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Abstract 

Purpose: To implement a machine learning model to predict skin dose from targeted intraoperative 

(TARGIT) treatment resulting in timely adoption of strategies to limit excessive skin dose. 

Methods: A total of 283 patients affected by invasive breast carcinoma underwent TARGIT with a 35 

prescribed dose of 6 Gy at 1 cm, after lumpectomy. Radiochromic films were used to measure the dose 

to the skin for each patient. Univariate statistical analysis was performed to identify correlation of 

physical and patient variables with measured dose. After feature selection of predictors of in vivo skin 

dose, machine learning models stepwise linear regression (SLR), support vector regression (SVR), 

ensemble with bagging or boosting, and feed forward neural networks were trained on results of in vivo 40 

dosimetry to derive models to predict skin dose. Models were evaluated by 10-fold cross validation and 

ranked according to root mean square error (RMSE) and adjusted correlation coefficient of true versus 

predicted values (adj-R2

Results: The predictors correlated with in vivo dosimetry were the distance of skin from source, depth-

dose in water at depth of the applicator in the breast, use of a replacement source, and irradiation time. 45 

The best performing model was SVR, which scored RMSE and adj-R

). 

2

Conclusion: The model trained on results of in vivo dosimetry can be used to predict skin dose during 

setup of patient for TARGIT and this allows for timely adoption of strategies to prevent of excessive 50 

skin dose. 

, equal to 0.746 (95% confidence 

intervals, 95%CI 0.737,0.756) and 0.481 (95%CI 0.468,0.494) respectively, on the 10-fold cross-

validation. 

1. Introduction 

An intraoperative radiotherapy (IORT) technique called TARGIT (targeted intra-operative 

radiotherapy) has been developed based on the Intrabeam system (Carl Zeiss, Oberkochen, Germany). 

In this technique a point-source, emitting low energy X-rays of 50 kVp coupled with a spherical 55 

applicator, is inserted into the surgical bed. The irradiation is administered soon after the primary tumor 

resection during the same operative session. The target tissue is the breast volume surrounding the 

excised tumor, wrapped around the radiotherapy source soon after the primary surgery. Two multi-
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center prospective randomized trials, Targit-A and Targit-B, are currently testing the clinical efficacy 

of TARGIT, as partial breast technique in selected early-stage low-risk breast cancer patients, and as a 60 

boost to the tumor bed before conventional whole breast irradiation (WBRT) for high risk patients, 

respectively1

The skin represents the main organ at risk in TARGIT, because of its proximity to the source. A few 

cases of dermatitis and skin necrosis have been reported in early reports 

. 

23 as well as more recently 4 on 

this technique. No complications have been reported to other organs such as rib cage, lungs and heart, 65 

receiving a lower dose of radiation because of their larger distance from the radiation source and steep 

dose fall-off. Safety levels for skin effects as low as 1 Gy5 or 2 Gy6 have been recommended to the skin 

after single fraction low kV irradiation. A dose of 6 Gy has been identified as a reasonably threshold 

for transient skin injury. One case of grade 2 dermatitis was reported after IORT delivered as a boost 

prior to WBRT where dose measured by in vivo dosimetry was 8.42 Gy7

As skin dose can be critical for IORT, many studies focused on developing techniques to measure in 

vivo dose to the skin using different types of dosimeter, including radiochromic films

. 70 

8, Thermo-

Luminescent-Dosimeters (TLDs)9,10, and optically stimulated luminescent dosimeters (OSLDs)11. In 

vivo measurements of dose are also essential as they help identifying systematic and random errors in 

treatment delivery12,13. Currently, individual pretreatment calculation of skin dose is challenged by the 75 

lack of treatment planning, mainly due to unsolved difficulties in installing useful in-room imaging 

systems, one of the major limitations of IORT techniques14

In the present study we want to implement a model to estimate dose to the skin in TARGIT before 

beginning of the IORT treatment. This tool would allow timely adoption of strategies to prevent 

excessive skin dose, such as placing a saline solution–soaked gauze as a spacer around the applicator, 80 

in order to increase source to skin distance. For this purpose, we use statistical and/or machine learning 

algorithms able to infer a hypothesis (the function/model), to predict the labels (skin dose) of out-of-

sample observations

.  

