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Abstract

To manage chronic disease patients effectively, clinicians must know (1) how to monitor each
patient (i.e., when to schedule the next visit and which tests to take), and (2) how to control
the disease (i.e., what levels of controllable risk factors will sufficiently slow progression). Our
research addresses these questions simultaneously and provides the optimal solution to a novel
linear'quadratic Gaussian state space model. For the objective of minimizing the relative change
in state over time (i.e., disease progression), which is necessary for managing irreversible chronic
diseasestwhileralso considering the cost of tests and treatment, we show that the classical two-
way' separation of estimation and control holds. This makes a previously intractable problem
solvable,by.decomposition into two separate, tractable problems while maintaining optimality.
The resulting optimization is applied to the management of glaucoma. Based on data from
two large ramdomized clinical trials, we validate our model and demonstrate how our decision
support teolcan provide actionable insights to the clinician caring for a patient with glaucoma.
This methodology can be applied to a broad range of irreversible chronic diseases to devise

patient-specific monitoring and treatment plans optimally.

Keywords: chronic disease monitoring and treatment, personalized care, medical decision mak-
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1 Introduction

Chronic diseases are the leading cause of both death and disability and affect almost one out
of every tw6 adults in the United States (Ward et al. 2014). To manage chronic diseases, patients
are tested quantitatively at prescribed intervals using a selected set of testing modalities to assess
disease progression and decide whether a change in treatment is warranted. In this context, proper
testing and treatment guidance is critical to both cost containment and patient outcomes in the
management of chronic diseases. In this paper we develop a modeling framework for dynamic man-
agement of irreversible chronic diseases that enables us to (1) specify the optimal timing of each
office visit land the appropriate suite of tests (i.e., the selection of testing modalities) to perform
at that visit considering the costs and value of each test and the uncertainty about the patient’s
disease progression [disease monitoring], and (2) identify optimal target levels for controllable dis-
ease risk factors to slow the rate of disease progression without over-treating or under-treating the

patient [treatment control].

To da so, we introduce and solve a new type of objective function for linear quadratic Gaussian
(LQG) systems that minimizes the relative change in state (i.e., disease progression) rather than
the traditional objective of minimizing the cost of being in each state, while still accounting for
the test and treatment costs as in the traditional objective. We extend LQG theory by proving
that the classical two-way separation of optimal state estimation and control applies to this new

objective. This separation ensures computational tractability for the simultaneous optimization of
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disease monitoring and treatment control. This innovative modeling of dynamic disease monitoring
and treatment control is developed to be applicable to many irreversible chronic diseases. As a
proof of concept, we demonstrate the capabilities of this methodology by applying it to glaucoma,

a chronic disease causing progressive blindness.

1.1 Scope of the Research
It is important to distinguish the disease monitoring problem from screening for a disease. The
goal of disease"seéreening is to determine whether or not a patient has a particular disease. A
screening test is taken when the patient is considered to be at some risk of developing a condition
but exhibits no symptoms of the illness. For the disease monitoring problem, however, the patient
is already known| to have the disease, and the goal is to detect the presence of disease progression
quickly and identify whether/how to adjust the treatment plan to slow/avert further disease pro-

gression.

For the treatment control portion of the problem, the goal is to determine the time-dependent
intensity of treatment over a treatment cycle based on dynamically updating information on patient
disease statesfrom the monitoring portion. We emphasize that our model does not suggest a specific
interventions, Rather, it provides patient-specific target levels for controllable/modifiable disease
risk factors.thatzhelp guide the doctor in selecting an appropriate treatment plan for the patient.
Though one.might try to model how each intervention affects the disease progression dynamics, we
feel it isjbeststorleave it to the clinician to employ his/her experience and expertise to decide what

therapeutic intetventions are most likely able to achieve the target levels suggested by our model.

1.2 Main“Contributions
e Theory: (1) To the best of our knowledge, this is the first research paper to employ measure-
mentradaptive systems theory to the monitoring and control of chronic diseases (or even to
any healtheare operations research problem), and this new application requires an extension
of theunderlying theory. We extend the LQG state space modeling literature by introducing a
new gbjective that minimizes the relative change in system state over time (i.e., the difference
in estimated state elements between the current period and the previous period), rather than
minimizing the cost of current state, while still considering the cost of tests and treatment. In
prior ‘applications of LQG modeling to other engineering problems, the goal of the controller
has beennto keep the system state on a static desired trajectory using costly control actions
by minimizing the deviation of the current system position from the desired trajectory over
time."However, in irreversible diseases such as glaucoma, once the disease has progressed, it
is biologically impossible to reverse the damage. In this context, the desired trajectory is to
maintain the “current disease state position” (i.e., stop the disease from worsening), which
the model updates dynamically as the disease progresses over time. This necessitates a new

structure for the objective function (Eq. 3) not yet studied in LQG literature.
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(2) For LQG systems theory, the two-way separation of optimal state estimation and control
(known as the separation principle) has been a critical foundation upon which to optimize
estimation and control of probabilistic systems tractably and simultaneously (see Witsen-
hausen 1971). Our main theoretical results show that the two-way separation of optimal
estimationsand control extends to this new objective of relative system state change, which
involyestwe correlated state variables from the current and previous time periods. The treat-
ment_control_can be optimized in closed form as a linear function of the best estimate of
the"patient’s current disease state (i.e., filtered state mean given by the Kalman filter) via
completionsof squares. Furthermore, we show that the monitoring problem can be reduced
to a gontinuous-state discrete-action Markov decision process (MDP) model with filtered and
smoothedseovariance matrices of the state serving as the information state and the Kalman
filter fand smoother equations acting as the system dynamics. The MDP can be solved via
dynamic programming to find the optimal monitoring schedule specific to each individual
patient.

(3) A Kalman filter and smoother are built into our modeling framework to extract noise
from(the raw measurements and to estimate the disease state optimally in each time period
based on imperfect/noisy measurements. This is key to accurately identifying genuine dis-
ease progression from testing artifacts. The Kalman smoother is a new feature in our model
(compared with the traditional LQG models), and it is essential because of the new objective
function,we employ. State smoothing means using information gained at time ¢ to update the
prior.estimate made at t — 1 of the value of the state at ¢ — 1. Filtering refers to estimating

the current disease state based on new test results.

Application: (1) We develop an integrated, feedback-driven stochastic control model to
providesthe jointly optimal solution to both the disease monitoring and treatment control
problems. /Note that the monitoring regime affects the disease control problem. As new
tests are.performed, the information gained can affect how the doctor controls/slows the
progression of the disease. Therefore, it is critical to model and solve the disease monitoring
and _controlsproblems together to capture the interaction between them.

(2) Theamodel explicitly determines which suite of tests to take at each time period. Some
tests are significantly easier and cheaper to perform than others. Different tests may provide
more or_less information about the patient’s disease state. Therefore, it is important to be
able.to differentiate which tests to perform at each time point in terms of improved monitoring
and cost containment.

(3) We develop a data-driven decision support tool that provides a menu of options to the
doctor based on how aggressively he/she wants to monitor and control the patient. The doctor
can select an appropriate aggressiveness option depending on the patient’s life expectancy,

severity of disease, and other personal and clinical factors. For each aggressiveness option,
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the model incorporates new and past test results as well as clinically-believed and data-
verified disease dynamics to predict and graph the future disease trajectory and recommend

a patient-specific monitoring regime and target level for controllable disease risk factors.

e Data: (1) We parametrize and validate our model using data from two landmark randomized
clinical trials of patients with glaucoma. Our numerical results indicate that the model
achieves low errors in predicting the future disease trajectory.

(2) The results suggest the potential to improve both patient outcomes and system cost when
applied to patients from the clinical trial already receiving a high level of care. This potential

is likely greater for patients being treated by non-glaucoma specialists.

2 Literature Review

Papers relevant to this research are classified into three categories: (1) theoretical papers on
measurement adaptive systems and sensor scheduling, (2) medical decision making papers on dis-
ease screenimggdiagnosis, and monitoring, and (3) optimization models on treatment planning and
disease confrol. In this section, we highlight some prominent papers in each category and briefly
describe howsoursresearch methodologies and objectives are different.

Measurement Adaptive Systems and Sensor Scheduling: The closest paper to our work in
terms of theorywis Meier et al. (1967). This paper lays the foundations for measurement adaptive
systems lin.which the controller seeks to keep the system state on a static desired trajectory and
obtain information about the system state simultaneously with minimum total cost over a finite
horizon. “FPhey"show that, in the special case of discrete-time systems, linear system dynamics,
quadratic cost of the current state, and Gaussian random noise processes, the problem of find-
ing the optimalsmeasurement policy reduces to the solution of a nonlinear, deterministic control
problem. Barémyand Kleinman (1969) extend their work to continuous-time measurements and
investigate the optimal measurement duration for a human operator. Bansal and Bagar (1989) pro-
vide an extension of this framework to the infinite-horizon setting with discounted costs. Our work
differs insthat-itedeals with a dynamic desired trajectory, minimizing the relative change in state
in each timesperiod (i.e., disease progression), which is essential for managing irreversible chronic
diseases (as"diseussed in Subsection 1.2). For example, experiments using the model provided by
Meier et ale(1967) led to results considered clinically incorrect/unbelievable in the experience of
our clinical cesauthor, a glaucoma specialist. We discuss this more in Section 3.3.

There is alse. extensive literature on sensor scheduling problems, in which a set of sensors is used
to estimate a stochastic process, but because of cost or design constraints, only one or a subset
of them takes measurements at each time point. Athans (1972) considers the problem in which
the controller has to select one measurement provided by one sensor out of many available sensors

(with different measurement costs) at each time step, such that a weighted combination of predic-
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tion accuracy and accumulated observation cost is minimized. Examples of other work in this area
include Gupta et al. (2006), Mehra (1976), and Vitus et al. (2012). However, these papers differ
from ours in that they do not consider the tradeoff between exploration vs. exploitation.

Disease Screening, Diagnosis, and Monitoring: While there is extensive literature on disease
screeningzandsdiagnosis problems, there is relatively little work on the disease monitoring problem
that we defitedwin Section 1.1. Helm et al. (2015) and Schell et al. (2014) provide a heuristic
approach for finding the time in between tests based on patient’s probability of progression. Note
that their work*focuses only on the timing of the next test and does not consider how that test
would impaet.future tests performed nor the type of test performed at each visit. (They assume all
of the tests@re performed at each office visit.) These works also do not incorporate optimization of
controllable'disease risk factors (i.e., treatment planning), which is a key factor to consider when
managing patients with chronic diseases. Ayer et al. (2012) provide a partially observable Markov
decision process (POMDP) approach to personalize mammography screening decisions; their work
is based on the prior screening history and personal risk characteristics of women. Chhatwal et al.
(2010) develop a finite-horizon discrete-time Markov decision process (MDP) model to help radiol-
ogists determine the best time for a biopsy based on the initial mammography findings and patient
demographics. Their goal is to maximize a patient’s total expected quality-adjusted life years. The
works of Yang et al. (2013), Mangasarian et al. (1995), Saaty and Vargas (1998), Zhang et al.
(2012), Lee et al. (2018), and Erenay et al. (2014) are other examples of disease screening models.
These worksediffer from ours in that they focus on the screening problem where the goal is to
detect the presence of a particular disease with minimum delay. They do not provide any insights
on how to monitor the patient if the presence of the disease is confirmed and progression trajectory
can be monitored over time, nor do they consider treatment planning. Kreke (2007) develops a
POMDP model to study the question of when to test for cytokine levels in patients with sepsis
using available, costly, and inaccurate tests. Suen et al. (2017) develop a POMDP framework to
determine when and how often sputum smear test information should be collected from patients on
first-line treatment of tuberculosis and use this information to find the optimal time to administer
drug sensitivity testing. These works consider the problem of timing of each test with testing noise
and system noise but do not consider simultaneous disease monitoring and treatment decisions.
Treatment Planning and Disease Control: There has been a variety of work considering when
to start treatment of a patient when the presence of disease is confirmed (also known as surveil-
lance problems). Lavieri et al. (2012) develop a Kalman filter-based approach to help clinicians
decide when"toystart radiation therapy in patients with prostate cancer based on predictions of
the time when the patient’s prostate specific antigen (PSA) level reaches its lowest point. Notice
that, different from our approach, its actions are discrete (start/do not start radiation therapy)
rather than establishing the level of therapy to be given. Furthermore, this work did not consider

when the patient should be monitored, assuming the patient would be seen at the clinic once a
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month. Shechter et al. (2008) employ Markov decision processes (MDP) to optimize the time to
initiate HIV treatment to maximize a patient’s quality-adjusted life years. Mason et al. (2014) and
Schell et al. (2018) present MDP models to determine the optimal timing of blood pressure and
cholesterol medications. All of these papers assume a measurement of the patient’s health is taken
periodically.=Quz work differs in that it solves the joint problem of optimal timing of each test and
optimal treatment control.

