtΣ̂t−1|t]

− α̂′t|tAtα̂t−1|t − tr[AtTt−1Σ̂t−1|t]− α̂′t−1|tAtα̂t|t − tr[AtΣ̂t−1|tTt−1
′]

=
(
α̂t|t − α̂t−1|t

)′
At
(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]
. (70)

Lemma 4. With information up to time t, the expected quadratic penalty of disease progression

from period t to t+ 1 can be calculated as follows.

E
[
(αt+1 − αt)′At+1 (αt+1 − αt) |℘t

]
= α̂′t|t

(
(Tt − I)′At+1(Tt − I)

)
α̂t|t + βt

′(Gt
′At+1Gt)βt + βt

′(Gt
′At+1(Tt − I)α̂t|t)

+ (α̂′t|t(Tt − I)′At+1Gt)βt + tr
[
At+1

(
(Tt − I)Σ̂t|t(Tt − I)′ +Qt

)]
. (71)

Proof of Lemma 4:

Proof. Using Eq. 1, Lemma 1 and Lemma 2,

E
[
(αt+1 − αt)′At+1 (αt+1 − αt) |℘t

]
= E

[
αt+1

′At+1αt+1|℘t
]

+ E
[
αt
′At+1αt|℘t

]
− E

[
αt+1

′At+1αt|℘t
]
− E

[
αt
′At+1αt+1|℘t

]
= (Ttα̂t|t +Gtβt)

′At+1(Ttα̂t|t +Gtβt) + tr
[
At+1(TtΣ̂t|tTt

′ +Qt)
]

+ α̂′t|tAt+1α̂t|t + tr[At+1Σ̂t|t]

− (Ttα̂t|t +Gtβt)
′At+1α̂t|t − tr

[
At+1TtΣ̂t|t

]
− α̂′t|tAt+1(Ttα̂t|t +Gtβt)− tr

[
At+1Σ̂t|tTt

′
]

= α̂′t|t
(
(Tt − I)′At+1(Tt − I)

)
α̂t|t + βt

′(Gt
′At+1Gt)βt + βt

′(Gt
′At+1(Tt − I)α̂t|t)

+ (α̂′t|t(Tt − I)′At+1Gt)βt + tr
[
At+1

(
(Tt − I)Σ̂t|t(Tt − I)′ +Qt

)]
. (72)
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Lemma 5.

J̃N = min
βN
{βN ′(GN ′AN+1GN +BN )βN + βN

′(GN
′AN+1(TN − I)α̂N |N )

+ (α̂′N |N (TN − I)′AN+1GN )βN} = −α̂′N |N P̃N+1α̂N |N . (73)

Proof of Lemma 5:

Proof. The minimization over βN can be performed by completion of squares. For a detailed

discussion on how to take minimization by completion of squares please see Section 3.3 of Sayed

(2011). In here, we provide a short proof.

J̃N can be expressed in matrix form as follows.

J̃N = min
βN

{[
1 βN

′
] [ 0 α̂′N |N (TN − I)′AN+1GN

GN
′AN+1(TN − I)α̂N |N GN

′AN+1GN +BN

][
1

βN

]}
. (74)

The center matrix in 74 can be factored into a product of upper-triangular, diagonal, and lower-

triangular matrices as follows.

J̃N = min
βN
{
[

1 βN
′
] [ 1 ωN

′

0 I

][
−α̂′N |N (TN − I)′AN+1GNωN 0

0 GN
′AN+1GN +BN

]
[

1 0

ωN I

][
1

βN

]
}, (75)

where

ωN =
(
GN
′AN+1GN +BN

)−1
GN
′AN+1(TN − I)α̂N |N . (76)

Expanding the right-hand-side of Eq. 75 yields

J̃N = min
βN

{
−α̂′N |N (TN − I)′AN+1GNωN + (βN + ωN )′

(
GN
′AN+1GN +BN

)
(βN + ωN )

}
, (77)

in which only the second term depends on the unknown βN . Note that (GN
′AN+1GN + BN ) is

positive semidefinite. This is because AN+1 and BN are diagonal cost matrices with only positive

terms on the main diagonal. So, the second term in Eq. 77 is always nonnegative and will be

minimized by choosing βN = −ωN .

