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Abstract

To manage chronic disease patients effectively, clinicians must know (1) how to monitor each

patient (i.e., when to schedule the next visit and which tests to take), and (2) how to control

the disease (i.e., what levels of controllable risk factors will sufficiently slow progression). Our

research addresses these questions simultaneously and provides the optimal solution to a novel

linear quadratic Gaussian state space model. For the objective of minimizing the relative change

in state over time (i.e., disease progression), which is necessary for managing irreversible chronic

diseases while also considering the cost of tests and treatment, we show that the classical two-

way separation of estimation and control holds. This makes a previously intractable problem

solvable by decomposition into two separate, tractable problems while maintaining optimality.

The resulting optimization is applied to the management of glaucoma. Based on data from

two large randomized clinical trials, we validate our model and demonstrate how our decision

support tool can provide actionable insights to the clinician caring for a patient with glaucoma.

This methodology can be applied to a broad range of irreversible chronic diseases to devise

patient-specific monitoring and treatment plans optimally.

Keywords: chronic disease monitoring and treatment, personalized care, medical decision mak-

ing, glaucoma, Kalman filter
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1 Introduction

Chronic diseases are the leading cause of both death and disability and affect almost one out

of every two adults in the United States (Ward et al. 2014). To manage chronic diseases, patients

are tested quantitatively at prescribed intervals using a selected set of testing modalities to assess

disease progression and decide whether a change in treatment is warranted. In this context, proper

testing and treatment guidance is critical to both cost containment and patient outcomes in the

management of chronic diseases. In this paper we develop a modeling framework for dynamic man-

agement of irreversible chronic diseases that enables us to (1) specify the optimal timing of each

office visit and the appropriate suite of tests (i.e., the selection of testing modalities) to perform

at that visit considering the costs and value of each test and the uncertainty about the patient’s

disease progression [disease monitoring], and (2) identify optimal target levels for controllable dis-

ease risk factors to slow the rate of disease progression without over-treating or under-treating the

patient [treatment control].

To do so, we introduce and solve a new type of objective function for linear quadratic Gaussian

(LQG) systems that minimizes the relative change in state (i.e., disease progression) rather than

the traditional objective of minimizing the cost of being in each state, while still accounting for

the test and treatment costs as in the traditional objective. We extend LQG theory by proving

that the classical two-way separation of optimal state estimation and control applies to this new

objective. This separation ensures computational tractability for the simultaneous optimization of
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disease monitoring and treatment control. This innovative modeling of dynamic disease monitoring

and treatment control is developed to be applicable to many irreversible chronic diseases. As a

proof of concept, we demonstrate the capabilities of this methodology by applying it to glaucoma,

a chronic disease causing progressive blindness.

1.1 Scope of the Research

It is important to distinguish the disease monitoring problem from screening for a disease. The

goal of disease screening is to determine whether or not a patient has a particular disease. A

screening test is taken when the patient is considered to be at some risk of developing a condition

but exhibits no symptoms of the illness. For the disease monitoring problem, however, the patient

is already known to have the disease, and the goal is to detect the presence of disease progression

quickly and identify whether/how to adjust the treatment plan to slow/avert further disease pro-

gression.

For the treatment control portion of the problem, the goal is to determine the time-dependent

intensity of treatment over a treatment cycle based on dynamically updating information on patient

disease state from the monitoring portion. We emphasize that our model does not suggest a specific

intervention. Rather, it provides patient-specific target levels for controllable/modifiable disease

risk factors that help guide the doctor in selecting an appropriate treatment plan for the patient.

Though one might try to model how each intervention affects the disease progression dynamics, we

feel it is best to leave it to the clinician to employ his/her experience and expertise to decide what

therapeutic interventions are most likely able to achieve the target levels suggested by our model.

1.2 Main Contributions

• Theory: (1) To the best of our knowledge, this is the first research paper to employ measure-

ment adaptive systems theory to the monitoring and control of chronic diseases (or even to

any healthcare operations research problem), and this new application requires an extension

of the underlying theory. We extend the LQG state space modeling literature by introducing a

new objective that minimizes the relative change in system state over time (i.e., the difference

in estimated state elements between the current period and the previous period), rather than

minimizing the cost of current state, while still considering the cost of tests and treatment. In

prior applications of LQG modeling to other engineering problems, the goal of the controller

has been to keep the system state on a static desired trajectory using costly control actions

by minimizing the deviation of the current system position from the desired trajectory over

time. However, in irreversible diseases such as glaucoma, once the disease has progressed, it

is biologically impossible to reverse the damage. In this context, the desired trajectory is to

maintain the “current disease state position” (i.e., stop the disease from worsening), which

the model updates dynamically as the disease progresses over time. This necessitates a new

structure for the objective function (Eq. 3) not yet studied in LQG literature.
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(2) For LQG systems theory, the two-way separation of optimal state estimation and control

(known as the separation principle) has been a critical foundation upon which to optimize

estimation and control of probabilistic systems tractably and simultaneously (see Witsen-

hausen 1971). Our main theoretical results show that the two-way separation of optimal

estimation and control extends to this new objective of relative system state change, which

involves two correlated state variables from the current and previous time periods. The treat-

ment control can be optimized in closed form as a linear function of the best estimate of

the patient’s current disease state (i.e., filtered state mean given by the Kalman filter) via

completion of squares. Furthermore, we show that the monitoring problem can be reduced

to a continuous-state discrete-action Markov decision process (MDP) model with filtered and

smoothed covariance matrices of the state serving as the information state and the Kalman

filter and smoother equations acting as the system dynamics. The MDP can be solved via

dynamic programming to find the optimal monitoring schedule specific to each individual

patient.

(3) A Kalman filter and smoother are built into our modeling framework to extract noise

from the raw measurements and to estimate the disease state optimally in each time period

based on imperfect/noisy measurements. This is key to accurately identifying genuine dis-

ease progression from testing artifacts. The Kalman smoother is a new feature in our model

(compared with the traditional LQG models), and it is essential because of the new objective

function we employ. State smoothing means using information gained at time t to update the

prior estimate made at t − 1 of the value of the state at t − 1. Filtering refers to estimating

the current disease state based on new test results.

• Application: (1) We develop an integrated, feedback-driven stochastic control model to

provide the jointly optimal solution to both the disease monitoring and treatment control

problems. Note that the monitoring regime affects the disease control problem. As new

tests are performed, the information gained can affect how the doctor controls/slows the

progression of the disease. Therefore, it is critical to model and solve the disease monitoring

and control problems together to capture the interaction between them.

(2) The model explicitly determines which suite of tests to take at each time period. Some

tests are significantly easier and cheaper to perform than others. Different tests may provide

more or less information about the patient’s disease state. Therefore, it is important to be

able to differentiate which tests to perform at each time point in terms of improved monitoring

and cost containment.

(3) We develop a data-driven decision support tool that provides a menu of options to the

doctor based on how aggressively he/she wants to monitor and control the patient. The doctor

can select an appropriate aggressiveness option depending on the patient’s life expectancy,

severity of disease, and other personal and clinical factors. For each aggressiveness option,
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the model incorporates new and past test results as well as clinically-believed and data-

verified disease dynamics to predict and graph the future disease trajectory and recommend

a patient-specific monitoring regime and target level for controllable disease risk factors.

• Data: (1) We parametrize and validate our model using data from two landmark randomized

clinical trials of patients with glaucoma. Our numerical results indicate that the model

achieves low errors in predicting the future disease trajectory.

(2) The results suggest the potential to improve both patient outcomes and system cost when

applied to patients from the clinical trial already receiving a high level of care. This potential

is likely greater for patients being treated by non-glaucoma specialists.

2 Literature Review

Papers relevant to this research are classified into three categories: (1) theoretical papers on

measurement adaptive systems and sensor scheduling, (2) medical decision making papers on dis-

ease screening, diagnosis, and monitoring, and (3) optimization models on treatment planning and

disease control. In this section, we highlight some prominent papers in each category and briefly

describe how our research methodologies and objectives are different.

Measurement Adaptive Systems and Sensor Scheduling: The closest paper to our work in

terms of theory is Meier et al. (1967). This paper lays the foundations for measurement adaptive

systems in which the controller seeks to keep the system state on a static desired trajectory and

obtain information about the system state simultaneously with minimum total cost over a finite

horizon. They show that, in the special case of discrete-time systems, linear system dynamics,

quadratic cost of the current state, and Gaussian random noise processes, the problem of find-

ing the optimal measurement policy reduces to the solution of a nonlinear, deterministic control

problem. Baron and Kleinman (1969) extend their work to continuous-time measurements and

investigate the optimal measurement duration for a human operator. Bansal and Başar (1989) pro-

vide an extension of this framework to the infinite-horizon setting with discounted costs. Our work

differs in that it deals with a dynamic desired trajectory, minimizing the relative change in state

in each time period (i.e., disease progression), which is essential for managing irreversible chronic

diseases (as discussed in Subsection 1.2). For example, experiments using the model provided by

Meier et al. (1967) led to results considered clinically incorrect/unbelievable in the experience of

our clinical co-author, a glaucoma specialist. We discuss this more in Section 3.3.

There is also extensive literature on sensor scheduling problems, in which a set of sensors is used

to estimate a stochastic process, but because of cost or design constraints, only one or a subset

of them takes measurements at each time point. Athans (1972) considers the problem in which

the controller has to select one measurement provided by one sensor out of many available sensors

(with different measurement costs) at each time step, such that a weighted combination of predic-
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tion accuracy and accumulated observation cost is minimized. Examples of other work in this area

include Gupta et al. (2006), Mehra (1976), and Vitus et al. (2012). However, these papers differ

from ours in that they do not consider the tradeoff between exploration vs. exploitation.

Disease Screening, Diagnosis, and Monitoring: While there is extensive literature on disease

screening and diagnosis problems, there is relatively little work on the disease monitoring problem

that we defined in Section 1.1. Helm et al. (2015) and Schell et al. (2014) provide a heuristic

approach for finding the time in between tests based on patient’s probability of progression. Note

that their work focuses only on the timing of the next test and does not consider how that test

would impact future tests performed nor the type of test performed at each visit. (They assume all

of the tests are performed at each office visit.) These works also do not incorporate optimization of

controllable disease risk factors (i.e., treatment planning), which is a key factor to consider when

managing patients with chronic diseases. Ayer et al. (2012) provide a partially observable Markov

decision process (POMDP) approach to personalize mammography screening decisions; their work

is based on the prior screening history and personal risk characteristics of women. Chhatwal et al.

(2010) develop a finite-horizon discrete-time Markov decision process (MDP) model to help radiol-

ogists determine the best time for a biopsy based on the initial mammography findings and patient

demographics. Their goal is to maximize a patient’s total expected quality-adjusted life years. The

works of Yang et al. (2013), Mangasarian et al. (1995), Saaty and Vargas (1998), Zhang et al.

(2012), Lee et al. (2018), and Erenay et al. (2014) are other examples of disease screening models.

These works differ from ours in that they focus on the screening problem where the goal is to

detect the presence of a particular disease with minimum delay. They do not provide any insights

on how to monitor the patient if the presence of the disease is confirmed and progression trajectory

can be monitored over time, nor do they consider treatment planning. Kreke (2007) develops a

POMDP model to study the question of when to test for cytokine levels in patients with sepsis

using available, costly, and inaccurate tests. Suen et al. (2017) develop a POMDP framework to

determine when and how often sputum smear test information should be collected from patients on

first-line treatment of tuberculosis and use this information to find the optimal time to administer

drug sensitivity testing. These works consider the problem of timing of each test with testing noise

and system noise but do not consider simultaneous disease monitoring and treatment decisions.

Treatment Planning and Disease Control: There has been a variety of work considering when

to start treatment of a patient when the presence of disease is confirmed (also known as surveil-

lance problems). Lavieri et al. (2012) develop a Kalman filter-based approach to help clinicians

decide when to start radiation therapy in patients with prostate cancer based on predictions of

the time when the patient’s prostate specific antigen (PSA) level reaches its lowest point. Notice

that, different from our approach, its actions are discrete (start/do not start radiation therapy)

rather than establishing the level of therapy to be given. Furthermore, this work did not consider

when the patient should be monitored, assuming the patient would be seen at the clinic once a
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month. Shechter et al. (2008) employ Markov decision processes (MDP) to optimize the time to

initiate HIV treatment to maximize a patient’s quality-adjusted life years. Mason et al. (2014) and

Schell et al. (2018) present MDP models to determine the optimal timing of blood pressure and

cholesterol medications. All of these papers assume a measurement of the patient’s health is taken

periodically. Our work differs in that it solves the joint problem of optimal timing of each test and

optimal treatment control.

Moreover, in most of the previous research mentioned, the patient’s disease dynamics are assumed

to be known or are estimated using population-based models. In our model, the population data

is integrated with individual patient measurements gathered from sequential testing so that the

predictions and decisions made are unique to each patient. Capturing the complex patient dis-

ease dynamics requires incorporating several health indices into the state vector. We employ a

continuous state space that easily accommodates multivariate states (e.g., nine dimensions in our

model for glaucoma) and provide jointly optimal solutions to both disease monitoring and control

problems. Employing a continuous state space model is important as many quantitative tests for

disease monitoring are continuous. Problems with such a multivariate, continuous state-space often

become intractable for MDP-based approaches due to the curse of dimensionality. Discretization

of the state space and using approximate dynamic programming (ADP) to mitigate the curse of

dimensionality of MDP models is an alternative approach when our modeling framework does not

fit. For example, strongly discrete state variables, highly non-linear disease dynamics, and highly

non-Gaussian random noises are features that are difficult for our model to handle. However, it

should be noted that discretization of the state space and grouping discrete states together to

reduce the model size is shown to reduce the predictive power of the MDP models as a result of

lumping error (see Regnier and Shechter 2013). The implication is that if the assumptions in our

model are reasonable for a disease, a modeling framework like what we present in this paper that

can accommodate continuous state space (for a disease with continuous variables) without loss of

optimality can benefit from more accurate predictions (specially beyond one period into the future)

and can be solved tractably.