Moreover, inymest.of the previous research mentioned, the patient’s disease dynamics are assumed
to be knewnrorrare estimated using population-based models. In our model, the population data
is integratedwwith individual patient measurements gathered from sequential testing so that the
predictionsfand ‘decisions made are unique to each patient. Capturing the complex patient dis-
ease dynamiessrequires incorporating several health indices into the state vector. We employ a
continuous/state space that easily accommodates multivariate states (e.g., nine dimensions in our
model for glaucoma) and provide jointly optimal solutions to both disease monitoring and control
problems. Employing a continuous state space model is important as many quantitative tests for
disease monitoring are continuous. Problems with such a multivariate, continuous state-space often
become intractable for MDP-based approaches due to the curse of dimensionality. Discretization
of the state space and using approximate dynamic programming (ADP) to mitigate the curse of
dimensionality offMDP models is an alternative approach when our modeling framework does not
fit. For example, strongly discrete state variables, highly non-linear disease dynamics, and highly
non-Gaussiam, random noises are features that are difficult for our model to handle. However, it
should be_neted that discretization of the state space and grouping discrete states together to
reduce the model size is shown to reduce the predictive power of the MDP models as a result of
lumping error (see Regnier and Shechter 2013). The implication is that if the assumptions in our
model are reasonable for a disease, a modeling framework like what we present in this paper that
can accommodate continuous state space (for a disease with continuous variables) without loss of
optimality caf"benefit from more accurate predictions (specially beyond one period into the future)

and can be solved tractably.

3 The*Modeling Framework

A continuous state space model is employed at the heart of our modeling framework with two
key components:_ (1) a state transition process to model disease progression dynamics, and (2) a
measuremiént /testing process to model how the true disease state is observed. Both processes (Eq.’s
1 and 2) are in"the form of first-order (linear) vector difference equations with additive Gaussian
white noise (i.e., noise inputs at time ¢ and ¢’ are independent). The objective function seeks to min-
imize the weighted sum of multiple cost elements with state independent cost parameters/weights.
The optimization problem determines both the optimal disease control (how to control modifiable

risk factors) and the optimal monitoring (when to take new measurements), both of which are
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patient-specific and state-dependent. Such a model can be a good fit for many chronic diseases
(such as glaucoma) since the measurements are typically on a continuous scale. In the case study
of glaucoma (Section 5), we will elaborate on how we adjust for some of the model assumptions,
e.g., we include first and second-order derivatives of key disease state elements in the state vector
to capture: semesdegree of nonlinearity in our linear model, and we define various aggressiveness

levels that ghe ¢linician can choose from, each of which is tied to a set of cost parameters.

3.1 State"Transition Process

The recursive state transition equation for our N-stage time horizon is given by
ai+1 = Troy + GLBe + e, t=1,...,N, (1)

where a; ig the random vector representing the state of the disease at time ¢, §; is the “disease
control” variable administered at time ¢, 7; is the vector of Gaussian white noise that represents
unmodeled disease process noise with E [n;] = 0 and Cov (1) = Q¢, T; is the state transition matrix
governing the underlying disease progression dynamics, and G is a vector capturing the effect of
disease congrol variable 3; on the next period state, cy11. B¢ is one of the two optimization variables
of the model. Tt determines how the modifiable disease risk factors should be adjusted at time ¢t
to slow the progression of disease optimally. Our model seeks to adjust the modifiable risk factors
in the first few time periods, after which 3; converges to zero. By summing the total amount of
control f;"ever this timeframe, we obtain a target level for each modifiable risk factor. We will
illustrate thissin Section 5.8.2. Having such information will help clinicians select the appropriate

treatment plan for the patient.

3.2 Measurement/Testing Process
The measurement equation gives the relationship between the true disease state, ay, and the

noisy raw reading/observation, z;, as follows.
2 = Zyoy + €, t=1,...,N, (2)

where z; i§ the'ebservation vector (i.e., the result of test(s) performed on the patient), Z; is the ob-
servation matrix‘and determines how components of the true state are observed, and 4 is the multi-
variate Gaussian white test noise with E [e;] = 0 and Cov (g¢) = Ht(et). 0 is the “test/measurement
control” variable that determines which subset of tests to take in period ¢; it is the other control
variable the*model optimizes. Htwt) models the error associated with the tests and is directly af-
fected by the decision on which test(s) to take at time ¢ (which we highlight by adding (6;) to the
superscript, i.e., Ht(et)). It is worth noting that both a;y; and z; are Gaussian random vectors
since they are a linear combination of independent Gaussian random variables. The initial state,

a, is Gaussian with E [ag] = o = &;)p and Cov (ag) = S = 21|0‘ The random variables g, {n:},

This article is protected by copyright. AlBrights reserved



and {e;} are mutually independent. Throughout the paper, the notation Xt‘t/ means the estimated

value of random variable X at time ¢ with information up to time ¢'.

3.3 Objective Function

The novel objective function (performance criterion) we analyze is given by

N

J=F {Z [(Oét — 1) Ay (o — ou—1) + B/ BuB + lt(etﬂ + (an+1 — an) Angr (Nt — OéN)} )
t=1

3)

in which A;.s the unit cost matrix of further worsening the disease, B; is the unit cost of adminis-
tering disease control (i.e., further adjusting the modifiable disease risk factor), and the scalar 1;(6;)
is the cost of taking tests/measurements in period ¢, which depends on the test control variable, ;.
The objective function consists of four terms: (1) (ay — as—1)"As (p — ay_1) is the cost of relative
change in thé"system state random variable (i.e., disease progression) between the previous period
t — 1 and theseurrent period ¢ (whereas the traditional LQG objective minimizes oy’ Ay as ex-
plained in Subséction 1.2), (2) B¢/ Bi3; is the cost of controlling the disease risk factors including
side effectsandseomplications of medical or surgical treatments, (3) l;(;) is the cost of taking tests,
and (4) (e i™=oay) Ani1 (ans1 — ay) is the terminal cost of relative state change at the end of
the treatment ‘herizon. The quadratic form of the first part of the objective function ensures that
a large disease worsening is penalized more aggressively than a small one. Furthermore, achieving
a large adjustment in disease risk factors may require more aggressive treatments (e.g., surgery or
laser therapy)ywhich are associated with higher monetary costs as well as more side effects and
discomfort than a smaller change in risk factors, which can often be achieved by simpler treatments
such as medications. Hence, the cost associated with a big relative change in a patient’s disease risk
factors is mueh*higher than a small one, so the quadratic form of the second part of the objective
function is‘a,good choice for our application.

One might gry=te'define the first part of the objective function as minimizing the deviation of the
current statefrom the patient’s baseline state (i.e., minimizing

EY" [(at = ap)Ai (cr — o) + B¢ BB + lt(ﬁt)] ). Note that this is not an appropriate objective for
irretversible diséases because, according to our experiments, the model will attempt to reverse the
disease progression and send the state back to its baseline (which we know is biologically impossi-
ble) by making'extreme and often infeasible changes to state variables that are not valid clinically.
Moreover,"such an objective function assigns quadratically-increasing cost to additional disease
progression measured as the current deviation from its baseline, which can easily overshadow the
other cost elements in the objective function (i.e., treatment and monitoring costs). This will result
in recommending the most aggressive treatment and monitoring regimes for all patients when the

cost associated with deviation of current state from its baseline overshadows the other two costs
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in the objective function regardless of how bad the current state is. We believe that good clinical
practice is always careful to note the latest disease state, with any worsening being of concern. Our
objective function achieves this without introducing the problems noted above.

ot

Another alternative approach is to define the state as a; = [
at—1

] , and minimize

EY" [dé[ltdt =6, B 3 + lt(ﬁt)]. While it is possible to develop an alternative formulation equiv-
t

alent to thevomé we presented above based on this new definition of state, A, in the objective

function of the alternative formulation is a singular (non-invertible) cost matrix (more specifically,
Agm==A,

A4, = ; calculation not shown). However, we would need to invert this matrix to

-4, A
find a closeds=form solution for optimal disease control. Hence, the alternative formulation makes

it harder tg'derive a closed-form solution for the optimal disease control. Note that, in the formu-
lation proposedfin our paper, A; is always invertible because A is a cost matrix and, by definition,

it is diagonal with only non-negative terms on the diagonal.

3.4 Kalman Filter and Kalman Smoother

When the state transition and measurement processes are both in the form of first-order dif-
ference equationsywith Gaussian white noises, the optimal state estimation method that minimizes
the mean squared error of the estimate is given by the Kalman filter (Kalman 1960). The Kalman
filter obtains the prediction of state mean and covariance at time ¢ with information up to time
t—1, dyy—1 and f)t|t_1 respectively, and the current reading, z;, as inputs to the algorithm and
calculatessthe filtered state (i.e., optimal estimate of the true state) mean and covariance, &y, and
flt‘t respectively.

The optimal state mean estimate at time ¢ with information up to time ¢, dy, is given by
Ayt = Qypp—1 + K, (4)

where &y, 4715 the predicted state mean at time ¢ given information up to time ¢ — 1 and g; is the

measurementsresidual (error) given by

Qypp—1 = Tr—10¢_1t—1 + Gi—10¢-1, (5)
Ut = 2t — Zily)p_1, (6)

and K; is'the Kalman gain given by
K = 2t|t71Zt/St_17 (7)

in which S} is the predicted covariance around the measurement given by Ztﬁ)ﬂt_th’ + Ht(et).

The predicted state covariance at time t given the information up to time ¢t — 1, f]t‘t_l, and the
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most recent state covariance estimate at time ¢ with information up to time ¢, f)t|t, satisfy

. . . . PR N R
Yojp = Lgjp—1 — Et\t—lzt/<tht|t—IZt, + Ht( t)) Zi3yi—1 = (I — K Zt) X1, (8)

Sye-1 = T—15 11 Ti—1’ + Qe-1. (9)

The initial gfate ean and covariance, &q)g and 21|0 respectively, are calculated based on population
data from ¢linieal.trials. So, §1 = 21 — Zléz”o and S1 = Zli‘”oZl' + erl). For more discussion on
Kalman 'filter;'see Bertsekas (1995) and Harvey (1990).

Because of thesspecial form of the objective function that minimizes relative state change from time
t — 1 to time t (ike., disease progression), we need to refine the estimation of previous state mean
and covarianee®(d;_y; and i]t—1|t’ respectively) after a new measurement is taken at time ¢. This

is called state/smoothing and can be done via a fixed-interval Kalman smoother as follows.

Qp1p = Qp_qp—1 + ) (Qye — Gup—1) (10)

D1t = Seoji—1 + Siq (2t|t - it\t—l) W (11)

in which f];‘_l = it—l\t—th—ll f]atl_l. A derivation of the fixed-interval Kalman smoothing can be
found in Amsley and Kohn (1982).

The control system block diagram is depicted in Figure 1. The dashed arrows indicate that the
informationmis_carried over from the current period, ¢, to the next period, ¢t + 1. The values
in parentheses”are not observable. Suppose the patient is in disease state «; when visiting the
doctor’s office. Based on the optimal test control action #; (already determined in the previous
time period), all or a subset of tests are performed on the patient. The noisy observation/reading,
zt, is then 'sent™to the Kalman Filter. Based on the predicted and observed states, the Kalman
Filter algorithm calculates the best estimate of the mean and covariance of the patient’s disease
state in period™, d&;; and itlt respectively, and sends the filtered values to both the Kalman
Smoother and the controller (i.e., the decision support system itself for this analysis). The Kalman
Smoothérwill"then modify the best estimates of the state mean and covariance in period ¢t — 1,
Q1) and f)t,”t respectively, and send the smoothed values to the controller. Notice that this is
a key departure from the traditional methodology. The controller receives both the filtered and
smoothed values of the patient’s disease state mean and covariance (the information state for the
optimizatien"@omponent of the model) and outputs the optimal treatment and test control actions,
B¢ and 6;,“Einally, the prediction of the state mean and covariance in period ¢ + 1, &1, and
ZA]H_W, is sent to the Kalman filter and smoother to be used in the following time period.

In Section 4, we focus on the controller (decision support tool) and show how the optimal disease
and test control actions (5 and 6}, respectively) can be calculated given the information state

or = <dt‘t, ﬁ)”t, Qg 1t ﬁ]t_1|t>. For convenience, Table 1 provides a list of important notations we
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Figure 1: Control system block diagram.

Table 1: List of important model notation. Auxiliary notation used in Section 4 to prove Theorems
1-3,arenot shown in this table; they are defined upon introduction in Section 4.
*Notesthat since glaucoma has only one controllable risk factor (i.e., IOP), in our case
study of glaucoma, (; and B; become scalars and G; becomes a vector.

**Smoeothing, filtering, and prediction refer to the case in which ¢ > ¢, ¢/ = ¢, and t’ < t,
respectively.

used in our’modeling.

3.5 Separation of Estimation and Control

One-way /Separation of Estimation and Control: A control law is a function selected
by the contreller. from the set of all admissible functions based on all observations available at
the time of the decision. This function generates a control action to be applied to the system.
The problemsisste make an optimal selection of such functions for all time steps that achieves the
minimum expected cost (defined by the objective function) for the control horizon of the problem.
For the general,stochastic control problem with imperfect observations, given all the observations
and previous control actions, state estimation from a noisy measurement is always independent of
the contreldawss1'his is because the conditional density of the state given all the observations and
the control actions is independent of the control law. This result is called the separation principle
in contrel“theory. (see Witsenhausen 1971). The only underlying assumption for the separation
principle to hold is to have one controller (i.e., centralized information) with perfect recall (i.e., the
informatiofi,on the previous observations and control actions do not get forgotten).
In general, the,control law depends on the estimate of the system state; however, the estimate at
time ¢ is independent of all control laws given all observations up to time ¢ and all the control
actions up to time ¢ — 1. This is also known as the one-way separation of estimation and control.
Since our LQG model is a special case of the general stochastic control problem with centralized
informatiom and perfect recall, the one-way separation principle holds. As seen in Section 3.4, the
optimal state estimation at time ¢, described by &y, and XA]t‘t, is given by the Kalman filter (Eq.’s
4-9) and is independent of the control law given all the previous observations and control actions.
Two-way Separation of Estimation and Control: For LQG stochastic systems in which (1)
the transition and measurement equations are linear in state and control action, (2) the objective
function penalizes the quadratic cost of current state, and (3) the state and measurement noises
are Gaussian, it has been shown that the control law is also independent of the state estimation
(Meier et al. 1967). Therefore, for this traditional form of LQG models, we have two-way separation
of the estimation and the control; namely, the estimation is independent of the control law and

the control law is independent of the estimation. In Section 4, we show for the new objective of
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minimizing the relative change in state, which involves two correlated state variables of current
and previous time periods and requires smoothing in addition to filtering and prediction, that the
optimal control law is still independent of the state estimate. Thus, in this new and more complex
environment, the two-way separation still holds. Furthermore, the optimal control action is linear
in the state.estimate. This is extremely desirable for application because the control law is data
independeng’andycan be calculated offline (which greatly reduces the computational burden). The
two-way separation.of estimation and control for this special case of LQG models is a fundamental

finding, whieh#isweritical to solution tractability.

