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Let M be the basic set theory that consists of the axioms of extensionality, emptyset, pair, union, powerset,
infinity, transitive containment, ∆0-separation and set foundation. This paper studies the relative strength
of set theories obtained by adding fragments of the set-theoretic collection scheme to M. We focus on two
common parameterisations of the collection: Πn-collection, which is the usual collection scheme restricted to
Πn-formulae, and strong Πn-collection, which is equivalent to Πn-collection plus Σn+1-separation. The main
result of this paper shows that for all n ≥ 1,

(1) M + Πn+1-collection + Σn+2-induction on ω proves that there exists a transitive model of Zermelo Set
Theory plus Πn-collection,

(2) the theory M + Πn+1-collection is Πn+3-conservative over the theory M + strong Πn-collection.

It is also shown that (2) holds for n = 0 when the Axiom of Choice is included in the base theory. The final
section indicates how the proofs of (1) and (2) can be modified to obtain analogues of these results for theories
obtained by adding fragments of collection to a base theory (Kripke-Platek Set Theory with Infinity plus V=L)
that does not include the powerset axiom.
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1 Introduction

In [7], Mathias systematically studies and compares a variety of subsystems of ZFC. One of the weakest systems
studied in [7] is the set theory M axiomatised by: extensionality, emptyset, pair, union, powerset, infinity, transi-
tive containment, ∆0-separation and set foundation. This paper will expand upon some of the initial comparisons
of extensions of M achieved in [7] by studying the strengths of extensions of M obtained by adding fragments
of the set-theoretic collection scheme. The fragments of the collection scheme considered in this paper will be
obtained by restricting the following alternative versions of the collection scheme to the Takahashi class ∆℘

0 and
the Lévy Πn classes:

For all formulae ϕ(x, y, ~z) in the language of set theory,

∀~z∀w((∀x ∈ w)∃yϕ(x, y, ~z)⇒ ∃C(∀x ∈ w)(∃y ∈ C)ϕ(x, y, ~z)).
(Collection)

For all formulae ϕ(x, y, ~z) in the language of set theory,

∀~z∀w∃C(∀x ∈ w)(∃yϕ(x, y, ~z)⇒ (∃y ∈ C)ϕ(x, y, ~z)).
(Strong Collection)

Both Collection and Strong Collection yield ZF when added to M. In § 2, we note that, over M, the restriction
of the Strong Collection scheme to Πn-formulae (strong Πn-collection) is equivalent to the restriction of the
Collection scheme to Πn-formulae (Πn-collection) plus separation for all Σn+1-formulae. This means that M
plus Πn+1-collection proves all instances of strong Πn-collection.

One of the many achievements of [7] is showing that if M is consistent, then so is M plus the Axiom of Choice
and strong ∆0-collection. In § 3, we investigate the strength of adding ∆℘

0 -collection to four of the weak set
theories studied in [7]. We show that if T is one of the theories M, Mac, M + H or MOST, then T plus ∆℘

0 -
collection is Π℘

2 -conservative over T . As a consequence, we are able to extend the consistency results of [7] by
showing that if M is consistent, then so is M plus the Axiom of Choice plus Π1-collection.
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2 Z. McKenzie: On the relative strengths of fragments of collection

The results of [7] also show that the theory obtained by adding strong Π1-collection to M is strictly stronger
than M. More specifically, M plus strong Π1-collection proves the consistency of Zermelo Set Theory plus
∆0-collection. This result and the main result of § 3 are generalised in § 4 to show: For all n ≥ 1,

(1) M plus Πn+1-collection and the scheme of induction on ω restricted to Σn+2-formulae proves that there
exists a transitive model of Zermelo Set Theory plus Πn-collection,

(2) the theory M + Πn+1-collection is Πn+3-conservative over the theory M + strong Πn-collection.

These comparisons are achieved using techniques, developed by Pino and Ressayre in [8] (cf. also [4]), for
building models of fragments of the collection scheme from chains of partially elementary submodels of the
universe indexed by an ordinal, or a cut of a nonstandard ordinal, of a model of set theory.

Finally, in § 5 we consider replacing the base theory M by a theory, Kripke-Platek Set Theory with the Axiom
of Infinity (KPI) plus V=L, that does not include the powerset axiom. We indicate how the arguments in § 4 can
be adapted to obtain the following analogues of (1) and (2) above: For all n ∈ ω,

(1) KPI + V=L + Πn+1-collection and the scheme of induction on ω restricted to Σn+2-formulae proves that
there exists a transitive model of the theory KPI + V=L + strong Πn-collection, and full class foundation,

(2) the theory KPI + V=L + Πn+1-collection is Πn+3-conservative over the theory KPI + V=L + strong
Πn-collection.

2 Background

Throughout this paper L will denote the language of set theory. Structures will usually be denoted using upper-
case calligraphy roman letters (M,N , . . .) and the corresponding plain font letter (M,N, . . .) will be used to
denote the underlying set of that structure. IfM is a structure, then we shall use L(M) to denote the language
ofM. IfM is an L′-structure where L′ ⊇ L and a ∈ M then we shall use a∗ to denote the class {x ∈ M |
M |= (x ∈ a)}. As usual ∆0(= Σ0 = Π0),Σ1,Π1, . . . will be used to denote the Lévy classes of L-formulae,
and we use Π∞ to denote the union of all of these classes (i.e., Π∞ =

⋃
n∈ω Σn =

⋃
n∈ω Πn). For all n ∈ ω,

∆n is the class of all formulae that are provably equivalent to both a Σn formula and a Πn formula. We shall
also have cause to consider the class ∆℘

0 , which is the smallest class of L-formulae that contains all atomic
formulae, contains all compound formulae formed using the connectives of first-order logic, and is closed under
quantification in the form Qx ∈ y and Qx ⊆ y where x and y are distinct variables, and Q is ∃ or ∀. The classes
Σ℘1 ,Π

℘
1 ,∆

℘
1 , . . . are defined inductively from the class ∆℘

0 in the same way that the classes Σ1,Π1,∆1, . . . are
defined from ∆0. If Γ is a class of formulae and T is a theory, then we write ΓT for the class of formulae that
are provably equivalent in T to a formula in Γ. If Γ is a class of formulae, then we use Bool(Γ) to denote the
smallest class of formulae that contains Γ, and contains all compound formulae formed using the connectives of
first-order logic. Note that for all n ∈ ω, Bool(Σn)∅ = Bool(Πn)∅ and Bool(Σ℘n)∅ = Bool(Π℘

n)∅. If Γ is a
class of formulae, then we write ¬Γ for the class of negations of formulae in Γ. So, for all n ∈ ω, (¬Σn)∅ = Π∅

n ,
(¬Πn)∅ = Σ∅

n , (¬Σ℘n)∅ = (Π℘
n)∅, and (¬Π℘

n)∅ = (Σ℘n)∅. Let T be an L′-theory and let S be L′′-theory where
L′ ⊆ L′′, and let Γ be a class of L′-formulae. The theory S is said to be Γ-conservative over T if S and T prove
the same Γ-sentences.

LetM and N be L-structures. IfM is a substructure of N then we shall writeM ⊆ N . If Γ is a class of
L-formulae then we shall writeM ≺Γ N ifM ⊆ N and for every ~a ∈ M , ~a satisfies the same Γ-formulae in
bothM and N . In the case that Γ is Π∞ or Σn then we shall abbreviate this notation by writingM ≺ N and
M≺n N respectively. IfM⊆ N and for all x ∈M and y ∈ N ,

if N |= (y ∈ x) then y ∈M,

then we say that N is an end-extension of M and write M ⊆e N . It is well-known that if M ⊆e N then
M≺0 N . The following is a slight generalisation of the notion of a powerset preserving end-extension that was
first studied by Forster and Kaye in [2].