3 The Modeling Framework

A continuous state space model is employed at the heart of our modeling framework with two

key components: (1) a state transition process to model disease progression dynamics, and (2) a

measurement/testing process to model how the true disease state is observed. Both processes (Eq.’s

1 and 2) are in the form of first-order (linear) vector difference equations with additive Gaussian

white noise (i.e., noise inputs at time t and t′ are independent). The objective function seeks to min-

imize the weighted sum of multiple cost elements with state independent cost parameters/weights.

The optimization problem determines both the optimal disease control (how to control modifiable

risk factors) and the optimal monitoring (when to take new measurements), both of which are

7This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



patient-specific and state-dependent. Such a model can be a good fit for many chronic diseases

(such as glaucoma) since the measurements are typically on a continuous scale. In the case study

of glaucoma (Section 5), we will elaborate on how we adjust for some of the model assumptions,

e.g., we include first and second-order derivatives of key disease state elements in the state vector

to capture some degree of nonlinearity in our linear model, and we define various aggressiveness

levels that the clinician can choose from, each of which is tied to a set of cost parameters.

3.1 State Transition Process

The recursive state transition equation for our N-stage time horizon is given by

αt+1 = Ttαt + Gtβt + ηt, t = 1, ..., N, (1)

where αt is the random vector representing the state of the disease at time t, βt is the “disease

control” variable administered at time t, ηt is the vector of Gaussian white noise that represents

unmodeled disease process noise with E [ηt] = 0 and Cov (ηt) = Qt, Tt is the state transition matrix

governing the underlying disease progression dynamics, and Gt is a vector capturing the effect of

disease control variable βt on the next period state, αt+1. βt is one of the two optimization variables

of the model. It determines how the modifiable disease risk factors should be adjusted at time t

to slow the progression of disease optimally. Our model seeks to adjust the modifiable risk factors

in the first few time periods, after which βt converges to zero. By summing the total amount of

control βt over this timeframe, we obtain a target level for each modifiable risk factor. We will

illustrate this in Section 5.8.2. Having such information will help clinicians select the appropriate

treatment plan for the patient.

3.2 Measurement/Testing Process

The measurement equation gives the relationship between the true disease state, αt, and the

noisy raw reading/observation, zt, as follows.

zt = Ztαt + εt, t = 1, ..., N, (2)

where zt is the observation vector (i.e., the result of test(s) performed on the patient), Zt is the ob-

servation matrix and determines how components of the true state are observed, and εt is the multi-

variate Gaussian white test noise with E [εt] = 0 and Cov (εt) = H
(θt)
t . θt is the “test/measurement

control” variable that determines which subset of tests to take in period t; it is the other control

variable the model optimizes. H
(θt)
t models the error associated with the tests and is directly af-

fected by the decision on which test(s) to take at time t (which we highlight by adding (θt) to the

superscript, i.e., H
(θt)
t ). It is worth noting that both αt+1 and zt are Gaussian random vectors

since they are a linear combination of independent Gaussian random variables. The initial state,

α0, is Gaussian with E [α0] = α̂0 = α̂1|0 and Cov (α0) = Σ̂0 = Σ̂1|0. The random variables α0, {ηt},
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and {εt} are mutually independent. Throughout the paper, the notation X̂t|t′ means the estimated

value of random variable X at time t with information up to time t′.

3.3 Objective Function

The novel objective function (performance criterion) we analyze is given by

J = E

{

N
∑

t=1

[

(αt − αt−1)
′At (αt − αt−1) + βt

′Btβt + lt(θt)
]

+ (αN+1 − αN )′AN+1 (αN+1 − αN )

}

,

(3)

in which At is the unit cost matrix of further worsening the disease, Bt is the unit cost of adminis-

tering disease control (i.e., further adjusting the modifiable disease risk factor), and the scalar lt(θt)

is the cost of taking tests/measurements in period t, which depends on the test control variable, θt.

The objective function consists of four terms: (1) (αt − αt−1)
′At (αt − αt−1) is the cost of relative

change in the system state random variable (i.e., disease progression) between the previous period

t − 1 and the current period t (whereas the traditional LQG objective minimizes αt
′Atαt as ex-

plained in Subsection 1.2), (2) βt
′Btβt is the cost of controlling the disease risk factors including

side effects and complications of medical or surgical treatments, (3) lt(θt) is the cost of taking tests,

and (4) (αN+1 − αN )′AN+1 (αN+1 − αN ) is the terminal cost of relative state change at the end of

the treatment horizon. The quadratic form of the first part of the objective function ensures that

a large disease worsening is penalized more aggressively than a small one. Furthermore, achieving

a large adjustment in disease risk factors may require more aggressive treatments (e.g., surgery or

laser therapy), which are associated with higher monetary costs as well as more side effects and

discomfort than a smaller change in risk factors, which can often be achieved by simpler treatments

such as medications. Hence, the cost associated with a big relative change in a patient’s disease risk

factors is much higher than a small one, so the quadratic form of the second part of the objective

function is a good choice for our application.

One might try to define the first part of the objective function as minimizing the deviation of the

current state from the patient’s baseline state (i.e., minimizing

E
∑

t

[

(αt − α0)
′At(αt − α0) + βt

′Btβt + lt(θt)
]

). Note that this is not an appropriate objective for

irreversible diseases because, according to our experiments, the model will attempt to reverse the

disease progression and send the state back to its baseline (which we know is biologically impossi-

ble) by making extreme and often infeasible changes to state variables that are not valid clinically.

Moreover, such an objective function assigns quadratically-increasing cost to additional disease

progression measured as the current deviation from its baseline, which can easily overshadow the

other cost elements in the objective function (i.e., treatment and monitoring costs). This will result

in recommending the most aggressive treatment and monitoring regimes for all patients when the

cost associated with deviation of current state from its baseline overshadows the other two costs
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in the objective function regardless of how bad the current state is. We believe that good clinical

practice is always careful to note the latest disease state, with any worsening being of concern. Our

objective function achieves this without introducing the problems noted above.

Another alternative approach is to define the state as α̃t =

[

αt

αt−1

]

, and minimize

E
∑

t

[

α̃′
tÃtα̃t + βt

′Btβt + lt(θt)
]

. While it is possible to develop an alternative formulation equiv-

alent to the one we presented above based on this new definition of state, Ãt in the objective

function of the alternative formulation is a singular (non-invertible) cost matrix (more specifically,

Ãt =

[

At −At

−At At

]

; calculation not shown). However, we would need to invert this matrix to

find a closed-form solution for optimal disease control. Hence, the alternative formulation makes

it harder to derive a closed-form solution for the optimal disease control. Note that, in the formu-

lation proposed in our paper, At is always invertible because A is a cost matrix and, by definition,

it is diagonal with only non-negative terms on the diagonal.

3.4 Kalman Filter and Kalman Smoother

When the state transition and measurement processes are both in the form of first-order dif-

ference equations with Gaussian white noises, the optimal state estimation method that minimizes

the mean squared error of the estimate is given by the Kalman filter (Kalman 1960). The Kalman

filter obtains the prediction of state mean and covariance at time t with information up to time

t − 1, α̂t|t−1 and Σ̂t|t−1 respectively, and the current reading, zt, as inputs to the algorithm and

calculates the filtered state (i.e., optimal estimate of the true state) mean and covariance, α̂t|t and

Σ̂t|t respectively.

The optimal state mean estimate at time t with information up to time t, α̂t|t, is given by

α̂t|t = α̂t|t−1 + Ktỹt, (4)

where α̂t|t−1 is the predicted state mean at time t given information up to time t − 1 and ỹt is the

measurement residual (error) given by

α̂t|t−1 = Tt−1α̂t−1|t−1 + Gt−1βt−1, (5)

ỹt = zt − Ztα̂t|t−1, (6)

and Kt is the Kalman gain given by

Kt = Σ̂t|t−1Zt
′S−1

t , (7)

in which St is the predicted covariance around the measurement given by ZtΣ̂t|t−1Zt
′ + H

(θt)
t .

The predicted state covariance at time t given the information up to time t − 1, Σ̂t|t−1, and the
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most recent state covariance estimate at time t with information up to time t, Σ̂t|t, satisfy

Σ̂t|t = Σ̂t|t−1 − Σ̂t|t−1Zt
′
(

ZtΣ̂t|t−1Zt
′ + H

(θt)
t

)−1
ZtΣ̂t|t−1 = (I − KtZt) Σ̂t|t−1, (8)

Σ̂t|t−1 = Tt−1Σ̂t−1|t−1Tt−1
′ + Qt−1. (9)

The initial state mean and covariance, α̂1|0 and Σ̂1|0 respectively, are calculated based on population

data from clinical trials. So, ỹ1 = z1 − Z1α̂1|0 and S1 = Z1Σ̂1|0Z1
′ + H

(θ1)
1 . For more discussion on

Kalman filter, see Bertsekas (1995) and Harvey (1990).

Because of the special form of the objective function that minimizes relative state change from time

t − 1 to time t (i.e., disease progression), we need to refine the estimation of previous state mean

and covariance (α̂t−1|t and Σ̂t−1|t, respectively) after a new measurement is taken at time t. This

is called state smoothing and can be done via a fixed-interval Kalman smoother as follows.

α̂t−1|t = α̂t−1|t−1 + Σ̂∗
t−1

(

α̂t|t − α̂t|t−1

)

, (10)

Σ̂t−1|t = Σ̂t−1|t−1 + Σ̂∗
t−1

(

Σ̂t|t − Σ̂t|t−1

)

Σ̂∗
t−1

′, (11)

in which Σ̂∗
t−1 = Σ̂t−1|t−1Tt−1

′Σ̂−1
t|t−1. A derivation of the fixed-interval Kalman smoothing can be

found in Ansley and Kohn (1982).

The control system block diagram is depicted in Figure 1. The dashed arrows indicate that the

information is carried over from the current period, t, to the next period, t + 1. The values

in parentheses are not observable. Suppose the patient is in disease state αt when visiting the

doctor’s office. Based on the optimal test control action θ∗t (already determined in the previous

time period), all or a subset of tests are performed on the patient. The noisy observation/reading,

zt, is then sent to the Kalman Filter. Based on the predicted and observed states, the Kalman

Filter algorithm calculates the best estimate of the mean and covariance of the patient’s disease

state in period t, α̂t|t and Σ̂t|t respectively, and sends the filtered values to both the Kalman

Smoother and the controller (i.e., the decision support system itself for this analysis). The Kalman

Smoother will then modify the best estimates of the state mean and covariance in period t − 1,

α̂t−1|t and Σ̂t−1|t respectively, and send the smoothed values to the controller. Notice that this is

a key departure from the traditional methodology. The controller receives both the filtered and

smoothed values of the patient’s disease state mean and covariance (the information state for the

optimization component of the model) and outputs the optimal treatment and test control actions,

β∗
t and θ∗t+1. Finally, the prediction of the state mean and covariance in period t + 1, α̂t+1|t and

Σ̂t+1|t, is sent to the Kalman filter and smoother to be used in the following time period.

In Section 4, we focus on the controller (decision support tool) and show how the optimal disease

and test control actions (β∗
t and θ∗t+1, respectively) can be calculated given the information state

℘t =
(

α̂t|t, Σ̂t|t, α̂t−1|t, Σ̂t−1|t

)

. For convenience, Table 1 provides a list of important notations we
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Figure 1: Control system block diagram.

Table 1: List of important model notation. Auxiliary notation used in Section 4 to prove Theorems
1-3 are not shown in this table; they are defined upon introduction in Section 4.
*Note that since glaucoma has only one controllable risk factor (i.e., IOP), in our case
study of glaucoma, βt and Bt become scalars and Gt becomes a vector.
**Smoothing, filtering, and prediction refer to the case in which t′ > t, t′ = t, and t′ < t,
respectively.

used in our modeling.

3.5 Separation of Estimation and Control

One-way Separation of Estimation and Control: A control law is a function selected

by the controller from the set of all admissible functions based on all observations available at

the time of the decision. This function generates a control action to be applied to the system.

The problem is to make an optimal selection of such functions for all time steps that achieves the

minimum expected cost (defined by the objective function) for the control horizon of the problem.

For the general stochastic control problem with imperfect observations, given all the observations

and previous control actions, state estimation from a noisy measurement is always independent of

the control law. This is because the conditional density of the state given all the observations and

the control actions is independent of the control law. This result is called the separation principle

in control theory (see Witsenhausen 1971). The only underlying assumption for the separation

principle to hold is to have one controller (i.e., centralized information) with perfect recall (i.e., the

information on the previous observations and control actions do not get forgotten).

In general, the control law depends on the estimate of the system state; however, the estimate at

time t is independent of all control laws given all observations up to time t and all the control

actions up to time t − 1. This is also known as the one-way separation of estimation and control.

Since our LQG model is a special case of the general stochastic control problem with centralized

information and perfect recall, the one-way separation principle holds. As seen in Section 3.4, the

optimal state estimation at time t, described by α̂t|t and Σ̂t|t, is given by the Kalman filter (Eq.’s

4-9) and is independent of the control law given all the previous observations and control actions.

Two-way Separation of Estimation and Control: For LQG stochastic systems in which (1)

the transition and measurement equations are linear in state and control action, (2) the objective

function penalizes the quadratic cost of current state, and (3) the state and measurement noises

are Gaussian, it has been shown that the control law is also independent of the state estimation

(Meier et al. 1967). Therefore, for this traditional form of LQG models, we have two-way separation

of the estimation and the control; namely, the estimation is independent of the control law and

the control law is independent of the estimation. In Section 4, we show for the new objective of
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minimizing the relative change in state, which involves two correlated state variables of current

and previous time periods and requires smoothing in addition to filtering and prediction, that the

optimal control law is still independent of the state estimate. Thus, in this new and more complex

environment, the two-way separation still holds. Furthermore, the optimal control action is linear

in the state estimate. This is extremely desirable for application because the control law is data

independent and can be calculated offline (which greatly reduces the computational burden). The

two-way separation of estimation and control for this special case of LQG models is a fundamental

finding, which is critical to solution tractability.