4 Derivation of Optimal Disease and Test Controls

In this section, we derive the optimal disease and test control actions given the information
state at time /£, @, which is defined as the filtered state mean and covariance at time ¢ and the
smoothed state mean and covariance at time ¢ — 1 with information up to time ¢, ie., p; =
<dt|t72t|tvdt71|t72t71\t>-

In terms of g;, a dynamic programming algorithm can be derived to find the optimum disease and

test controls. The value function, V; (g;), can be found recursively as follows.

Vi (94) = min {Lt(@ta/@taeﬂ—l) + E [Vit1 (@t+1)]} , t=1,...,N—1, (12)

/Bt, t+1 Zt4+1

where V; (@puis the minimum expected cost from period ¢ to N, the end of the control horizon, given
the informatién state g;, and L;(pq, B¢, 01+1). Here Li(pr, Bt,0:+1) is the expected instantaneous
(one-stage) cost incurred in period t given that the information state is p; and the control actions

Bt and 041 are chosen, and it is computed as

L@, Bt 0r1) = E [(ar — 1) Ay (o — ag—1) [9e] + BiBiBs + L1 (0r41)- (13)

The boundary=eondition is given by
Viv (o) = min { Ly (o, A7) | (14)
N

where L ~N (@, 0n) is the expected cost incurred in the final period N if the information state is py
and the diseaseseontrol action Gy is chosen. The minimum cost during the entire control horizon

can, therefore, be obtained by
J*=1(01) + Vi(er), (15)

in which /1(6;) is the cost of initial tests during the patient’s first office visit and Vj(gp1) is the

minimum cost to go from period 1 to the end of control horizon obtained recursively via Eq.’s 12
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and 14. We assume all diagnostic tests are taken during the first visit, so a baseline of all readings
is established.

In the remainder of this section we use an induction argument to prove the following theorems.
Theorem 1. For arbitrary timet (t = 1,..., N ), the control law is independent of the state estimate
(i.e., we havestwo-way separation of optimal estimation and control). Moreover, the optimal disease
control, B} #is limear in the filtered state mean, dy;.

Theorem 2., At‘an arbitrary timet (t = 1,...,N), the optimal monitoring schedule, 05, ,0f o, ...,
can be foumd=by=solving a continuous-state discrete-action MDP model with filtered and smoothed
covariance imatrices of the state serving as the information state and the Kalman filter and smoother
equations aeting as the system dynamics.

Theorem 3wdor arbitrary time t (t =1,...,N ), the value function with information up to time

t has the following form.

A~ ~ / N N 2
Vi (pr) = (at|t - O‘t71|t) Ay (at|t - at71|t) +tr [Atzﬂt}

+ @;ﬁPtdt\t +ir [Ptit\t} + VY <@f) + by, (16)
in which Vf (p?) represents the recursive terms that only depend on measurement control actions,
i.e., when to takeitests and which test(s) to take. They do not depend on observations or on disease
control actions.” Therefore, the measurement control problem can be solved separately from the
treatment @ontrol problem. gaf represents those elements of information state that are only affected

by measurement control actions (i.e., pf = (ﬁﬂt, it—l|t>}; and by is a constant. V? (gof) and by will

be obtained later in the proof.

Proof by induction: In Appendix A we prove that the value function in the final period is
given by
VN (pN) = (dN|N - dN—1|N)/AN (dN\N - 54N—1|N) +ir [ANXA:N\N}
Fdly Py any +tr [PNEN\N} +tr |:AN <2N71|N — TN EN_1N — 2N71|NTN—1/)}

4 tr |:pN+1iN|N} +tr [AN+1QN] ’ (17)

where tr represents the trace of the matrix. By comparing Eq.’s 16 and 17, we obtain our basis for

induction:

V]\H[ (p%) =tr |:AN <2N—1|N — TN—IXA)N—HN — XA]N_1|NTN_1/)1| +tr [pN+1i:N|Ni| , (18)

by =tr [AN11QN] - (19)
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Assume the induction hypothesis that

~ ~ / A~ ~ -
Vis1 (9e41) = (Qugrjpr — Quppgr) Aerr (Qugajer — Gupegr) + 07 {At-&-lztﬁ-l\t—i—l}
+ G4y PGy Tt [Pt+lit+1|t+1} + Vi (@?ﬂ) + b1 (20)

We show that W(p;) follows the form given in Eq. 16 to complete the induction step.

From Eq. 12 weknow the general form of value function is

Vi(p) = min {Ltm,ﬁt,mw E Vi mm}, (21)

1,011 Zt41

in which the_information state at time ¢ + 1, p;y1, is a function of @, B¢, 6441, and zi1. The
expected instaftaneous cost in period ¢, L¢(py, Bt, 0¢+1), is given in Eq. 13. Application of Lemma

3 to the expectation in Eq. 13 results in
~ ~ / A~ A~
Lt(ptaﬁt76t+1) = (Oét\t - @t—l\t) Ay (at|t - 04t—1|t)
+tr [At (2t|t + ZA375—1|t - Tt—lit—l\t - it—1|tTt71/>}

+ 61 BiBs + lp11(011). (22)

Replacing Li(p¢, B¢, 0141) and Vigg (pr+1) in Eq. 21 by the values given by Eq.’s 22 and 20 respec-
tively, yields

s ~ ~ / " .
Vi (pr)= B%ill{(at\t - O‘t—l\t) Ay (Oét|t - Oét—1|t)
+tr [At (2t|t + 2t71|t - Tt—12t71|t - 2t71|tTt—1l>} + B'4BtfBr + ley1(041)
A~ A~ !/ ~ ~ ~ ~
+ zE1 [(Oét—l-llt—H - at\t+1) A1 (at+1|t+1 - Olt|t+1) + a;+1|t+1PtHat+1‘t+1]
t+

+ir [At+1i]t+1\t+1] +r [Pt+1it+1|t+1} + Vi <@f+1> + b}, (23)

. X R / R R . R .
Replacing 2 [(at+1|t+1 — Gyjyp1) Arr (Gpgajer — at\t—i—l)} and E [at+1|t+1pt+lat+1|t+1] using
t+1 t+1
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Lemmas 7 and 8 in Appendix B, respectively, yields

Vi (1) = ﬂ%iill{(@ﬂt — 54t—1|t)/14t (Gupe — 1t
+ir :At <2t\t + 2t—1|t - Tt—litfl\t - 2t71\tTt—1/>] + 08'BiBy + li1(0111)
+ (T — 1)y + Gtﬁt),AtH ((Ty = D)évye + Gife)
+tr :At+1 <Tt2t|tTt/ + Qt — Si1jr1 — Seqtp1r — Si 81 + 2t\t+1)]
+ (Tibyy + GiBy) Prp1 (Tybyy + GifBr) + tr [Pt—i-l (TtiﬂtTtl +Qr — 2t+1|t+1>}

+tr At+1ﬁ3t+1|t+1} +tr [Pt+1i3t+1\t+1] +Vi (W?H) + b1} (24)

Canceling terms,results in

a3 ~ ~ / A~ ~
Vi(pr) = ,6%131{(%“ - O‘t71|t) Ay (at|t - O‘tfl\t)

+tr [At <it\t + i]t—l\t - T;f—li]t—nt - it—l\tTt—l/)] + BBy + li1(0141)
+ ((Tt = I)éye + Gtﬁt)/AtH ((Tt — I)éy + Gt/Bt)

+ (Tidyyy + GiBr) Pe1 (Tedy, + Gifr)

+tr [(AtJrl + Piy1) <Tti3t|tTt/ﬂ +tr [(Ats1 + Pig1) Q4]

+tr [At+1 <St\t+l — S — 2t+1|t+12:/>} + Vi (@?ﬂ) + b1} (25)

The termsin"Eq™ 25 can be separated into three types: (1) those terms whose values are known at
time ¢ with information up to time t, (2) those that depend only on disease control action, 3;, and
(3) those thatsdepend only on test control action, 6;41. Hence, the minimization over f; and 6,41
can be separatédyas V; (pr) = Vt(l) (pr) + Vt(2) (pr) + Vt(g) (p¢) in which

VY (00) el — Go10) Ar (ugp — Gyapy) + tr [At <i:t\t + 3 — D1y — it—l\tTt—ll)]

Faf(T — 1) A (T — 1) + T Py T) (26)
Vt(2) (1)= r%in {B (Bi + G (Ary1 + Piy1)Gr) Br + (up(Ty — 1) Ap1 + Ty Piy1)Gy) By

L0 (G (A1 (T — 1) + P Ty)dpe) § (27)
Vt(g) (1) ot [(Atﬂ + Pyy1) (TtiﬂtTtl)} +tr (A1 + Prgr1) Qi + bi

+ min {lt+1(9t+1) +tr [At+1 <2t|t+1 — S5y — 2t+1|t+1iz‘/)} + Vi (@fﬂ)} :

t+1

(28)
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As before, the minimization over (3; is denoted by Jy, $0

Jy = I%in{ﬁ,t (Bt + G (A1 + Pry1)G) B + (072” (T, = I)'Apy1 + T/ Py Gt) Bt

+ B (Gi' (Aps1 (T — I) + PraTy) éupy) } (29)

The minimization over §; can be performed by completion of squares (similar to what is done in
Lemma 5 forsth€ minimization over Gy) to yield Eq.’s 30 - 33. The optimal disease control at time

t is given by
By = _Ut@t|t7 (30)
in which thel control law, Uy, is given by
Uy = (By + Gy (Ap1 + Pt+1)Gt)71 (GYAp1 (T — 1) + G/ P T) (31)
Moreover, thezesult of minimization over (; is given by
Ji = =&y, Pry1dyy, (32)
in which

Pii1 = (T =) A1 Gy + T} P Gy) (By + Gy (Agsr + Pt+1)Gt)_1 (G P Ty + G Ay (T = 1)) -
(33)

As seen in"Eq. 30, the optimal disease control 8} is a linear function of the filtered state mean
y)¢- It is worth noting that this function (more precisely, the control law U;) depends only on
parameters of the system dynamics and the objective function cost inputs. Hence, the control law
is data independent and can be calculated offline prior to solving the measurement and control
problems.

As seen in Eq.’s 4 through 11, the optimal state estimation is independent of the control law. We
also just showed that the optimal control law is independent of the state estimation. This completes

proof of Theorem 1. B
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Replacing the minimization over 3 in Eq. 27 by its value given by Eq. 32 results in

Vi (1) = (@t\t - @t—l\t)lAt (dt|t - dt—1|t) +itr {At <2t|t + 2t—1|t - Tt—lit—lhf - 2t—1|tTt—1,>}
+ gy ((Tt ~ DA (T, — 1) + T/ P Ty — ﬁ’t+1> Gy +tr [(At+1 + Pi11) (Ttit\tTt/ﬂ

+ gtlifll{lt+1(9t+1) +tr [At+1 (iﬂt-&-l — XS — it-&—l\t-ﬁ-li;/)} + Vi <@f+1)}

+ i [(At+1 + PtJrl) Qt] + bt+1. (34)
Letting
Pr=(Ti = 1) Apa(Ty = 1) + T P Th — Prya,s (35)

and replacing/tr [(At—H + Piy1) (thlﬂtTt’ )} in Eq. 34 by its other form given by Lemma 9, Eq. 34

can be writtenras follows to match the form of value function we claimed in Eq. 16.

Vi (pt) = (dt|t 3 dt—1|t)/At (@t|t - 54t—1|t) +tr [Atiﬂt} + di\tptdﬂt +ir [Ptiﬂt}
+ t'f' |:At (it,”t - Tt—12t71|t - 2t71|tﬂ—1l>i| + t?" |:<.ﬁt+1 + At_t,_l,_rt + E/At_t,_l - I) 2t|ti|

H léniﬂ{lt+1(9t+1) +tr [AtJrl (ﬁ:tlt—i-l — X et — 21t+1|t+1i:f/)} + Vi (@fﬂ)}

t+1

FEP (A1 + Prp1) Q] + by (36)

Now, bygeomparing Eq.’s 36 and 16, it can be easily seen that fort =1,..., N —1

vy (@?) =1 [At (it71|t - Tt—lit—ut - 2t71|tTt—ll>} +tr Kptﬂ + A1 Ty + T Apr — [> 2t|t}

tmindly1(0¢41) + tr [AtJrl (2t|t+1 — S et — it+1|t+li;€k/)] + Vi (@?ﬂ)}? (37)

041

and

by = tr [(Ap1 + Pi1) Qi) + beya, (38)

while from Eq.’s18 and 19 we know for t = NV

Vx (p?v) =tr {AN (iN—uN —TN_1SN_1N — 2N—1|NTN71/)} + tr [PN+12N|N} 7 (39)

and

bN =1tr [AN—f—lQN] . (40)

Hence, the proof of Theorem 3 (i.e., the value function we claimed in Eq. 16) is complete. B
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Note that the dynamic program defined by value function V}? (pf) fort =1,...,N can be solved
to find the optimal monitoring schedule. We succinctly highlight the elements of this dynamic
program. The information state of the model (which can be thought as summarizing the sufficient
statistics) is p! = (f]t‘t, f)t_”t). The action space is 8 € ©, where O is the set of all available tests
for the correspending disease. Eq.’s 8, 9, and 11 state the system dynamics of the model, while Eq.
37 specifiessthe“optimality equation (or Bellman equation). The boundary conditions are given in

Eq. 39. This,completes the proof of Theorem 2. B

5 Case Study of Glaucoma

Thus far we have presented the modeling framework in its general form and derived the optimal
disease and teést control actions. In this section, we provide a proof of concept by applying our
approach to glaucoma and demonstrating how it can help guide clinicians in tailoring disease
monitoring and treatment control.

