

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2019

A Non-Pt Electronically Coupled Semiconductor Heterojunction for Enhanced Oxygen Reduction Electrocatalytic Property

Fan Li⁺, Yong Qin⁺, Aleksei Chalgin⁺, Xin Gu, Wenlong Chen, Yanling Ma, Qian Xiang, Yi Wu, Fenglei Shi, Yuan Zong, Peng Tao, Chengyi Song, Wen Shang, Tao Deng, Hong Zhu,* and Jianbo Wu*

Table of Contents

Experimental Section

Chemicals and Materials Synthesis of Ag₃PO₄ Crystals Synthesis of Cu₂O cube Preparation of Catalysts Morphology Characterization Method Evaluation of ORR Performance The Density Functional Theory (DFT) Calculation Method

Additional Data

Experimental Section

Chemicals and Materials:

Silver acetate (CH₃COOAg, 99.5%), Sodium phosphate (Na₂HPO₄, 99.99%), Potassium hydroxide (KOH, 99.99%) and Hydroxylamine hydrochloride (NH₂OH-HCl, 99%) were obtained from Aladdin. Silver nitrate (AgNO₃, 99.8%) and Ammonia solution (NH₃·H₂O) were got from Shanghai Ling Feng Chemical Reagent Co., Ltd. Phosphoric acid (H₃PO₄, 85.0%) and Cuprous chloride (CuCl₂·2H₂O, 99.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Ethanol (CH₃CH₂OH, 99.7%) was received from Changshou City Yangyuan Chemical Co., Ltd. Carbon (C, Vulcan®XC-72R) taken from Cabot was used as support materials. Oxygen (O₂, 99.999%) and Argon (Ar, 99.999%) were obtained from Shanghai Weichuang Standard Gas Analytical Technology Co., Ltd. All chemicals were used as received without further purification.

Synthesis of Ag₃PO₄ Crystals:

Tetrahedron-, rhombic dodecahedron- and cube-Ag₃PO₄ crystals were synthesized according to our previously reported recipes.^[1]

Synthesis of Cu₂O Cube:

Cu₂O cube was synthesized by a simple method.^[2] Firstly, 89.2 mL of deionized water was added to the beaker in a water bath preheated to 33 °C. Then 5 mL of 0.1 M CuCl₂ solution and 0.87 g sodium dodecyl sulfate (SDS) powder were added to the beaker under stirring. 1.8 mL of 1.0 M NaOH solution was dropped in the solution after CuCl₂ and SDS powder were sufficiently dispersing. The mixed solution turned light blue immediately, indicating the formation of Cu(OH)₂ sediment. Finally, 24 mL of 0.1 M NH₂OH·HCl was injected into the beaker quickly. The obtained solution was kept in the water bath for 1 hour for nanocrystal growth. After completing the chemical reaction, the solution was centrifuged at 5000 rpm for 3 minutes, then the precipitate was washed with water and ethanol with 1:1 volume ratio for 3 times to remove unreacted chemicals. The final precipitate was dispersed in 6 mL ethanol for storage and analysis.

Preparation of Catalysts:

The faceted Ag₃PO₄ and Cu₂O crystals were mixed at the mass ratio of 1:1, 1:0.5, 1:0.25, 1:0.125 and 1:0.1, respectively. To improve the conductivity and dispersion of the catalyst, Vulcan XC-72 carbon was chosen as the carbon support. The carbon was dissolved in methanol, after sonicating 1 hour, pure Ag₃PO₄ or hybrid Ag₃PO₄/Cu₂O composite material was added. And the mass ratio of catalyst and carbon is 1:4. The mixture was stirred over 24 hours. Afterward, the solid products were obtained by centrifugation. Finally, the samples were freeze-dried for ORR test.

Morphology Characterization Method:

The morphology of the crystals was observed by field-emission scanning electron microscope (SEM; FEI Sirion 200, 5 kV) and transmission electron microscope (TEM; JEOL-2100F). The crystalline phase was researched by X-ray diffraction (XRD; Rigaku, Ultima IV) analysis using Cu K_{α} radiation. The XRD patterns were recorded from 10° to 80° with a scanning rate of 10 °/min. The XPS measurements were

performed on an X-ray photoelectron spectroscopy (Axis Ultra DLD, Kratos Analytical, UK) using monochromated Al K_{α} (1486.6 eV) source at 15 kV.

Evaluation of ORR Performance:

The electrochemical ORR performance was studied using an electrochemical workstation (CHI760E) with the three-electrode system in 0.1 M KOH solution at room temperature. The glassy-carbon rotating disk electrode (RDE) was used as the working electrode. The platinum wire was applied to the counter electrode. And the reference electrode was a reversible hydrogen electrode (RHE). The scan rate for ORR measurement was 10 mV/s.

The Density Functional Theory (DFT) Calculation Method:

The theoretical calculations were conducted at the standard of DFT using the Vienna ab-initio simulation package (VASP)^[3]. The core and valence electrons were represented by the projector augmented wave (PAW)^[4] method and plane-wave basis functions with a kinetic energy cut-off of 520 eV. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was used in the calculations.^[5] The Monkhorst-Pack grid of $4\times2\times1$ was chosen as the Brillouin zone for Ag₃PO₄ (110) surface slab supercell, separated by 15.0 Å thick vacuum layer. The energy convergence criterion is 0.0001 eV/atom for electronic minimization steps. To elucidate the dependence of the d-band center of Ag in Ag₃PO₄ on the extra positive charge, extra valence electrons of -1 *e*⁻, 0 *e*⁻, 1 *e*⁻ are applied to the Ag₃PO₄ (110) surface slab supercell. The atomic extra charge distribution

on each atom is counted by bader charge analysis^[6]. The d-band center (ε_d) of atoms on surface charged different extra e^- density was calculated using the following formula:

$$\varepsilon_{d} = \frac{\int_{-\infty}^{+\infty} n_{d}(\varepsilon)\varepsilon d\varepsilon}{\int_{-\infty}^{+\infty} n_{d}(\varepsilon)d\varepsilon}$$

where ε_d is the d-band center, $n_d(\varepsilon)$ is the density of states about d-band and ε represents the energy.