Definition 2.1 LetM and N be L-structures. We say that N is a powerset preserving end-extension ofM,
and writeM⊆℘e N if
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(i) M⊆e N ,

(ii) for all x ∈ N and for all y ∈M , if N |= (x ⊆ y), then x ∈M .

Just as end-extensions preserve ∆0 properties, powerset preserving end-extensions preserve ∆℘
0 properties.

The following is a slight modification of a result proved in [2]:
Lemma 2.2 LetM and N be L-structures that satisfy extensionality. IfM⊆℘e N , thenM≺∆℘

0
N .

Let Γ be a class of L-formulae. The following define the restriction of some commonly encountered axiom
and theorem schemes of ZFC to formulae in the class Γ:

For all ϕ(x, ~z) ∈ Γ, ∀~z∀w∃y∀x(x ∈ y ⇐⇒ (x ∈ w) ∧ ϕ(x, ~z)). (Γ-separation)

For all ϕ(x, y, ~z) ∈ Γ, ∀~z∀w((∀x ∈ w)∃yϕ(x, y, ~z)⇒ ∃C(∀x ∈ w)(∃y ∈ C)ϕ(x, y, ~z)).
(Γ-collection)

For all ϕ(x, y, ~z) ∈ Γ, ∀~z∀w∃C(∀x ∈ w)(∃yϕ(x, y, ~z)⇒ (∃y ∈ C)ϕ(x, y, ~z)).
(strong Γ-collection)

For all ϕ(x, ~z) ∈ Γ, ∀~z(∃xϕ(x, ~z)⇒ ∃y(ϕ(y, ~z) ∧ (∀x ∈ y)¬ϕ(x, ~z))). (Γ-foundation)

If Γ = {x ∈ z} then we shall refer to Γ-foundation as set foundation.

For all ϕ(x, ~z) ∈ Γ, ∀~z(ϕ(∅, ~z) ∧ (∀n ∈ ω)(ϕ(n, ~z)⇒ ϕ(n+ 1, ~z))⇒ (∀n ∈ ω)ϕ(n, ~z)).
(Γ-induction on ω)

We shall use
⋃
x ⊆ x to abbreviate the ∆0-formula that says that x is transitive ((∀y ∈ x)(∀z ∈ y)(z ∈ x)). We

shall also make reference to the following axioms:

∀u∃T
(⋃

T ⊆ T ∧ ∀z(
⋃
z ⊆ z ∧ |z| ≤ |u| ⇒ z ⊆ T )

)
. (H)

∀x∃y
(⋃

y ⊆ y ∧ x ⊆ y
)
. (TCo)

The following weak subsystems of ZFC are studied by Mathias in [7]:

(1) S1 is the L-theory with axioms: extensionality, emptyset, pair, union, set difference, and powerset.

(2) M is obtained from S1 by adding TCo, infinity, ∆0-separation, and set foundation.

(3) Mac is obtained from M by adding the axiom of choice.

(4) M + H is obtained from M by adding H.

(5) KPI is obtained from M by removing powerset, and adding ∆0-collection and Π1-foundation.

(6) KP℘ is obtained from M by adding ∆℘
0 -collection and Π℘

1 -foundation.

(7) MOST is obtained from Mac by adding Σ1-separation and ∆0-collection.

(8) Z is obtained from M by removing TCo, and adding Π∞-separation.

(9) ZC is obtained from Z by adding the axiom of choice.

In addition to these theories, we shall also use MOST−AC to refer to the theory obtained by removing the axiom
of choice from MOST, and M− to refer to the theory obtained by removing the powerset axiom from M. ZF and
ZFC are obtained by adding Π∞-collection (or, equivalently, strong Π∞-collection) to M and Mac respectively.

We begin by collecting together some well-known relationships between fragments of induction, separation,
collection, and strong collection over the weak base theory M−.

Lemma 2.3 Let Γ be a class of L-formulae. Let n ∈ ω.

Copyright line will be provided by the publisher
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4 Z. McKenzie: On the relative strengths of fragments of collection

(1) M− + Γ-foundation ` ¬Γ-induction on ω;

(2) M− + Γ-separation ` Bool(Γ)-separation;

(3) M− + Γ-separation ` Γ-foundation;

(4) M− + [strong] Π
(℘)
n -collection ` [strong] Σ

(℘)
n+1-collection; and

(5) M− + Πn-collection ` ∆n+1-separation.

Another well-known application of Πn-collection is that, over M−, this scheme implies that the classes Σn+1

and Πn+1 are essentially closed under bounded quantification.
Lemma 2.4 Letϕ(x, ~z) be a Σn+1-formula, and letψ(x, ~z) be a Πn+1-formula. The theory M−+Πn-collection

proves that (∀x ∈ y)ϕ(x, ~z) is equivalent to a Σn+1-formula, and (∃x ∈ y)ψ(x, ~z) is equivalent to a Πn+1-
formula.

We also observe that for all n ∈ ω, strong Πn-collection is equivalent, over M−, to Πn-collection plus Σn+1-
separation. The following lemma generalises one of the equivalences reported in [7, Proposition 3.14].

Lemma 2.5 For all n ∈ ω,

(1) M− + strong Πn-collection ` Πn-collection + Σn+1-separation

(2) M− + Πn-collection + Σn+1-separation ` strong Πn-collection.

P r o o f. We first prove (1). The fact that M− + strong Πn-collection proves the scheme of Πn-collection is
clear. We need to prove that M− + strong Πn-collection proves the scheme of Σn+1-separation. It immediately
follows from Lemma 2.3 that M− + strong Πn-collection proves the scheme of strong Σn+1-collection and Πn-
separation. Work in the theory M− + strong Πn-collection. Consider ∃yϕ(y, x, ~z) where ϕ(y, x, ~z) is Πn. Let
~a, b be sets. By strong Πn-collection, there exists a set C such that

(∀x ∈ b)(∃yϕ(y, x,~a)⇒ (∃y ∈ C)ϕ(y, x,~a)).

Therefore, using Lemma 2.4 and Πn-separation, A = {x ∈ b | ∃yϕ(y, x,~a)} = {x ∈ b | (∃y ∈ C)ϕ(y, x,~a)} is
a set. This completes the proof of (1).

We turn our attention to (2). Work in the theory M− + Πn-collection + Σn+1-separation. Let ϕ(x, y, ~z)
be a Πn-formula, and let ~a, b be sets. Now, Σn+1-separation implies that A = {x ∈ b | ∃yϕ(x, y,~a)} is a
set. And, (∀x ∈ A)∃yϕ(x, y,~a) holds. Therefore, we can apply Πn-collection to obtain a set C such that
(∀x ∈ A)(∃y ∈ C)ϕ(x, y,~a) holds. It now follows from the definition of A that

(∀x ∈ b)(∃yϕ(x, y,~a) implies (∃y ∈ C)ϕ(x, y,~a)).

This completes the proof of (2).

Corollary 2.6 MOST (MOST−AC) is the same theory as Mac+strong ∆0-collection (M+strong ∆0-collection).
Sufficiently rich set theories such as M and KPI allow us to express satisfaction in set structures. The following

can be found in [6] and [1, § III.1]:
Lemma 2.7 In the theory KPI, ifM is a set structure, ~a is sequence of sets, and ϕ is an L(M)-formula in

the sense of the model whose arity agrees with the length of ~a, then the predicate “M |= ϕ[~v/~a]” is definable by
a ∆1-formula.