Glaucoma is a major public health problem affecting almost 3 million patients in the United States
(Vajaranant et al. 2012) and over 60 million patients worldwide (Tham et al. 2014). Glaucoma is
the second'leading cause of blindness in the US and a leading cause of visual impairment among
Americans (Steinget al. 2011). In this section, we show how the modeling framework and solution
approaches described in Sections 3 and 4 can be applied to help clinicians in caring for patients with
glaucoma. Furthermore, we elaborate on additional features of our approach designed specifically
for glaucomameNumerical results presented in this section are based on data from patients with

glaucomawho were enrolled in two large clinical trials.

5.1 Glaucoma

Glaucoma is a progressive eye disease which can cause irreversible vision loss and blindness if
not adequatelysmonitored and treated. From a societal perspective, the direct medical costs of
managing glaucoma are estimated to total over 2.86 billion USD annually (Rein et al. 2006). Fur-
thermore, onsasper patient basis, costs more than quadruple when patients progress from early to
advanced glaucoma (Lee et al. 2006). Key risk factors associated with glaucoma development and
its progression include: non-white race, older age, elevated intraocular pressure (IOP), genetics,
and familyhistery (Tielsch et al. 1990). It is worth noting that the patient’s IOP (i.e., the pres-
sure inside the eye) is the only known controllable/modifiable glaucoma risk factor. Therefore, the
current managemient of glaucoma focuses on lowering the eye pressure by establishing a “target
10P,” whigh is the level of IOP that the clinician feels is low enough to slow disease progression
sufficiently (Jampel 1997).
Patients with glaucoma are monitored for disease progression using several quantitative tests. Two
primary methods to monitor a patient are: (1) tonometry (or measuring the IOP), and (2) perime-

try (or visual field (VF) testing). Tonometry measures the patient’s IOP, is relatively easy to
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perform, and is part of a standard eye examination. In most patients, vision loss from glaucoma
occurs because elevated IOP damages the optic nerve, the structure that carries visual informa-
tion to the brain for interpretation and processing (Sommer et al. 1991). Vision loss caused by
glaucoma cannot be reversed but treatment can help slow or halt future vision loss (Weinreb and
Khaw 2004)s=lowering IOP has been shown to reduce the risk of disease progression and is the
primary treatment goal in glaucoma management (Maier et al. 2005, Hyman et al. 2010, Leske
et al. 2003y, With_glaucoma, patients often progressively lose peripheral vision and eventually
as the disease™worsens, central vision. The VF test quantifiably measures the extent and rate of
peripheral yisionsloss by examining the sensitivity of the eye to light stimuli of varying intensities.
It is more time-consuming than checking IOP but provides important information on the status of
the disease. "Ml#testing can be anxiety-inducing and challenging for patients as it requires patient
attention and/cooperation. Two key global performance measures from VF testing include Mean
Deviation (MD) and Pattern Standard Deviation (PSD), which estimate the extent deviation of
peripheral visionifrom a reference population who do not have glaucoma (Choplin and Edwards
1995). MD'is usually a negative number; higher values of MD (i.e., values closer to zero) correspond
to better vision quality (less vision loss). PSD is usually a positive number. MD, PSD, and I0P
are all measured on a continuous scale.

It is well established from prior work that both IOP and VF tests can be associated with noise. For
example, patient MD and PSD performance on an automated VF test can fluctuate considerably
from one téstyto the next (Choplin and Edwards 1995). Likewise, IOP can fluctuate from hour to
hour and day*to day (Wilensky et al. 1993). To take such noise into consideration in deciding how
to monitor the patient optimally and determine an appropriate target IOP, we harness the Kalman
filter method (Kalman 1960) to remove noise from the raw measurements and provide a dynamic
model for the state over time.

There are & number of treatments available to lower the IOP for a patient with glaucoma. Different
eye drops, laseFtherapies, and incisional surgery can reduce the IOP to any number above 6 mmHg.
However, glaucoma medications can be expensive and can have serious side effects including sting-
ing, blurred vision, eye redness, itching, burning, low blood pressure, reduced pulse rate, fatigue,
shortness of breath, headache, and depression. Therefore, the goal is to find the optimal target
IOP for each patient, which corresponds to an IOP that is low enough to sufficiently slow disease
progression but not overly low so as to subject the patient to unnecessary treatments. The appro-
priate target'IOP varies from one patient to another as some patients (eyes) experience progression
at a certain TOR, level while others do not.

in current practice it is common to use fixed-interval monitoring regimes to test for disease pro-
gression. Furthermore, for each patient (eye), the eye care professional must regularly make a
gestalt-based estimate of a reasonable target IOP that considers the patient’s individual risk of

disease progression and the side effects and costs associated with lowering the IOP. Prior studies in
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Figure 2: Illustration of the decision support framework showing the model inputs and outputs as
well as the sequence of main steps of the disease monitoring and control algorithm.

glaucoma.managément have employed various machine learning algorithms to predict progression
of glaucomasprogression (Yousefi et al. 2016, Goldbaum et al. 2012, Sharpsten et al. 2014, Bowd
et al. 2012, Yousefi et al. 2014). Simulation models of glaucoma progression have been developed to
evaluaterthescost=effectiveness of frequent testing in patients with glaucoma (Boodhna and Crabb
2016) as well.as.to evaluate different treatment strategies (Van Gestel et al. 2010). However, to
the best ofgéur“knowledge, no optimization-based approach presently exists to jointly determine
how best to'menitor a patient with glaucoma and how best to control the disease. Our approach
considers the history of the patient (prior test performances) and her unique disease dynamics to
provide clinieians with (1) a personalized monitoring regime to achieve an accurate assessment of
whether there is disease progression (exploration), and (2) in a menu format, how the glaucoma is
likely to progress for different target IOP levels; the doctor can leverage these to devise an indi-
vidualized freatment plan for the particular patient (exploitation). As a feature of our model, the
clinician is able to select the desired aggressiveness level to monitor and treat the patient based on
the unique/charagteristics/circumstances of the specific patient. We will elaborate on this menu of
options in Subsection 5.5.

Figure 2 depicts a high-level overview of our dynamic monitoring and control decision support
framework _fer"patients with glaucoma. It serves as a schematic table of contents for what follows
in the remainder of this section. It shows how different parts of the modeling framework are linked
together and provides the corresponding subsection/equations for each part. At each office visit,
IOP and/o¥ VFtest(s) are performed. The raw measurements from these tests (which are known
to be noisy) are fed into a Kalman filter to obtain an optimal estimation of the current disease state
for a particulareye. Then, the estimate of the previous state is refined via a Kalman smoother
given the fiew information acquired during the visit. Each patient’s label/type (fast-, slow-, or
non-progressor) determines the estimate of how quickly the patient’s glaucoma is likely to progress
in the future. The decision support tool provides an optimal monitoring schedule (i.e., the timing of
the next exam/test and which tests the patient should take) and a personalized target IOP for the
patient for different aggressiveness levels/options (super-high, high, moderate, low, or super-low).
Finally, thes€linician chooses an aggressiveness option from the menu of choices that is appropriate

for the individual patient.

5.2 Patient Disease State
We use a nine-dimensional state vector, oy, to model the patient’s disease state. The elements

of the state vector include MD, PSD, and IOP together with their discrete time first and second
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derivatives (i.e., velocity and acceleration, respectively);

/
ar=| MD MD' MD" PSD PSD' PSD" IOP IOP IOP" |. (41)

The non-linear behavior of disease dynamics is captured by including the velocity and acceleration
of key disease state elements in the state vector. This is known to be an effective way to linearize
a nonlinear modgl of state evolution (see Bertsekas 1995). M D', PSD’, and IOP’ are the slope
of a linear regression of the latest three MD, PSD, and IOP measurements, respectively. M D",
PSD”, andlIOP" are the difference of the latest two M D', PSD’, and IOP’ values divided by the
time interval between them. It is worth noting that, in the application of our modeling framework
to glaucoma, the disease control action (i.e., 5; in Eq. 1), is defined as the amount in mmHg to
reduce the patient’s IOP at time ¢. This value is determined by the optimization model, not by

the user/clinician.

5.3 Data

To parameterize and validate our model, we use data from two multi-center randomized clinical
trials, the Collaborative Initial Glaucoma Treatment Study (CIGTS) (Musch et al. 1999) and the
Advanced Glaucoma Intervention Study (AGIS) (Ederer et al. 1994). These datasets are chosen
because theéy include structured tonometry and perimetry data (IOP and VF readings) of glaucoma
patients taken every six months during the course of the trials. We match the time step of our
LQG modelawith these datasets to avoid the need for data interpolation (i.e., there is a 6-month
time intervalds€tween periods ¢ and ¢ + 1 in our model).
CIGTS studied newly-diagnosed glaucoma patients with mild to moderate disease who were ran-
domized to_medical or surgical therapy and were followed for up to 11 years with IOP and VF tests
taken every six‘months to assess disease progression. In AGIS, patients with advanced glaucoma
were randomizedito laser therapy or incisional surgery and followed for up to 11 years with IOP
and VF readings taken every six months.
For the purpose of this case study, we excluded patients from these trials with fewer than five
readings™We"als6 restricted our focus to the patients who received either medical or laser therapy.
We excluded glaucoma patients who received incisional surgical interventions because incisional
surgery can abruptly change disease progression dynamics in a manner that may be challenging to
accurately model. We randomly divided all eligible participants from the trials (571 participants)
into two_sets"of equal size: (1) a training set, and (2) a testing set. Both sets have approximately
the same number of mild, moderate, and advanced glaucoma patients, with similar numbers of
white and black patients, and equal numbers of patients contributing data from each trial. The
training set is used for parametrization and calibration of our state space model and the testing

set is used to evaluate the performance of our approach.
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5.4 Patient Types (Fast/Slow/Non-progressor)

A fast-progressing patient is someone whose glaucoma is worsening rapidly and is part of the
subset of patients at greatest risk of blindness. Although there is presently no gold standard for
defining glaucoma fast-progressors, prior literature considers a loss of MD greater than 1 dB per
year as amreasonable identifying feature of patients who are exhibiting fast-progression of glaucoma
(see Heijl etral. 2013, Gardiner and Crabb 2002). We built our algorithms based on this definition of
fast-progressorss “Fosclassify each patient, we calculated the slope obtained from a linear regression
of their éntire"set’ of MD readings and labeled them as a:

e fast-progressor if the MD slope is declining by > 1 dB/year,
e slow-progressor if the MD slope is declining between 0 and 1 dB/year, and

e non-progressor if the MD slope is not declining.

5.5 Aggressiveness Levels/Policies/Options/Regimes

In clinicalspractice, the goals of care must be tailored to each individual patient’s needs. Rather
than proposing one solution for all patients, a more powerful and useful approach is to provide the
clinician withgamrange of options for how much effort (both from provider and the patient) will be
put into monitoring and how aggressively IOP should be lowered such that future progression can
be slowedssForsinstance, clinicians will likely see the need to monitor and treat a young patient
who only has sight in one eye more aggressively than an older patient with mild glaucoma in one
eye and mo-glaucoma in the other eye. All else being equal, less aggressiveness may be appropriate
for a patient with multiple systemic medical comorbidities who is likely to die before they go blind
from glaucoma. As a useful and not overly complex approach, our clinical collaborator suggested
creating optimization models tailored to three regimes, or “options,” for monitoring and treatment
to facilitate adoption of this system into clinical practice. We refer to these three options as low,
moderate, and.high levels of aggressiveness to represent the level of intensity in care and monitoring.
We also define two extreme levels of aggressiveness: super-high and super-low. Note that we choose
these termsionly for convenience in presenting the five options and to make it easier for the reader
to remember. the order of them in terms of how aggressively they test and treat patients; they are
not meant to correspond to any existing terms or approaches currently used in clinical practice.
These five optiems are useful not only for sensitivity analysis but also suggest an effective way to
implement,a decision support system so that clinicians can pursue monitoring and treatment with
the level of intensity that they, together with the patient, determine to be the most appropriate for
each individual. Appendix C provides insight into selecting an appropriate aggressiveness option.
It is important to differentiate between the aggressiveness level and the optimal control (target IOP
and monitoring schedule). In the treatment planning cycle, an aggressiveness level is chosen by the

clinician based on the tradeoff between the costs of treatment (e.g., side-effects and financial costs)
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and the benefits for the patient being treated (e.g., preventing future vision loss from glaucoma).
This provides an aggressiveness regime under which each patient’s monitoring and treatment plans
can be optimized individually with respect to their particular disease trajectory and history of
readings. Thus, the optimal control is personalized in terms of monitoring and treatment decisions
driven bystheir-personal data and governed by the model for the particular aggressiveness regime
selected. Notethat the regime itself does not predetermine the monitoring and treatment plans
for the individual. Eor the same aggressiveness regime, two individuals will have different histories
of test resultsvand, therefore, potentially different optimal decisions of when to take the next test
and which tests:to take as well as different target IOPs over time. Different aggressiveness levels
translate into different cost matrices A, B, and [;(#;) in our objective function. Essentially, the more
aggressive thespolicy the larger the cost of disease progression (A), which subsequently encourages
the optimization problem to suggest a larger reduction in IOP (i.e., larger 3;) and more frequent
testing. In summary, the aggressiveness level is chosen by the clinician in consultation with the
patient based onjtreatment goals, which then sets the cost parameters of the model, whereas the
actual target TOP and monitoring schedule are chosen by the optimization model unique to the
patient’s quantitative disease measurements over time.
The five aggressiveness levels/options follow:
1. Super-highaggressiveness option, which drops the IOP immediately to 6 mmHg (an ideal
level of IOP for patients with any severity of glaucoma, but one that may be impractical for
many*patients due to limitations with the effectiveness of existing interventions, side effects,

and /ops€omplications associated with attaining such a low IOP),

2. High aggressiveness option, which tends to lower the IOP by 40% to 60% compared to the
patient’s treated level of IOP that was achieved in the CIGTS/AGIS clinical trials after the

initial intervention was given,

3. Moderateraggressiveness option, which tends to lower the IOP by 20% to 40% compared to
the patient’s treated level of IOP that was achieved in the CIGTS/AGIS clinical trials after

thée"initial“intervention was given,

4. Low aggressiveness option, which corresponds to the IOP achieved under no additional inter-
ventions beyond those employed in the CIGTS/AGIS trials, and

5. Superslow aggressiveness option, which attempts to estimate progression of an untreated pa-
tient with glaucoma by removing the effect of existing interventions that were employed in
CIGTS/AGIS on the patient’s IOP.