4 Derivation of Optimal Disease and Test Controls

In this section, we derive the optimal disease and test control actions given the information

state at time t, ℘t, which is defined as the filtered state mean and covariance at time t and the

smoothed state mean and covariance at time t − 1 with information up to time t, i.e., ℘t =
(

α̂t|t, Σ̂t|t, α̂t−1|t, Σ̂t−1|t

)

.

In terms of ℘t, a dynamic programming algorithm can be derived to find the optimum disease and

test controls. The value function, Vt (℘t), can be found recursively as follows.

Vt (℘t) = min
βt,θt+1

{

Lt(℘t, βt, θt+1) + E
zt+1

[Vt+1 (℘t+1)]

}

, t = 1, . . . , N − 1, (12)

where Vt (℘t) is the minimum expected cost from period t to N , the end of the control horizon, given

the information state ℘t, and Lt(℘t, βt, θt+1). Here Lt(℘t, βt, θt+1) is the expected instantaneous

(one-stage) cost incurred in period t given that the information state is ℘t and the control actions

βt and θt+1 are chosen, and it is computed as

Lt(℘t, βt, θt+1) = E
[

(αt − αt−1)
′At (αt − αt−1) |℘t

]

+ β′
tBtβt + lt+1(θt+1). (13)

The boundary condition is given by

VN (℘N ) = min
βN

{

L̃N (℘N , βN )
}

, (14)

where L̃N (℘N , βN ) is the expected cost incurred in the final period N if the information state is ℘N

and the disease control action βN is chosen. The minimum cost during the entire control horizon

can, therefore, be obtained by

J∗ = l1(θ1) + V1(℘1), (15)

in which l1(θ1) is the cost of initial tests during the patient’s first office visit and V1(℘1) is the

minimum cost to go from period 1 to the end of control horizon obtained recursively via Eq.’s 12
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and 14. We assume all diagnostic tests are taken during the first visit, so a baseline of all readings

is established.

In the remainder of this section we use an induction argument to prove the following theorems.

Theorem 1. For arbitrary time t (t = 1, . . . , N), the control law is independent of the state estimate

(i.e., we have two-way separation of optimal estimation and control). Moreover, the optimal disease

control, β∗
t , is linear in the filtered state mean, α̂t|t.

Theorem 2. At an arbitrary time t (t = 1, . . . , N), the optimal monitoring schedule, θ∗t+1, θ
∗
t+2, . . .,

can be found by solving a continuous-state discrete-action MDP model with filtered and smoothed

covariance matrices of the state serving as the information state and the Kalman filter and smoother

equations acting as the system dynamics.

Theorem 3. For arbitrary time t (t = 1, . . . , N), the value function with information up to time

t has the following form.

Vt (℘t) =
(

α̂t|t − α̂t−1|t

)′
At

(

α̂t|t − α̂t−1|t

)

+ tr
[

AtΣ̂t|t

]

+ α̂′
t|tPtα̂t|t + tr

[

PtΣ̂t|t

]

+ V θ
t

(

℘θ
t

)

+ bt, (16)

in which V θ
t

(

℘θ
t

)

represents the recursive terms that only depend on measurement control actions,

i.e., when to take tests and which test(s) to take. They do not depend on observations or on disease

control actions. Therefore, the measurement control problem can be solved separately from the

treatment control problem. ℘θ
t represents those elements of information state that are only affected

by measurement control actions (i.e., ℘θ
t =

(

Σ̂t|t, Σ̂t−1|t

)

), and bt is a constant. V θ
t

(

℘θ
t

)

and bt will

be obtained later in the proof.

Proof by induction: In Appendix A we prove that the value function in the final period is

given by

VN (℘N ) =
(

α̂N |N − α̂N−1|N

)′
AN

(

α̂N |N − α̂N−1|N

)

+ tr
[

AN Σ̂N |N

]

+ α̂′
N |NPN α̂N |N + tr

[

PN Σ̂N |N

]

+ tr
[

AN

(

Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1
′
)]

+ tr
[

P̃N+1Σ̂N |N

]

+ tr [AN+1QN ] , (17)

where tr represents the trace of the matrix. By comparing Eq.’s 16 and 17, we obtain our basis for

induction:

V θ
N

(

℘θ
N

)

= tr
[

AN

(

Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1
′
)]

+ tr
[

P̃N+1Σ̂N |N

]

, (18)

bN = tr [AN+1QN ] . (19)
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Assume the induction hypothesis that

Vt+1 (℘t+1) =
(

α̂t+1|t+1 − α̂t|t+1

)′
At+1

(

α̂t+1|t+1 − α̂t|t+1

)

+ tr
[

At+1Σ̂t+1|t+1

]

+ α̂′
t+1|t+1Pt+1α̂t+1|t+1 + tr

[

Pt+1Σ̂t+1|t+1

]

+ V θ
t+1

(

℘θ
t+1

)

+ bt+1. (20)

We show that Vt (℘t) follows the form given in Eq. 16 to complete the induction step.

From Eq. 12 we know the general form of value function is

Vt (℘t) = min
βt,θt+1

{

Lt(℘t, βt, θt+1) + E
zt+1

[Vt+1 (℘t+1)]

}

, (21)

in which the information state at time t + 1, ℘t+1, is a function of ℘t, βt, θt+1, and zt+1. The

expected instantaneous cost in period t, Lt(℘t, βt, θt+1), is given in Eq. 13. Application of Lemma

3 to the expectation in Eq. 13 results in

Lt(℘t, βt, θt+1) =
(

α̂t|t − α̂t−1|t

)′
At

(

α̂t|t − α̂t−1|t

)

+ tr
[

At

(

Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1
′
)]

+ β′
tBtβt + lt+1(θt+1). (22)

Replacing Lt(℘t, βt, θt+1) and Vt+1 (℘t+1) in Eq. 21 by the values given by Eq.’s 22 and 20 respec-

tively, yields

Vt (℘t) = min
βt,θt+1

{
(

α̂t|t − α̂t−1|t

)′
At

(

α̂t|t − α̂t−1|t

)

+ tr
[

At

(

Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1
′
)]

+ β′
tBtβt + lt+1(θt+1)

+ E
zt+1

[

(

α̂t+1|t+1 − α̂t|t+1

)′
At+1

(

α̂t+1|t+1 − α̂t|t+1

)

+ α̂′
t+1|t+1Pt+1α̂t+1|t+1

]

+ tr
[

At+1Σ̂t+1|t+1

]

+ tr
[

Pt+1Σ̂t+1|t+1

]

+ V θ
t+1

(

℘θ
t+1

)

+ bt+1}, (23)

Replacing E
zt+1

[

(

α̂t+1|t+1 − α̂t|t+1

)′
At+1

(

α̂t+1|t+1 − α̂t|t+1

)

]

and E
zt+1

[

α̂′
t+1|t+1Pt+1α̂t+1|t+1

]

using
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Lemmas 7 and 8 in Appendix B, respectively, yields

Vt (℘t) = min
βt,θt+1

{
(

α̂t|t − α̂t−1|t

)′
At

(

α̂t|t − α̂t−1|t

)

+ tr
[

At

(

Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1
′
)]

+ β′
tBtβt + lt+1(θt+1)

+
(

(Tt − I)α̂t|t + Gtβt

)′
At+1

(

(Tt − I)α̂t|t + Gtβt

)

+ tr
[

At+1

(

TtΣ̂t|tTt
′ + Qt − Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′ − Σ̂∗

t Σ̂t+1|t+1 + Σ̂t|t+1

)]

+ (Ttα̂t|t + Gtβt)
′Pt+1(Ttα̂t|t + Gtβt) + tr

[

Pt+1

(

TtΣ̂t|tTt
′ + Qt − Σ̂t+1|t+1

)]

+ tr
[

At+1Σ̂t+1|t+1

]

+ tr
[

Pt+1Σ̂t+1|t+1

]

+ V θ
t+1

(

℘θ
t+1

)

+ bt+1}. (24)

Canceling terms results in

Vt (℘t) = min
βt,θt+1

{
(

α̂t|t − α̂t−1|t

)′
At

(

α̂t|t − α̂t−1|t

)

+ tr
[

At

(

Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1
′
)]

+ β′
tBtβt + lt+1(θt+1)

+
(

(Tt − I)α̂t|t + Gtβt

)′
At+1

(

(Tt − I)α̂t|t + Gtβt

)

+ (Ttα̂t|t + Gtβt)
′Pt+1(Ttα̂t|t + Gtβt)

+ tr
[

(At+1 + Pt+1)
(

TtΣ̂t|tTt
′
)]

+ tr [(At+1 + Pt+1)Qt]

+ tr
[

At+1

(

Σ̂t|t+1 − Σ̂∗
t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(

℘θ
t+1

)

+ bt+1}. (25)

The terms in Eq. 25 can be separated into three types: (1) those terms whose values are known at

time t with information up to time t, (2) those that depend only on disease control action, βt, and

(3) those that depend only on test control action, θt+1. Hence, the minimization over βt and θt+1

can be separated as Vt (℘t) = V
(1)
t (℘t) + V

(2)
t (℘t) + V

(3)
t (℘t) in which

V
(1)
t (℘t) =

(

α̂t|t − α̂t−1|t

)′
At

(

α̂t|t − α̂t−1|t

)

+ tr
[

At

(

Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1
′
)]

+ α̂′
t|t

(

(Tt − I)′At+1(Tt − I) + Tt
′Pt+1Tt

)

α̂t|t, (26)

V
(2)
t (℘t) = min

βt

{

βt
′
(

Bt + Gt
′(At+1 + Pt+1)Gt

)

βt +
(

α̂t|t((Tt − I)′At+1 + Tt
′Pt+1)Gt

)

βt

+βt
′
(

Gt
′(At+1(Tt − I) + Pt+1Tt)α̂t|t

)}

, (27)

V
(3)
t (℘t) = tr

[

(At+1 + Pt+1)
(

TtΣ̂t|tTt
′
)]

+ tr [(At+1 + Pt+1) Qt] + bt+1

+ min
θt+1

{

lt+1(θt+1) + tr
[

At+1

(

Σ̂t|t+1 − Σ̂∗
t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(

℘θ
t+1

)}

.

(28)
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As before, the minimization over βt is denoted by J̃t, so

J̃t = min
βt

{β′
t

(

Bt + Gt
′(At+1 + Pt+1)Gt

)

βt +
(

α̂′
t|t

(

(Tt − I)′At+1 + Tt
′Pt+1

)

Gt

)

βt

+ βt
′
(

Gt
′ (At+1(Tt − I) + Pt+1Tt) α̂t|t

)

} (29)

The minimization over βt can be performed by completion of squares (similar to what is done in

Lemma 5 for the minimization over βN ) to yield Eq.’s 30 - 33. The optimal disease control at time

t is given by

β∗
t = −Utα̂t|t, (30)

in which the control law, Ut, is given by

Ut =
(

Bt + Gt
′(At+1 + Pt+1)Gt

)−1 (

Gt
′At+1(Tt − I) + Gt

′Pt+1Tt

)

. (31)

Moreover, the result of minimization over βt is given by

J̃t = −α̂′
t|tP̃t+1α̂t|t, (32)

in which

P̃t+1 =
(

(Tt − I)′At+1Gt + Tt
′Pt+1Gt

) (

Bt + Gt
′(At+1 + Pt+1)Gt

)−1 (

Gt
′Pt+1Tt + Gt

′At+1(Tt − I)
)

.

(33)

As seen in Eq. 30, the optimal disease control β∗
t is a linear function of the filtered state mean

α̂t|t. It is worth noting that this function (more precisely, the control law Ut) depends only on

parameters of the system dynamics and the objective function cost inputs. Hence, the control law

is data independent and can be calculated offline prior to solving the measurement and control

problems.

As seen in Eq.’s 4 through 11, the optimal state estimation is independent of the control law. We

also just showed that the optimal control law is independent of the state estimation. This completes

proof of Theorem 1. �
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Replacing the minimization over βt in Eq. 27 by its value given by Eq. 32 results in

Vt (℘t) =
(

α̂t|t − α̂t−1|t

)′
At

(

α̂t|t − α̂t−1|t

)

+ tr
[

At

(

Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1
′
)]

+ α̂′
t|t

(

(Tt − I)′At+1(Tt − I) + Tt
′Pt+1Tt − P̃t+1

)

α̂t|t + tr
[

(At+1 + Pt+1)
(

TtΣ̂t|tTt
′
)]

+ min
θt+1

{lt+1(θt+1) + tr
[

At+1

(

Σ̂t|t+1 − Σ̂∗
t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(

℘θ
t+1

)

}

+ tr [(At+1 + Pt+1)Qt] + bt+1. (34)

Letting

Pt = (Tt − I)′At+1(Tt − I) + Tt
′Pt+1Tt − P̃t+1, (35)

and replacing tr
[

(At+1 + Pt+1)
(

TtΣ̂t|tTt
′
)]

in Eq. 34 by its other form given by Lemma 9, Eq. 34

can be written as follows to match the form of value function we claimed in Eq. 16.

Vt (℘t) =
(

α̂t|t − α̂t−1|t

)′
At

(

α̂t|t − α̂t−1|t

)

+ tr
[

AtΣ̂t|t

]

+ α̂′
t|tPtα̂t|t + tr

[

PtΣ̂t|t

]

+ tr
[

At

(

Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1
′
)]

+ tr
[(

P̃t+1 + At+1Tt + Tt
′At+1 − I

)

Σ̂t|t

]

+ min
θt+1

{lt+1(θt+1) + tr
[

At+1

(

Σ̂t|t+1 − Σ̂∗
t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(

℘θ
t+1

)

}

+ tr [(At+1 + Pt+1)Qt] + bt+1. (36)

Now, by comparing Eq.’s 36 and 16, it can be easily seen that for t = 1, . . . , N − 1

V θ
t

(

℘θ
t

)

= tr
[

At

(

Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1
′
)]

+ tr
[(

P̃t+1 + At+1Tt + Tt
′At+1 − I

)

Σ̂t|t

]

+ min
θt+1

{lt+1(θt+1) + tr
[

At+1

(

Σ̂t|t+1 − Σ̂∗
t Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂

∗
t
′
)]

+ V θ
t+1

(

℘θ
t+1

)

}, (37)

and

bt = tr [(At+1 + Pt+1)Qt] + bt+1, (38)

while from Eq.’s 18 and 19 we know for t = N

V θ
N

(

℘θ
N

)

= tr
[

AN

(

Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1
′
)]

+ tr
[

P̃N+1Σ̂N |N

]

, (39)

and

bN = tr [AN+1QN ] . (40)

Hence, the proof of Theorem 3 (i.e., the value function we claimed in Eq. 16) is complete. �
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Note that the dynamic program defined by value function V θ
t

(

℘θ
t

)

for t = 1, . . . , N can be solved

to find the optimal monitoring schedule. We succinctly highlight the elements of this dynamic

program. The information state of the model (which can be thought as summarizing the sufficient

statistics) is ℘θ
t =

(

Σ̂t|t, Σ̂t−1|t

)

. The action space is θ ∈ Θ, where Θ is the set of all available tests

for the corresponding disease. Eq.’s 8, 9, and 11 state the system dynamics of the model, while Eq.