It is noted in [7] that when powerset is present the recursions involved in the definition of satisfaction can be
contained in sets even without any collection. The following is a consequence [7, Proposition 3.10]:

Lemma 2.8 In the theory M, ifM is a set structure, ~a is sequence of sets, and ϕ is an L(M)-formula in the
sense of the model whose arity agrees with the length of ~a, then the predicate “M |= ϕ[~v/~a]” is definable and
{〈pϕq,~a〉 | ~a ∈M ∧M |= ϕ(~a)} is a set.

Equipped with these results, we can now define formulae that, in the theories KPI and M, express satisfaction
in the universe for the Lévy classes of L-formulae.

Copyright line will be provided by the publisher
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Definition 2.9 Define Sat∆0
(n, x) to be the formula

(n ∈ ω) ∧ (n = pϕ(v1, . . . , vm)q where ϕ is ∆0) ∧ (x = 〈x1, . . . , xm〉)∧

∃N
(⋃

N ⊆ N ∧ (x1, . . . , xm ∈ N) ∧ (〈N,∈〉 |= ϕ[x1, . . . , xm])
)
.

The absoluteness of ∆0 properties between transitive structures and the universe, and the availability of TCo
in KPI implies that the formula Sat∆0

is equivalent, in the theory KPI, to the formula

(n ∈ ω) ∧ (n = pϕ(v1, . . . , vm)q where ϕ is ∆0) ∧ (x = 〈x1, . . . , xm〉)∧

∀N
(⋃

N ⊆ N ∧ (x1, . . . , xm ∈ N)⇒ (〈N,∈〉 |= ϕ[x1, . . . , xm])
)
.

Therefore, Lemma 2.7 implies that Sat∆0
(n, x) is ∆KPI

1 , and Sat∆0
(n, x) expresses satisfaction for ∆0-formulae

in the theories KPI and M. We can now inductively define formulae SatΣm
(n, x) and SatΠm

(n, x) that express
satisfaction for formulae in the classes Σm and Πm.

Definition 2.10 The formulae SatΣm(n, x) and SatΠm(n, x) are defined inductively. Define SatΣm+1(n, x)
to be the formula

∃~y∃k∃b
(

(n = p∃~uϕ(~u, v1, . . . , v`)q where ϕ is Πm) ∧ (x = 〈x1, . . . , x`〉)

∧ (b = 〈~y, x1, . . . , x`〉) ∧ (k = pϕ(~u, v1, . . . , v`)q) ∧ SatΠm
(k, b)

)
.

Define SatΠm+1
(n, x) to be the formula

∀~y∀k∀b
(

(n = p∀~uϕ(~u, v1, . . . , v`)q where ϕ is Σm) ∧ (x = 〈x1, . . . , x`〉)

∧ ((b = 〈~y, x1, . . . , x`〉) ∧ (k = pϕ(~u, v1, . . . , v`)q) ⇒ SatΣm
(k, b))

)
.

The formula SatΣm
(n, x) (respectively SatΠm

(n, x)) is ΣKPI
m (ΠKPI

m , respectively), and, in the theories KPI
and M, expresses satisfaction for Σm-formulae (Πm-formulae, respectively).

Another important feature of the theory KPI is its ability to construct L. The following can be found in [6]
and [1, Chapter II]:

Theorem 2.11 (KPI) The function α 7→ Lα, where α is an ordinal, is total and ∆1.

As is usual, we use V=L to abbreviate the expression that says that every set is the member of some Lα
(∀x∃α((α is an ordinal ∧ (x ∈ Lα)))).

We now turn to noting some of the properties of the theories M, Mac, M + H and MOST that are established
in [7]. The following useful fact is a consequence of [1, Theorem I.6.1.]:

Lemma 2.12 The theory KPI proves TCo.

We also record the following consequence of [7, Theorem Scheme 6.9(i)]:
Theorem 2.13 The theory M proves all instances of ∆℘

0 -separation.

[7, § 2] shows that by considering classes of well-founded extensional relations in a model of M one can obtain
a model of M + H.

Theorem 2.14 (Mathias) If M is consistent, then so is M + H.

[7, § 3] establishes a variety of consequences of H over the theories M and Mac. A key observation of this
section is that the theory MOST is exactly Mac + H.

Lemma 2.15 MOST is the same theory as Mac + H.

The following useful consequences of the theory MOST (= Mac + strong ∆0-collection) are also proved in
[7, § 3]:

Lemma 2.16 The theory MOST proves

Copyright line will be provided by the publisher
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6 Z. McKenzie: On the relative strengths of fragments of collection

(i) every well-ordering is isomorphic to an ordinal,

(ii) every well-founded extensional relation is isomorphic to a transitive set,

(iii) for all cardinals κ, κ+ exists,

(iv) for all cardinals κ, Hκ exists.

[7, § 4] establishes that the theory M + H is capable of building Gödel’s L. Combined with Theorems 2.14 &
2.15 this yields that following consistency result:

Theorem 2.17 (Mathias; [7, Theorem 1]) If M is consistent, then so is MOST + V=L.

The classes ∆℘
0 , Σ℘1 , Π℘

1 , . . . are introduced and studied by Takahashi in [10] where it is shown that for all
n ≥ 1, (Σ℘n)ZFC = ΣZFC

n+1, (Π℘
n)ZFC = ΠZFC

n+1, and (∆℘
n)ZFC = ∆ZFC

n+1. The following calibration of Takahashi’s
result appears as [7, Proposition Scheme 6.12]:

Lemma 2.18 (Takahashi) Σ1 ⊆ (∆℘
1 )MOST and ∆℘

0 ⊆ ∆S1
2 .

This yields the following refined version of [10, Theorem 6]:

Theorem 2.19 (Takahashi) For all n ≥ 1, Σn+1 ⊆ (Σ℘n)MOST, Πn+1 ⊆ (Π℘
n)MOST, ∆n+1 ⊆ (∆℘

n)MOST,
Σ℘n ⊆ ΣS1

n+1, Π℘
n ⊆ ΠS1

n+1, and ∆℘
n ⊆ ∆S1

n+1.

Lemmas 2.3 & 2.5 and Theorem 2.19 now show:

Corollary 2.20 The theory M + strong Π1-collection proves every axiom of KP℘.

In [7], Mathias proves a Σ℘1 -Recursion Theorem in the theory KP℘. The following appear as [7, Lemma 6.25
& Theorem 6.26]:

Lemma 2.21 If F is a total Σ℘1 -definable class function, then the formula y = F (x) is ∆℘
1 .

Theorem 2.22 (KP℘) Let G be a Σ℘1 -definable class. If G is a total function, then there exists a Σ℘1 -definable
total class function F such that for all x, F (x) = G(F �x).

The fact that we have access to Theorem 2.22 in the theory M + strong Π1-collection yields:

Corollary 2.23 The theory M + strong Π1-collection proves that for all ordinals α, Vα is a set. Moreover,
the formula “x = Vα” with free variables x and α is equivalent to a ∆℘

1 -formula.

Results proved in [7] also reveal that the theory M + strong Π1-collection is capable of proving the consis-
tency of Zermelo Set Theory plus ∆0-collection. Mathias [7, Lemma 6.31] shows that the theory obtained by
strengthening KP with an axiom that asserts the existence of Vα for every ordinal α is capable of proving the
consistency of Z. The fact that KP℘ is equipped with enough recursion to prove the existence of Vα for every α
[7, Proposition 6.28] thus yields:

Theorem 2.24 (Mathias) The theory KP℘ proves that there exists a transitive model of Z.