It should be noted that the exact amount of IOP control suggested by high, moderate, and low
aggressiveness policies is patient-specific and is optimized to yield the minimum total cost as defined

by the objective function. In contrast, the super-high and super-low aggressiveness policies are
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static policies that do not take the objective function into account. They are mainly added for
purposes of analysis and comparison, but they can still provide valuable insight in a clinical setting
by presenting the clinician the “best” and “worst” case options and their forecasted impact on
disease progression dynamics. These five options/levels also provide sensitivity analysis on the

model cost parameters.

5.6 System Model Parameterization

The Expeétation’ Maximization (EM) algorithm was employed to parameterize the state space
model. EM.is an iterative algorithm for finding the maximum likelihood estimate of model param-
eters in the presence of missing or unobserved data. The EM algorithm alternates between the
expectation step (E-step) and the maximization step (M-step). In the E-step, raw, noisy readings
are filtered and missing data is estimated based on the observed data and the most recent estimate
of system parameters. In the M-step, the log-likelihood function of all data points is maximized as-
suming the missing data is given by the estimates from the E-step. For more information about the
EM algorithm, please see Dempster et al. (1977), Digalakis et al. (1993), Ghahramani and Hinton
(1996). While the model was presented in its general setting in Section 3, for the purpose of this
case study we assume the model parameters are time-invariant. The output of the EM algorithm is
the best estimateyof system matrices T; =T, Q; = Q, Z; = Z, Ht(et) =H®O) fort=1,...,N, and
initial state.mean and covariance, &g and io (see Subsections 3.1 and 3.2 for the definition of these
parameters)s We.assume A, = A, B, = B, and [;(6;) = [(0;) are time-invariant. We further assume
that Gy = G = [ 00 0O0O0OO0OT1TUO0ODO0 },T fort =1,..., N, because the control variable 3;
is designed”to control the patient’s IOP only, which is the only controllable glaucoma risk factor.
Furthermore, it is known that an intervention started or employed at time ¢ has instantaneous effect
on loweringthe patient’s IOP. For example, if patient’s IOP is 20 mmHg at time period 7 and the
control 37 = =3 mmHg, the expected value of IOP right after time period 7 is 17 mmHg. This
IOP reduction affects other state elements and progression dynamics in the following time period
through the transition equation. Also, note that, in our case study of glaucoma, T, Q, Z, H®),
A, and 20 are 9 x 9 matrices, G and &g are 9 x 1 vectors, and 3;, B, and [(6;) are scalars. None
of the square matrices are assumed to be diagonal. This is important because, for example, the
components of T represent how each component in the current state affects the future states. A
non-diagonal component would represent the fact that a higher IOP will affect the change in MD in
the next period..Hence, the current disease state (including the position, velocity, and acceleration
of key glaucoma variables) directly affects disease progression.
We use the EM algorithm to obtain four sets of system parameters. These sets of parameters are
obtained from (1) all patients in the training set, (2) only fast-progressors, (3) only slow-progressors,
and (4) only non-progressors, to enable stratified analyses, such as in Figure 4.
The model cost parameters were estimated based on input from our glaucoma specialist collab-

orator so that the model outputs are reasonable from a clinical perspective. Note that it is the
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relative costs (rather than each absolute cost) that plays a key role in our analysis. It is beyond our
scope to obtain definitive cost parameters; however, significant sensitivity analysis was performed
around those estimates to understand the model’s behavior better and to ensure that the model, in
its entirety, provides credible decision support. In order to construct reasonable tradeoffs between
cost parameters«for each aggressiveness option in our model, we employed a human-in-the-loop
methodology™ We tested several parameter sets, showed the resulting optimal IOP controls and
monitoring polieies to our glaucoma specialist collaborator, and the clinician helped us fine-tune
and calibrateeost parameters. We confirmed with our glaucoma specialist collaborator that the
model generatess¢linically reasonable target IOPs and monitoring schedules for each patient under
the desiredfaggressiveness level. For instance, under the high aggressiveness option, the model for
fast-progressimg@patients (i.e., the most aggressive combination) should suggest taking both IOP
and VF tests every six months and a target IOP of around 6 to 9 mmHg. Under the low aggressive-
ness option, the model for non-progressing patients (i.e., the least aggressive combination) should
suggest no further IOP reduction and taking IOP and VF tests every two years. This is in line with
recommendations put forth by the American Academy of Ophthalmology Clinical Practice Guide-
lines (2010). For all other combinations of aggressiveness level and patient severity type, the model
cost parameters were fine-tuned so it suggests a monitoring regime and target IOP level that are
reasonable according to expert clinical opinion and are in between the two extreme combinations.

The behavior of optimal policies is discussed more thoroughly in Section 5.8.2.

5.7 ModelUsage for a Glaucoma Patient

For agpatient who is newly diagnosed with glaucoma with no prior history of IOP and VF
readings, both tests are taken in every period (i.e., every six months) for the first five periods.
Gardiner and Crabb (2002) found that five initial VF test results are a reasonable predictor of
future glaucoma progression dynamics in most patients. We used five initial VF and IOP readings
to (1) obtain baseline values for key disease state elements (i.e., MD, PSD, and IOP), (2) calculate
the velocities and accelerations of key state elements, (3) warmup the Kalman filter and smoother,
(4) reduce the initial uncertainty surrounding a given patient’s disease state, (5) calculate the initial
5-period rate/slope of MD progression to label the patient as a fast-, slow-, or non-progressor, and
(6) differentiate the patient from the population mean and tailor the disease transition model to
the specific patient.
The system parameters obtained from all training patients are used in the Kalman filter and
the Kalman smoother during the warmup period. At the end of the warmup period (i.e., after
five readings), the patient is labeled as a fast-progressor, a slow-progressor, or a non-progressor
based on her MD progression rate. Thereafter, the Kalman filter and smoother with type-specific
system parameters (i.e., fast, slow, or non-progressor set of parameters) are used. Each time a
subsequent test is taken, the MD progression slope is recalculated. We always consider the latest

five filtered MD values to update the MD slope (i.e., a sliding window of length 5). Whenever the
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Figure 3: Glaucoma monitoring and treatment control flow diagram.

patient’s latest MD slope indicates a label upgrade (i.e., the patient moves from non-progressor to
slow /fast=pregressor, or from slow-progressor to fast-progressor), the model (1) calls for a follow-up
visit to take TOR and VF testing in the following time period, and (2) labels the patient as a
suspect of theshigher label/category (e.g., slow-progressor suspect or fast-progressor suspect). If
the label change is confirmed at the next follow-up visit, the higher label is assigned to the patient.
Otherwise,*the"patient is returned to the previous lower label status. Note that our analyses
take a congervative approach and do not allow any label downgrading (on the recommendation of
our glaucoma“specialist collaborator). Once the label is upgraded for a patient, the model will
recommend applying more IOP control (i.e., greater intensity of interventions) to slow glaucoma
progression. Therefore, it can be expected that the MD will tend to decline less rapidly once the
amount of IOP control is increased, resulting in a lower classification/label at some point. However,
if we were to downgrade the patient’s label and let the model decrease the amount of IOP control,
the patient.would be at risk to start losing vision at the same rate as earlier in the disease course,
which is not desirable. Therefore, we do not allow label downgrading for any patient once the
label upgradeis ¢confirmed. If a patient suspected of belonging to a higher category does not get a
confirmatory result at the very next follow-up visit, then, the patient remains at the original/lower
label he/she"was previously at. The glaucoma monitoring and treatment control algorithm steps

are illustrated in Figure 3.

5.8 Numerical Results
In this ‘subsection, we test the performance of our dynamic disease monitoring and control
algorithm ongglaucoma patients from the CIGTS and AGIS clinical trials. We first validate our
prediction model on the testing dataset, using the training dataset for parameterization. Then, we
provide numerical results and examples on how the optimal policies behave. Lastly, we provide

further results of the impact of optimal policies on patients with glaucoma.

5.8.1 Walidation:

We first"validate that the model is good at forecasting future disease progression trajectory and
then validatesthat the results are consistent with clinical expectations. Our modeling approach
efficiently captures the system and measurement noises using a set of stochastic first-order vector
difference eéquations. To evaluate the performance of our prediction model, calibrated using the EM
algorithm on the entire training set, we used the first five data points of each patient in the testing
dataset to warm up the Kalman filter and determine the patient type. Then, we predicted MD
values for five periods into the future for each patient type (fast-progressor, slow-progressor, and

non-progressor) and calculated the prediction error (i.e., the predicted state mean minus the actual
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Figure 4: Interval plot of mean MD prediction error for different prediction lengths. The dots
correspond to mean error, and the bars represent 95% confidence interval for the mean.

reading as.6btained from the patients during their follow-up in the trial). The predicted state mean
was calculaged using Kalman filter with 3, =0 V¢ (i.e., no additional IOP reduction beyond that
in the clinical trial). Figure 4 shows the mean MD prediction error for up to five 6-month periods
(2.5 years) imtosthe future. The dots correspond to the mean error, and the bars represent the 95%
confidence interval for the mean. These interval plots confirm that our prediction model has very
little error i prédicting the glaucoma state progression. One also sees that the fast-progressors (as
defined in Subsection 5.4) vary the most in the datasets, and this is reflected in greater uncertainty
and error. 25 frounds of cross-validation were performed to confirm the robustness of our Kalman
filter model to patient data. Here we present the results of one of the cross-validation rounds for
MD, as it is the most clinically useful state variable. Similar results were obtained for other state
elements (PSD and IOP).

5.8.2 Ewaluation of the Optimal Policies:

Having confirmed that the model accurately forecasts future MD values, we next test that the
output provides ¢linically reasonable results as confirmed by our clinical collaborator. The struc-
ture of optimal IOP control generated by our model under the moderate or high aggressiveness
policy is keytoyidentifying the target IOP for each patient. We applied the high and moderate
aggressiyeness policies to all fast- and slow-progressing patients in the testing dataset to achieve
a statistical characterization of how each policy behaves. For each group and each aggressiveness
policy, we msed the first five data points to warmup our model. We then recorded the amount
of optimal IOP control suggested by our model in the next 20 time periods (i.e., the following
10 years). [Figure 5 depicts the results over all the patients in the testing dataset as box plots of
optimal additional IOP control (5;) applied in the current (i.e., period 0) and the following time
periods. An IOP control of —x mmHg corresponds to lowering the patient’s IOP by  mmHg more
than what was achieved in AGIS/CIGTS. The bottom and top of each box are the first and third
quartiles, respectively. The lower and upper whiskers extend to the minimum and maximum data
points within 1.5/box heights from the bottom and top of the box, respectively. In our model, the
optimization problem finds the optimal value for beta in each period (i.e., how much to reduce
IOP in each time period). As seen in Figure 5, our feedback-driven model recommends further
lowering the IOPawithin the first few time periods. Afterwards, the optimal additional IOP control
is close to zero. This results in the patient’s IOP converging to “a number” over time. We call
this number the “target IOP,” the common term used in the glaucoma medical community. As one
would expect, the group of non-progressing patients do not get any additional benefit from further

lowering their IOP since they exhibit no signs of progression at the IOP levels they maintain from
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Figure 5: Optimal IOP controls suggested by our model for fast and slow-progressing patients under
the high and moderate aggressiveness policies over 10 years. Period 0 is the current time
period (i.e., the period at which the IOP control starts).

Table 2: Comparison of the effect of different aggressiveness options on patient’s IOP for fast and
slow-progressing patients in CIGTS and AGIS. Target IOP: IOP value in period 25 (i.e., 10
yearsinteothe future. Cumulative/Additional IOP control applied over 10 years: Zf; Bt
%"6f TOP change after 10 years: 100 x (Target IOP — Baseline IOP) / (Baseline IOP).

the treatmeénts already employed in the trials. Therefore, they are not included in the graph.