Therefore, the optimum disease control β∗N and the result of minimization, i.e., J̃N , are given by
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the following equations respectively.

β∗N = −UN α̂N |N , (78)

where

UN =
(
GN
′AN+1GN +BN

)−1
GN
′AN+1(TN − I), (79)

and

J̃N = −α̂′N |N P̃N+1α̂N |N , (80)

where

P̃N+1 = (TN − I)′AN+1GN (G′NAN+1GN +BN )−1G′NAN+1(TN − I). (81)

Lemma 6.

tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′

)]
= tr

[
PN Σ̂N |N

]
+ tr

[
P̃N+1Σ̂N |N

]
(82)

Proof of Lemma 6:

Proof. We know tr [XY ] = tr [Y X], tr [X (Y Z)] = tr [(XY )Z] and tr [(X + Y )Z] = tr [XZ] +

tr [Y Z]. Therefore,

tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′

)]
= tr

[(
(TN − I)′AN+1(TN − I)

)
Σ̂N |N

]
(83)

From Eq. 50 we know (TN − I)′AN+1(TN − I) = PN + P̃N+1. Hence,

tr
[(

(TN − I)′AN+1(TN − I)
)

Σ̂N |N

]
= tr

[(
PN + P̃N+1

)
Σ̂N |N

]
= tr

[
PN Σ̂N |N

]
+ tr

[
P̃N+1Σ̂N |N

]
(84)

Lemma 7.

E
zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt)

+ tr
[
Pt+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (85)
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Proof of Lemma 7:

Proof. From Lemma 1 and Eq. 4

E
zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= E

zt+1

[
α̂t+1|t+1|℘t

]′
Pt+1 E

zt+1

[
α̂t+1|t+1|℘t

]
+ tr

[
Pt+1 E

zt+1

[(
α̂t+1|t+1 − E

zt+1

[
α̂t+1|t+1|℘t

])(
α̂t+1|t+1 − E

zt+1

[
α̂t+1|t+1|℘t

])′]]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt) + tr

[
Pt+1Kt+1 E

zt+1

[
ỹt+1ỹ

′
t+1

]
Kt+1

′
]
, (86)

in which

E
zt+1

[
ỹt+1ỹ

′
t+1

]
= E

zt+1

[(
zt+1 − Zt+1(Ttα̂t|t +Gtβt)

) (
zt+1 − Zt+1(Ttα̂t|t +Gtβt)

)′]
. (87)

Replacing zt+1 by its value given by Eq. 2 yields

E
zt+1

[
ỹt+1ỹ

′
t+1

]
= E

zt+1

[(
εt+1 + Zt+1(αt+1 − Ttα̂t|t −Gtβt)

) (
εt+1 + Zt+1(αt+1 − Ttα̂t|t −Gtβt)

)′]
= E

zt+1

[
(εt+1 + Zt+1(αt+1 − E[αt+1])) (εt+1 + Zt+1(αt+1 − E[αt+1]))′

]
= H

(θt+1)
t+1 + Zt+1

(
Tt
′Σ̂t|tTt +Qt

)
Z ′t+1

= St+1. (88)

Substitution of Eq. 88 into Eq. 86 results

E
zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt) + tr
[
Pt+1Kt+1St+1Kt+1

′] .
(89)

Using Eq.’s 35, 7, 8, and 9 yields

E
zt+1

[
α̂′t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt)

+ tr
[
Pt+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (90)
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Lemma 8.

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t
]

=
(
(Tt − I)α̂t|t +Gtβt

)′
At+1

(
(Tt − I)α̂t|t +Gtβt

)
+ tr

[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂∗t
′ − Σ̂∗t Σ̂t+1|t+1 + Σ̂t|t+1

)]
. (91)

Proof of Lemma 8:

Proof. This expectation can be divided into four parts as follows.

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t
]

= E
zt+1

[
α̂′t+1|t+1At+1α̂t+1|t+1|℘t

]
− E
zt+1

[
α̂′t+1|t+1At+1α̂t|t+1|℘t

]
− E
zt+1

[
α̂′t|t+1At+1α̂t+1|t+1|℘t

]
+ E
zt+1

[
α̂′t|t+1At+1α̂t|t+1|℘t

]
.