Mathias [7, Theorem 5] also shows that all of the axioms of KP plus V=L can be consistently added to Z. In
particular:

Theorem 2.25 (Mathias) If Z is consistent, then so is Z + ∆0-collection + V=L.

Theorems 2.24 & 2.25 now yield:

Corollary 2.26 KP℘ ` Con(Z + ∆0-collection + V=L).

3 The strength of ∆℘
0 -collection

In this section we investigate the strength of adding ∆℘
0 -collection to subsystems of set theory studied in [7]. We

show that if T is one of the theories M, M+H, Mac or MOST, then the theory obtained by adding ∆℘
0 -collection

to T is Π℘
2 -conservative over T . Combined with Theorems 2.17 & 2.19, this shows that if M is consistent, then

so is MOST + Π1-collection. If u is a set, then we shall use H≤|u| to denote the set {x | |TC({x})| ≤ |u|}.
Lemma 3.1 The theory M + H proves that for all sets u, H≤|u| exists.

Copyright line will be provided by the publisher
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P r o o f. Work in the theory M + H. Let u be a set. Using H, let T be a set such that

∀z
(⋃

z ⊆ z ∧ |z| ≤ |u| ⇒ z ⊆ T
)
.

Note that if x is a set such that |TC({x})| ≤ |u|, then TC({x}) ⊆ T and so x ∈ T . Moreover, if |TC({x})| ≤
|u|, then TC({x}) ∈ ℘(T ) and the injection witnessing |TC({x})| ≤ |u| is in ℘(T×u). Therefore ∆0-separation
implies that H≤|u| exists.

The following is immediate from the definition of H≤|u|:
Lemma 3.2 The theory M + H proves that if u, x, y are sets, then

(i) if x ∈ y ∈ H≤|u|, then x ∈ H≤|u|, and

(ii) if x ⊆ y ∈ H≤|u|, then x ∈ H≤|u|.

Definition 3.3 Let n ∈ ω and let u be a set. We say that f is an n-good |u|-H-approximation if

(i) f is a function and dom(f) = n+ 1,

(ii) f(∅) = H≤|u|,

(iii) (∀k ∈ n+ 1)∃v(f(k) = H≤|v|), and

(iv) (∀k ∈ n)(f(k) ∈ f(k + 1)).

We first observe that in any model of M + H there exists an n-good |u|-H-approximation for every externally
finite n and every set u in the model.

Lemma 3.4 Let n ∈ ω. IfM |= M + H and u ∈M , thenM |= ∃f(f is an n-good |u|-H-approximation).

P r o o f. Let M = 〈M,∈M〉 be such that M |= M + H and let u ∈ M . We prove, by external induction
on ω, that for all n ∈ ω, M |= ∃f(f is an n-good |u|-H-approximation). It follows from Lemma 3.1 that
M |= ∃f(f is a 0-good |u|-H-approximation). Suppose that the lemma is false, and k ∈ ω is least such that
M |= ¬∃f(f is a (k+1)-good |u|-H–approximation). Work insideM. Let f be a k-good |u|-H-approximation.
Let v = f(k) ∪ {f(k)}. It follows from Definition 3.3(iii) & Lemma 3.2 that v = TC({f(k)}). Therefore
g = f ∪ {〈k + 1,H≤|v|〉} is a (k + 1)-good |u|-H-approximation, which is a contradiction.

In the proof of the following result we obtain models of ∆℘
0 -collection by considering a cut of an n-good |u|-

H-approximation of nonstandard length. This idea of obtaining “more” collection from a cut of a nonstandard
model of set theory also appears in Ressayre’s work on limitations of extensions of Kripke-Platek Set Theory [8]
(cf. also [4]) and Friedman’s work [3] on the standard part of countable non-standard models of set theory.

Theorem 3.5 (i) The theory M + H + ∆℘
0 -collection is Π℘

2 -conservative over the theory M + H.

(ii) The theory MOST + Π1-collection is Π3-conservative over the theory MOST.

P r o o f. To prove (i) it is sufficient to show that every Σ℘2 -sentence that is consistent with M + H is also
consistent with M+H+∆℘

0 -collection. Suppose that ∃~x∀~yϑ(~x, ~y), where ϑ(~x, ~y) is a ∆℘
0 -formulae, is consistent

with M+H. LetM = 〈M,∈M〉 be a recursively saturated model of M+H+ ∃~x∀~yϑ(~x, ~y). Let ~a ∈M be such
M |= ∀~yϑ(~a, ~y) and let u ∈M be such that ~a ∈ u. Consider the type

Ξ(x, u) = {x ∈ ω} ∪ {x > n | n ∈ ω} ∪ {∃f(f is an x-good u-H-approximation)}.

By Lemma 3.4, Ξ(x, u) is finitely realised in any model of M + H, and so there exists k ∈ M such that Ξ(k, u)
is satisfied inM. Note that k is a nonstandard element of ωM. Let f ∈M be such that

M |= (f is a k-good u-H-approximation).

Define N = 〈N,∈N 〉 by N =
⋃
n∈ω f(nM)∗ and ∈N is the restriction of ∈M to N . We claim that N satisfies

M + H + ∆℘
0 -collection + ∃~x∀~yϑ(~x, ~y). Note thatN ⊆℘e M and ~a ∈ N , soN |= ∃~x∀~yϑ(~x, ~y). Let x ∈ N . Let

Copyright line will be provided by the publisher
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8 Z. McKenzie: On the relative strengths of fragments of collection

n ∈ ω be such thatM |= (x ∈ f(nM)). ThereforeM |= (℘(x) ⊆ f(nM)) and f(nM) ∈ (f((n + 1)M))∗ ⊆
N . It now follows from Definition 3.3 that ℘M(x) ∈ N . Therefore N |= (powerset) and for all x ∈ N ,
℘N (x) = ℘M(x). It is now clear that N |= M.

We turn to showing that H holds in N . Let u ∈ N . Let n ∈ ω be such that u ∈ f(nM)∗. By Definition 3.3,
there exists v ∈M such thatM |= (f(nM) = H≤|v|), and soM |= (|u| ≤ |v|). Now, working insideN , if z is
transitive with |z| ≤ |u|, then |z| ≤ |v| and so z ∈ f(nM). Therefore

N |= ∀z
(⋃

z ⊆ z ∧ |z| ≤ |u| ⇒ z ∈ f(nM)
)

and so H holds in N .
We are left to show that N satisfies ∆℘

0 -collection. We make use of the following property of N :
Claim 3.6 If C ∈M and C∗ ⊆ N , then C ∈ N .

P r o o f o f C l a i m 3.6. Suppose, for a contradiction, that C ∈ M , C∗ ⊆ N and C /∈ N . Note that
if n ∈ k∗ is nonstandard, then C∗ ⊆ f(n)∗ andM |= (C ∈ f(n + 1)). Therefore, working insideM, the set
A = {n ∈ k | C /∈ f(n)} defines the standard ω, which is a contradiction.

Now, let ϕ(x, y, ~z) be a ∆℘
0 -formula. Let ~d, b ∈ N be such that N |= (∀x ∈ b)∃yϕ(x, y, ~d). The following

formula is a ∆℘
0 -formula with parameters ~d, k and f :

ϕ(x, y, ~d) ∧ (∀n ∈ k)(y /∈ f(n)⇒ ¬(∃w ∈ f(n))ϕ(x,w, ~d)).