15,16,

2. Methods and materials 

. With the goal of achieving the best possible accuracy, the models are trained 

on data from in vivo skin dosimetry performed with an established technique on a large cohort of 

patients during more than four years of TARGIT practice at our centre. 85 

2.1 Patient data and follow-up 

From October 2013 to March 2018, 283 patients with invasive breast carcinoma underwent TARGIT 

after lumpectomy. Patients and treatments relevant data are summarized in Table 1. 

Patients were evaluated by expert breast surgeons during the three days after lumpectomy and then 90 

weekly until the complete wound healing. Incidences of acute toxicities, and in particular acute skin 

reactions, were collected during the first months after IORT. Subsequent clinical follow up was 

scheduled every six months during the first three years after IORT, and then yearly. Bilateral 
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mammography and ultrasonography were performed annually and late toxicities were evaluated during 

the follow up visits. 95 

2.2 In vivo dosimetry 

During surgery, a wide local excision was carried out to remove the tumor. A spherical applicator with 

the proper size was chosen based on the excision cavity. A purse-string suture was then applied deeply 

to the whole cavity edges17. The treatment delivery time was calculated by the Medical Physics staff 

using the Intrabeam Treatment Software, in order to deliver a prescribed dose of 5 or 6 Gy to 1 cm 100 

from the applicator surface in water, with 50 kVp, 40 µA X-rays. The source was attached to the 

applicator and the gantry. Once the applicator was in place, the purse-string was tightened carefully so 

that the breast tissue wrapped around the applicator. In order to prevent excessive irradiation of the 

skin, the edges were kept at least 1 cm away from the applicator shaft3

Gafchromic EBT3 (Ashland Special Ingredients, Bridgewater, NJ, USA) films were used to measure 105 

dose to the skin on patients who underwent TARGIT. Because the sensitive layer of the film is 0.125 

mm from the surface of the patient, correction for the effective point of measurement is negligible for 

radiochromic films

. 

18, and it can be safely assumed that EBT3 measures directly the skin dose. Before 

the surgical procedure, pieces of radiochromic films were wrapped by a nurse of the surgical staff in a 

thin sterile envelope. Films were calibrated in air using the Intrabeam with spherical applicators, 110 

following a previously established procedure8

Two sheets of tungsten-impregnated rubber (0.1 mm lead equivalent; Carl Zeiss Surgical) were placed 

over the wound, thus covering also the films, to reduce the amount of stray radiation in the operating 

room during irradiation. Once the treatment finished, the purse-string was cut, and the applicator and 

the shield were removed

.  

17. Films were collected and scanned using an Epson Expression 1680 (Epson-115 

Seiko Corporation, Japan) flatbed scanner, and film images were converted into dose matrices 

according to a multi-channel scanning protocol19-21. For measurement of dose and its uncertainty, 

average dose and standard deviation were calculated inside a region of interest (ROI) consisting of a 

2x2 mm2

2.3 Statistical analysis  

 square around the highest dose reading on the piece of film and positioned at least 2 mm from 

the film edges. 120 

For each patient, age, laterality of breast cancer, and quadrant of breast (inner/midline/outer and 

upper/medial/lower) where the source was introduced were registered. Before placing the dosimeter, 

the point where the spherical applicator is at minimum depth under the patient skin was found by 

palpation. Then the minimum depth, dmin of the spherical applicator was measured by insertion of a 125 

needle and measurement of the extent of needle insertion. The film was placed at the same position on 

the skin from which dmin was measured (Supplementary material Figs. 1a-d). The distance from the 

point of measurement to the point of insertion of the source along the skin was also collected using a 
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ruler. The value of depth-dose curve at dmin, D(dmin) calculated by the Intrabeam software was also 

recorded, as it was previously postulated to be related to measured skin dose10,22

The prescribed dose, diameter of the spherical applicator, and irradiation time were recorded among the 

variables related to treatment. Our Intrabeam system has two x-rays sources (serial numbers 321 and 

the 338, respectively). When one of the two sources was not available because of maintenance, repair 

or recalibrations, Zeiss provided a temporary replacement. It was also then recorded if source 1, 2 or a 

replacement source was used. Univariate statistical analysis was performed to find correlation of 135 

variables with measured dose, using the Spearman rank correlation test for ordinal variables, while the 

Kruskal-Wallis rank test was used for categorical variables.  