(92)

The first expectation in 92 is similar to the expectation of Lemma 7. Therefore,

E
zt+1

[
α̂′t+1|t+1At+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′At+1(Ttα̂t|t +Gtβt)

+ tr
[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (93)

The second expectation in 92 can be simplified as follows.

E
zt+1

[
α̂′t+1|t+1At+1α̂t|t+1|℘t

]
= E

zt+1

[
α̂t+1|t+1|℘t

]′
At+1 E

zt+1

[
α̂t|t+1|℘t

]
+ tr

[
At+1Cov

(
α̂t+1|t+1, α̂t|t+1

)]
= (Ttα̂t|t +Gtβt)

′At+1α̂t|t + tr
[
At+1Cov

(
α̂t+1|t+1, α̂t|t+1

)]
, (94)

in which

Cov
(
α̂t+1|t+1, α̂t|t+1|℘t

)
= E

[
α̂t+1|t+1α̂

′
t|t+1|℘t

]
− E

[
α̂t+1|t+1|℘t

]
E
[
α̂t|t+1|℘t

]′
= E

[
α̂t+1|t+1

(
α̂t|t + Σ̂∗t (α̂t+1|t+1 − α̂t+1|t)

)′
|℘t
]
− E

[
α̂t+1|t+1|℘t

]
α̂′t|t

= E
[
α̂t+1|t+1(α̂t+1|t+1 − α̂t+1|t)

′|℘t
]

Σ̂∗′t

= E
[
α̂t+1|t+1α̂

′
t+1|t+1|℘t

]
Σ̂∗′t − E

[
α̂t+1|t+1|℘t

]
(Ttα̂t|t +Gtβt)

′Σ̂∗′t

= Σ̂t+1|t+1Σ̂∗′t + (Ttα̂t|t +Gtβt)(Ttα̂t|t +Gtβt)
′Σ̂∗′t

− (Ttα̂t|t +Gtβt)(Ttα̂t|t +Gtβt)
′Σ̂∗′t

= Σ̂t+1|t+1Σ̂∗′t . (95)

10



Therefore,

E
zt+1

[
α̂′t+1|t+1At+1α̂t|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′At+1α̂t|t + tr
[
At+1Σ̂t+1|t+1Σ̂∗t

′
]
. (96)

In similar way, the third and fourth expectations in 92 can be simplified as follows.

E
zt+1

[
α̂′t|t+1At+1α̂t+1|t+1|℘t

]
= α̂′t|tAt+1(Ttα̂t|t +Gtβt) + tr

[
At+1Σ̂∗t Σ̂t+1|t+1

]
, (97)

E
zt+1

[
α̂′t|t+1At+1α̂t|t+1|℘t

]
= α̂′t|tAt+1α̂t|t + tr

[
At+1Σ̂t|t+1

]
. (98)

Replacing Eq.’s 93, 96, 97 and 98 into 92 yields

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t
]

= (Ttα̂t|t +Gtβt)
′At+1(Ttα̂t|t +Gtβt)

+ tr
[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
− (Ttα̂t|t +Gtβt)

′At+1α̂t|t − tr
[
At+1Σ̂t+1|t+1Σ̂∗t

′
]

− α̂′t|tAt+1(Ttα̂t|t +Gtβt)− tr
[
At+1Σ̂∗t Σ̂t+1|t+1

]
+ α̂′t|tAt+1α̂t|t + tr

[
At+1Σ̂t|t+1

]
=
(
(Tt − I)α̂t|t +Gtβt

)′
At+1

(
(Tt − I)α̂t|t +Gtβt

)
+ tr

[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂∗t
′ − Σ̂∗t Σ̂t+1|t+1 + Σ̂t|t+1

)]
. (99)

Lemma 9.

tr
[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

= tr
[
PtΣ̂t|t

]
+ tr

[(
P̃t+1 +At+1Tt + Tt

′At+1 − I
)

Σ̂t|t

]
(100)

Proof of Lemma 9:

Proof. We know tr [XY ] = tr [Y X], tr [X (Y Z)] = tr [(XY )Z] and tr [(X + Y )Z] = tr [XZ] +

tr [Y Z]. Therefore,

tr
[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

= tr
[(
Tt
′ (At+1 + Pt+1)Tt

)
Σ̂t|t

]
(101)

Using Eq. 35 to replace Tt
′ (At+1 + Pt+1)Tt we have

tr
[(
Tt
′ (At+1 + Pt+1)Tt

)
Σ̂t|t

]
= tr

[(
P̃t+1 + Pt +At+1Tt + Tt

′At+1 − I
)

Σ̂t|t

]
= tr

[
PtΣ̂t|t

]
+ tr

[(
P̃t+1 +At+1Tt + Tt

′At+1 − I
)

Σ̂t|t

]
. (102)
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Appendix C Insight into Selecting an Aggressiveness Option

Many factors go into a doctor’s decision of how aggressively to treat and monitor a patient’s

disease that cannot be captured adequately in a single mathematical model. Our model facilitates

the translation of the clinician’s desired aggressiveness level into optimal treatment controls and

a monitoring plan to achieve those clinical goals with minimal disruption in terms of cost and

inconvenience for the patient (i.e., lower the IOP the least amount necessary to achieve the clinical

goals). While we think it is best to let the clinician use his/her expertise to choose an appropriate

aggressiveness level based on individual patient needs, our model can provide some insight into

when to switch aggressiveness level. At each time period that the doctor sees the patient, our

decision support tool provides a personalized projection of the patient’s progression trajectory over

the next five years (similar to Figure 6). The doctor’s requirement of how much progression is

acceptable in T months (e.g., MD loss of 1dB in 6 months, and/or 4dB in 12 months, and/or 6dB

in 24 months) can be directly compared to our system’s predictions to determine the appropriate

aggressiveness option.

Mathematically speaking, this can be accomplished as follows. Let Ψ = {ψ1, . . . , ψG} be the ordered

set of aggressiveness options sorted from the least severe to the most severe aggressiveness option

(e.g., Ψ = {super-low, low, medium, high, super-high}). Let Ξ = {(t1, ξ1), . . . , (tK , ξK)} be a set of

clinically acceptable progression thresholds such that (tk, ξk) means that no more than ξk loss of

MD should be allowed in tk number of time periods. Let the current time period be t. Our decision

support tool can provide the optimal additional IOP controls for each aggressiveness option (i.e.,

β∗(ψg) =
{
β∗t (ψg), β

∗
t+1(ψg), · · ·

}
) as well as the optimal/filtered forecasts of disease progression tra-

jectory under each aggressiveness option (i.e., α̂.|t(ψg) =
{
α̂t|t(ψg), α̂t+1|t(ψg), α̂t+2|t(ψg), · · ·

}
). Let

M̂D.|t(ψg) represent the MD element of α̂.|t(ψg). Then, at time t, the recommended aggressiveness

level is

arg min
ψg∈Ψ

E
[
M̂Dt|t(ψg)− M̂Dt+tk|t(ψg) ≤ ξk

]
∀(tk, ξk) ∈ Ξ. (103)

Alternatively, we can use the following service-level type expression

arg min
ψg∈Ψ

P
([
M̂Dt|t(ψg)− M̂Dt+tk|t(ψg) ≤ ξk

]
≥ s
)

∀(tk, ξk) ∈ Ξ, (104)

where s is the probability that the loss of MD is limited to ξk. Similar expressions can be written

for PSD and IOP as well.
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Appendix D Results on Target IOP and MD Loss Averted

Since target IOP is an important metric that helps guide clinicians in selecting the appropriate

treatment plan for the patient, the distribution of target IOPs is also of interest. Figure S1 shows

the histogram of target IOPs for fast- and slow-progressing patients under the high and moderate

aggressiveness policies. The range and mean of each category is clinically appropriate in the pro-

fessional opinion of our glaucoma specialist collaborator.

Figure S1: Histogram of target IOPs for CIGTS and AGIS patients under different aggressiveness
policies.