37 specifies the optimality equation (or Bellman equation). The boundary conditions are given in

Eq. 39. This completes the proof of Theorem 2. �

5 Case Study of Glaucoma

Thus far we have presented the modeling framework in its general form and derived the optimal

disease and test control actions. In this section, we provide a proof of concept by applying our

approach to glaucoma and demonstrating how it can help guide clinicians in tailoring disease

monitoring and treatment control.

Glaucoma is a major public health problem affecting almost 3 million patients in the United States

(Vajaranant et al. 2012) and over 60 million patients worldwide (Tham et al. 2014). Glaucoma is

the second leading cause of blindness in the US and a leading cause of visual impairment among

Americans (Stein et al. 2011). In this section, we show how the modeling framework and solution

approaches described in Sections 3 and 4 can be applied to help clinicians in caring for patients with

glaucoma. Furthermore, we elaborate on additional features of our approach designed specifically

for glaucoma. Numerical results presented in this section are based on data from patients with

glaucoma who were enrolled in two large clinical trials.

5.1 Glaucoma

Glaucoma is a progressive eye disease which can cause irreversible vision loss and blindness if

not adequately monitored and treated. From a societal perspective, the direct medical costs of

managing glaucoma are estimated to total over 2.86 billion USD annually (Rein et al. 2006). Fur-

thermore, on a per patient basis, costs more than quadruple when patients progress from early to

advanced glaucoma (Lee et al. 2006). Key risk factors associated with glaucoma development and

its progression include: non-white race, older age, elevated intraocular pressure (IOP), genetics,

and family history (Tielsch et al. 1990). It is worth noting that the patient’s IOP (i.e., the pres-

sure inside the eye) is the only known controllable/modifiable glaucoma risk factor. Therefore, the

current management of glaucoma focuses on lowering the eye pressure by establishing a “target

IOP,” which is the level of IOP that the clinician feels is low enough to slow disease progression

sufficiently (Jampel 1997).

Patients with glaucoma are monitored for disease progression using several quantitative tests. Two

primary methods to monitor a patient are: (1) tonometry (or measuring the IOP), and (2) perime-

try (or visual field (VF) testing). Tonometry measures the patient’s IOP, is relatively easy to
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perform, and is part of a standard eye examination. In most patients, vision loss from glaucoma

occurs because elevated IOP damages the optic nerve, the structure that carries visual informa-

tion to the brain for interpretation and processing (Sommer et al. 1991). Vision loss caused by

glaucoma cannot be reversed but treatment can help slow or halt future vision loss (Weinreb and

Khaw 2004). Lowering IOP has been shown to reduce the risk of disease progression and is the

primary treatment goal in glaucoma management (Maier et al. 2005, Hyman et al. 2010, Leske

et al. 2003). With glaucoma, patients often progressively lose peripheral vision and eventually

as the disease worsens, central vision. The VF test quantifiably measures the extent and rate of

peripheral vision loss by examining the sensitivity of the eye to light stimuli of varying intensities.

It is more time-consuming than checking IOP but provides important information on the status of

the disease. VF testing can be anxiety-inducing and challenging for patients as it requires patient

attention and cooperation. Two key global performance measures from VF testing include Mean

Deviation (MD) and Pattern Standard Deviation (PSD), which estimate the extent deviation of

peripheral vision from a reference population who do not have glaucoma (Choplin and Edwards

1995). MD is usually a negative number; higher values of MD (i.e., values closer to zero) correspond

to better vision quality (less vision loss). PSD is usually a positive number. MD, PSD, and IOP

are all measured on a continuous scale.

It is well established from prior work that both IOP and VF tests can be associated with noise. For

example, patient MD and PSD performance on an automated VF test can fluctuate considerably

from one test to the next (Choplin and Edwards 1995). Likewise, IOP can fluctuate from hour to

hour and day to day (Wilensky et al. 1993). To take such noise into consideration in deciding how

to monitor the patient optimally and determine an appropriate target IOP, we harness the Kalman

filter method (Kalman 1960) to remove noise from the raw measurements and provide a dynamic

model for the state over time.

There are a number of treatments available to lower the IOP for a patient with glaucoma. Different

eye drops, laser therapies, and incisional surgery can reduce the IOP to any number above 6 mmHg.

However, glaucoma medications can be expensive and can have serious side effects including sting-

ing, blurred vision, eye redness, itching, burning, low blood pressure, reduced pulse rate, fatigue,

shortness of breath, headache, and depression. Therefore, the goal is to find the optimal target

IOP for each patient, which corresponds to an IOP that is low enough to sufficiently slow disease

progression but not overly low so as to subject the patient to unnecessary treatments. The appro-

priate target IOP varies from one patient to another as some patients (eyes) experience progression

at a certain IOP level while others do not.

in current practice it is common to use fixed-interval monitoring regimes to test for disease pro-

gression. Furthermore, for each patient (eye), the eye care professional must regularly make a

gestalt-based estimate of a reasonable target IOP that considers the patient’s individual risk of

disease progression and the side effects and costs associated with lowering the IOP. Prior studies in
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Figure 2: Illustration of the decision support framework showing the model inputs and outputs as
well as the sequence of main steps of the disease monitoring and control algorithm.

glaucoma management have employed various machine learning algorithms to predict progression

of glaucoma progression (Yousefi et al. 2016, Goldbaum et al. 2012, Sharpsten et al. 2014, Bowd

et al. 2012, Yousefi et al. 2014). Simulation models of glaucoma progression have been developed to

evaluate the cost-effectiveness of frequent testing in patients with glaucoma (Boodhna and Crabb

2016) as well as to evaluate different treatment strategies (Van Gestel et al. 2010). However, to

the best of our knowledge, no optimization-based approach presently exists to jointly determine

how best to monitor a patient with glaucoma and how best to control the disease. Our approach

considers the history of the patient (prior test performances) and her unique disease dynamics to

provide clinicians with (1) a personalized monitoring regime to achieve an accurate assessment of

whether there is disease progression (exploration), and (2) in a menu format, how the glaucoma is

likely to progress for different target IOP levels; the doctor can leverage these to devise an indi-

vidualized treatment plan for the particular patient (exploitation). As a feature of our model, the

clinician is able to select the desired aggressiveness level to monitor and treat the patient based on

the unique characteristics/circumstances of the specific patient. We will elaborate on this menu of

options in Subsection 5.5.

Figure 2 depicts a high-level overview of our dynamic monitoring and control decision support

framework for patients with glaucoma. It serves as a schematic table of contents for what follows

in the remainder of this section. It shows how different parts of the modeling framework are linked

together and provides the corresponding subsection/equations for each part. At each office visit,

IOP and/or VF test(s) are performed. The raw measurements from these tests (which are known

to be noisy) are fed into a Kalman filter to obtain an optimal estimation of the current disease state

for a particular eye. Then, the estimate of the previous state is refined via a Kalman smoother

given the new information acquired during the visit. Each patient’s label/type (fast-, slow-, or

non-progressor) determines the estimate of how quickly the patient’s glaucoma is likely to progress

in the future. The decision support tool provides an optimal monitoring schedule (i.e., the timing of

the next exam/test and which tests the patient should take) and a personalized target IOP for the

patient for different aggressiveness levels/options (super-high, high, moderate, low, or super-low).

Finally, the clinician chooses an aggressiveness option from the menu of choices that is appropriate

for the individual patient.

5.2 Patient Disease State

We use a nine-dimensional state vector, αt, to model the patient’s disease state. The elements

of the state vector include MD, PSD, and IOP together with their discrete time first and second
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derivatives (i.e., velocity and acceleration, respectively);

αt =
[

MD MD′ MD′′ PSD PSD′ PSD′′ IOP IOP ′ IOP ′′
]′

. (41)

The non-linear behavior of disease dynamics is captured by including the velocity and acceleration

of key disease state elements in the state vector. This is known to be an effective way to linearize

a nonlinear model of state evolution (see Bertsekas 1995). MD′, PSD′, and IOP ′ are the slope

of a linear regression of the latest three MD, PSD, and IOP measurements, respectively. MD′′,

PSD′′, and IOP ′′ are the difference of the latest two MD′, PSD′, and IOP ′ values divided by the

time interval between them. It is worth noting that, in the application of our modeling framework

to glaucoma, the disease control action (i.e., βt in Eq. 1), is defined as the amount in mmHg to

reduce the patient’s IOP at time t. This value is determined by the optimization model, not by

the user/clinician.

5.3 Data

To parameterize and validate our model, we use data from two multi-center randomized clinical

trials, the Collaborative Initial Glaucoma Treatment Study (CIGTS) (Musch et al. 1999) and the

Advanced Glaucoma Intervention Study (AGIS) (Ederer et al. 1994). These datasets are chosen

because they include structured tonometry and perimetry data (IOP and VF readings) of glaucoma

patients taken every six months during the course of the trials. We match the time step of our

LQG model with these datasets to avoid the need for data interpolation (i.e., there is a 6-month

time interval between periods t and t + 1 in our model).

CIGTS studied newly-diagnosed glaucoma patients with mild to moderate disease who were ran-

domized to medical or surgical therapy and were followed for up to 11 years with IOP and VF tests

taken every six months to assess disease progression. In AGIS, patients with advanced glaucoma

were randomized to laser therapy or incisional surgery and followed for up to 11 years with IOP

and VF readings taken every six months.

For the purpose of this case study, we excluded patients from these trials with fewer than five

readings. We also restricted our focus to the patients who received either medical or laser therapy.

We excluded glaucoma patients who received incisional surgical interventions because incisional

surgery can abruptly change disease progression dynamics in a manner that may be challenging to

accurately model. We randomly divided all eligible participants from the trials (571 participants)

into two sets of equal size: (1) a training set, and (2) a testing set. Both sets have approximately

the same number of mild, moderate, and advanced glaucoma patients, with similar numbers of

white and black patients, and equal numbers of patients contributing data from each trial. The

training set is used for parametrization and calibration of our state space model and the testing

set is used to evaluate the performance of our approach.
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5.4 Patient Types (Fast/Slow/Non-progressor)

A fast-progressing patient is someone whose glaucoma is worsening rapidly and is part of the

subset of patients at greatest risk of blindness. Although there is presently no gold standard for

defining glaucoma fast-progressors, prior literature considers a loss of MD greater than 1 dB per

year as a reasonable identifying feature of patients who are exhibiting fast-progression of glaucoma

(see Heijl et al. 2013, Gardiner and Crabb 2002). We built our algorithms based on this definition of

fast-progressors. To classify each patient, we calculated the slope obtained from a linear regression

of their entire set of MD readings and labeled them as a:

• fast-progressor if the MD slope is declining by ≥ 1 dB/year,

• slow-progressor if the MD slope is declining between 0 and 1 dB/year, and

• non-progressor if the MD slope is not declining.

5.5 Aggressiveness Levels/Policies/Options/Regimes

In clinical practice, the goals of care must be tailored to each individual patient’s needs. Rather

than proposing one solution for all patients, a more powerful and useful approach is to provide the

clinician with a range of options for how much effort (both from provider and the patient) will be

put into monitoring and how aggressively IOP should be lowered such that future progression can

be slowed. For instance, clinicians will likely see the need to monitor and treat a young patient

who only has sight in one eye more aggressively than an older patient with mild glaucoma in one

eye and no glaucoma in the other eye. All else being equal, less aggressiveness may be appropriate

for a patient with multiple systemic medical comorbidities who is likely to die before they go blind

from glaucoma. As a useful and not overly complex approach, our clinical collaborator suggested

creating optimization models tailored to three regimes, or “options,” for monitoring and treatment

to facilitate adoption of this system into clinical practice. We refer to these three options as low,

moderate, and high levels of aggressiveness to represent the level of intensity in care and monitoring.

We also define two extreme levels of aggressiveness: super-high and super-low. Note that we choose

these terms only for convenience in presenting the five options and to make it easier for the reader

to remember the order of them in terms of how aggressively they test and treat patients; they are

not meant to correspond to any existing terms or approaches currently used in clinical practice.

These five options are useful not only for sensitivity analysis but also suggest an effective way to

implement a decision support system so that clinicians can pursue monitoring and treatment with

the level of intensity that they, together with the patient, determine to be the most appropriate for

each individual. Appendix C provides insight into selecting an appropriate aggressiveness option.

It is important to differentiate between the aggressiveness level and the optimal control (target IOP

and monitoring schedule). In the treatment planning cycle, an aggressiveness level is chosen by the

clinician based on the tradeoff between the costs of treatment (e.g., side-effects and financial costs)
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and the benefits for the patient being treated (e.g., preventing future vision loss from glaucoma).

