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Running title:Prediction of skin dosein kV-IORT

Abstract

Purpose:“Tesimplement a machine learning modelpredict skin dose from targeted intraoperative

(TARGIT) treatmentesulting intimely adoption of strategies to lingkcessive skin dose.

Methods: A total of 283 patients affected by invasive breast carcinoma underwent TAR®E Ta
prescribed dose & Gy at 1 cmafter lumpectomyRadiachromic films were uskto measuréhedose
to the skinfor each patientUnivariate statistical analysis was performed to idertifyrelation of
physical and patientariables with measured dogter feature selectionf predictors ofin vivo skin
dose machine [earning models stepwise linear regres&ximR), support vectoregression (SVR)
ensemble with'bagging or boostiramdfeed forward neural networks werained on results af vivo
dosimetry to derive modete predict skindose Models wereevaluatedby 10-fold cross validatiorand
rankedraccording tooot mean square error (RMS&)dadjusted correlation coefficient of true versus

predicted values (adg?).

Results: The predictorscorrelated with in vivo dosimetnyerethe distancef skin from sourcedepth
dosein waterat depth of the applicator in the breast, use of a replacement sandd@adiation time
The best performing modelasSVR, which scored RMSEndadjR?, equal t00.746(95% confidence
intervals, 95%€CI| 0.737,0.75&nd 0.48L (95%CI 0.468,0.494)espectively,on the 10Gfold cross

validation

Conclusion: The model trained on results of in vivo dosimetry can be used to predict skin dasg duri
setup ofgpatient;for TARGIT antthis allows for timely adoption of strategie® preventof excessive

skin dose.
1. Introduction

An intraoperative radiotherapy (IORT}echnique called TARGIT (targeted intoperative
radiotherapy)shas been develogmbed orthe Intrabeam system (Carl Zeiss, Oberkochen, Germany).
In this techniquea point-source emitting low energy Xrays of 50 kVpcoupled witha spherich
applicator,is inserted ito the surgical bed. The irradiation is administered soon after the primaoy tum
resection during the same operative sessite target tissués the breastolume surroundinghe

excised tumor, wrapped around the radiotherapy saooeafter the primary surgerylwo multi-
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centerprospectiverandomized trialsTargitA and TargitB, are currentlytesting the clinical efficacy
of TARGIT, as partial breast technique in selected estdge lowrisk breast cancer patients, and as a
boost to the tumor bed before conventiomdiole breast irradiationYBRT) for high risk patients,

respectively.

The skin“represents the main organ at risk in TARGIT, becabtigs proximity to the source. few
cases oflermatitis andskin necrosis have been reporteearly report$® as well agnore recently on
this techniqueNo complications have been reportedther organsuchas rib cage, lungs arteart
receiving aower dose of radiation because of their larger distance from the radiation soursteemd
dose falloff-"Safety levels for skin effects as low as I°@y2 Gy have been recommded to the skin
after single fraction low kV irradiation. A dose of 6 Gy has bielemtified as a reasonabliigreshold
for transient skin injuryOne case of grade 2 dermatitis was reported after IORT delivered as a boost

prior to WBRT wheralose measured by vivo dosimetrywas 8.42 G

As skin dosecan be criticafor IORT, manystudies focused on developing technigteemeasuren
vivo dosestosthe skirusing different types of dosimeter, including radiochromic fiinEhermoe
LuminescerDosimeters (TLDs), and optically stimulated luminescemtosimeters (OSLDS). In
vivo measurements of dose are also essential as they help identifsiagatic and random errors in
treatment«delivery**. Currently, individual pretreatment calculationf skin doses challengedby the
lack of treatment planning, mainbue tounsolved difficulties in installing useful 9om imaging

systemsonesofithe major limitations of IORT technigties

In the present study we want to implement a modedstomatedose to the skin in TARGIBefore
beginning of thelORT treatment This tool would allow timely adoption of strategies to prevent
excessive skin dossuch aglacing a saline solutielsoaked gauze as a spacer around the applicator,
in order tosincreassource to skin distancgor ths purposewe use stisticalandbr machine learning
algorithmsable,toinfer a hypothesis (the functiétmode), to predict tle labels(skin dose) of oubf-
sampleobservationS*®. With the goal of achievinthe best possible accuracy, the models are trained
on data fremsin vivo skin dosimetry performed with an established tpotron a large cohort of

patients'during morthan four years of TARGIPpractice abur centre.
2. Methods and materials
2.1 Patient data and follow-up