Figure S2 graphs the MD loss averted in [dB] for fast- and slow-progressing patients under the

high and moderate aggressiveness policies compared to the low aggressiveness policy over 10 years of

following the IOP controls suggested by our model. As seen in the figure, fast-progressing patients

will lose fewer MD points (i.e., experience better vision quality) resulting from further lowering

their eye pressure in the short term, whether the doctor chooses moderate or high aggressiveness

level. Slow-progressors, if treated under the high aggressiveness policy, could benefit from losing

fewer MD points in the long term. However, this group of glaucoma patients does not gain evident

benefit from employing the moderate aggressiveness policy even in the long term.
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Figure S2: MD loss averted [dB] for fast- and slow-progressing patients under the high and moderate
aggressiveness policies compared against the low aggressiveness policy (i.e., no additional
IOP reduction beyond those employed in trials) over 10 years of following the IOP
control suggested by our model. Period 1 is six months into the future; period 20 is 10
years into the future.

Table S1 summarizes the results of comparing super-high, high, moderate, and super-low ag-

gressiveness policy options against the low aggressiveness policy (i.e., the IOP levels attained in the

trials), averaged over all patients in the testing dataset. The formula used to obtain each metric

for high aggressiveness policy is presented below. Similar formulas were used for the other policies.

• % less MD loss per year =
MDhighagg

25 −MDlowagg
25

MDlowagg
25 −MD5

∗ 100

• % better MD value at 10 years =
MDhighagg

25 −MDlowagg
25

MDlowagg
25

∗ 100

• % reduction in MD slope at 10 years =

(
MDhighagg

25 −MDhighagg
24

)
−
(
MDlowagg

25 −MDlowagg
24

)
(
MDlowagg

25 −MDlowagg
24

) ∗ 100

As can be deduced from the table, achieving an IOP control suggested by our models not

only results in patients having better vision quality (less loss of vision due to glaucoma) but also

experiencing a significantly reduced glaucoma progression rate, which further benefits the patient

in the long term. For instance, under the high aggressiveness policy, a fast-progressing patient can

achieve, on average, 57.87% less peripheral vision loss per year or 31.71% better MD value after 10

years if the clinician is able to lower the IOP successfully to the target IOP specified by our model.

Furthermore, by applying optimal IOP control, the doctor is able to slow the glaucoma progression
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rate. For instance, the slope/rate of MD worsening would be, on average, 74.54% reduced after

10 years for fast-progressing patients under the high aggressiveness policy compared to the low

aggressiveness policy, which corresponds to the IOP achieved under no additional interventions

beyond those employed in the CIGTS/AGIS trials. This results in more years of maintained sight

over the ten-year period. As seen in the table, the fast-progressing patients (those who are at the

highest risk for disease progression) are the ones who will benefit the most from achieving the more

aggressive optimal IOP controls generated from our models.

Table S1: Comparison of the performance of different IOP control policies for patients in AGIS and
CIGTS against the low aggressiveness policy that is no additional interventions beyond
those employed in the trials.
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Appendix E Monitoring Cost of the Optimal Policies

Our optimal policies for low, moderate, and high aggressiveness suggest, on average, more

frequent IOP testing (a very cheap and fast test) and less frequent visual field (VF) testing compared

to the current practice. Current practice involves testing IOP and VF every 1-2 years (see American

Academy of Ophthalmology Clinical Practice Guidelines 2010). This concept is not widely used in

practice and should lead to resource efficiencies while still providing good detection. If we know

the prevalence of non- vs. slow- vs. fast-progressors in the U.S., we can calculate how many tests

each optimal policy suggests on average and compare it against the 6, 12, 18, and 24-month fixed

interval testing. Unfortunately, there is no gold standard for defining these progression categories.

To overcome this issue, we use the proportions we found in CIGTS and AGIS. In those trials, 21%,

47%, and 32% of patients met our definition of fast-, slow-, and non-progressor, respectively.

We estimate that the cost of a visual field test is $75.94 (Blumberg et al. 2014). An IOP test is part

of a routine eye exam, hence we could not find a separate number for the cost of an IOP test. We

estimate it is $10. Based on these assumptions, the expected annual cost of fixed-interval testing is

$172 (6-month), $86 (12-month), $57 (18-month), and $43 (24-month). The expected monitoring

cost of following the recommendations of our model (Table 3) is $144 (high aggressiveness), $97

(moderate aggressiveness), and $59 (low aggressiveness).
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