This provides an aggressiveness regime under which each patient’s monitoring and treatment plans

can be optimized individually with respect to their particular disease trajectory and history of

readings. Thus, the optimal control is personalized in terms of monitoring and treatment decisions

driven by their personal data and governed by the model for the particular aggressiveness regime

selected. Note that the regime itself does not predetermine the monitoring and treatment plans

for the individual. For the same aggressiveness regime, two individuals will have different histories

of test results and, therefore, potentially different optimal decisions of when to take the next test

and which tests to take as well as different target IOPs over time. Different aggressiveness levels

translate into different cost matrices A, B, and lt(θt) in our objective function. Essentially, the more

aggressive the policy the larger the cost of disease progression (A), which subsequently encourages

the optimization problem to suggest a larger reduction in IOP (i.e., larger β∗
t ) and more frequent

testing. In summary, the aggressiveness level is chosen by the clinician in consultation with the

patient based on treatment goals, which then sets the cost parameters of the model, whereas the

actual target IOP and monitoring schedule are chosen by the optimization model unique to the

patient’s quantitative disease measurements over time.

The five aggressiveness levels/options follow:

1. Super-high aggressiveness option, which drops the IOP immediately to 6 mmHg (an ideal

level of IOP for patients with any severity of glaucoma, but one that may be impractical for

many patients due to limitations with the effectiveness of existing interventions, side effects,

and/or complications associated with attaining such a low IOP),

2. High aggressiveness option, which tends to lower the IOP by 40% to 60% compared to the

patient’s treated level of IOP that was achieved in the CIGTS/AGIS clinical trials after the

initial intervention was given,

3. Moderate aggressiveness option, which tends to lower the IOP by 20% to 40% compared to

the patient’s treated level of IOP that was achieved in the CIGTS/AGIS clinical trials after

the initial intervention was given,

4. Low aggressiveness option, which corresponds to the IOP achieved under no additional inter-

ventions beyond those employed in the CIGTS/AGIS trials, and

5. Super-low aggressiveness option, which attempts to estimate progression of an untreated pa-

tient with glaucoma by removing the effect of existing interventions that were employed in

CIGTS/AGIS on the patient’s IOP.

It should be noted that the exact amount of IOP control suggested by high, moderate, and low

aggressiveness policies is patient-specific and is optimized to yield the minimum total cost as defined

by the objective function. In contrast, the super-high and super-low aggressiveness policies are
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static policies that do not take the objective function into account. They are mainly added for

purposes of analysis and comparison, but they can still provide valuable insight in a clinical setting

by presenting the clinician the “best” and “worst” case options and their forecasted impact on

disease progression dynamics. These five options/levels also provide sensitivity analysis on the

model cost parameters.

5.6 System Model Parameterization

The Expectation Maximization (EM) algorithm was employed to parameterize the state space

model. EM is an iterative algorithm for finding the maximum likelihood estimate of model param-

eters in the presence of missing or unobserved data. The EM algorithm alternates between the

expectation step (E-step) and the maximization step (M-step). In the E-step, raw, noisy readings

are filtered and missing data is estimated based on the observed data and the most recent estimate

of system parameters. In the M-step, the log-likelihood function of all data points is maximized as-

suming the missing data is given by the estimates from the E-step. For more information about the

EM algorithm, please see Dempster et al. (1977), Digalakis et al. (1993), Ghahramani and Hinton

(1996). While the model was presented in its general setting in Section 3, for the purpose of this

case study we assume the model parameters are time-invariant. The output of the EM algorithm is

the best estimate of system matrices Tt = T , Qt = Q, Zt = Z, H
(θt)
t = H(θt) for t = 1, . . . , N , and

initial state mean and covariance, α̂0 and Σ̂0 (see Subsections 3.1 and 3.2 for the definition of these

parameters). We assume At = A, Bt = B, and lt(θt) = l(θt) are time-invariant. We further assume

that Gt = G =
[

0 0 0 0 0 0 1 0 0
]′

T for t = 1, . . . , N , because the control variable βt

is designed to control the patient’s IOP only, which is the only controllable glaucoma risk factor.

Furthermore, it is known that an intervention started or employed at time t has instantaneous effect

on lowering the patient’s IOP. For example, if patient’s IOP is 20 mmHg at time period 7 and the

control β∗
7 = −3 mmHg, the expected value of IOP right after time period 7 is 17 mmHg. This

IOP reduction affects other state elements and progression dynamics in the following time period

through the transition equation. Also, note that, in our case study of glaucoma, T , Q, Z, H(θt),

A, and ˆ∑
0 are 9 × 9 matrices, G and α̂0 are 9 × 1 vectors, and βt, B, and l(θt) are scalars. None

of the square matrices are assumed to be diagonal. This is important because, for example, the

components of T represent how each component in the current state affects the future states. A

non-diagonal component would represent the fact that a higher IOP will affect the change in MD in

the next period. Hence, the current disease state (including the position, velocity, and acceleration

of key glaucoma variables) directly affects disease progression.

We use the EM algorithm to obtain four sets of system parameters. These sets of parameters are

obtained from (1) all patients in the training set, (2) only fast-progressors, (3) only slow-progressors,

and (4) only non-progressors, to enable stratified analyses, such as in Figure 4.

The model cost parameters were estimated based on input from our glaucoma specialist collab-

orator so that the model outputs are reasonable from a clinical perspective. Note that it is the
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relative costs (rather than each absolute cost) that plays a key role in our analysis. It is beyond our

scope to obtain definitive cost parameters; however, significant sensitivity analysis was performed

around those estimates to understand the model’s behavior better and to ensure that the model, in

its entirety, provides credible decision support. In order to construct reasonable tradeoffs between

cost parameters for each aggressiveness option in our model, we employed a human-in-the-loop

methodology. We tested several parameter sets, showed the resulting optimal IOP controls and

monitoring policies to our glaucoma specialist collaborator, and the clinician helped us fine-tune

and calibrate cost parameters. We confirmed with our glaucoma specialist collaborator that the

model generates clinically reasonable target IOPs and monitoring schedules for each patient under

the desired aggressiveness level. For instance, under the high aggressiveness option, the model for

fast-progressing patients (i.e., the most aggressive combination) should suggest taking both IOP

and VF tests every six months and a target IOP of around 6 to 9 mmHg. Under the low aggressive-

ness option, the model for non-progressing patients (i.e., the least aggressive combination) should

suggest no further IOP reduction and taking IOP and VF tests every two years. This is in line with

recommendations put forth by the American Academy of Ophthalmology Clinical Practice Guide-

lines (2010). For all other combinations of aggressiveness level and patient severity type, the model

cost parameters were fine-tuned so it suggests a monitoring regime and target IOP level that are

reasonable according to expert clinical opinion and are in between the two extreme combinations.

The behavior of optimal policies is discussed more thoroughly in Section 5.8.2.

5.7 Model Usage for a Glaucoma Patient

For a patient who is newly diagnosed with glaucoma with no prior history of IOP and VF

readings, both tests are taken in every period (i.e., every six months) for the first five periods.

Gardiner and Crabb (2002) found that five initial VF test results are a reasonable predictor of

future glaucoma progression dynamics in most patients. We used five initial VF and IOP readings

to (1) obtain baseline values for key disease state elements (i.e., MD, PSD, and IOP), (2) calculate

the velocities and accelerations of key state elements, (3) warmup the Kalman filter and smoother,

(4) reduce the initial uncertainty surrounding a given patient’s disease state, (5) calculate the initial

5-period rate/slope of MD progression to label the patient as a fast-, slow-, or non-progressor, and

(6) differentiate the patient from the population mean and tailor the disease transition model to

the specific patient.

The system parameters obtained from all training patients are used in the Kalman filter and

the Kalman smoother during the warmup period. At the end of the warmup period (i.e., after

five readings), the patient is labeled as a fast-progressor, a slow-progressor, or a non-progressor

based on her MD progression rate. Thereafter, the Kalman filter and smoother with type-specific

system parameters (i.e., fast, slow, or non-progressor set of parameters) are used. Each time a

subsequent test is taken, the MD progression slope is recalculated. We always consider the latest

five filtered MD values to update the MD slope (i.e., a sliding window of length 5). Whenever the
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Figure 3: Glaucoma monitoring and treatment control flow diagram.

patient’s latest MD slope indicates a label upgrade (i.e., the patient moves from non-progressor to

slow/fast-progressor, or from slow-progressor to fast-progressor), the model (1) calls for a follow-up

visit to take IOP and VF testing in the following time period, and (2) labels the patient as a

suspect of the higher label/category (e.g., slow-progressor suspect or fast-progressor suspect). If

the label change is confirmed at the next follow-up visit, the higher label is assigned to the patient.

Otherwise, the patient is returned to the previous lower label status. Note that our analyses

take a conservative approach and do not allow any label downgrading (on the recommendation of

our glaucoma specialist collaborator). Once the label is upgraded for a patient, the model will

recommend applying more IOP control (i.e., greater intensity of interventions) to slow glaucoma

progression. Therefore, it can be expected that the MD will tend to decline less rapidly once the

amount of IOP control is increased, resulting in a lower classification/label at some point. However,

if we were to downgrade the patient’s label and let the model decrease the amount of IOP control,

the patient would be at risk to start losing vision at the same rate as earlier in the disease course,

which is not desirable. Therefore, we do not allow label downgrading for any patient once the

label upgrade is confirmed. If a patient suspected of belonging to a higher category does not get a

confirmatory result at the very next follow-up visit, then, the patient remains at the original/lower

label he/she was previously at. The glaucoma monitoring and treatment control algorithm steps

are illustrated in Figure 3.

5.8 Numerical Results

In this subsection, we test the performance of our dynamic disease monitoring and control

algorithm on glaucoma patients from the CIGTS and AGIS clinical trials. We first validate our

prediction model on the testing dataset, using the training dataset for parameterization. Then, we

provide numerical results and examples on how the optimal policies behave. Lastly, we provide

further results of the impact of optimal policies on patients with glaucoma.

5.8.1 Validation:

We first validate that the model is good at forecasting future disease progression trajectory and

then validate that the results are consistent with clinical expectations. Our modeling approach

efficiently captures the system and measurement noises using a set of stochastic first-order vector

difference equations. To evaluate the performance of our prediction model, calibrated using the EM

algorithm on the entire training set, we used the first five data points of each patient in the testing

dataset to warm up the Kalman filter and determine the patient type. Then, we predicted MD

values for five periods into the future for each patient type (fast-progressor, slow-progressor, and

non-progressor) and calculated the prediction error (i.e., the predicted state mean minus the actual
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Figure 4: Interval plot of mean MD prediction error for different prediction lengths. The dots
correspond to mean error, and the bars represent 95% confidence interval for the mean.

reading as obtained from the patients during their follow-up in the trial). The predicted state mean

was calculated using Kalman filter with βt = 0 ∀t (i.e., no additional IOP reduction beyond that

in the clinical trial). Figure 4 shows the mean MD prediction error for up to five 6-month periods

(2.5 years) into the future. The dots correspond to the mean error, and the bars represent the 95%

confidence interval for the mean. These interval plots confirm that our prediction model has very

little error in predicting the glaucoma state progression. One also sees that the fast-progressors (as

defined in Subsection 5.4) vary the most in the datasets, and this is reflected in greater uncertainty

and error. 25 rounds of cross-validation were performed to confirm the robustness of our Kalman

filter model to patient data. Here we present the results of one of the cross-validation rounds for

MD, as it is the most clinically useful state variable. Similar results were obtained for other state

elements (PSD and IOP).

5.8.2 Evaluation of the Optimal Policies:

Having confirmed that the model accurately forecasts future MD values, we next test that the

output provides clinically reasonable results as confirmed by our clinical collaborator. The struc-

ture of optimal IOP control generated by our model under the moderate or high aggressiveness

policy is key to identifying the target IOP for each patient. We applied the high and moderate

aggressiveness policies to all fast- and slow-progressing patients in the testing dataset to achieve

a statistical characterization of how each policy behaves. For each group and each aggressiveness

policy, we used the first five data points to warmup our model. We then recorded the amount

of optimal IOP control suggested by our model in the next 20 time periods (i.e., the following

10 years). Figure 5 depicts the results over all the patients in the testing dataset as box plots of

optimal additional IOP control (β∗
t ) applied in the current (i.e., period 0) and the following time

periods. An IOP control of −x mmHg corresponds to lowering the patient’s IOP by x mmHg more

than what was achieved in AGIS/CIGTS. The bottom and top of each box are the first and third

quartiles, respectively. The lower and upper whiskers extend to the minimum and maximum data

points within 1.5 box heights from the bottom and top of the box, respectively. In our model, the

optimization problem finds the optimal value for beta in each period (i.e., how much to reduce

IOP in each time period). As seen in Figure 5, our feedback-driven model recommends further

lowering the IOP within the first few time periods. Afterwards, the optimal additional IOP control

is close to zero. This results in the patient’s IOP converging to “a number” over time. We call

this number the “target IOP,” the common term used in the glaucoma medical community. As one

would expect, the group of non-progressing patients do not get any additional benefit from further

lowering their IOP since they exhibit no signs of progression at the IOP levels they maintain from
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Figure 5: Optimal IOP controls suggested by our model for fast and slow-progressing patients under
the high and moderate aggressiveness policies over 10 years. Period 0 is the current time
period (i.e., the period at which the IOP control starts).

Table 2: Comparison of the effect of different aggressiveness options on patient’s IOP for fast and
slow-progressing patients in CIGTS and AGIS. Target IOP: IOP value in period 25 (i.e., 10
years into the future. Cumulative/Additional IOP control applied over 10 years:

∑24
t=5 βt.

% of IOP change after 10 years: 100 ∗ (Target IOP − Baseline IOP) / (Baseline IOP).

the treatments already employed in the trials. Therefore, they are not included in the graph.

We applied the five aggressiveness options to fast- and slow-progressing patients in the test dataset

and obtained the following IOP-related metrics for each combination of patient type and aggres-

siveness policy: (1) target IOP [mmHg], (2) additional IOP control [mmHg] applied in 10 years

(representing the amount/intensity of treatment), and (3) percentage of IOP change after 10 years.

For each metric, we report the median and interquartile range (IQR), which are robust measures of

location and scale, respectively. The IQR is the difference between the upper and lower quartiles

and provides a range that contains 50% of the data. As seen in Figure 5, the optimal additional

IOP reduction is almost entirely applied during the first 6 periods (3 years) of employing the control

policy. Hence, we evaluate the patient’s IOP after 10 years, which is a sufficient length of time for

the IOP to become stable under treatment. We tested our IOP control model with longer time

horizons and obtained similar results.