From October 2013 to March 201333 patientswith invasive breastarcinomaunderwenfTARGIT

afterlumpectomy Patientsand treatmenteelevant data are summarizedTiable 1.

Patients were evaluated by expert breast surgeons dhenthree days after lumpectomy and then
weekly until the complete wound healing. Incidences of acute toxjcéres in particular acute skin
reactions, were collected during the first months after IORT. §uks¢ clinical follow up was

scheduled everyix months during the first three years after IORT, and then we&ilateral
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mammography and ultrasonography were performed annually and latitigexvere evaluated during

the follow up visits.
2.2 Invivo dosimetry

Duringssurgery, avide local excision was carried out to remove the tu@pherical applicator with

the proper size,was chosen based on the excision cavity. Agitingesuture wathen appliedeepy

to the whole_cavity edg¥s The treatment delivery time was calculated by the Medical Physics staff
usingstheslntrabeam Treatment Softwareorder to deliver a prescribed dose of 5 or 6 Gy to 1 cm
from theapplicator surface in watewrith 50 kVp, 40 nAX-rays The source was attached to the
applicatorsandythe gantry. Once the applicator was in place, thegitingewas tightened carefully so
that the'breast tissue wrapped around the applidatartder to prevent excessive irradiation of the

skin, theedgeswee kept at least 1 cm away from the applicator 3haft

GafchromicEBT3 (Ashland Special Ingredients, Bridgewater, NJ, USK)s were used to measure
dose to the skin on patients who underwent TAR@@&causelte sensitive layer of the filnis 0.125

mm from the surface of the patierbrrection for the effective point of measurement is negligible for
radiochfomic film&’, and it can be safely assumed that EBT3 measlirestly the skin doseBefore

the surgical procedure, pieces of radiochrofiias were wrapped by a nurse of the surgical staff in a
thin sterile \envelopeFilms were calibratedin air using the Intrabeam with spherical applicators

following ‘& previously established procedtire

Two sheets“of.tungstempregnatedubber(0.1 mm lead equivaleniCarl Zeiss Surgicahwere placed
over the"woundthus covering also the films, to redube amount of stray radiation in the operating
room during irradiation. Once the treatment finished, the patrggg was cut, and the applioa and
the shield were remov&d Films were collectednd scannedsing a EpsonExpression 168(Epson
Seiko Corporation, Japan) flatbestanner,and film images were converted into dose matrices

according to a 'multchannel scanning protol®?!

. For measurement of dose and its uncertainty,
average dose and standard deviation were calculated ins&dgoa of interestROI) consisting of a
2x2 mnf'squarearound the highest dose reading on the piece of film and positioned at leastr@m

thefilmredges:
2.3 Statigtical analysis

For eachmpatient, agdaterality of breast canceand quadrant of breast (innemidline/outer and
uppermediallower) where the source was introducesre registeredBefore placing the dosimeter,
the point,where thapherical applicator is at minimugepth under the patient skin wésund by
palpation. Then the minimum depth,,d of the spherical applicator waseasured by insertion of a
nealle and measurement of the extefineedle insertion. The film wadaced athe samepositionon
the skinfrom which d.,;, was measure{Supplementary material Figs.-tia The distancdrom the

point of measurement to the point of insertion of the soalweg the skinvasalso collectedusing a
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ruler. Thevalue of deptkdose curveat d.,, D(dnin) calculated by the Intrabeam softwaras also