.  130 

2.4 Model implementation 

Before training models, outliers were removed by performing a nonlinear multivariate regression using 

support vector machine (SVM), which was preferred because of its capability to deal with linear and 140 

non-linear functional mappings. The data points whose residuals were three times higher than the 

standard deviation (larger than 99% confidence level) of the residuals of the entire dataset, were 

considered as possibly caused by incorrect measure of distance and/or depth, and were removed from 

analysis as outliers. Then, the least absolute shrinkage and selection operator (LASSO) 23

First, an univariable linear regression was attempted using the most relevant predictor, D(d

 was applied 

in order to eliminate redundant variables that are likely not to be related to the measured dose. 145 

min

1) Stepwise linear regression (SLR), which results in a linear multi-metric model; terms from a linear 150 

or generalized linear model are removed or added in order to find the subset of variables in the data set 

resulting in the smallest model with lowest prediction error 

) with the 

aim to investigate if in vivo dosimetry can be predicted also using a uni-metric model. Then, the 

following statistical and machine learning algorithms were trained on the dataset (predictors and in 

vivo dose from patients) to build multi-metric models able to predict in vivo dose:  

24

2) SVR is the regression version of SVM, a supervised machine learning technique which, by means of 

a kernel function, projects the data into a higher-dimensional feature space and can perform linear 

regression in this high-dimension feature space. SVR tolerates errors that are inferior to a margin, thus 155 

providing a tradeoff between goodness of fit and model robustness 

. 

25

3) Ensemble machine learning (EML) uses multiple learners aggregated into a single learner. We 

used for weak learners Decision Trees, a popular concept in machine learning 

. 

15. In EML with bagging 

(EML/bag), a group of decision trees is trained, and the algorithm randomizes training samples by 

resampling with replacements; second, at each branching step it chooses an attribute to split among a 160 

randomly selected subset of attributes. After a bag of trees is trained, prediction is made for all the 

individual trees and the most frequent class selected by the trees is taken as a final result 26.  
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4) EML with boosting (EML/boost), where decision trees are trained sequentially on subsets 

containing the data that were misclassified in previous training steps, then they are feedback in order to 

boost performance27

5) Feed-forward neural network (NN) using Bayesian regularization training algorithm. Neural 

networks are described as parallel-distributed computational models that consist of many nonlinear 

elements arranged in patterns that imitate biological nervous systems 

. 165 

28

In order to compare the performance of the different models, we used the root mean square error 

(RMSE) which describes the difference among modeled and measured dose, and the adjusted 170 

correlation coefficient (adj-R

. 

2) of predicted and measured data, which reflects the goodness of fit of the 

model to the population taking into account the sample size and the number of predictors used 29

2.5 Cross validation and analysis of sample size 

. 

In order to test out-of-sample accuracy, 10-fold cross-validation, where the 267 patients were randomly 

partitioned into 10 subsamples of nearly equal size, was performed. 9 subsamples were used to train the 175 

model, which was validated on the 10th subsample. Then the training and validation subsamples were 

rotated, so that all patients are used once in the validation subsample. RMSE and adj-R2 were 

calculated from results in the validation subsamples (RMSEv and adj-R2
v). The whole process was 

repeated 100 times in order to derive average values and 95% confidence intervals (95% CI) of RMSEv 

and adj-R2
v

In order to determine if the dataset was large enough to build a multivariable model, the SVR was 

performed on randomly chosen samples of increasing number of patients. The procedure was repeated 

1000 times for each sample size. The p-value of a t-test (zero vs nonzero coefficient in the SVR) was 

performed for the three most predictive variables: D(d

.  180 

min

3. RESULTS 

), distance and use of a replacement source. 

The sample size was considered large enough to build a multivariable model when all these three 185 

variables reached a p-value under the 0.05 significance level. 

3.1 Patients results 

The mean measured skin dose was 3.21 Gy, (95% CI 1.53-5.38 Gy). No acute radiation injury to the 

skin, necrosis, skin breakdown or delayed wound healing was observed during the patients’ follow-up. 190 

None of the patients showed evidence of significant clinical complications. No late toxicity (i.e. 

hyperpigmentation, telangiectasia, ulceration) was found. In patients that received WBRT after 

TARGIT, no additional risk of skin toxicity was detected in the skin area close to the lumpectomy.  