Table 2 summarizes the IOP-related results. For instance, applying the high aggressiveness policy

to fast-progressors results in a median target IOP of 7.17 mmHg. This can be achieved by admin-

istering a median additional 9.36 mmHg IOP reduction from the baseline level of IOP attained in

the trials. Such a target IOP is, on average, 55.24% lower than the baseline IOP (the IOP at the

beginning of the 10-year prediction period) of fast-progressing patients in the trials. Since target

IOP is an important metric that helps guide the clinician in selecting the appropriate treatment

plan for the patient, the distribution of target IOPs is also given in Figure S1 in Appendix D.

Table 3 summarizes the optimal monitoring regime for different combinations of patient type

and aggressiveness level. For example, under the moderate aggressiveness level, the model for slow-

progressing patients recommends measuring IOP every 6 months and checking the visual field every

12 months. It is worth noting that these protocols remain optimal as long as (1) the patient follows

the monitoring schedule (i.e., does not miss a test), (2) the patient type/label remains unchanged,

and (3) the doctor does not change the aggressiveness level. If any of the three criteria are not met,

the model modifies the monitoring schedule to account for the missing information or the change in

patient label/aggressiveness level. The monitoring regimes presented in Table 3 and the range and

mean of target IOPs presented in Figure S1 are clinically appropriate in the professional opinion
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Table 3: Optimal monitoring regime for different combinations of patient type and aggressiveness
level.

of our glaucoma specialist collaborator. Appendix E estimates costs of the optimal monitoring

policies.

5.8.3 Menu of Options:

Now that we have validated our model and elaborated on the structure of the optimal policies,

we provide an example of how our decision support tool can help guide clinicians in managing a

patient with glaucoma. Figure 6 depicts the glaucoma progression trajectory (change in MD over

time) for a randomly chosen fast-progressing patient from the AGIS trial. The figure depicts a

sample output of the decision support tool (in regards to disease control) that compares how this

patient is likely to progress over the following 10 periods (five years) under different aggressiveness

options defined in Subsection 5.5. As demonstrated in Figure 6, the patient progresses much slower

and would have better MD values (i.e., vision quality) five years into the future as the aggressiveness

of IOP control is increased. The figure provides a menu of options related to how aggressively the

doctor wants to treat the patient, depicts the future disease progression trajectory, and provides

the optimal target IOP and monitoring schedule for each aggressiveness option. The doctor is then

able to select the right aggressiveness option based on evolving needs of the patient, adherence,

health status, and other personal or clinical factors.

Figure 6: An example of the trajectory of glaucomatous progression as captured by changes to
MD over time by employing each of the five different aggressiveness policies for a sample
fast-progressing patient from the AGIS study. (Note: higher MD correlates with better
vision quality.)

5.8.4 Insights into Treatment Effectiveness by Patient Type:

Figure 7 graphs the average MD loss per year against the total IOP reduction applied under

different aggressiveness policies for all fast- and slow-progressing patients in the testing set of

CIGTS and AGIS trials. This graph provides three important insights for managing patients

with glaucoma: (1) The curve for fast-progressors has a steeper slope, which indicates that this

group of glaucoma patients benefits the most from further lowering of IOP from levels attained

in CIGTS/AGIS. (2) It can be deduced from Figure 7 that the low aggressiveness policy (point

B), which, roughly corresponds to treatment using eye drops or laser therapy, works well enough

for most slow-progressors since the curve is fairly flat around point B on the slow-progressors

curve. In other words, increasing the aggressiveness level from low to moderate/high has only a

minimal advantage at preserving sight for this group of patients. This highlights the importance

of differentiating patients by progression type. Treating all patients similarly risks over-treating
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Figure 7: Average MD loss per year can be reduced by applying more IOP control. Fast-progressors
get more benefit from lowering their eye pressure.

for little gain for some patients or irreversible vision loss from disease progression due to under-

treating others. It can also be seen that slow-progressors gain long-term benefits if treated under

the super-high aggressiveness policy (point E), which often requires incisional surgery. Therefore,

for slow-progressing patients, the doctor may choose either the low or super-high aggressiveness

policy, depending on the individual’s life expectancy, severity of glaucoma, other personal and

medical factors, and the patient’s preferences. (3) The steep slope of the fast-progressors’ curve

around point B indicates that vision loss could be significantly averted (even in the short-term) by

further reduction of their IOP. Hence, moderate, high, or super-high aggressiveness policies (points

C, D, and E on the graph, respectively) may be more suitable for most fast-progressing glaucoma

patients and these patients often require incisional surgery.

The same result is also verified by plotting the MD loss averted over 10 years by following the

IOP controls suggested by our model as shown in Figure S2 in Appendix D. Moreover, Table S1

in Appendix D provides a comparison of the performance of different IOP control options against

the low aggressiveness option for patients in our testing dataset.

5.8.5 Sample Application of the Model in Practice:

In this subsection, we provide an illustration of how our modeling framework may be used to

guide monitoring and control of a patient with glaucoma. Figure 8 portrays the disease trajectory of

a sample patient. After the warmup period (i.e., the first 5 periods) the patient is initially identified

as a non-progressor. In our example, the clinician chooses the low aggressiveness option to monitor

and control the patient. Subsequently, the model suggests taking an IOP reading every year and

a VF test every other year. We assume the clinician and the patient follow this protocol. The

patient remains a non-progressor up to period 13, when she becomes classified as a slow-progressor

suspect. This slow-progressor status is confirmed after obtaining IOP and VF testing at a follow-

up visit in time period 14. When the patient becomes a confirmed slow-progressor, for the sake

of this example, assume the doctor decides to increases the aggressiveness level to the moderate

aggressiveness policy. Under this policy, the model recommends (1) lowering the IOP from 24 to

about 21 mmHg, (2) measuring the IOP every six months, and (3) taking a VF test every year.

After 1.5 years (i.e., at time period 17) the doctor and patient decide to increase the aggressiveness

level further and continue care under the high aggressiveness policy. This policy suggests taking

both IOP and VF tests every six months and recommends additional IOP reduction. Figure 8

also illustrates how the patient’s glaucoma would likely progress after period 14 if the doctor and

patient had maintained the low aggressiveness IOP control policy during periods 5-14.

While this example relates to managing a single patient, a few aspects should be highlighted. (1) As
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Figure 8: A non-progressing patient becomes a slow-progressor. The clinician tailors care by in-
creasing the aggressiveness level. The first 5 periods are warmup time. From period 5 to
13, the patient is a non-progrssor, and the doctor selects the low aggressiveness policy.
In period 13, the patient becomes a slow-progressor suspect, and this label upgrade is
confirmed in period 14. The doctor treats the patient under moderate aggressiveness
policy from period 14 to 17. In period 17, the doctor increases the aggressiveness policy
to high in order to slow the progresson rate further. Periods 14-25 show forecasted values.

described in Subsection 5.7, glaucoma patients do not always maintain the same progression rate

over time. Recall that each time a test is taken, the model updates the MD slope estimate; hence, it

is possible that a patient moves from non-progressor status to slow- or fast-progressor, or from slow-

progressor to fast-progressor status. (2) As described in Subsection 5.8.2, whenever the patient’s

label is changed or the clinician decides to change the aggressiveness level, the model modifies the

monitoring regime subsequently. (3) As described in Subsection 5.8.4, there is little gain (in terms

of preventing vision loss) in increasing the aggressiveness level from low to high for slow-progressing

patients. Note the big gap in the optimal IOP under the low and high aggressiveness policies at

time period 25 in Figure 8. However, this gap results in a very small difference in the patient’s MD

values. Benefiting from this type of insight in a busy clinic can significantly enhance the ability of

ophthalmologists and optometrists to take care of patients with glaucoma appropriately.

6 Model Limitations and Future Work

While our modeling framework has shown great potential in improving the monitoring and

control of patients with glaucoma, it comes with a few limitations and areas for improvement.

First, we only considered the IOP and VF tests in developing a monitoring schedule for the patient,

whereas there are additional tests that can also be used to monitor glaucomatous progression in

practice. For instance, in well-equipped clinics, optical coherence tomography (OCT) is a non-

invasive imaging test that measures the thickness of retinal nerve fiber layer (RNFL) (see Schuman

et al. 2004). This newer testing modality was not commercially available at the time of the CIGTS

and AGIS clinical trials on which our analysis is based. Fortunately, the decision framework we

have developed is scalable and can easily accommodate quantitative measurements of tests such as

OCT. Should newer modalities for quantitatively assessing the status of a patient’s glaucoma arise,

measurements from such modalities can be incorporated into the model as well. In the future, we

hope to acquire access to other data sources which contain OCT data and expand our state vector

to accommodate data from this testing modality.

Second, we used 6-month spaced time intervals because CIGTS and AGIS datasets contain readings

of patient’s IOP and VF every six months. One can leverage the same modeling framework for

data that is collected more or less frequently (e.g., monthly or every 3 months) without loss of
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generality. However, expanding our algorithm to handle unequally spaced data automatically is

another potential path for future research.

Third, it is the case that our current approach uses one system dynamics model for each of the

three distinct patient types (i.e., fast-, slow-, and non-progressors). In other words, the dynamics

that govern state transition are not patient specific and are not dynamically updated with each new

measurement of MD, PSD, and IOP. It is beyond the current state of the art to integrate Kalman

filtering models with models of uncertain dynamic changes in patient type in an optimal manner.

Fourth, our state transition models are not designed to prevent any improvement in disease state

completely; in fact, there is a non-zero probability that MD may increase due to the Gaussian

noise assumption (noise can take positive and negative values). In our model, the state is just

an estimate of the patient’s true state, so the state estimate may increase or decrease (due to

measurement noise) even while the true state of the disease is continuously declining. Nevertheless,

our models still perform well in describing an irreversible disease such as glaucoma. This is in part

because measurement noise indicates that the previous state may have been mis-measured. Thus,

occasional improvement of state is expected to be observed in the short term, but in our model

every patient will exhibit a nonincreasing trend in the long term.

Finally, future research can focus on further studying the model cost parameters. In this research,

we relied on expert opinion and developed a set of cost parameters for each aggressiveness policy

that performed well on our extant data. Future research, however, can try to develop algorithms to

optimize the balance between the cost of losing vision over time from glaucoma, cost of purchasing

medications/undergoing surgery, cost of office visit and diagnostic testing, anxiety and stress of

undergoing glaucoma tests, and side effects and complications of medical and surgical therapy to

lower IOP further. Also, notice that we only considered fixed cost parameters in this paper (i.e., the

effect and cost of the control is independent of the current state variable). While the difficulty/cost

of modifying a risk factor may vary based on the current level of the factor, we believe our state-

invariant cost assumptions to be a valid approximation of the true costs. This is confirmed by the

fact that applying the model to clinical trial patients creates control policies that are considered well

within the realm of practical treatment schemes by our glaucoma specialist co-author. Tractable

methods that include state-dependent cost matrices would be a welcome extension of the model.

7 Conclusions

In this paper we developed a dynamic personalized modeling paradigm for simultaneous mon-

itoring and control of irreversible chronic diseases (e.g., glaucoma). Our model incorporates each

patient’s past and present readings in a feedback-driven control model to provide the jointly opti-

mal solution to two critical questions facing clinicians: (1) when to schedule office visits and which

suite of tests to perform to monitor for disease progression (exploration); and (2) what levels of

controllable disease risk factors should be targeted to slow the rate of disease progression (exploita-

33This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



tion).

Kalman filtering methodology is built into our modeling framework to extract noise from the raw

measurements and to estimate the disease state in each time period optimally based on imper-

fect observations. This is key to accurately identifying genuine disease progression from testing

artifacts. We developed a multivariate continuous state space model of disease progression and

model the state transition and the testing processes as first-order vector difference equations with

multivariate Gaussian random noises. For the new objective of minimizing the relative change in

state (i.e., disease progression), which is imperative for managing irreversible chronic diseases, we

proved the two-way separation of optimal estimation and control. This is a fundamental finding

upon which solution tractability depends.

To demonstrate the effectiveness of our approach, we harnessed data from two landmark glaucoma

randomized clinical trials to parametrize and validate our model. We showed that our Kalman

filter-based model has low error in predicting the future disease progression trajectory. Further,

we designed our decision support tool to provide a menu of options for the clinician based on how

aggressively the doctor wants to manage the patient’s disease. For each aggressiveness option, the

model provides for each glaucoma patient (1) future disease progression trajectory, (2) optimal

monitoring schedule, and (3) optimal target IOP. The doctor has the choice to select an appro-

priate aggressiveness level depending on the patient’s life expectancy, severity of glaucoma, and

other personal and clinical factors. Our decision support tool can, however, provide insight into

such a selection as discussed in Appendix C. Our numerical results demonstrated that following

the recommendations of our model not only results in patients with better vision quality over the

treatment horizon but also achieves significantly slower glaucoma progression rate, which means

patients will keep their sight longer.
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Appendix A Optimization of the Final Period Disease Control

Action

The value function in the last period is given by

VN (℘N ) = min
βN

{E
[
(αN − αN−1)

′AN (αN − αN−1)
]
+ βN

′BNβN

+ E
[
(αN+1 − αN )

′AN+1 (αN+1 − αN )
]
}. (42)

Replacing E
[
(αN − αN−1)

′AN (αN − αN−1)
]
and E

[
(αN+1 − αN )

′AN+1 (αN+1 − αN )
]
by their

values given by Lemmas 3 and 4 in Appendix B respectively, and combining terms results in

VN (℘N ) =
(
α̂N |N − α̂N−1|N

)′
AN

(
α̂N |N − α̂N−1|N

)
+ α̂′

N |N

(
(TN − I)′AN+1(TN − I)

)
α̂N |N

+ tr
[
AN

(
Σ̂N |N + Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′ +QN

)]

+min
βN

{βN
′(GN

′AN+1GN +BN )βN + βN
′(GN

′AN+1(TN − I)α̂N |N )

+ (α̂′
N |N (TN − I)′AN+1GN )βN}, (43)

where tr represents the trace of the matrix. Let the minimization term in Eq. 43 be denoted by

J̃N . That is, let

J̃N = min
βN

{βN
′(GN

′AN+1GN +BN )βN + βN
′(GN

′AN+1(TN − I)α̂N |N )

+ (α̂′
N |N (TN − I)′AN+1GN )βN}. (44)

This minimization can be performed by completion of squares as described in Lemma 5 in Appendix

B. Eq.’s 45 - 48 give the optimum disease control β∗N and the result of minimization J̃N . The

optimum disease control at time N is given by

β∗N = −UN α̂N |N , (45)

where the control law of last time period, UN , is given by

UN =
(
GN

′AN+1GN +BN
)−1

GN
′AN+1(TN − I), (46)

and the result of minimization over βN is given by

J̃N = −α̂′
N |N P̃N+1α̂N |N , (47)
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where

P̃N+1 = (TN − I)′AN+1GN (G
′
NAN+1GN +BN )

−1G′
NAN+1(TN − I). (48)

Substitution of Eq. 47 into Eq. 43 yields

VN (℘N ) =
(
α̂N |N − α̂N−1|N

)′
AN

(
α̂N |N − α̂N−1|N

)
+ α̂′

N |N

(
(TN − I)′AN+1(TN − I)− P̃N+1

)
α̂N |N

+ tr
[
AN

(
Σ̂N |N + Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′

)]
+ tr [AN+1QN ] . (49)

Defining PN as follows,

PN = (TN − I)′AN+1(TN − I)− P̃N+1, (50)

and also replacing tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′

)]
by its simpler form as identified in Lemma

6 in Appendix B, we can further simplify Eq. 49 as follows.