So, by ∆℘
0 -absoluteness,

M |= (∀x ∈ b)(∃y ∈ f(k))(ϕ(x, y, ~d) ∧ (∀n ∈ k)(y /∈ f(n)⇒ ¬(∃w ∈ f(n))ϕ(x,w, ~d))).

Working insideM, ∆℘
0 -separation (Theorem 2.13) implies that

C = {〈x, y〉 ∈ b× f(k) | ϕ(x, y, ~d) ∧ (∀n ∈ k)(y /∈ f(n)⇒ ¬(∃w ∈ f(n))ϕ(x,w, ~d))

is a set. And ∆℘
0 -absoluteness implies that C∗ ⊆ N . Therefore C ∈ N . Working insideN , let B = rng(C). So,

N |= (∀x ∈ b)(∃y ∈ B)ϕ(x, y, ~d),

which shows that N |= ∆℘
0 -collection.

To see that (ii) holds observe that if the Axiom of Choice holds inM in the proof of (i), then it also holds in
N . It then follows from Theorem 2.19 that N also satisfies Π1-collection, and we get Π3-conservativity.

Theorem 3.5 combined with Theorems 2.17 shows that the consistency M implies the consistency of MOST+
Π1-collection.

Corollary 3.7 If M is consistent, then so is MOST + Π1-collection (= Mac + Π1-collection).

The argument used in the proof of Theorem 3.5 can also be used to show that that the theories M+∆℘
0 -collection

and Mac+∆℘
0 -collection are Π℘

2 -conservative over the theories M and Mac, respectively. To see this we introduce
a modification of Definition 3.3:

Definition 3.8 Let n ∈ ω and let u be a set. We say that f is an n-good u-℘-approximation if

(i) f is a function and dom(f) = n+ 1,

(ii) f(∅) = TC(u), and

(iii) (∀k ∈ n)(f(k + 1) = ℘(f(k))).

An n-good u-℘-approximation is a sequence ℘(v), ℘(℘(v)), . . . where v is the transitive closure of u. The
same argument that was used to prove Lemma 3.4 shows that in any model of M, any such sequence with
externally finite length is guaranteed to exist.

Copyright line will be provided by the publisher
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Lemma 3.9 Let n ∈ ω. IfM |= M and u ∈M , thenM |= ∃f(f is an n-good u-℘-approximation).

Replacing the n-good |u|-H-approximations in the proof of Theorem 3.5 now shows that adding ∆℘
0 -collection

to M or Mac does not prove any new Π℘
2 -sentences.

Theorem 3.10 (i) The theory M + ∆℘
0 -collection is Π℘

2 -conservative over the theory M.

(ii) The theory Mac + ∆℘
0 -collection is Π℘

2 -conservative over the theory Mac.

Theorems 3.5 & 3.10 highlight a mistake in the final sentence of [7, Metatheorem 9.41] and the final clause,
starting after the colon, of [7, Theorem 16] (which paraphrases [7, Metatheorem 9.41]). This erroneous assertion
is used by the author in [5] to claim that the theory Mac + ∆℘

0 -collection represents a new lower-bound on the
consistency strength of the theory NFU+AxCount≤. Theorem 3.5 now shows that Mac+∆℘

0 -collection does not
represent an improvement on previously known lower-bounds on the consistency strength of NFU+ AxCount≤.

4 The strength of Πn-collection over M

In this section we generalise and expand upon Theorem 3.5 to show for all n ≥ 1,

(1) the theory M + Πn+1-collection is Πn+3-conservative over the theory M + strong Πn-collection,

(2) the theory M + Πn+1-collection + Σn+2-induction on ω proves that there exists a transitive model of Z +
Πn-collection.

The main tool used in the proof of these results will be the following modification and generalisation of Definition
3.3:

Definition 4.1 Let n,m ∈ ω, and let α be an ordinal. We say that f is an n-good 〈m + 1, α〉-submodel
approximation if

(i) f is a function and dom(f) = n+ 1,

(ii) f(∅) = Vα,

(iii) (∀k ∈ n+ 1)∃β((β is an ordinal) ∧ f(k) = Vβ),

(iv) (∀k ∈ n)(∀` ∈ ω)(∀a ∈ f(k + 1))((〈f(k + 1),∈〉 |= SatΠm
(`, a))⇒ SatΠm

(`, a)), and

(v) (∀k ∈ n)(∀` ∈ ω)(∀a ∈ f(k))(SatΣm+1
(`, a)⇒ (〈f(k + 1),∈〉 |= SatΣm+1

(`, a))).

An n-good 〈m+1, α〉-submodel approximation is a sequence 〈Vβ0
, . . . ,Vβn

〉 such that Vβ0
= Vα (condition

(ii)), for all 0 ≤ ` < k, β` ≤ βk (condition (v) applied to the Σ1-formula “∃v(a ∈ v)”), each Vβk
(1 ≤ k ≤ n) is

a Πm-elementary submodel of the universe (condition (iv)), each Vβk+1
satisfies the same Σm+1-formulae with

parameters from Vβk
as the universe (condition (v)). Note that if an infinite sequence 〈Vβ0 ,Vβ1 , . . .〉 is such that

for every n ∈ ω, the first n+ 1 elements of this sequence form an n-good 〈m+ 1, α〉-submodel approximation,
then

⋃
n∈ωVβn

is a Πm+1-elementary submodel of the universe.
We make the following observations about the complexity of Definition 4.1:

(1) The formula “f is a function and dom(f) = n+ 1” is ∆0 with parameters f and n.

(2) The formula “f(∅) = Vα” is ∆0 with parameters f and Vα.

(3) The formula “(∀k ∈ n+1)∃β((β is an ordinal)∧f(k) = Vβ)” is both ΣM+strong Π1-collection
2 and (Σ℘1 )M+strong Π1-collection

with parameters f and n.

(4) For all m ∈ ω, the formula

(∀k ∈ n)(∀` ∈ ω)(∀a ∈ f(k + 1))((〈f(k + 1),∈〉 |= SatΠm
(`, a))⇒ SatΠm

(`, a))

is ΠKPI
max(1,m) with parameters f and n.

Copyright line will be provided by the publisher
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10 Z. McKenzie: On the relative strengths of fragments of collection

(5) For all m ∈ ω, the formula

(∀k ∈ n)(∀` ∈ ω)(∀a ∈ f(k))(SatΣm+1
(`, a)⇒ (〈f(k + 1),∈〉 |= SatΣm+1

(`, a)))

is ΠKPI
m+1 with parameters f and n.

In light of these observations we introduce specific notion for the formulae that say that f is an n-good 〈m+1, α〉-
submodel approximation.

Definition 4.2 Let α be an ordinal and let m ∈ ω. We write Ψm(n, f,Vα) for the formula, with free
variables f and n, and parameter Vα, that the theory M+ strong Π1-collection proves asserts that f in an n-good
〈m+1, α〉-submodel approximation, and such that Ψ0(n, f,Vα) is Σ2, Ψ1(n, f,Vα) is Bool(Σ2), and ifm > 1,
Ψm(n, f,Vα) is Πm+1.

Lemma 4.3 The theory M+ strong Π1-collection proves that for all ordinals α and for all n ∈ ω, there exists
an n-good 〈1, α〉-submodel approximation.

