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Experimental Section  

Chemicals and Materials: 

Silver acetate (CH3COOAg, 99.5%), Sodium phosphate (Na2HPO4, 99.99%), 

Potassium hydroxide (KOH, 99.99%) and Hydroxylamine hydrochloride (NH2OH·HCl, 

99%) were obtained from Aladdin. Silver nitrate (AgNO3, 99.8%) and Ammonia 

solution (NH3·H2O) were got from Shanghai Ling Feng Chemical Reagent Co., Ltd. 

Phosphoric acid (H3PO4, 85.0%) and Cuprous chloride (CuCl2·2H2O, 99.0%) were 

purchased from Sinopharm Chemical Reagent Co., Ltd. Ethanol (CH3CH2OH, 99.7%) 

was received from Changshou City Yangyuan Chemical Co., Ltd. Carbon (C, 

Vulcan®XC-72R) taken from Cabot was used as support materials. Oxygen (O2, 

99.999%) and Argon (Ar, 99.999%) were obtained from Shanghai Weichuang Standard 

Gas Analytical Technology Co., Ltd. All chemicals were used as received without 

further purification. 

Synthesis of Ag3PO4 Crystals:  

Tetrahedron-, rhombic dodecahedron- and cube-Ag3PO4 crystals were synthesized 

according to our previously reported recipes.[1] 

Synthesis of Cu2O Cube:  

Cu2O cube was synthesized by a simple method.[2] Firstly, 89.2 mL of deionized water 

was added to the beaker in a water bath preheated to 33 °C. Then 5 mL of 0.1 M CuCl2 

solution and 0.87 g sodium dodecyl sulfate (SDS) powder were added to the beaker 

under stirring. 1.8 mL of 1.0 M NaOH solution was dropped in the solution after CuCl2 

and SDS powder were sufficiently dispersing. The mixed solution turned light blue 
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immediately, indicating the formation of Cu(OH)2 sediment. Finally, 24 mL of 0.1 M 

NH2OH·HCl was injected into the beaker quickly. The obtained solution was kept in 

the water bath for 1 hour for nanocrystal growth. After completing the chemical 

reaction, the solution was centrifuged at 5000 rpm for 3 minutes, then the precipitate 

was washed with water and ethanol with 1:1 volume ratio for 3 times to remove 

unreacted chemicals. The final precipitate was dispersed in 6 mL ethanol for storage 

and analysis.  

Preparation of Catalysts:  

The faceted Ag3PO4 and Cu2O crystals were mixed at the mass ratio of 1:1, 1:0.5, 1:0.25, 

1:0.125 and 1:0.1, respectively. To improve the conductivity and dispersion of the 

catalyst, Vulcan XC-72 carbon was chosen as the carbon support. The carbon was 

dissolved in methanol, after sonicating 1 hour, pure Ag3PO4 or hybrid Ag3PO4/Cu2O 

composite material was added. And the mass ratio of catalyst and carbon is 1:4. The 

mixture was stirred over 24 hours. Afterward, the solid products were obtained by 

centrifugation. Finally, the samples were freeze-dried for ORR test. 

Morphology Characterization Method:  

The morphology of the crystals was observed by field-emission scanning electron 

microscope (SEM; FEI Sirion 200, 5 kV) and transmission electron microscope (TEM; 

JEOL-2100F). The crystalline phase was researched by X-ray diffraction (XRD; 

Rigaku, Ultima IV) analysis using Cu Kα radiation. The XRD patterns were recorded 

from 10° to 80° with a scanning rate of 10 °/min. The XPS measurements were 
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performed on an X-ray photoelectron spectroscopy (Axis Ultra DLD, Kratos Analytical, 

UK) using monochromated Al Kα (1486.6 eV) source at 15 kV. 

Evaluation of ORR Performance:  

The electrochemical ORR performance was studied using an electrochemical 

workstation (CHI760E) with the three-electrode system in 0.1 M KOH solution at room 

temperature. The glassy-carbon rotating disk electrode (RDE) was used as the working 

electrode. The platinum wire was applied to the counter electrode. And the reference 

electrode was a reversible hydrogen electrode (RHE). The scan rate for ORR 

measurement was 10 mV/s. 