We applied the'five aggressiveness options to fast- and slow-progressing patients in the test dataset

and obtained fthe following IOP-related metrics for each combination of patient type and aggres-
siveness policy: (1) target IOP [mmHg], (2) additional IOP control [mmHg] applied in 10 years
(representing the lamount /intensity of treatment), and (3) percentage of IOP change after 10 years.
For each metric, we report the median and interquartile range (IQR), which are robust measures of
location and scale, respectively. The IQR is the difference between the upper and lower quartiles
and provides a range that contains 50% of the data. As seen in Figure 5, the optimal additional
IOP reduction is almost entirely applied during the first 6 periods (3 years) of employing the control
policy. Hence, we evaluate the patient’s IOP after 10 years, which is a sufficient length of time for
the IOP to"become stable under treatment. We tested our IOP control model with longer time
horizons and*obtained similar results.
Table 2 summarizes the IOP-related results. For instance, applying the high aggressiveness policy
to fast-progressors results in a median target IOP of 7.17 mmHg. This can be achieved by admin-
istering a median additional 9.36 mmHg IOP reduction from the baseline level of IOP attained in
the trials. Such a target IOP is, on average, 55.24% lower than the baseline IOP (the IOP at the
beginning of the 10-year prediction period) of fast-progressing patients in the trials. Since target
IOP is an important metric that helps guide the clinician in selecting the appropriate treatment
plan for the patient, the distribution of target IOPs is also given in Figure S1 in Appendix D.

Table 3 summarizes the optimal monitoring regime for different combinations of patient type
and aggressiveness level. For example, under the moderate aggressiveness level, the model for slow-
progressing patients recommends measuring IOP every 6 months and checking the visual field every
12 months# Tt is worth noting that these protocols remain optimal as long as (1) the patient follows
the monitoringmsehedule (i.e., does not miss a test), (2) the patient type/label remains unchanged,
and (3) the doctor does not change the aggressiveness level. If any of the three criteria are not met,
the model modifies the monitoring schedule to account for the missing information or the change in
patient label /aggressiveness level. The monitoring regimes presented in Table 3 and the range and

mean of target IOPs presented in Figure S1 are clinically appropriate in the professional opinion
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Table 3: Optimal monitoring regime for different combinations of patient type and aggressiveness
level.

of our glaucoma specialist collaborator. Appendix E estimates costs of the optimal monitoring

policies.

5.8.3 Menu of Options:

Now that we have validated our model and elaborated on the structure of the optimal policies,
we providegan example of how our decision support tool can help guide clinicians in managing a
patient with_glaucoma. Figure 6 depicts the glaucoma progression trajectory (change in MD over
time) for a randomly chosen fast-progressing patient from the AGIS trial. The figure depicts a
sample outputof the decision support tool (in regards to disease control) that compares how this
patient is likely to progress over the following 10 periods (five years) under different aggressiveness
options defimedsiny Subsection 5.5. As demonstrated in Figure 6, the patient progresses much slower
and would have better MD values (i.e., vision quality) five years into the future as the aggressiveness
of IOP contrelsissincreased. The figure provides a menu of options related to how aggressively the
doctor wants.to.treat the patient, depicts the future disease progression trajectory, and provides
the optimalstarget IOP and monitoring schedule for each aggressiveness option. The doctor is then
able to seleet ‘the right aggressiveness option based on evolving needs of the patient, adherence,
health statusyand other personal or clinical factors.

Figure 6: An.,example of the trajectory of glaucomatous progression as captured by changes to
Mbrover time by employing each of the five different aggressiveness policies for a sample

fast-progressing patient from the AGIS study. (Note: higher MD correlates with better
vision quality.)

5.8.4 Insights into Treatment Effectiveness by Patient Type:

Figure 7, graphs the average MD loss per year against the total IOP reduction applied under
different aggressiveness policies for all fast- and slow-progressing patients in the testing set of
CIGTS and AGIS trials. This graph provides three important insights for managing patients
with glaucoma: (1) The curve for fast-progressors has a steeper slope, which indicates that this
group of glaucoma patients benefits the most from further lowering of IOP from levels attained
in CIGTS/AGIS. (2) It can be deduced from Figure 7 that the low aggressiveness policy (point
B), which, roughly corresponds to treatment using eye drops or laser therapy, works well enough
for most slow-progressors since the curve is fairly flat around point B on the slow-progressors
curve. In other words, increasing the aggressiveness level from low to moderate/high has only a
minimal advantage at preserving sight for this group of patients. This highlights the importance

of differentiating patients by progression type. Treating all patients similarly risks over-treating
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Figure 7: Average MD loss per year can be reduced by applying more IOP control. Fast-progressors
get more benefit from lowering their eye pressure.

for little gain for'some patients or irreversible vision loss from disease progression due to under-
treating othersiult can also be seen that slow-progressors gain long-term benefits if treated under
the super-high aggressiveness policy (point E), which often requires incisional surgery. Therefore,
for slowsprogressing patients, the doctor may choose either the low or super-high aggressiveness
policy, depending on the individual’s life expectancy, severity of glaucoma, other personal and
medical fagtérsi®and the patient’s preferences. (3) The steep slope of the fast-progressors’ curve
around pointeBsindicates that vision loss could be significantly averted (even in the short-term) by
further rediiction of their IOP. Hence, moderate, high, or super-high aggressiveness policies (points
C, D, and E"on'the graph, respectively) may be more suitable for most fast-progressing glaucoma
patients and these patients often require incisional surgery.

The same result is also verified by plotting the MD loss averted over 10 years by following the
IOP contrals suggested by our model as shown in Figure S2 in Appendix D. Moreover, Table S1
in Appendix D provides a comparison of the performance of different IOP control options against

the low aggressiveness option for patients in our testing dataset.

5.8.5 _Sample Application of the Model in Practice:

In this subsection, we provide an illustration of how our modeling framework may be used to
guide monitoring and control of a patient with glaucoma. Figure 8 portrays the disease trajectory of
a sample patient. After the warmup period (i.e., the first 5 periods) the patient is initially identified
as a non-progressor. In our example, the clinician chooses the low aggressiveness option to monitor
and control the patient. Subsequently, the model suggests taking an IOP reading every year and
a VF test every other year. We assume the clinician and the patient follow this protocol. The
patient remains a non-progressor up to period 13, when she becomes classified as a slow-progressor
suspect. This slow-progressor status is confirmed after obtaining IOP and VF testing at a follow-
up visit in time period 14. When the patient becomes a confirmed slow-progressor, for the sake
of this example, assume the doctor decides to increases the aggressiveness level to the moderate
aggressiveness policy. Under this policy, the model recommends (1) lowering the IOP from 24 to
about 21 mmHg, (2) measuring the IOP every six months, and (3) taking a VF test every year.
After 1.55years (i.e., at time period 17) the doctor and patient decide to increase the aggressiveness
level further andycontinue care under the high aggressiveness policy. This policy suggests taking
both IOP and VF tests every six months and recommends additional IOP reduction. Figure 8
also illustrates how the patient’s glaucoma would likely progress after period 14 if the doctor and
patient had maintained the low aggressiveness IOP control policy during periods 5-14.

While this example relates to managing a single patient, a few aspects should be highlighted. (1) As
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Figure 8: A non-progressing patient becomes a slow-progressor. The clinician tailors care by in-
creasing the aggressiveness level. The first 5 periods are warmup time. From period 5 to
13, the patient is a non-progrssor, and the doctor selects the low aggressiveness policy.
In period 13, the patient becomes a slow-progressor suspect, and this label upgrade is
confirmed in period 14. The doctor treats the patient under moderate aggressiveness
policy from period 14 to 17. In period 17, the doctor increases the aggressiveness policy
to high in order to slow the progresson rate further. Periods 14-25 show forecasted values.

described in,Subsection 5.7, glaucoma patients do not always maintain the same progression rate
over time. Recallthat each time a test is taken, the model updates the MD slope estimate; hence, it
is possible that.a‘patient moves from non-progressor status to slow- or fast-progressor, or from slow-
progressor 6 fast-progressor status. (2) As described in Subsection 5.8.2, whenever the patient’s
label is changedfor the clinician decides to change the aggressiveness level, the model modifies the
monitoring regime subsequently. (3) As described in Subsection 5.8.4, there is little gain (in terms
of preventifig¥ision loss) in increasing the aggressiveness level from low to high for slow-progressing
patients. Note the big gap in the optimal IOP under the low and high aggressiveness policies at
time period25"in"Figure 8. However, this gap results in a very small difference in the patient’s MD
values. Benefiting from this type of insight in a busy clinic can significantly enhance the ability of

ophthalmologists and optometrists to take care of patients with glaucoma appropriately.

6 Model'Limitations and Future Work

While our modeling framework has shown great potential in improving the monitoring and
control of patients with glaucoma, it comes with a few limitations and areas for improvement.
First, we only considered the IOP and VF tests in developing a monitoring schedule for the patient,
whereas there are additional tests that can also be used to monitor glaucomatous progression in
practice. Fortimstance, in well-equipped clinics, optical coherence tomography (OCT) is a non-
invasive imaging test that measures the thickness of retinal nerve fiber layer (RNFL) (see Schuman
et al. 2004). This newer testing modality was not commercially available at the time of the CIGTS
and AGIS clinical trials on which our analysis is based. Fortunately, the decision framework we
have developed 18 scalable and can easily accommodate quantitative measurements of tests such as
OCT. Should newer modalities for quantitatively assessing the status of a patient’s glaucoma arise,
measurements from such modalities can be incorporated into the model as well. In the future, we
hope to acquiresaccess to other data sources which contain OCT data and expand our state vector
to accommodate data from this testing modality.

Second, we used 6-month spaced time intervals because CIGTS and AGIS datasets contain readings
of patient’s IOP and VF every six months. One can leverage the same modeling framework for

data that is collected more or less frequently (e.g., monthly or every 3 months) without loss of

This article is protected by copyright. ABZrights reserved



generality. However, expanding our algorithm to handle unequally spaced data automatically is
another potential path for future research.

Third, it is the case that our current approach uses one system dynamics model for each of the
three distinct patient types (i.e., fast-, slow-, and non-progressors). In other words, the dynamics
that govern statetransition are not patient specific and are not dynamically updated with each new
measurement of tMD, PSD, and IOP. It is beyond the current state of the art to integrate Kalman
filtering modelswith models of uncertain dynamic changes in patient type in an optimal manner.
Fourth, oursstatel transition models are not designed to prevent any improvement in disease state
completely;ingfact, there is a non-zero probability that MD may increase due to the Gaussian
noise assumption, (noise can take positive and negative values). In our model, the state is just
an estimatevefsthe patient’s true state, so the state estimate may increase or decrease (due to
measurement noise) even while the true state of the disease is continuously declining. Nevertheless,
our models still perform well in describing an irreversible disease such as glaucoma. This is in part
because measurement noise indicates that the previous state may have been mis-measured. Thus,
occasional improvement of state is expected to be observed in the short term, but in our model
every patient will exhibit a nonincreasing trend in the long term.

Finally, future research can focus on further studying the model cost parameters. In this research,
we relied on expert opinion and developed a set of cost parameters for each aggressiveness policy
that performed well on our extant data. Future research, however, can try to develop algorithms to
optimize thesbalance between the cost of losing vision over time from glaucoma, cost of purchasing
medications/undergoing surgery, cost of office visit and diagnostic testing, anxiety and stress of
undergoing glaucoma tests, and side effects and complications of medical and surgical therapy to
lower IOP further. Also, notice that we only considered fixed cost parameters in this paper (i.e., the
effect and ¢ost of the control is independent of the current state variable). While the difficulty/cost
of modifying a risk factor may vary based on the current level of the factor, we believe our state-
invariant cost*assumptions to be a valid approximation of the true costs. This is confirmed by the
fact that applying the model to clinical trial patients creates control policies that are considered well
within the realm of practical treatment schemes by our glaucoma specialist co-author. Tractable

methods that include state-dependent cost matrices would be a welcome extension of the model.

7 Conelusions

In this"paper we developed a dynamic personalized modeling paradigm for simultaneous mon-
itoring and contrel of irreversible chronic diseases (e.g., glaucoma). Our model incorporates each
patient’s past and present readings in a feedback-driven control model to provide the jointly opti-
mal solution to two critical questions facing clinicians: (1) when to schedule office visits and which
suite of tests to perform to monitor for disease progression (exploration); and (2) what levels of

controllable disease risk factors should be targeted to slow the rate of disease progression (exploita-
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tion).

Kalman filtering methodology is built into our modeling framework to extract noise from the raw
measurements and to estimate the disease state in each time period optimally based on imper-
fect observations. This is key to accurately identifying genuine disease progression from testing
artifacts. =Wes=developed a multivariate continuous state space model of disease progression and
model the state'transition and the testing processes as first-order vector difference equations with
multivariatesGaussian random noises. For the new objective of minimizing the relative change in
state (i.ev, disease progression), which is imperative for managing irreversible chronic diseases, we
proved the twe-way separation of optimal estimation and control. This is a fundamental finding
upon whichfsolution tractability depends.