P r o o f. Work in the theory M + strong Π1-collection. Let α be an ordinal. We shall use Σ2-induction on ω
to prove (∀n ∈ ω)∃fΨ0(n, f,Vα). It is clear that ∃fΨ0(∅, f,Vα) holds. Let n ∈ ω and suppose that f is such
that Ψ0(n, f,Vα) holds. Let β be the ordinal such that f(n) = Vβ . Consider the Σ1-formula ψ(x, y) defined by

∃z∃a∃`((x = 〈a, `〉) ∧ (z = 〈y, a〉) ∧ (` = pϕ(u, v)q where ϕ is ∆0) ∧ Sat∆0
(`, z)).

Strong Σ1-collection implies that there exists a C such that

(∀x ∈ Vβ × ω)(∃yψ(x, y)⇒ (∃y ∈ C)ψ(x, y)).

Let γ > β be such that C ⊆ Vγ . Therefore, for all ` ∈ ω and for all a ∈ Vβ ,

if SatΣ1
(`, a), then 〈Vγ ,∈〉 |= SatΣ1

(`, a).

It now follows that g = f ∪ {〈n + 1,Vγ〉} satisfies Ψ0(n + 1, g,Vα). The fact that (∀n ∈ ω)∃fΨ0(n, f,Vα)
holds now follows by Σ2-induction on ω.

Lemma 4.4 The theory M+ strong Π1-collection proves that for all ordinals α, there exists a function f with
dom(f) = ω such that for all n ∈ ω, f�(n+ 1) is an n-good 〈1, α〉-submodel approximation.

P r o o f. Work in the theory M + strong Π1-collection. Using Lemma 4.3 and strong Σ2-collection, we can
find a set B such that (∀n ∈ ω)(∃f ∈ B)Ψ0(n, f,Vα) holds. Now, Σ2-separation ensures that D = {f ∈ B |
(∃n ∈ ω)Ψ0(n, f,Vα)} is a set. Let

G =
{
f ∈ D

∣∣∣(∀k ∈ dom(f))(∀g ∈ D)
(

((k ∈ dom(g)) ∧ (g(k) 6= f(k))⇒ f(k) ∈ g(k)
)}
,

which is a set. Now, for all f1, f2 ∈ G, f1 and f2 agree on their common domain. Moreover, a straightforward
internal induction using the fact that Lemma 4.3 holds shows that for all n ∈ ω, (∃f ∈ G)(dom(f) = n + 1)
holds. Therefore g =

⋃
G is a function with domain ω such that for all n ∈ ω, Ψ0(n, g�(n+ 1),Vα) holds.

We can now prove analogues of Lemmas 4.3 & 4.4 for the theories M+Πm-collection+Σm+1-induction on ω
where m ≥ 2.

Lemma 4.5 Let m ≥ 1. The theory M + Πm+1-collection + Σm+2-induction on ω proves

(i) for all ordinals α and for all n ∈ ω, there exists an n-good 〈m+ 1, α〉-submodel approximation,

(ii) for all ordinals α, there exists a function f with dom(f) = ω such that for all n ∈ ω, f�(n+1) is an n-good
〈m+ 1, α〉-submodel approximation.
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P r o o f. We prove this lemma by external induction on m. We begin by proving the induction step. Suppose
that (i) and (ii) of the lemma hold form = p ≥ 1. Work in the theory M+Πp+2-collection+Σp+3-induction on ω.
Let α be an ordinal. We shall use Σp+3-induction on ω to show that (∀n ∈ ω)∃fΨp+1(n, f,Vα) holds. It is
clear that ∃fΨp+1(∅, f,Vα) holds. Let n ∈ ω, and suppose that ∃fΨp+1(n, f,Vα) holds. Let f be such that
Ψp+1(n, f,Vα). Let δ be the ordinal such that f(n) = Vδ . Consider the Σp+2-formula ψ(x, y) defined by

∃z∃a∃`((x = 〈a, `〉) ∧ (z = 〈y, a〉) ∧ (` = pϕ(u, v)q where ϕ is Πp+1) ∧ SatΠp+1
(`, z)).

Strong Σp+2-collection implies that there exists a C such that

(∀x ∈ Vδ × ω)(∃yψ(x, y)⇒ (∃y ∈ C)ψ(x, y)).

Let β > δ be such that C ⊆ Vβ . Now, using (ii) of the induction hypothesis, we can find a function g with
dom(g) = ω such that for all q ∈ ω, Ψp(q, g�(q + 1),Vβ). Now, let γ > β be such that Vγ =

⋃
rng(g). It

follows from (iv) and (v) of Definition (4.1) that for all ` ∈ ω and for all a ∈ Vγ ,

if 〈Vγ ,∈〉 |= SatΠp+1(`, a), then SatΠp+1(`, a).

And, since C ⊆ Vβ ⊆ Vγ , for all ` ∈ ω and for all a ∈ Vδ ,

if SatΣp+2
(`, a), then 〈Vγ ,∈〉 |= SatΣp+2

(`, a).

Therefore, the function h = f∪{〈n+1,Vγ〉} satisfies Ψp+1(n+1, h,Vα). The fact that (∀n ∈ ω)∃fΨp+1(n, f,Vα)
now follows from Σp+3-induction on ω. This completes the induction step for (i). Turning our attention to (ii),
we can use Πp+2-collection to find a set B such that (∀n ∈ ω)(∃f ∈ B)Ψp+1(n, f,Vα). Now, Πp+2-separation
ensures that D = {f ∈ B | (∃n ∈ ω)Ψp+1(n, f,Vα)} is a set. Let

G =
{
f ∈ D

∣∣∣(∀k ∈ dom(f))(∀g ∈ D)
(

(k ∈ dom(g)) ∧ (g(k) 6= f(k))⇒ f(k) ∈ g(k)
)}
.

As in the proof of Lemma 4.4, if f1, f2 ∈ G, then f1 and f2 agree on their common domain, and (∀n ∈
ω)(∃f ∈ G)(dom(f) = n + 1). Therefore, g =

⋃
G is a function with dom(g) = ω such that for all n ∈ ω,

Ψp+1(n, g�(n + 1),Vα) holds. This completes the induction step for (ii). The base case of the induction on
m (m = 1) follows from the same arguments used to prove the induction step with Lemma 4.4 replacing the
induction hypothesis. This completes the proof of the lemma.

Using Lemma 4.5 we can show that for m ≥ 1, M + Πm+1-collection + Σm+2-induction on ω proves that
there exists a transitive model of Z + Πm-collection.

Theorem 4.6 Let m ≥ 1. The theory M + Πm+1-collection + Σm+2-induction on ω proves that there exists
a transitive models of Z + Πm-collection.

P r o o f. Work in the theory M+ Πm+1-collection + Σm+2-induction on ω. By Lemma 4.5(ii), there exists an
f such that dom(f) = ω, and for all n ∈ ω, f�(n+ 1) is an n-good 〈m+ 1, ω〉-submodel approximation. Let β
be an ordinal such that Vβ =

⋃
rng(f). We claim that 〈Vβ ,∈〉 is a set structure that satisfies Z+Πm-collection.

Since β is a limit ordinal > ω, it is immediate that 〈Vβ ,∈〉 satisfies all of the axioms of Z. Let ϕ(x, y, ~z) be a
Πm-formula. Let ~a, b ∈ Vβ . Note that Definition 4.1 implies that Vβ is a Πm+1-elementary submodel of the
universe, and for all n ∈ ω, 〈f(n),∈〉 ≺m 〈Vβ ,∈〉. Let k ∈ ω be such that ~a, b ∈ f(k). Now, it follows from
Definition 4.1(v) that for all x ∈ b,

〈Vβ ,∈〉 |= ∃yϕ(x, y,~a) if and only if 〈Vβ ,∈〉 |= (∃y ∈ f(k + 1))ϕ〈f(k+1),∈〉(x, y,~a)

if and only if 〈Vβ ,∈〉 |= (∃y ∈ f(k + 1))ϕ(x, y,~a).