Figure S1 SEM micrographs of crystals (a) Ag₃PO₄ tetrahedron, (b) Ag₃PO₄ rhombic dodecahedron, (c) Ag₃PO₄ cube, (d) Cu₂O cube.

Figure S2 XRD pattern of (a) faceted- Ag_3PO_4 , (b) cube- Cu_2O , (c) hybrid faceted- Ag_3PO_4 and cube- Cu_2O crystals. The standard diffractions (JCPDS no. 05-0607 and JCPDS no. 06-0505) were drawn using orange and black lines, separately.

Figure S3 Comparison of electrocatalytic properties of various Ag₃PO₄ and Cu₂O supported on carbon: ORR polarization curves of (a) tetrahedron-, (b) rhombic dodecahedron-, (c) cube-Ag₃PO₄ and cube-Cu₂O composites supported on carbon in different proportions; mass-specific activity of (d) tetrahedron-, (e) rhombic dodecahedron-, (f) cube-Ag₃PO₄ and cube-Cu₂O hybrid catalysts supported on carbon in different proportions.

Figure S4 ORR polarization curves of cube-Cu $_2O/C$ sample versus rhombic dodecahedron-Ag $_3PO_4$ /cube-Cu $_2O/C$ catalyst.

Figure S5 (a) ORR polarization curves and (b) mass-specific activity of $Ag_3PO_4/TiO_2/C$ in different mass ratio. (The rhombic dodecahedral Ag_3PO_4 and commercial TiO₂ nanocrystals were selected to obtain the hybrid materials.)

Figure S6 (a) XPS spectra in the Ag 3d regions for rhombic dodecahedron-Ag₃PO₄ and rhombic dodecahedron-Ag₃PO₄/cube-Cu₂O; (b) XPS spectra in the Cu 2p regions for cube-Cu₂O and rhombic dodecahedron-Ag₃PO₄/cube-Cu₂O.

Figure S7 A schematic diagram of the energy band structure and expected electron transfer behavior at the interface of TiO_2 and Ag_3PO_4 .

Sample	Mass activity[mA/mg _{Ag3PO4}]	Mass activity[mA/mgAg]
Ag ₃ PO ₄ :C=1:4	38.51	49.82
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.1:4	47.69	61.69
Ag ₃ PO ₄ :Cu ₂ O: C=1:0.125:4	76.76	99.30
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.25:4	55.51	71.81
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.5:4	50.64	65.51
Ag ₃ PO ₄ :Cu ₂ O:C=1:1:4	46.88	60.65

Table S1. Mass-specific ORR activity of catalysts for tetrahedron-Ag₃PO₄

system*

*The calculation method of mass-specific ORR activity is the same as the method used in our previous work.^[1]

11g31 04 system		
Sample	Mass activity[mA/mgAg3PO4]	Mass activity[mA/mgAg]
Ag ₃ PO ₄ :C=1:4	13.29	17.20
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.1:4	50.64	65.51
Ag ₃ PO ₄ :Cu ₂ O: C=1:0.125:4	84.88	109.80
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.25:4	80.64	104.32
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.5:4	77.42	100.15
Ag ₃ PO ₄ :Cu ₂ O:C=1:1:4	55.12	71.31

Table S2. Mass-specific ORR activity of catalysts for the rhombic dodecahedron-Ag3PO4 system*

*The calculation method of mass-specific ORR activity is the same as the method used in our previous work.^[1]

Sample	Mass activity[mA/mgAg3PO4]	Mass activity[mA/mgAg]
Ag ₃ PO ₄ :C=1:4	8.52	11.02
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.1:4	33.74	43.64
Ag ₃ PO ₄ :Cu ₂ O: C=1:0.125:4	55.61	71.95
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.25:4	40.27	52.10
Ag ₃ PO ₄ :Cu ₂ O:C=1:0.5:4	37.94	49.08
Ag ₃ PO ₄ :Cu ₂ O:C=1:1:4	34.76	44.96

 Table S3. Mass-specific ORR activity of catalysts for cube-Ag₃PO₄ system*

*The calculation method of mass-specific ORR activity is the same as the method used in our previous work.^[1]

Reference

[1]. Qin, Y.; Li, F.; Tu, P.; Ma, Y.; Chen, W.; Shi, F.; Xiang, Q.; Shan, H.; Zhang, L.; Tao, P., *RSC Adv.* **2018**, *8*, 5382-5387.

[2]. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H., J. Am. Chem. Soc. 2012, 134, 1261-1267.

[3]. Kresse, G.; Furthmüller, J., *Phys Rev B* 1996, 54, 11169.

[4]. Kresse, G.; Joubert, D., Phys. Rev. B: Condens. Matter 1999, 59, 1758.

[5]. Blöchl, P. E.; Jepsen, O.; Andersen, O. K., Physical Review B 1994, 49, 16223.

[6]. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G., J. Comput. Chem. 2007, 28, 899-908.