To demonstraterthe effectiveness of our approach, we harnessed data from two landmark glaucoma
randomized clinical trials to parametrize and validate our model. We showed that our Kalman
filter-based model has low error in predicting the future disease progression trajectory. Further,
we designed our decision support tool to provide a menu of options for the clinician based on how
aggressively the doctor wants to manage the patient’s disease. For each aggressiveness option, the
model provides for each glaucoma patient (1) future disease progression trajectory, (2) optimal
monitoring schedule, and (3) optimal target IOP. The doctor has the choice to select an appro-
priate aggressiveness level depending on the patient’s life expectancy, severity of glaucoma, and
other personal and clinical factors. Our decision support tool can, however, provide insight into
such a seléetion as discussed in Appendix C. Our numerical results demonstrated that following
the recommendations of our model not only results in patients with better vision quality over the
treatment horizon but also achieves significantly slower glaucoma progression rate, which means

patients will keep their sight longer.
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Appendix A Optimization of the Final Period Disease Control

Action

The value function in the last period is given by
VN (pn) = Hﬁlin{E [(an —an—1)'An (an — an—1)] + Bn'Bn BN
N
+ E [(ant1 — an) An1 (an+1 — an)] ). (42)

Replacing B [(aN —an_1) Ay (an — aN_l)] and F [(aN+1 —an) Ani1 (angr — aN)] by their

values given by Lemmas 3 and 4 in Appendix B respectively, and combining terms results in

Vi (pn)=Gu v — OA‘N71|N),AN (any — an_1n) + iy (T — I An1(Ty — 1)) dypy
T [AN <2N|N + Sy = T Sy_y — iN,HNTN_l’ﬂ
2] Aner ((Tv = DEwn (T = 1) +Qu )|
+ %ljivn{ﬂN/(GN,ANHGN + Bn)BN + BN (GN' An11(Tn — Ian|y)

+ (&5 v (TN — I)' AN GN)BN T, (43)

where tr represents the trace of the matrix. Let the minimization term in Eq. 43 be denoted by

Jn. That isplet

IN = Hﬁlin{ﬂN/(GN/AN-HGN + BN)BN + BN (GN' An 1 (Ty — T)ay|n)
N

+ (&N (TN — 1) An11GN) BN }- (44)

This minimization can be performed by completion of squares as described in Lemma 5 in Appendix
B. Eq.’s 45 - 48 give the optimum disease control 3 and the result of minimization Jn. The

optimum disease control at time N is given by

By = —UnGn|Ns (45)
where the eomtrol law of last time period, Uy, is given by
Uy = (GN'Av1Gn + By) Gy An 1 (T — 1), (46)
and the result of minimization over Sy is given by

Jy = =&y Prrén, (47)
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where
]5]\]+1 = (TN — I)/AN+1GN(G/]VAN+1GN + BN)_IG/]VAN+1(TN — I) (48)
Substitution of Eq. 47 into Eq. 43 yields

Vi (pn) =[(dn )y — dN—1|N),AN (anpy — an_yn) + @y ((TN —I) Ay (Tn = 1) — if)NJrl) an|N
i [AN <2N|N + 38y — TN SNy — iN—1\sz1\f—1'ﬂ

il 1 (T — DEnn(Ty = 1) | + tr [An Q). (49)
Defining Ppamassfollows,
Py = (Tn —I)Ays1(Tn — I) = Py, (50)

and also replaeing ¢r [A N+1 ((TN ) nn(Ty = 1) )] by its simpler form as identified in Lemma
6 in Appendix B we can further simplify Eq. 49 as follows.

Viv (pn) =léafly — an_1y) An (Gnpy — Gy 1jy) +tr [ANEA]N\N}
-+ OA/N\NPN@N|N +ir [PNXA:N‘N} +tr |:AN <2N—1|N — TN—le:N—HN - EN—1|NTN—1/>:|

it |:PN+12N|N} +tr [AN+1QN] . (51)
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Appendix B Lemmas

In the derivation of optimal control the following lemmas are needed.

Lemma 1. For any symmetric n x n matriz A, the following holds.
E[2'Ay]| = &' Ay + tr [AV,,).

Where

Proof of Lemma 1:

Proof. By'writing the matrix operations in terms of summations we will have

2 Ay = Z Z 2 Aijy;.

i=1 j=1
Hence
n n
E [2' Ay = Z ZAijE[miyj]a
i=1 j=1
but

Blziy;] = ElzilEly;] + E (2 = Elxi]) (yj — Ely;])] = Zigj + V-

When Eq. £87s substituted in Eq. 57:
E[d/ Ayl =T Ag+> Y AijVa,y, = TAG+ tr[AV,,]
i=1 j=1

where tr [M] stands for trace of M (i.e., sum of diagonal terms).
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Lemma 2. With information up to time t, we have the following covariance relations.

Cov(ay, aupprlpr) = Sy, T, (60)
Cov(aiq1, aglpr) =T Zt\ta (61)
Cov(ay, ay—1|pr) = Tt 1Et 115 (62)
Cov(ay—1,0¢|pr) = 1|tTt_1. (63)

Proof of Lemma 2:

Proof. Before we start proving these equations note that
Cou (o, aylpr) = E [atat’] — Ely)Eley) — E [atat’] = f]t|t + dt|td£|t. (64)
Therefore,

E [ovai1'] — B [ou] Elag 1]
= E [ay(Tiar + GifBy +mi)'| — E [ou] E[Tiar + Gy + ne]
= E [aray/| Ty + 64,8/ Gy’ — éyy, (Oétht + B¢ Gy )

Cov(ay, arr1|pr) =

frg ( t|t + OAét|tOAZt‘t> Tt — OAZt‘tCAYt'tTt
=Sy T/, (65)

and similarly
Cov(at+l, Oét|pt) = Tti:thf' (66)
Furthermore;

Cov(ay, cu—alpr).= F [atat_l’] — Eloy) Elag 1]
= E [(Ti—1ci—1 4 Gi—1Bi—1 + m—1) v—1"] — E[Te—104-1 + Ge—1Bi—1 + mi—1] B[]’
=Ty E [ap—10q—1'] + thlﬁtfld,,g_nt - thldt—1|t64_1|t — Gi1Bi-165_y,
=T (it,ut + @tfllt‘i;—ut) — Tt—léétfl\td;_”t
= Tt—lit—lhtv (67)

and similarly

Cov(ay—1,0u|pr) = flt_1|tTt_1'. (68)
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O]

Lemma 3. With information up to time t, the expected quadratic penalty of disease progression

from period t — 1 to t can be calculated as follows.

E [(Oft - O41t—1)/At (¢ — 1) |@t] = (@t|t - dt71|t)/At (dt\t - dtfl\t)

+ t'l” |:At (i)tlt + XA:t_l‘t - thlflt_”t - 2t—1|tn*1/>:| . (69)

Proof of - hemma 3:

Proof. Using Lemma 1 and Lemma 2,

E [(oy 681 A (0 — aq—1) [pe] = E [ov Aren|pr] + E [o—1' Aves—1| o1
=) [Oét’AtOét—ﬂpt] ) [at—llAtOét|@t]
= 5‘;|tAtdt|t -+ tT[Atiﬂt] + d:f—1|tAt6‘t—1|t + tr[Ati]t—l\t]
- d;|tAtdt—1\t - tT[AtTt—lit—ut] - dé_”tAtdt\t - tT[Atit_utTt—f]

= (dt|t = 54t—1|t),At (dt\t - dt—l\t) +ir [At (Eﬂt + 2Ajt—w, - thli)t—lhf - it—1|tﬂ‘fl/>} . (70)

O]

Lemma 4w, With information up to time t, the expected quadratic penalty of disease progression

from periodtstot + 1 can be calculated as follows.

E [(at+1 — ) Ay (@1 — ay) \@t]
=@ ((T — 1) Apr (T = 1)) Gy + B (Gi' A1 Go) i + B (G Apa (Th — T)éy)
§(@QAT: — DA Gy + tr [ Ay (T = DEg(T — D' + Q1) (71)

Proof.of Lemma 4:

Proof. Using.kgq. 1, Lemma 1 and Lemma 2,

E [(ars1 —a)) A1 (r1 — ) oe] = E a1 Avrrai|pr] + E [od/ Ao o]
— E oAt oulpr] — E [od/ Avrrous i
= (Tagpt GiBr) Ar 1 (Tidyy + Gify) + tr [At—l—l(TtiﬂtTt/ + Qt)} + Gy A1 Gy + tr[Ags1 3]
— (Tiéggy + GoBe) A1y — tr [AtHTtiﬂt} — &l A1 (Tidyy, + Gify) — tr [Atﬂit‘tTt’}
= d::\t ((Ty = I)' Aps 1 (Ty = 1)) Gy + B (G A1 Ge) Be + B (G Aa (Ty — I)éy)
(8Tt = 1) A1 Go) By + tr [Aver (T = DEG(T = 1) + Q1) | (72)
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Lemma 5.

Iy = Hﬁlin{ﬁN/(GN/ANHGN + Bn)BN + BN (GN' AN (T — Iayy)
N

+ (A (Tn = 1) AN 1GN) BN} = =@y v Pyad - (73)

Proof of Lemma. 5:
Proof. The minimization over By can be performed by completion of squares. For a detailed

discussion on how to take minimization by completion of squares please see Section 3.3 of Sayed

1
N ” (71

The centersmatrix in 74 can be factored into a product of upper-triangular, diagonal, and lower-

(2011). In here, we provide a short proof.

Jn can be expressed in matrix form as follows.

0 iy (T = 1) Ay 1Gy

Jy = min 1 By .
B {[ } GN/AN+]_(TN_I)CYN‘N GN/AN+1GN+BN

N

triangular magrices as follows.

j L owy' || —Gyn(Ty = 1) A G 0
IN = min{[ 1 By } wN Ay (TN — 1) AN 1 Grwy
1625 O I 0 GNIAN+1GN + BN

1 o] 1
ola D &

where
wy = (GN'AN1GN + BN)ilGN/AN—H(TN —I)ann- (76)
Expandimgethesright-hand-side of Eq. 75 yields
In = Igllvn {—‘%VUV(TN — I)Ant1Gywy + (By +wn) (GN'An41Gn + By) (By + WN)} , (77)

in which only thé second term depends on the unknown Sy. Note that (Gn'An11GN + By) is
positive 'semidefinite. This is because Any11 and By are diagonal cost matrices with only positive
terms on the main diagonal. So, the second term in Eq. 77 is always nonnegative and will be
minimized by choosing Sy = —wn.

Therefore, the optimum disease control 33, and the result of minimization, i.e., Jn, are given by
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the following equations respectively.

By = —Unan|n, (78)
where
Uy = (GN'ANt1Gn + BN>_1GN/AN+1(TN —1), (79)
and
JN = =@y Pradn, (80)
where
Pyi1 = (T — I AN iGN (GNAN1 G + By) LGN AN (T — 1). (81)
O
Lemma 6.
tr [ANH ((TN — DSy (Ty — 1)’)} — tr [PNiNlN] +tr [PNH%N] (82)

Proof.ef Lemma 6:
Proof. We know tr [XY] = tr[YX], tr[X (YZ)] = tr (XY)Z] and tr (X +Y) Z] = tr [ XZ] +
tr [Y Z]. Therefore,

ir [Aj ((Ty = DS (@ = D) | = tr [ ((Ty = D' Ana (T = D) S| (83)
From Eq. 50 we know (Ty — I)Any1(Tn —I) = Py + PNH. Hence,

tr [((TN —I)'An1(Ty = 1)) 2N|N] =tr [(PN + 15N+1> 2N|N]

=tr [PNXA)N“V} +ir |:PN+1XA)N‘N} (84)

Lemma 7.

E @2+1\t+1Pt+1&t+1|t+l|pt] = (Tiayy + GiBr) Pry1 (Teduys + Gift)

Zt+1

+tr [Pt+1 (Ttit\tTt, + Q- it-{—l\t—i—l)] : (85)

This article is protected by copyright. AlBrights reserved



Proof of Lemma 7:

Proof. From Lemma 1 and Eq. 4

A~/ ~ A~ /! A~
ki [at+1|t+1pt+1at+1|t+1|pt} = E [l Pt B [Grpaeplpor]
Zt+1 Zt+1 Zt+1

/
Hir [Pt-H E |:<dt+1t+1 - E [dt+1|t+1|@t]> (dt-i-lt—f—l - E [dt+1|t+1|@t]> ”
Zt41 Zt41 Zt+1

—(Tyévgy, + G1B1) Prya (Tidyy + Gify) + tr [Pt—l—th-l—l E [Jt+10t11] Kt+1/:| ) (86)
241
in which

Eglgigia] = E [(Zt+1 — Zi1(Tibyyy + GiBr)) (261 — Zegr (Tydyy + Gtﬂt))/] . (87)

Zt41 Zt41

Replacing 251 by its value given by Eq. 2 yields

E [1jmrp= E [(515-',-1 + Zey1(usr — Tidyy — GifBt)) (ee11 + Zea (arpr — Trdye — Gtﬂt))/}

Zt41 2t41

= E [(et11+ Ziy1(ausr — Elara])) (ee41 + Zepa(aer1 — Elagya]))]

Zt+1
0 A
> Ht(+t1+l) + Zi1 (Ttlzt\tTt + Qt) Zi

= Syt (88)
Substitutiontof'Eq. 88 into Eq. 86 results

E d2+1|t+1pt+1@t+1\t+1’@t} = (Tibupy + GiBt) Pry1 (Tidyy + GiB) + tr [Pry1 K115 K] -

Zt+1

(89)
Using Eq.’s.35,.7, 8, and 9 yields
L @2+1\t+1Pt+15¢t+1|t+1\@t] = (Tyéupy + GeBr) P (TiGyy + GiBy)
t+
+tr [Pt+1 (Tti]t\tTt, +Qt — it-l—l\t—i—l)] : (90)
]
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Lemma 8.