Therefore

〈Vβ ,∈〉 |= (∀x ∈ b)(∃yϕ(x, y,~a)⇒ (∃y ∈ f(k + 1))ϕ(x, y,~a))

and so 〈Vβ ,∈〉 satisfies strong Πm-collection. Since 〈Vβ ,∈〉 is a transitive set structure, we can conclude that
M+Πm+1-collection+Σm+2-induction on ω proves that there exists a transitive model of Z+Πm-collection.
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We now turn to generalising Theorem 3.5 to show that for all m ≥ 1, the theories M + strong Πm-collection
and M + Πm+1-collection have the same consistency strength. The key ingredient for this result will be the fact
that if m ≥ 1 andM is a model of M + strong Πm-collection, then for every standard natural number n, there
exists an n-good 〈m+ 1, ω〉-submodel approximation inM.

Lemma 4.7 Let m ≥ 1 and let M |= M + strong Πm-collection. For all n ∈ ω and for all α ∈ OrdM,
M |= ∃f(f is an n-good 〈m+ 1, α〉-submodel approximation).

P r o o f. Let α ∈ OrdM. We prove the lemma by external induction on n. It is clear thatM |= ∃f(f is a
0-good 〈m+ 1, α〉-submodel approximation). Suppose that p ∈ ω and f ∈M are such thatM |= (f is a p-good
〈m + 1, α〉-submodel approximation). Work insideM. Let Vδ be the rank such that f(p) = Vδ . Consider the
Πm-formula ψ(x, y) defined by

(x = 〈a, `〉) ∧ (` = pϕ(u, v)q where ϕ is Πm) ∧ SatΠm(`, 〈y, a〉).

Strong Πm-collection implies that there is a set C such that

(∀x ∈ Vδ × ω)(∃yψ(x, y)⇒ (∃y ∈ C)ψ(x, y)).

Let γ > δ be such that C ⊆ Vγ . Using Lemma 4.4 (if m = 1) or Lemma 4.5 (if m > 1), we can find a function
g with dom(g) = ω such that for all k ∈ ω, g�(k+1) is a k-good 〈m, γ〉-submodel approximation. Let β be such
that Vβ =

⋃
rng(g). It follows that for all ` ∈ ω and for all a ∈ Vβ , if 〈Vβ ,∈〉 |= SatΠm(`, a), then SatΠm(`, a).

And, since C ⊆ Vβ , for all ` ∈ ω and for all a ∈ Vδ , if SatΣm+1(`, a), then 〈Vβ ,∈〉 |= SatΣm+1(`, a). There-
fore, h = f ∪ {〈p + 1,Vβ〉} is a p + 1-good 〈m + 1, α〉-submodel approximation. This concludes the proof of
the induction step and the lemma.

We now use a generalisation of the construction used is the proof of Theorem 3.5 to obtain a model M +
Πm+1-collection from a model of M + strong Πm-collection.

Theorem 4.8 Let m ≥ 1.

(i) The theory M + Πm+1-collection is Πm+3-conservative over the theory M + strong Πm-collection.

(ii) The theory Mac + Πm+1-collection is Πm+3-conservative over the theory Mac + strong Πm-collection.

P r o o f. To prove (i) it is sufficient to show that every Σm+3-sentence that is consistent with M+strong Πm-collection
is also consistent with M + Πm+1-collection. Suppose that ∃~x∀~yϑ(~x, ~y), where ϑ(~x, ~y) is a Σm+1-formulae,
is consistent with M + strong Πm-collection. Let M = 〈M,∈M〉 be a recursively saturated model of M +
strong Πm-collection + ∃~x∀~yϑ(~x, ~y). Let ~a ∈ M be suchM |= ∀~yϑ(~a, ~y) and let α ∈ M be an ordinal such
that ~a ∈ (VMα )∗. Consider the type

Ξ(x, u) = {x ∈ ω} ∪ {x > n | n ∈ ω} ∪ {∃f(f is an x-good 〈m+ 1, α〉-submodel approximation)}.

By Lemma 4.7, Ξ(x, u) is finitely realised inM, and so there exists k ∈M such that Ξ(k, u) is satisfied inM.
Note that k is a nonstandard element of ωM. Let f ∈M be such thatM |= (f is a k-good 〈m+ 1, α〉-submodel
approximation). Define N = 〈N,∈N 〉 by

N =
⋃

n∈ω
f(nM)∗ and ∈N is the restriction of ∈M to N.

We claim that N satisfies M + Πm+1-collection + ∃~x∀~yϑ(~x, ~y). Note that N ⊆℘e M. It follows from the fact
that f is an k-good 〈m + 1, α〉-submodel approximation that N |= M and for all x ∈ N , ℘N (x) = ℘M(x).
Moreover, Definition 4.1(iv) implies that N ≺m+1 M. Therefore, since ~a ∈ N , N |= ∃~x∀~yϑ(~x, ~y).

We are left to show that Πm+1-collection holds in N . Using exactly the same reasoning that was used in the
proof of Theorem 3.5, we can see that if C ∈ M is such that C∗ ⊆ N , then C ∈ N . Now, let ϕ(x, y, ~z) be a
Πm+1-formula. Let ~d, b ∈ N be such that N |= (∀x ∈ b)∃yϕ(x, y, ~d) The following formula is a Bool(Πm+1)-
formula with parameters ~d, k and f :

ϕ(x, y, ~d) ∧ (∀n ∈ k)(y /∈ f(n)⇒ ¬(∃w ∈ f(n))ϕ(x,w, ~d)).

Copyright line will be provided by the publisher
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And, since N ≺m+1 M,

M |= (∀x ∈ b)(∃y ∈ f(k))(ϕ(x, y, ~d) ∧ (∀n ∈ k)(y /∈ f(n)⇒ ¬(∃w ∈ f(n))ϕ(x,w, ~d))).

Working insideM, Bool(Πm+1)-separation (Lemma 2.3) implies that

C = {〈x, y〉 ∈ b× f(k) | ϕ(x, y, ~d) ∧ (∀n ∈ k)(y /∈ f(n)⇒ ¬(∃w ∈ f(n))ϕ(x,w, ~d))

is a set. And, the fact that N ≺m+1 M ensures that C∗ ⊆ N . Therefore C ∈ N . Working inside N , let
B = rng(C). So, N |= (∀x ∈ b)(∃y ∈ B)ϕ(x, y, ~d), which shows that N |= Πm+1-collection.

To see that (ii) holds observe that if the Axiom of Choice holds inM in the proof of (i), then it also holds in
N .

Corollary 4.9 If M + strong Πm-collection is consistent, then so is M + Πm+1-collection.

Theorem 4.6 and Corollary 4.9 yield:

Corollary 4.10 If m ≥ 1, then M + Πm+1-collection ` Con(M + Πm-collection).

These results also reveal the limitations of the theory M + Πm-collection when m ≥ 2.

Corollary 4.11 If m ≥ 1, then M + Πm+1-collection 0 Σm+2-induction on ω.