3.2 Statistical analysis 
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The results of the univariate statistical analysis are shown in Table 2. The in vivo measured dose was 195 

strongly (p<0.0001) correlated with D(dmin

3.3 Models development 200 

), distance of film from the applicator, and applicator 

diameter. Significant but weaker correlations (p<0.05) were found with prescribed dose, irradiation 

time and Intrabeam source used. In vivo dose was uncorrelated with tumor laterality, point of insertion 

of the source, and patient age. 

A total of 16 measurements (5.6%) were removed from the analysis as outliers. In the feature selection, 

the following variables were selected, and then passed to the machine learning algorithms: prescribed 

dose, D(dmin), use of a replacement source, applicator diameter, laterality of breast (left and right), 

outer and superior position of the source, distance of the film, and dmin

The plots of estimated versus measured dose from calibration and validation of machine learning 205 

methods are shown in Fig. 1. The performances in training and 10-fold cross-validation are compared 

in Table 3, and the distributions of RMSE

. 

v and adj-R2
v 

The univariable linear regression of in vivo dose versus D(d

from the 10-fold cross-validation are shown in 

Fig 2. 

min) had a lower RMSEv and Adj-R2
t 

(Wilcoxon Ranksum test p<<0.05) than multi-metric machine learning models in the cross-validation, 210 

and was excluded in the remainder of the analysis. The machine learning model with the best scores in 

the 10-fold cross validation, lowest RMSEv and highest adj-R2
v, was the SVR. The RMSEv and adj-

R2
v were significantly different among all models (Wilcoxon Ranksum test, p<<0.05). Therefore, SVR 

was considered as our best performing model (RMSEv = 0.746, adj-R2
v =

4. Discussion 

 0.481), followed by SLR. The 

learning curve power analysis (Fig. 3) shows that the p-values for inclusion of the three most predictive 215 

variables in the SVR model were all below 0.05 for sample size larger than 91 patients. Therefore the 

dataset of 267 patients used in the analysis was considered largely adequate to build multivariable 

models predictive of in vivo dose. 

Studies reported results of in vivo dosimetry in patients who received TARGIT as soon as the skin was 220 

recognized as the main organ at risk during this procedure. In vivo dosimetry in a series of 72 patients 

resulted in average measured dose of 2.9 Gy, with 11% of readings ≥ 6 Gy10. Measurements with TLD 

on the skin at distances of 5 and 15 mm from the incision on 57 patients resulted in maximum dose of 

2.93 Gy on average9

It is no surprise that, in our results, the variable with the strongest correlation was D(d

. The distribution of skin doses measured in our patient dataset are in agreement 

with the previous studies. 225 

min) in water, as it 

describes the dependency of dose from the applicator diameter, depth of the applicator, the prescribed 

dose, and the amount of tissue between the skin and the applicator. However, the linear regression 
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model based on D(dmin

The univariate statistical analysis confirmed the dependencies of in vivo measured skin dose on 

distance from the measured point from the applicator shaft, in agreement with previous reports

) resulted in poor predictive capability compared to other models, thus showing 

the advantage of using multi-metric machine learning to predict skin dose.  230 

9,10

Monte Carlo simulation of a breast phantom with realistic tissue compositions and skin layers, 

demonstrated that in vivo dose depends on the size of applicator

. The 

distance from the applicator shaft was an independent predictor of skin dose possibly because, for a 

fixed depth, an increase of distance implies a different geometry of irradiation, where the applicator is 

more oblique.  235 

22, as well as the amount of breast 

tissue between the applicator and the skin. In the study of Fogg et al9, the ratios between average doses 

measured with TLDs at 5 mm and at 15 mm from the point of insertion were 1.47, 1.22, 1.24 and 1.11 

for the 3.5, 4.0, 4.5 and 5.0 cm applicators respectively. This effect has been explained with more 240 

penetrating beam spectrum with larger applicators22, but it should be also noted that the use of larger 

applicators is preferred on patients with larger breast size, as confirmed by correlation in our dataset 

among dmin and applicator diameter (Spearman correlation test p<<0.0001).As expected, in the 

univariate analysis measured dose was also correlated with other variables related to the quantity of 

radiation emitted, such as the irradiation time and the prescribed dose which is specified, according to 245 

the TARGIT protocol, as the dose at 1 cm from the applicator surface in water. Seven units were used 

for spare sources, when one of the two sources were not available because of maintenance, repair or 