VN (℘N ) =
(
α̂N |N − α̂N−1|N

)′
AN

(
α̂N |N − α̂N−1|N

)
+ tr

[
AN Σ̂N |N

]

+ α̂′
N |NPN α̂N |N + tr

[
PN Σ̂N |N

]
+ tr

[
AN

(
Σ̂N−1|N − TN−1Σ̂N−1|N − Σ̂N−1|NTN−1

′
)]

+ tr
[
P̃N+1Σ̂N |N

]
+ tr [AN+1QN ] . (51)
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Appendix B Lemmas

In the derivation of optimal control the following lemmas are needed.

Lemma 1. For any symmetric n ∗ n matrix A, the following holds.

E
[
x′Ay

]
= x̄′Aȳ + tr [AVx,y] . (52)

Where

x̄ = E[x], (53)

ȳ = E[y], (54)

Vx,y = E
[
(x− x̄)(y − ȳ)′

]
. (55)

Proof of Lemma 1:

Proof. By writing the matrix operations in terms of summations we will have

x′Ay =

n∑

i=1

n∑

j=1

xiAijyj . (56)

Hence

E
[
x′Ay

]
=

n∑

i=1

n∑

j=1

AijE[xiyj ], (57)

but

E[xiyj ] = E[xi]E[yj ] + E [(xi − E[xi]) (yj − E[yj ])] = x̄iȳj + Vxi,yj . (58)

When Eq. 58 is substituted in Eq. 57:

E
[
x′Ay

]
= x̄′Aȳ +

n∑

i=1

n∑

j=1

AijVxi,yj = x̄′Aȳ + tr [AVx,y] , (59)

where tr [M ] stands for trace of M (i.e., sum of diagonal terms).
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Lemma 2. With information up to time t, we have the following covariance relations.

Cov(αt, αt+1|℘t) = Σ̂t|tTt
′, (60)

Cov(αt+1, αt|℘t) = TtΣ̂t|t, (61)

Cov(αt, αt−1|℘t) = Tt−1Σ̂t−1|t, (62)

Cov(αt−1, αt|℘t) = Σ̂t−1|tTt−1
′. (63)

Proof of Lemma 2:

Proof. Before we start proving these equations note that

Cov (αt, αt|℘t) = E
[
αtαt

′
]
− E [αt]E[αt]

′ → E
[
αtαt

′
]
= Σ̂t|t + α̂t|tα̂

′
t|t. (64)

Therefore,

Cov(αt, αt+1|℘t) = E
[
αtαt+1

′
]
− E [αt]E[αt+1]

′

= E
[
αt(Ttαt +Gtβt + ηt)

′]− E [αt]E[Ttαt +Gtβt + ηt]
′

= E
[
αtαt

′
]
Tt

′ + α̂t|tβt
′Gt

′ − α̂t|t

(
α̂′
t|tTt

′ + βt
′Gt

′
)

=
(
Σ̂t|t + α̂t|tα̂

′
t|t

)
Tt

′ − α̂t|tα̂
′
t|tTt

′

= Σ̂t|tTt
′, (65)

and similarly

Cov(αt+1, αt|℘t) = TtΣ̂t|t. (66)

Furthermore,

Cov(αt, αt−1|℘t) = E
[
αtαt−1

′
]
− E [αt]E[αt−1]

′

= E
[
(Tt−1αt−1 +Gt−1βt−1 + ηt−1)αt−1

′
]
− E [Tt−1αt−1 +Gt−1βt−1 + ηt−1]E[αt−1]

′

= Tt−1E
[
αt−1αt−1

′
]
+Gt−1βt−1α̂

′
t−1|t − Tt−1α̂t−1|tα̂

′
t−1|t −Gt−1βt−1α̂

′
t−1|t

= Tt−1

(
Σ̂t−1|t + α̂t−1|tα̂

′
t−1|t

)
− Tt−1α̂t−1|tα̂

′
t−1|t

= Tt−1Σ̂t−1|t, (67)

and similarly

Cov(αt−1, αt|℘t) = Σ̂t−1|tTt−1
′. (68)
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Lemma 3. With information up to time t, the expected quadratic penalty of disease progression

from period t− 1 to t can be calculated as follows.

E
[
(αt − αt−1)

′At (αt − αt−1) |℘t
]
=

(
α̂t|t − α̂t−1|t

)′
At

(
α̂t|t − α̂t−1|t

)

+ tr
[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]
. (69)

Proof of Lemma 3:

Proof. Using Lemma 1 and Lemma 2,

E
[
(αt − αt−1)

′At (αt − αt−1) |℘t
]
= E

[
αt

′Atαt|℘t
]
+ E

[
αt−1

′Atαt−1|℘t
]

− E
[
αt

′Atαt−1|℘t
]
− E

[
αt−1

′Atαt|℘t
]

= α̂′
t|tAtα̂t|t + tr[AtΣ̂t|t] + α̂′

t−1|tAtα̂t−1|t + tr[AtΣ̂t−1|t]

− α̂′
t|tAtα̂t−1|t − tr[AtTt−1Σ̂t−1|t]− α̂′

t−1|tAtα̂t|t − tr[AtΣ̂t−1|tTt−1
′]

=
(
α̂t|t − α̂t−1|t

)′
At

(
α̂t|t − α̂t−1|t

)
+ tr

[
At

(
Σ̂t|t + Σ̂t−1|t − Tt−1Σ̂t−1|t − Σ̂t−1|tTt−1

′
)]
. (70)

Lemma 4. With information up to time t, the expected quadratic penalty of disease progression

from period t to t+ 1 can be calculated as follows.

E
[
(αt+1 − αt)

′At+1 (αt+1 − αt) |℘t
]

= α̂′
t|t

(
(Tt − I)′At+1(Tt − I)

)
α̂t|t + βt

′(Gt
′At+1Gt)βt + βt

′(Gt
′At+1(Tt − I)α̂t|t)

+ (α̂′
t|t(Tt − I)′At+1Gt)βt + tr

[
At+1

(
(Tt − I)Σ̂t|t(Tt − I)′ +Qt

)]
. (71)

Proof of Lemma 4:

Proof. Using Eq. 1, Lemma 1 and Lemma 2,

E
[
(αt+1 − αt)

′At+1 (αt+1 − αt) |℘t
]
= E

[
αt+1

′At+1αt+1|℘t
]
+ E

[
αt

′At+1αt|℘t
]

− E
[
αt+1

′At+1αt|℘t
]
− E

[
αt

′At+1αt+1|℘t
]

= (Ttα̂t|t +Gtβt)
′At+1(Ttα̂t|t +Gtβt) + tr

[
At+1(TtΣ̂t|tTt

′ +Qt)
]
+ α̂′

t|tAt+1α̂t|t + tr[At+1Σ̂t|t]

− (Ttα̂t|t +Gtβt)
′At+1α̂t|t − tr

[
At+1TtΣ̂t|t

]
− α̂′

t|tAt+1(Ttα̂t|t +Gtβt)− tr
[
At+1Σ̂t|tTt

′
]

= α̂′
t|t

(
(Tt − I)′At+1(Tt − I)

)
α̂t|t + βt

′(Gt
′At+1Gt)βt + βt

′(Gt
′At+1(Tt − I)α̂t|t)

+ (α̂′
t|t(Tt − I)′At+1Gt)βt + tr

[
At+1

(
(Tt − I)Σ̂t|t(Tt − I)′ +Qt

)]
. (72)
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Lemma 5.

J̃N = min
βN

{βN
′(GN

′AN+1GN +BN )βN + βN
′(GN

′AN+1(TN − I)α̂N |N )

+ (α̂′
N |N (TN − I)′AN+1GN )βN} = −α̂′

N |N P̃N+1α̂N |N . (73)

Proof of Lemma 5:

Proof. The minimization over βN can be performed by completion of squares. For a detailed

discussion on how to take minimization by completion of squares please see Section 3.3 of Sayed

(2011). In here, we provide a short proof.

J̃N can be expressed in matrix form as follows.

J̃N = min
βN

{[
1 βN

′
] [ 0 α̂′

N |N (TN − I)′AN+1GN

GN
′AN+1(TN − I)α̂N |N GN

′AN+1GN +BN

][
1

βN

]}
. (74)

The center matrix in 74 can be factored into a product of upper-triangular, diagonal, and lower-

triangular matrices as follows.

J̃N = min
βN

{
[
1 βN

′
] [ 1 ωN

′

0 I

][
−α̂′

N |N (TN − I)′AN+1GNωN 0

0 GN
′AN+1GN +BN

]

[
1 0

ωN I

][
1

βN

]
}, (75)

where

ωN =
(
GN

′AN+1GN +BN
)−1

GN
′AN+1(TN − I)α̂N |N . (76)

Expanding the right-hand-side of Eq. 75 yields

J̃N = min
βN

{
−α̂′

N |N (TN − I)′AN+1GNωN + (βN + ωN )
′ (GN ′AN+1GN +BN

)
(βN + ωN )

}
, (77)

in which only the second term depends on the unknown βN . Note that (GN
′AN+1GN + BN ) is

positive semidefinite. This is because AN+1 and BN are diagonal cost matrices with only positive

terms on the main diagonal. So, the second term in Eq. 77 is always nonnegative and will be

minimized by choosing βN = −ωN .

Therefore, the optimum disease control β∗N and the result of minimization, i.e., J̃N , are given by
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the following equations respectively.

β∗N = −UN α̂N |N , (78)

where

UN =
(
GN

′AN+1GN +BN
)−1

GN
′AN+1(TN − I), (79)

and

J̃N = −α̂′
N |N P̃N+1α̂N |N , (80)

where

P̃N+1 = (TN − I)′AN+1GN (G
′
NAN+1GN +BN )

−1G′
NAN+1(TN − I). (81)

Lemma 6.

tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′

)]
= tr

[
PN Σ̂N |N

]
+ tr

[
P̃N+1Σ̂N |N

]
(82)

Proof of Lemma 6:

Proof. We know tr [XY ] = tr [Y X], tr [X (Y Z)] = tr [(XY )Z] and tr [(X + Y )Z] = tr [XZ] +

tr [Y Z]. Therefore,

tr
[
AN+1

(
(TN − I)Σ̂N |N (TN − I)′

)]
= tr

[(
(TN − I)′AN+1(TN − I)

)
Σ̂N |N

]
(83)

From Eq. 50 we know (TN − I)′AN+1(TN − I) = PN + P̃N+1. Hence,

tr
[(
(TN − I)′AN+1(TN − I)

)
Σ̂N |N

]
= tr

[(
PN + P̃N+1

)
Σ̂N |N

]

= tr
[
PN Σ̂N |N

]
+ tr

[
P̃N+1Σ̂N |N

]
(84)

Lemma 7.

E
zt+1

[
α̂′
t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt)

+ tr
[
Pt+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (85)
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Proof of Lemma 7:

Proof. From Lemma 1 and Eq. 4

E
zt+1

[
α̂′
t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= E

zt+1

[
α̂t+1|t+1|℘t

]′
Pt+1 E

zt+1

[
α̂t+1|t+1|℘t

]

+ tr

[
Pt+1 E

zt+1

[(
α̂t+1|t+1 − E

zt+1

[
α̂t+1|t+1|℘t

])(
α̂t+1|t+1 − E

zt+1

[
α̂t+1|t+1|℘t

])′]]

= (Ttα̂t|t +Gtβt)
′Pt+1(Ttα̂t|t +Gtβt) + tr

[
Pt+1Kt+1 E

zt+1

[
ỹt+1ỹ

′
t+1

]
Kt+1

′

]
, (86)

in which

E
zt+1

[
ỹt+1ỹ

′
t+1

]
= E

zt+1

[(
zt+1 − Zt+1(Ttα̂t|t +Gtβt)

) (
zt+1 − Zt+1(Ttα̂t|t +Gtβt)

)′]
. (87)

Replacing zt+1 by its value given by Eq. 2 yields

E
zt+1

[
ỹt+1ỹ

′
t+1

]
= E

zt+1

[(
εt+1 + Zt+1(αt+1 − Ttα̂t|t −Gtβt)

) (
εt+1 + Zt+1(αt+1 − Ttα̂t|t −Gtβt)

)′]

= E
zt+1

[
(εt+1 + Zt+1(αt+1 − E[αt+1])) (εt+1 + Zt+1(αt+1 − E[αt+1]))

′]

= H
(θt+1)
t+1 + Zt+1

(
Tt

′Σ̂t|tTt +Qt

)
Z ′
t+1

= St+1. (88)

Substitution of Eq. 88 into Eq. 86 results

E
zt+1

[
α̂′
t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt) + tr
[
Pt+1Kt+1St+1Kt+1

′
]
.