P r o o f. One can easily verify that by starting with a model of M + strong Πm-collection + ¬Con(Z +
Πm-collection) in the proof of Theorem 4.8, one obtains a model of M + Πm+1-collection + ¬Con(Z +
Πm-collection). If M + Πm+1-collection proves Σm+2-induction, then, by Theorem 4.6, this model would
also satisfy Con(Z + Πm-collection), which is a contradiction.

The proof of [7, Proposition 9.20] shows that there is an instance of Σ2-induction on ω that coupled with the
theory M proves the consistency of Mac. Therefore, by observing that the proof of Theorem 3.5 can be used to
obtain a model of MOST+ Π1-collection +¬Con(MOST), we can see that there is an instance of Σ2-induction
on ω that is not provable in MOST + Π1-collection. Therefore Corollary 4.11 also holds when m = 0.

5 The strength of Πn-collection over KPI + V=L

In this section we show that the techniques developed in §§ 3 & 4 can be adapted to reveal the relative strengths
of fragments of the collection scheme over the base theory KPI + V=L. This is achieved by replacing the levels
of the V -hierarchy in Definition 4.1 by levels of the L-hierarchy.

Definition 5.1 Let n,m ∈ ω, and let α be an ordinal. We say that f is an n-good 〈m+1, α〉-L-approximation
if

(i) f is a function and dom(f) = n+ 1,

(ii) f(∅) = Lα,

(iii) (∀k ∈ n+ 1)∃β((β is an ordinal) ∧ f(k) = Lβ),

(iv) (∀k ∈ n)(∀` ∈ ω)(∀a ∈ f(k + 1))((〈f(k + 1),∈〉 |= SatΠm
(`, a))⇒ SatΠm

(`, a)), and

(v) (∀k ∈ n)(∀` ∈ ω)(∀a ∈ f(k))(SatΣm+1
(`, a)⇒ (〈f(k + 1),∈〉 |= SatΣm+1

(`, a))).

Note that the only difference between Definitions 4.1 & 5.1 are that the references to levels of the V -hierarchy
in clauses (ii) and (iii) of Definition 4.1 have been replaced by level of the L-hierarchy in Definition 5.1. It should
be clear that the expression “f(∅) = Lα” remains ∆0 with parameters f and Lα, and, in light of Theorem 2.11,
the expression “(∀k ∈ n+ 1)∃β((β is an ordinal) ∧ f(k) = Lβ)” is equivalent to a Σ1-formula with parameters
f and n in the theory KPI. As we did in § 4, we introduce specific notion for formulae that express that f is an
n-good 〈m+ 1, α〉-L-approximation.
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Definition 5.2 Let α be an ordinal and let m ∈ ω. We write Ψ∗m(n, f,Lα) for the formula, with free variables
f and n, and parameter Lα, that the theory KPI proves asserts that f in an n-good 〈m+ 1, α〉-L-approximation,
and such that Ψ∗0(n, f,Lα) is Bool(Σ2), and if m > 0, Ψ∗m(n, f,Lα) is Πm+1.

Using the same arguments as we used in the proofs of Lemmas 4.3 & 4.4 we obtain:
Lemma 5.3 The theory KPI + V=L + Π1-collection + Σ2-induction on ω proves that for all ordinals α and

for all n ∈ ω, there exists an n-good 〈1, α〉-L-approximation.
Lemma 5.4 The theory KPI+V=L+Π1-collection+Σ2-induction on ω proves that for all ordinals α, there

exists a function f with dom(f) = ω such that for all n ∈ ω, f�(n+ 1) in an n-good 〈1, α〉-L-approximation.
Lemmas 5.3 & 5.4 now provide the base case of an induction argument that proves an analogue of Lemma

4.5.
Lemma 5.5 Let m ∈ ω. The theory KPI + V=L + Πm+1-collection + Σm+2-induction proves

(i) for all ordinals α and for all n ∈ ω, there exists an n-good 〈m+ 1, α〉-L-approximation,

(ii) for all ordinals α, there exists a function f with dom(f) = ω such that for all n ∈ ω, f�(n+1) is an n-good
〈m+ 1, α〉-L-approximation.

Lemma 5.5 provides the key ingredient for showing that the theory
KPI + V=L + Πm+1-collection + Σm+2-induction on ω proves the consistency of the theory KPI + V=L +
strong Πm-collection + Π∞-foundation.

Theorem 5.6 Let m ∈ ω. The theory KPI + V=L + Πm+1-collection + Σm+2-induction on ω proves that
there exists a transitive model of KPI + V=L + strong Πm-collection + Π∞-foundation.

P r o o f. Work in the theory KPI + V=L + Πm+1-collection + Σm+2-induction on ω. By Lemma 5.5(ii),
there exists f such that dom(f) = ω, and for all n ∈ ω, f�(n + 1) is an n-good 〈m + 1, ω〉-L-approximation.
Let β be an ordinal such that Lβ =

⋃
rng(f). We claim that 〈Lβ ,∈〉 is a set structure that satisfies KPI +

strong Πm-collection + Π∞-foundation (=M− + strong Πm-collection + Π∞-foundation). Note that, since β
is a limit ordinal, Lβ is a transitive set that is closed under Gödel operations. Therefore 〈Lβ ,∈〉 satisfies all of
the axioms of M−. Let ϕ(x, ~z) be a Π∞-formula and let ~a ∈ Lβ . Separation in the theory KPI implies that
A = {x ∈ Lβ | 〈Lβ ,∈〉 |= ϕ(x,~a)} is a set. Therefore, set foundation in KPI, implies that if A 6= ∅, then
A has an ∈-least element. This shows that 〈Lβ ,∈〉 satisfies Π∞-foundation. Finally, identical reasoning to that
used in the proof of Theorem 4.6 shows that 〈Lβ ,∈〉 satisfies strong Πm-collection. Since 〈Lβ ,∈〉 is a transitive
set structure, we can conclude that KPI + Πm+1-collection + Σm+2-induction on ω proves that there exists a
transitive models of KPI + strong Πm-collection + Π∞-foundation + V=L.

We next turn indicating how the proof of Theorem 4.8 can be adapted to obtain an analogue of this result with
the base theory M replaced by KPI + V=L. The same argument used in the proof of Lemma 4.7 can be used to
prove the following:

Lemma 5.7 Let m ∈ ω and let M |= KPI + V=L + strong Πm-collection. For all n ∈ ω and for all
α ∈ OrdM, we haveM |= ∃f(f is an n-good 〈m+ 1, α〉-L-approximation).

Lemma 5.7 yields an analogue of Theorem 4.8.
Theorem 5.8 Let m ∈ ω.

(i) The theory KPI+V=L+Πm+1-collection is Πm+3-conservative over the theory KPI+V=L+strong Πm-collection.

(ii) If KPI + V=L + strong Πm-collection is consistent, then so is KPI + V=L + Πm+1-collection.

Theorems 5.6 & 5.8 yield:
Corollary 5.9 If m ≥ 1, then KPI + V=L + Πm+1-collection ` Con(KPI + V=L + Πm-collection).
Question 5.10 Does the theory KPI + V=L + strong Π0-collection prove the consistency of KPI?
I am grateful to Ali Enayat for the following observation: The proofs of Theorems 3.5, 3.10, 4.8 and 5.8

can all be formalised in the subsystem of second order arithmetic WKL0. The fact that WKL0 is conservative
over Primitive Recursive Arithmetic (PRA) for sentences that are Π2 sentences of arithmetic (cf. [9, Theorem
IX.3.16]), then shows that all of these results are theorems of PRA.
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