The Density Functional Theory (DFT) Calculation Method:  

The theoretical calculations were conducted at the standard of DFT using the Vienna 

ab-initio simulation package (VASP)[3]. The core and valence electrons were 

represented by the projector augmented wave (PAW)[4] method and plane-wave basis 

functions with a kinetic energy cut-off of 520 eV. The generalized gradient 

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation 

functional was used in the calculations.[5] The Monkhorst-Pack grid of 4×2×1 was 

chosen as the Brillouin zone for Ag3PO4 (110) surface slab supercell, separated by 15.0 

Å thick vacuum layer. The energy convergence criterion is 0.0001 eV/atom for 

electronic minimization steps. To elucidate the dependence of the d-band center of Ag 

in Ag3PO4 on the extra positive charge, extra valence electrons of -1 e-, 0 e-, 1 e- are 

applied to the Ag3PO4 (110) surface slab supercell. The atomic extra charge distribution 
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on each atom is counted by bader charge analysis[6]. The d-band center (εd) of atoms on 

surface charged different extra e- density was calculated using the following formula: 
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where εd is the d-band center, nd (ε) is the density of states about d-band and ε represents 

the energy.  
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Figure S1 SEM micrographs of crystals (a) Ag3PO4 tetrahedron, (b) Ag3PO4 rhombic 

dodecahedron, (c) Ag3PO4 cube, (d) Cu2O cube.  
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Figure S2 XRD pattern of (a) faceted-Ag3PO4, (b) cube-Cu2O, (c) hybrid faceted-

Ag3PO4 and cube-Cu2O crystals. The standard diffractions (JCPDS no. 05-0607 and 

JCPDS no. 06-0505) were drawn using orange and black lines, separately.  
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Figure S3 Comparison of electrocatalytic properties of various Ag3PO4 and Cu2O 

supported on carbon: ORR polarization curves of (a) tetrahedron-, (b) rhombic 

dodecahedron-, (c) cube-Ag3PO4 and cube-Cu2O composites supported on carbon in 

different proportions; mass-specific activity of (d) tetrahedron-, (e) rhombic 

dodecahedron-, (f) cube-Ag3PO4 and cube-Cu2O hybrid catalysts supported on carbon 

in different proportions.  
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Figure S4 ORR polarization curves of cube-Cu2O/C sample versus rhombic 

dodecahedron-Ag3PO4/cube-Cu2O/C catalyst.  
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Figure S5 (a) ORR polarization curves and (b) mass-specific activity of 

Ag3PO4/TiO2/C in different mass ratio. (The rhombic dodecahedral Ag3PO4 and 

commercial TiO2 nanocrystals were selected to obtain the hybrid materials.) 
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Figure S6 (a) XPS spectra in the Ag 3d regions for rhombic dodecahedron-Ag3PO4 and 

rhombic dodecahedron-Ag3PO4/cube-Cu2O; (b) XPS spectra in the Cu 2p regions for 

cube-Cu2O and rhombic dodecahedron-Ag3PO4/cube-Cu2O. 
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Figure S7 A schematic diagram of the energy band structure and expected electron 

transfer behavior at the interface of TiO2 and Ag3PO4. 
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Table S1. Mass-specific ORR activity of catalysts for tetrahedron-Ag3PO4 

system* 

Sample Mass activity[mA/mgAg3PO4] Mass activity[mA/mgAg] 

Ag3PO4:C=1:4 38.51 49.82 

Ag3PO4:Cu2O:C=1:0.1:4 47.69 61.69 

Ag3PO4:Cu2O: C=1:0.125:4 76.76 99.30 

Ag3PO4:Cu2O:C=1:0.25:4 55.51 71.81 

Ag3PO4:Cu2O:C=1:0.5:4 50.64 65.51 

Ag3PO4:Cu2O:C=1:1:4 46.88 60.65 

*The calculation method of mass-specific ORR activity is the same as the method used in our 

previous work.[1]
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Table S2. Mass-specific ORR activity of catalysts for the rhombic dodecahedron-

Ag3PO4 system* 

Sample Mass activity[mA/mgAg3PO4] Mass activity[mA/mgAg] 

Ag3PO4:C=1:4 13.29 17.20 

Ag3PO4:Cu2O:C=1:0.1:4 50.64 65.51 

Ag3PO4:Cu2O: C=1:0.125:4 84.88 109.80 

Ag3PO4:Cu2O:C=1:0.25:4 80.64 104.32 

Ag3PO4:Cu2O:C=1:0.5:4 77.42 100.15 

Ag3PO4:Cu2O:C=1:1:4 55.12 71.31 

*The calculation method of mass-specific ORR activity is the same as the method used in our 

previous work.[1]
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Table S3. Mass-specific ORR activity of catalysts for cube-Ag3PO4 system* 

Sample Mass activity[mA/mgAg3PO4] Mass activity[mA/mgAg] 

Ag3PO4:C=1:4 8.52 11.02 

Ag3PO4:Cu2O:C=1:0.1:4 33.74 43.64 

Ag3PO4:Cu2O: C=1:0.125:4 55.61 71.95 

Ag3PO4:Cu2O:C=1:0.25:4 40.27 52.10 

Ag3PO4:Cu2O:C=1:0.5:4 37.94 49.08 

Ag3PO4:Cu2O:C=1:1:4 34.76 44.96 

*The calculation method of mass-specific ORR activity is the same as the method used in our 

previous work.[1] 
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