recalibrations, and the use of a replacement source was related to in vivo dose. Dosimetric and 

spectrum characteristics different from the other sources may explain this result. Differences in the 

output dose rate of different sources has been reported 30, however, given that the dose rate is checked 250 

and, if necessary, readjusted before each treatment4, are unlikely to affect measured dose. Small 

differences in the various structures involved in the generation of x-rays, including the electron source, 

the beam deflector as well as the gold target, such as between manufactured and ideal target thickness, 

could change photon spectra and doses between different sources, thus explaining a change of 

dose22. In our results, the feature selection successfully removed those variables that are not correlated 255 

with measured dose (e.g. age) and those that suffer from collinearity and are redundant, such as 

dmin,
 which is related to D(dmin

Among the multi-metric machine learning models, SVR showed the best performance (lowest RMSE 

and highest adj-R

).  

2) on the cross-validation and therefore we consider it as the model of choice. This 

result is in agreement with other reports where SVM classifiers were among the best performing 260 

machine learning methods31. The second best method, SLR, has the advantage to provide a simple 

calculation to be used in an operating room. For this reason, the formula resulting from the SLR is 

shown in table 4.  
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Our machine learning models were trained on a dataset of 283 patients, which is the largest published 

results of in vivo dosimetry in IORT. The plot of the model residuals shows that the in vivo dose 265 

calculated by considered models have uncertainties. A possible explanation for the residuals could be 

the manual measurements of dmin and distance, whose accuracy could be improved, for example, by 

using ultrasound imaging to measure the thickness of breast tissue between the applicator and the point 

of interest. Skin dose may also vary because of variation of the compositions of the treated 

breast. Treatments are usually performed covering the patient surface over the applicator with a lead-270 

rubber protection sheet whose backscatter could increase skin dose, however to a relatively small 

amount 14

By using the model recommended by this study, it is possible to anticipate measured in vivo dose from 

TARGIT in the operating room. This work shows that the machine learning approach can be applied to 275 

in vivo dosimetry, as successfully done in other areas of radiotherapy workflow, including error 

detection and prevention 

. As all our treatments were performed with the protection sheet, it was not possible to verify 

how much the skin dose is dependent on its use.  

16, treatment dose planning 32 and verification 33,34

A word of caution is needed. The availability of the models provided here to predict skin dose should 

not prevent measured in vivo dosimetry to the skin, which remains fundamental as an independent 

quality check of radiotherapy identifying errors in delivery, e.g., caused by wrong calibration of the 

machine. In vivo dosimetry still holds as an effective method to validate the introduction and any 

modification to the delivery of this intraoperative technique by measuring dose to the skin and other 285 

critical structures as required. 

. It also suggests that the 

results of in vivo dosimetry should be included among other categories of patient data in the electronic 

patient records in order to be available for automated data extraction with the aim of generating or 

improving prediction models for patient dose. 280 

 5. Conclusion 

This work shows the potential of extending the machine learning approach to in vivo dosimetry in 

IORT. Models for the prediction of in vivo dose to the skin in TARGIT were derived from 

measurements of skin dose performed for over four years at our center with a consistent technique. Of 290 

the machine learning models used, SVR was the best performing model, and can be used to predict and 

evaluate dose to the skin before treatment delivery and to adopt measures to minimize excessive dose 

to the skin. 

TABLES AND FIGURES CAPTIONS  

Table 1. Overview of patient and in vivo dosimetry data. For dichotomic variables, the number 295 

(percentage) of patients, and for continuous variables, the average value with 95% confidence intervals 

are specified.  
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Table 2. Results of univariate statistical analysis of variables related to treatment and in vivo 

dosimetry. For ordinal variables, the p-value and correlation coefficient, r, from the Spearman rank 

correlation test are reported, while for categorical variables the Kruskal-Wallis rank test’s p-value is 300 

shown 

Table 3. Assessment of machine learning models with different methods. RMSEt, Adj-R2
t, RMSEv, 

Adj-R2
v, are root mean square error, and adjusted R2 

Table 4. Estimated coefficients from the SLR modelling with standard error (SE) and p-value for 305 

inclusion in the model. 

in the training and validation datasets with 95% 

confidence intervals.  

Figure 1. Calibration and cross-validation of machine learning models. 