~ ~ / ~ N
ZE {(O‘t+l|t+1 — dyjer1) A (Ggrper — Gyjegn) |@t}
t+1

= ((Tx — Déyy + GiBy) A (Ty — Iéy + Gify)

+tr |:At+1 (,Ttit\tTt/ +Q — it—&-l\t—i—l - i1t+1\t+1§3f/ - iiimuﬂ + 2t|t+1>} . (91)

Prooffof'llemma 8:

Proof. Thisrexpectation can be divided into four parts as follows.

~ ~ !/ A~ A~ ~l A~
E [(Oét+1|t+1 - at\t+1) At (at+1|t+1 - 0%|t+1) ’@t} = ZE [at+1\t+1At+1at+1|t+1|pt:|
t+41

Zt+1

~1 ~ N ~ ~t ~
- E [at+1|t+1At+1at\t+1|@t} —251 [at\t+1At+1at+1|t+1|@t} +z51 [at|t+1At+1Oét|t+1\@t] .

Zt4+1
(92)
The first expeetation in 92 is similar to the expectation of Lemma 7. Therefore,
zE1 @;+1‘t+1At+1&t+1|t+1‘@t] = (Tydyy, + Gtﬁt)/At-&-l(Tt@ﬂt + Gir)
tr
+tr [At+1 (TtiﬂtTt/ +Qt — it+1\t+1>] : (93)

The second expeétation in 92 can be simplified as follows.

~ A~ ~ / A~ A~ ~
E a2+1|t+1At+1at|t+1‘@t] = F [at+1\t+1|@t] A1 E [Oét|t+1|@t] +tr [At+1COU (at+1|t+1aat|t+1)]
Zt+1 Zt+1 Zt+1

= (Tyby + GoBr) Apyrdyy + tr [Ag1Cov (Gyqjegr, Gger) | (94)
in which

A ~ M. ~ R R /
Cov (Qupipgandiji o) = E _Oét+1|t+104|t+1\@t] — E [ayq1je41|901]) Elbyeq et

A !/
=E |Gq1pt41 (@ﬂt + E;ek(04t+1|t+1 - Oét+1\t)> |@t] - F [Oét+1|t+1|@t] ai\t

= B [Qpp 1041 (Gerajeer — Gurae) |oe) 2F

=K :dt+1|t+1&;+1\t+1’pt:| 57— B 611 ]9e] (Ticuy + GeB)'S7

= i3t+1|t+12;f/ + (Tibyp + GeBe) (Ti by + GiBy)'Sy

— (Tibuyy + GiBe) (Tibyye + GBSy

= By 1je1 27 (95)
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Therefore,

E [ yi A @upnlon] = Tidg, + GiB) Ay + tr A S S (96)

Zt4+1

In similar way, the third and fourth expectations in 92 can be simplified as follows.

E @i Ariraaplon] = a A (T + GiB) + 7 (A S50 |, (97)

2t

E |:é[:f‘t+1At+1dt|t+1|pt:| - d;|tAt+1@t‘t + t?" |:At+1ﬁ:t‘t+l:| . (98)

Zt+1

Replacing Eq.’s.93, 96, 97 and 98 into 92 yields

E [(@t+1|t+1 - dt\tJrl)/At—&-l (@t+1|t+1 - dt|t+1) ’@t} = (Tyéup + GeBr) Ar1(Tibyy, + Gify)

Zt41
+ i [At+1 (TtiﬂtTt/ +Qt — i:tJr1|t+1>] - (Tt@ﬂt + Gt/@t)lAt—s-ldt\t —tr [At+12t+1\t+12:/]
- dz/t|tAt+1(Ttat\t + Gify) —tr [AtJrli)Iit-i-l\t—l-l] + dy Avpr Gy + tr {At+1it\t+l}
= (@) e + Gef3) A1 (T — Dy + GoBy)

+tr [At—l—l (TtiﬂtTtl + Q¢ — it+1|t+1 - it+1|t+li:/ - iriwutﬂ + 2z&|t+1ﬂ : (99)

Lemma 9.

tr [(Acpptey ) (Ttit“Tt’)} — tr [Ptit‘t} +tr [(Pm b ATy + T At — 1) im} (100)

Proof of Lemma 9:
Proof. We know tr [XY] = tr[YX|, tr[X (YZ)] = tr (XY) Z] and tr (X +Y) Z] = tr[XZ] +
tr [Y Z]. Therefore,

tr [(At+1 -+ Pt+1) (Tt2t|tﬂl>:| =tr |:(Tt, (At—i-l + Pt+1) Tt) i:t‘ti| (101)
Using Eq..35to replace T;' (Air1 + Pyy1) Ty we have

tr [(Tt/ (Apy1+ Piy) Ty) it|t} = tr Kthrl + P+ A1 Ty + T Agyr — I) it\t]

=1r [Pti]t\t} +tr |:(Pt+1 + ATy + Tt,At—i-l — I) it\t} . (102)

O
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Appendix C Insight into Selecting an Aggressiveness Option

Many factors go into a doctor’s decision of how aggressively to treat and monitor a patient’s
disease that cannot be captured adequately in a single mathematical model. Our model facilitates
the translation of the clinician’s desired aggressiveness level into optimal treatment controls and
a monitoring_plan to achieve those clinical goals with minimal disruption in terms of cost and
inconvenience for the patient (i.e., lower the IOP the least amount necessary to achieve the clinical
goals). While we think it is best to let the clinician use his/her expertise to choose an appropriate
aggressiveness level based on individual patient needs, our model can provide some insight into
when to switch, aggressiveness level. At each time period that the doctor sees the patient, our
decision support tool provides a personalized projection of the patient’s progression trajectory over
the next five years (similar to Figure 6). The doctor’s requirement of how much progression is
acceptable /T months (e.g., MD loss of 1dB in 6 months, and/or 4dB in 12 months, and/or 6dB
in 24 months)*ean be directly compared to our system’s predictions to determine the appropriate
aggressivenesssoption.

Mathematicallyspeaking, this can be accomplished as follows. Let ¥ = {91, ..., %} be the ordered
set of aggressiveness options sorted from the least severe to the most severe aggressiveness option
(e.g., ¥ = {super-low, low, medium, high, super-high}). Let E = {(¢1,&1), ..., (tx,&x)} be a set of
clinically aceeptable progression thresholds such that (tx,&;) means that no more than & loss of
MD shouldbeallowed in ¢ number of time periods. Let the current time period be ¢. Our decision
support tool can'provide the optimal additional IOP controls for each aggressiveness option (i.e.,
B*(vhg) = 4Biabg), Bi 1 (1g), - - - }) as well as the optimal/filtered forecasts of disease progression tra-
jectory under each aggressiveness option (i.e., & |,(¢g) = {dt|t(¢g),&t+1‘t(w9), Gyt (tg), - - }) Let
m~\t(¢9) represent the MD element of ol,|t(1pg). Then, at time ¢, the recommended aggressiveness

level is

al;}gén‘yinE [@m(?/)g) — MDyyy,4(tg) < ﬁk} Y(te, &) € E. (103)

Alternatively, wercan use the following service-level type expression

arg min P ([mﬂt(d@) - ]@t+tk|t(¢g) < §k] > 5) V(t, &) € E, (104)
PgeV

where s @8 the probability that the loss of MD is limited to &. Similar expressions can be written
for PSD and TOP as well.
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Appendix D Results on Target IOP and MD Loss Averted

Since target IOP is an important metric that helps guide clinicians in selecting the appropriate
treatment plan for the patient, the distribution of target IOPs is also of interest. Figure S1 shows
the histogrim of iarget IOPs for fast- and slow-progressing patients under the high and moderate

0,

aggressive olicies. The range and mean of each category is clinically appropriate in the pro-
fessional our glaucoma specialist collaborator.

7 8 910111213 141516171812 5 & 7 & 9 10 11 12 13 14 15 16 17 18 19
Fast-prog under High-agg Pelicy Fast-prog under Med-agg Policy

- 30
- 25
- 20
- 15

- 10

Slow-prog under High-agg Policy Slow-prog under Mod-agg Policy

Percent

- 30
- 25
- 20
- 15
- 10

— -0
7 8 9 1011 121314151617 18195 6 7 E 9 10 11 12 13 14 15 16 17 18 19
Target IOP [mm Hg]

Figure S1: hram of target IOPs for CIGTS and AGIS patients under different aggressiveness

=

Figuﬂrﬁhs the MD loss averted in [dB] for fast- and slow-progressing patients under the
high an e aggressiveness policies compared to the low aggressiveness policy over 10 years of
following the controls suggested by our model. As seen in the figure, fast-progressing patients
will lose fe@ points (i.e., experience better vision quality) resulting from further lowering
their eye pressure in the short term, whether the doctor chooses moderate or high aggressiveness
level. S{gressors, if treated under the high aggressiveness policy, could benefit from losing

fewer MD p n the long term. However, this group of glaucoma patients does not gain evident

benefit from employing the moderate aggressiveness policy even in the long term.
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Figure S2: MDrless averted [dB] for fast- and slow-progressing patients under the high and moderate
aggressiveness policies compared against the low aggressiveness policy (i.e., no additional
IOP reduction beyond those employed in trials) over 10 years of following the IOP
contrel suggested by our model. Period 1 is six months into the future; period 20 is 10
yearsiinto the future.

Table Sl#summarizes the results of comparing super-high, high, moderate, and super-low ag-
gressiveness policy options against the low aggressiveness policy (i.e., the IOP levels attained in the
trials), averaged over all patients in the testing dataset. The formula used to obtain each metric

for high aggressiveness policy is presented below. Similar formulas were used for the other policies.

highagg lowagg
M D,y —M Dy

* 100
MDY 99 _MDs

e % less MD loss per year =

highagg lowagg
D25 7MD25

lowagg
MDxyy

o % betterMD value at 10 years = * 100

high high l l
(MD2;)9 a99_ Ny phis agg) _ (MDQ%wagg —MD2‘Z“”“99)

lowa lowa * 100
(M DG 99— M D99 )
9

e % reduction in MD slope at 10 years =

As can be_deduced from the table, achieving an IOP control suggested by our models not
only results in patients having better vision quality (less loss of vision due to glaucoma) but also
experiencing a significantly reduced glaucoma progression rate, which further benefits the patient
in the long term. For instance, under the high aggressiveness policy, a fast-progressing patient can
achieve, on average, 57.87% less peripheral vision loss per year or 31.71% better MD value after 10
years if the clinician is able to lower the IOP successfully to the target IOP specified by our model.

Furthermore, by applying optimal IOP control, the doctor is able to slow the glaucoma progression
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rate. For instance, the slope/rate of MD worsening would be, on average, 74.54% reduced after
10 years for fast-progressing patients under the high aggressiveness policy compared to the low
aggressiveness policy, which corresponds to the IOP achieved under no additional interventions
beyond those employed in the CIGTS/AGIS trials. This results in more years of maintained sight
over the tensyear period. As seen in the table, the fast-progressing patients (those who are at the
highest riskdfér disease progression) are the ones who will benefit the most from achieving the more

aggressive optimal IOP controls generated from our models.

% less MD loss % better MD value % reduction i.n MD slope
(progression rate)
per year at 10 years at 10 years
median IQR median IQR median IQR
w Super<high-agg. Policy 73.31 18.09 37.87 11.34 82.53 21.72
% High=agg. Policy 57.87 13.59 31.71 12.93 74.54 14.69
g“ Mpoderate-agg. Policy 38.22 13.09 21.06 10.67 58.86 16.19
;' Low-agg. Policy baseline baseline baseline baseline baseline baseline
£ Super-low-agg. Policy -27.49 6.83 -14.92 3.38 -30.30 8.77
g Super=high-agg. Policy 55.30 15.24 21.35 18.59 51.67 7.08
8 ¢High=agg. Policy 22.56 10.72 7.89 6.70 31.08 12.73
E“ Moderate-agg. Policy 6.01 3.10 2.14 1.63 10.80 6.37
; Low-agg, Policy baseline baseline baseline baseline baseline baseline
% Super-low-agg. Policy -23.16 5.80 -10.68 9.76 -23.05 3.16

Table Sk=Comparison of the performance of different IOP control policies for patients in AGIS and
CIGLS against the low aggressiveness policy that is no additional interventions beyond
these employed in the trials.
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Appendix E Monitoring Cost of the Optimal Policies

Our optimal policies for low, moderate, and high aggressiveness suggest, on average, more
frequent IOP testing (a very cheap and fast test) and less frequent visual field (VF) testing compared
to the current practice. Current practice involves testing IOP and VF every 1-2 years (see American
Academy of Ophthalmology Clinical Practice Guidelines 2010). This concept is not widely used in
practice and should lead to resource efficiencies while still providing good detection. If we know
the prevalence of non- vs. slow- vs. fast-progressors in the U.S., we can calculate how many tests
each optimal policy suggests on average and compare it against the 6, 12, 18, and 24-month fixed
interval testing. Unfortunately, there is no gold standard for defining these progression categories.
To overcome this'issue, we use the proportions we found in CIGTS and AGIS. In those trials, 21%,
47%, and 32% of patients met our definition of fast-, slow-, and non-progressor, respectively.

We estimate that the cost of a visual field test is $75.94 (Blumberg et al. 2014). An IOP test is part
of a routineeyetexam, hence we could not find a separate number for the cost of an IOP test. We
estimate it is:$10. Based on these assumptions, the expected annual cost of fixed-interval testing is
$172 (6-month)7"$86 (12-month), $57 (18-month), and $43 (24-month). The expected monitoring
cost of followingsthe recommendations of our model (Table 3) is $144 (high aggressiveness), $97

(moderate aggressiveness), and $59 (low aggressiveness).
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