(89)

Using Eq.’s 35, 7, 8, and 9 yields

E
zt+1

[
α̂′
t+1|t+1Pt+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′Pt+1(Ttα̂t|t +Gtβt)

+ tr
[
Pt+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (90)
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Lemma 8.

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t

]

=
(
(Tt − I)α̂t|t +Gtβt

)′
At+1

(
(Tt − I)α̂t|t +Gtβt

)

+ tr
[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂
∗
t
′ − Σ̂∗

t Σ̂t+1|t+1 + Σ̂t|t+1

)]
. (91)

Proof of Lemma 8:

Proof. This expectation can be divided into four parts as follows.

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t

]
= E

zt+1

[
α̂′
t+1|t+1At+1α̂t+1|t+1|℘t

]

− E
zt+1

[
α̂′
t+1|t+1At+1α̂t|t+1|℘t

]
− E
zt+1

[
α̂′
t|t+1At+1α̂t+1|t+1|℘t

]
+ E
zt+1

[
α̂′
t|t+1At+1α̂t|t+1|℘t

]
.

(92)

The first expectation in 92 is similar to the expectation of Lemma 7. Therefore,

E
zt+1

[
α̂′
t+1|t+1At+1α̂t+1|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′At+1(Ttα̂t|t +Gtβt)

+ tr
[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
. (93)

The second expectation in 92 can be simplified as follows.

E
zt+1

[
α̂′
t+1|t+1At+1α̂t|t+1|℘t

]
= E

zt+1

[
α̂t+1|t+1|℘t

]′
At+1 E

zt+1

[
α̂t|t+1|℘t

]
+ tr

[
At+1Cov

(
α̂t+1|t+1, α̂t|t+1

)]

= (Ttα̂t|t +Gtβt)
′At+1α̂t|t + tr

[
At+1Cov

(
α̂t+1|t+1, α̂t|t+1

)]
, (94)

in which

Cov
(
α̂t+1|t+1, α̂t|t+1|℘t

)
= E

[
α̂t+1|t+1α̂

′
t|t+1|℘t

]
− E

[
α̂t+1|t+1|℘t

]
E
[
α̂t|t+1|℘t

]′

= E

[
α̂t+1|t+1

(
α̂t|t + Σ̂∗

t (α̂t+1|t+1 − α̂t+1|t)
)′
|℘t

]
− E

[
α̂t+1|t+1|℘t

]
α̂′
t|t

= E
[
α̂t+1|t+1(α̂t+1|t+1 − α̂t+1|t)

′|℘t
]
Σ̂∗′
t

= E
[
α̂t+1|t+1α̂

′
t+1|t+1|℘t

]
Σ̂∗′
t − E

[
α̂t+1|t+1|℘t

]
(Ttα̂t|t +Gtβt)

′Σ̂∗′
t

= Σ̂t+1|t+1Σ̂
∗′
t + (Ttα̂t|t +Gtβt)(Ttα̂t|t +Gtβt)

′Σ̂∗′
t

− (Ttα̂t|t +Gtβt)(Ttα̂t|t +Gtβt)
′Σ̂∗′
t

= Σ̂t+1|t+1Σ̂
∗′
t . (95)
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Therefore,

E
zt+1

[
α̂′
t+1|t+1At+1α̂t|t+1|℘t

]
= (Ttα̂t|t +Gtβt)

′At+1α̂t|t + tr
[
At+1Σ̂t+1|t+1Σ̂

∗
t
′
]
. (96)

In similar way, the third and fourth expectations in 92 can be simplified as follows.

E
zt+1

[
α̂′
t|t+1At+1α̂t+1|t+1|℘t

]
= α̂′

t|tAt+1(Ttα̂t|t +Gtβt) + tr
[
At+1Σ̂

∗
t Σ̂t+1|t+1

]
, (97)

E
zt+1

[
α̂′
t|t+1At+1α̂t|t+1|℘t

]
= α̂′

t|tAt+1α̂t|t + tr
[
At+1Σ̂t|t+1

]
. (98)

Replacing Eq.’s 93, 96, 97 and 98 into 92 yields

E
zt+1

[(
α̂t+1|t+1 − α̂t|t+1

)′
At+1

(
α̂t+1|t+1 − α̂t|t+1

)
|℘t

]
= (Ttα̂t|t +Gtβt)

′At+1(Ttα̂t|t +Gtβt)

+ tr
[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1

)]
− (Ttα̂t|t +Gtβt)

′At+1α̂t|t − tr
[
At+1Σ̂t+1|t+1Σ̂

∗
t
′
]

− α̂′
t|tAt+1(Ttα̂t|t +Gtβt)− tr

[
At+1Σ̂

∗
t Σ̂t+1|t+1

]
+ α̂′

t|tAt+1α̂t|t + tr
[
At+1Σ̂t|t+1

]

=
(
(Tt − I)α̂t|t +Gtβt

)′
At+1

(
(Tt − I)α̂t|t +Gtβt

)

+ tr
[
At+1

(
TtΣ̂t|tTt

′ +Qt − Σ̂t+1|t+1 − Σ̂t+1|t+1Σ̂
∗
t
′ − Σ̂∗

t Σ̂t+1|t+1 + Σ̂t|t+1

)]
. (99)

Lemma 9.

tr
[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

= tr
[
PtΣ̂t|t

]
+ tr

[(
P̃t+1 +At+1Tt + Tt

′At+1 − I
)
Σ̂t|t

]
(100)

Proof of Lemma 9:

Proof. We know tr [XY ] = tr [Y X], tr [X (Y Z)] = tr [(XY )Z] and tr [(X + Y )Z] = tr [XZ] +

tr [Y Z]. Therefore,

tr
[
(At+1 + Pt+1)

(
TtΣ̂t|tTt

′
)]

= tr
[(
Tt

′ (At+1 + Pt+1)Tt
)
Σ̂t|t

]
(101)

Using Eq. 35 to replace Tt
′ (At+1 + Pt+1)Tt we have

tr
[(
Tt

′ (At+1 + Pt+1)Tt
)
Σ̂t|t

]
= tr

[(
P̃t+1 + Pt +At+1Tt + Tt

′At+1 − I
)
Σ̂t|t

]

= tr
[
PtΣ̂t|t

]
+ tr

[(
P̃t+1 +At+1Tt + Tt

′At+1 − I
)
Σ̂t|t

]
. (102)
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Appendix C Insight into Selecting an Aggressiveness Option

Many factors go into a doctor’s decision of how aggressively to treat and monitor a patient’s

disease that cannot be captured adequately in a single mathematical model. Our model facilitates

the translation of the clinician’s desired aggressiveness level into optimal treatment controls and

a monitoring plan to achieve those clinical goals with minimal disruption in terms of cost and

inconvenience for the patient (i.e., lower the IOP the least amount necessary to achieve the clinical

goals). While we think it is best to let the clinician use his/her expertise to choose an appropriate

aggressiveness level based on individual patient needs, our model can provide some insight into

when to switch aggressiveness level. At each time period that the doctor sees the patient, our

decision support tool provides a personalized projection of the patient’s progression trajectory over

the next five years (similar to Figure 6). The doctor’s requirement of how much progression is

acceptable in T months (e.g., MD loss of 1dB in 6 months, and/or 4dB in 12 months, and/or 6dB

in 24 months) can be directly compared to our system’s predictions to determine the appropriate

aggressiveness option.

Mathematically speaking, this can be accomplished as follows. Let Ψ = {ψ1, . . . , ψG} be the ordered

set of aggressiveness options sorted from the least severe to the most severe aggressiveness option

(e.g., Ψ = {super-low, low, medium, high, super-high}). Let Ξ = {(t1, ξ1), . . . , (tK , ξK)} be a set of

clinically acceptable progression thresholds such that (tk, ξk) means that no more than ξk loss of

MD should be allowed in tk number of time periods. Let the current time period be t. Our decision

support tool can provide the optimal additional IOP controls for each aggressiveness option (i.e.,

β∗(ψg) =
{
β∗t (ψg), β

∗
t+1(ψg), · · ·

}
) as well as the optimal/filtered forecasts of disease progression tra-

jectory under each aggressiveness option (i.e., α̂.|t(ψg) =
{
α̂t|t(ψg), α̂t+1|t(ψg), α̂t+2|t(ψg), · · ·

}
). Let

M̂D.|t(ψg) represent the MD element of α̂.|t(ψg). Then, at time t, the recommended aggressiveness

level is

argmin
ψg∈Ψ

E
[
M̂Dt|t(ψg)− M̂Dt+tk|t(ψg) ≤ ξk

]
∀(tk, ξk) ∈ Ξ. (103)

Alternatively, we can use the following service-level type expression

argmin
ψg∈Ψ

P
([
M̂Dt|t(ψg)− M̂Dt+tk|t(ψg) ≤ ξk

]
≥ s

)
∀(tk, ξk) ∈ Ξ, (104)

where s is the probability that the loss of MD is limited to ξk. Similar expressions can be written

for PSD and IOP as well.
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Appendix D Results on Target IOP and MD Loss Averted

Since target IOP is an important metric that helps guide clinicians in selecting the appropriate

treatment plan for the patient, the distribution of target IOPs is also of interest. Figure S1 shows

the histogram of target IOPs for fast- and slow-progressing patients under the high and moderate

aggressiveness policies. The range and mean of each category is clinically appropriate in the pro-

fessional opinion of our glaucoma specialist collaborator.

Figure S1: Histogram of target IOPs for CIGTS and AGIS patients under different aggressiveness
policies.

Figure S2 graphs the MD loss averted in [dB] for fast- and slow-progressing patients under the

high and moderate aggressiveness policies compared to the low aggressiveness policy over 10 years of

following the IOP controls suggested by our model. As seen in the figure, fast-progressing patients

will lose fewer MD points (i.e., experience better vision quality) resulting from further lowering

their eye pressure in the short term, whether the doctor chooses moderate or high aggressiveness

level. Slow-progressors, if treated under the high aggressiveness policy, could benefit from losing

fewer MD points in the long term. However, this group of glaucoma patients does not gain evident

benefit from employing the moderate aggressiveness policy even in the long term.
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Figure S2: MD loss averted [dB] for fast- and slow-progressing patients under the high and moderate
aggressiveness policies compared against the low aggressiveness policy (i.e., no additional
IOP reduction beyond those employed in trials) over 10 years of following the IOP
control suggested by our model. Period 1 is six months into the future; period 20 is 10
years into the future.

Table S1 summarizes the results of comparing super-high, high, moderate, and super-low ag-

gressiveness policy options against the low aggressiveness policy (i.e., the IOP levels attained in the

trials), averaged over all patients in the testing dataset. The formula used to obtain each metric

for high aggressiveness policy is presented below. Similar formulas were used for the other policies.

• % less MD loss per year =
MD

highagg
25

−MD
lowagg
25

MD
lowagg
25

−MD5

∗ 100

• % better MD value at 10 years =
MD

highagg
25

−MD
lowagg
25

MD
lowagg
25

∗ 100

• % reduction in MD slope at 10 years =

(

MD
highagg
25

−MD
highagg
24

)

−
(

MD
lowagg
25

−MD
lowagg
24

)

(

MD
lowagg
25

−MD
lowagg
24

) ∗ 100

As can be deduced from the table, achieving an IOP control suggested by our models not

only results in patients having better vision quality (less loss of vision due to glaucoma) but also

experiencing a significantly reduced glaucoma progression rate, which further benefits the patient

in the long term. For instance, under the high aggressiveness policy, a fast-progressing patient can

achieve, on average, 57.87% less peripheral vision loss per year or 31.71% better MD value after 10

years if the clinician is able to lower the IOP successfully to the target IOP specified by our model.

Furthermore, by applying optimal IOP control, the doctor is able to slow the glaucoma progression
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rate. For instance, the slope/rate of MD worsening would be, on average, 74.54% reduced after

10 years for fast-progressing patients under the high aggressiveness policy compared to the low

aggressiveness policy, which corresponds to the IOP achieved under no additional interventions

beyond those employed in the CIGTS/AGIS trials. This results in more years of maintained sight

over the ten-year period. As seen in the table, the fast-progressing patients (those who are at the

highest risk for disease progression) are the ones who will benefit the most from achieving the more

aggressive optimal IOP controls generated from our models.

Table S1: Comparison of the performance of different IOP control policies for patients in AGIS and
CIGTS against the low aggressiveness policy that is no additional interventions beyond
those employed in the trials.
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Appendix E Monitoring Cost of the Optimal Policies

Our optimal policies for low, moderate, and high aggressiveness suggest, on average, more

frequent IOP testing (a very cheap and fast test) and less frequent visual field (VF) testing compared

to the current practice. Current practice involves testing IOP and VF every 1-2 years (see American

Academy of Ophthalmology Clinical Practice Guidelines 2010). This concept is not widely used in

practice and should lead to resource efficiencies while still providing good detection. If we know

the prevalence of non- vs. slow- vs. fast-progressors in the U.S., we can calculate how many tests

each optimal policy suggests on average and compare it against the 6, 12, 18, and 24-month fixed

interval testing. Unfortunately, there is no gold standard for defining these progression categories.

To overcome this issue, we use the proportions we found in CIGTS and AGIS. In those trials, 21%,

47%, and 32% of patients met our definition of fast-, slow-, and non-progressor, respectively.

We estimate that the cost of a visual field test is $75.94 (Blumberg et al. 2014). An IOP test is part

of a routine eye exam, hence we could not find a separate number for the cost of an IOP test. We

estimate it is $10. Based on these assumptions, the expected annual cost of fixed-interval testing is

$172 (6-month), $86 (12-month), $57 (18-month), and $43 (24-month). The expected monitoring

cost of following the recommendations of our model (Table 3) is $144 (high aggressiveness), $97

(moderate aggressiveness), and $59 (low aggressiveness).
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