Figure 2. Distribution of values of RMSE and adj-R2

Figure 3. Analysis of statistical power of the study by learning curve. The p-value of t-tests (zero vs 310 

nonzero coefficient) for inclusion of the three most predictive variables of in vivo dosimetry in the 

SVR model is plotted against the number of patients used for training.  

 from 10-fold cross-validation repeated 100 times 

for multivariable machine learning models. 
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Table 1. 

Characteristics (N=283) Data 

  

Tumor site (inner/central/outer):  

- Inner: 54 (19.1%) 

- Central 53 (18.7%) 

- Outer 176 (62.2%) 

Tumor site (inferior/central/superior)   

- Inferior 43 (15.2%) 

- Central 77 (27.2%) 

- Superior 163 (57.6%) 

Prescribed dose   

- 6 Gy 262 (92.6%) 

- 5 Gy 21 (7.4%) 

Intrabeam source used, serial number   

- Source 1, #338 111 (39.2%) 

- Source 2, #321 127 (44.9%) 

- Temporary replacement 45 (15.9 %) 

Applicator diameter (3.5 / 4 / 4.5 / 5 cm)   

- 3.5 cm 6 (2.1%) 

- 4.0 cm 40 (14.1%) 

- 4.5 cm 69 (24.4%) 

- 5.0 cm 168 (59.4%) 

Age [mean (95% CI)] 65 (34-85) 

Depth of applicator [mean (95% CI)] (cm) 1.4(0.8-2.5) 

Distance film-applicator [mean (95% CI)] (cm) 3.1(1.5-4.5) 

Measured dose [mean (95% CI)] (Gy) 3.21(1.53-5.38) 

Relative standard deviation of measured dose [mean (95% CI)] (%) 5.2 (2.1-9.9) 

 

Table 1. Overview of patient and in vivo dosimetry data. For dichotomic variables, the number (percentage) of patients, 

and for continuous variables, the average value with 95% confidence intervals are specified.  
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Variable p-value r 

Prescribed Dose (5 Gy or 6 Gy) <0.05 0.1394 

Irradiation time <0.05 -0.1934 

Distance of film from the applicator shaft <0.0001 -0.2936 

Depth of the applicator surface beneath the film (dmin) <0.0001 -0.5679 

Calculated dose in water at dmin, D(dmin) <0.0001 0.5751 

Spherical applicator diameter <0.0001  -0.2564 

Age of the patient (y) 0.48  -0.0424 

Intrabeam source 1,  0.387  

           “     source 2 0.2667  

replacement source <0.05  

Breast laterality 0.27  

Inner/medial/outer insertion of source 0.14  

Superior/midline/inferior insertion of source 0.97  

 

Table 2. Results of univariate statistical analysis of variables related to treatment and in vivo dosimetry. For ordinal 

variables, the p-value and correlation coefficient, r, from the Spearman rank correlation test are reported, while for 

categorical variables the Kruskal-Wallis rank test’s p-value is shown 

 

Table 3. 

Learning method RMSEt Adj-R2
t RMSEV(95%CI) Adj-R2

V(95%CI) 

SLR 0.725 0.51 0.751(0.74,0.762 0.474(0.459,0.489) 

SVR 0.714 0.525 0.746(0.737,0.756) 0.481(0.468,0.494) 

EML Boost 0.536 0.732 0.767(0.747,0.79) 0.451(0.417,0.479) 

EML Bag 0.611 0.652 0.760(0.749,0.770) 0.461(0.447,0.476) 

NN 0.683 0.564 0.765(0.742,0.795) 0.453(0.41,0.487) 
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Linear regression on D(dmin) 0.788 0.440 0.791(0.788,0.797) 0.439(0.408,0.467) 

 

Table 3. Assessment of machine learning models with different methods. RMSEt, Adj-R2
t, RMSEv, Adj-R2

v, are root 

mean square error, and adjusted R2 in the training and validation datasets with 95% confidence intervals.  

 

 

Table 4. 

 

Coefficient of SLR model Estimate 
Standard 

Error (SE) 
p-value 

(Intercept) 1,986 0,209 1.2∙10-18 

Distance -0,246 0,048 4.8∙10-7 

D(dmin) 0,408 0,027 6.46∙10-37 

Use of a replacement source -0,555 0,124 1.16∙10-5 

 

Table 4. Estimated coefficients from the SLR modelling with standard error (SE) and p-value for inclusion in the 

model.  
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