130  recordedas it was previously postulated to be related to measured skiftdose

Theprescribeddose, diameter of the spherical applicator, and irradiation time were recondedthe

variables related to treatmer@ur Intrabeam sysm has two xays sourcessérial number821 and

the 338 respectively. When one of the two sources svaotavailable because of maintenance, repair

or recalibrations, Zeiss provideddtemporary replacemerit was alsahenrecordedf source 1, 2 or a
135 replacement source was useédhivariate statistical analysis was performed to find correlation of

variables wih measured dosesingthe Spearmamank correlationtest for ordinal variables, whilde

KruskalWallisrank testwas used focategorical variables.
2.4 M odel.implementation

Before training modelsyutliers were removed by performimgioniinear multivariate regressiarsing
140  support vector machine (SVM), which was preferred because of its égptbitleal with linear and
nornlinear functional mappingsThe data points whoseresiduas were three times higher than the
standard deviatiorflarger than 99% confidence levadf the residualof the entire datasetvere
consideredas possiblycaused byncorrect measure of distanaeedbr depth,andwere removed from
analysisas outliers Then, theleast absolute shrinkage and selection operator (LASS@s applied

145 in order/ftoeliminateredundanvariables that arkkely notto berelated tathe measured dee

First, an_univariabldinear regression wasttempted using the most relevammedictor, D(ghin) with the
aim to investigatef in vivo dosimetry can be predicted also using @&metric model. Then, the
followingsstatisticaland machine learning algorithms were trained on the datgsetlictors and in

vivo dose from patientgp build multi-metric modelsable topredictin vivo dose:

150 1) Stepwise linear regression (SLR), which results ina linearmulti-metricmodel terms from a linear
or generbized,linear modeare removed or added order to find the subset of variables in the data set

resulting in thesmallesimodel with lowest prediction errét.

2) SVR isthe regression version of S\/Msupervised machine learning technigu@ch, by means of
a kernel=function projects the data into a highdimensionalfeature spaceand can perform linear
155 regressionminstis high-dimension feature spac8VR tolerateserrorsthat areinferior to amarghn, thus

providing'a‘tradeoff between goodness of fit amabelrobustnes$’.

3) Ensemble machine learning (EML) uses multipldearnersaggregatednto a single learneiwWe
used foFweak learners Decision Trees, a popular concept in machine |éanmifgML with bagging
(EML/bag), agroup of decision trees is trained, and the algorithm randomizesgaaimples by

160 resampling vth replacementssecond, at each branching step it chooses an attribute to split among a
randomly selected subset of attributes. After a bag of trees is trarestiction is made for all the

individual trees and the most frequent class selected by the trees is takimahgesulf®.
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4) EML with boosting (EML/boost) where decision treesare trained sequentially on subsets
containing the data that were misclassifiegrevioustraining steps then they are feedbaak order to

boost performanéé

5) Feed-forward neural network (NN) using Bayesian regularization training algorithheural
networks aredescribed aparalletdistributed computationahodels that consist of mamonlinea

elements arranged in patterns that imitate biological nervous sy$tems

In orderstorcompare thperformance othe different modelswe used the root mean square error
(RMSE)_which_ descritse the difference among modeled and measured dose, and the adjusted
correlation coefficient (adR?) of predicted and measured data, whieftects the goodness of fit of the

model to the population taking into account the sample size and the number dbpsadied’.
2.5 Cross validation and analysis of sample size

In order to test.oubdf-sample accuracyL0-fold crossvalidation, where the 267 patients were randomly
partitionedrintal0 subsamples of nearly equal siz@as performedd subsamples wengsed to train the
mode| whieh"Was validated on the T@ubsample. Then the training and validation subsamples were
rotated, -so.that all patients are used once in the validation subs#RM&E and adR? were
calculatedfrom/fesults in the validation subsampl@MSE, and adjR?,). The wholeprocess was
repeated 100 times in order to deraxerage values and 95% confidence intervals (95% CI) of RMSE
and adjR%y

In order todetermine if thedataset wasarge enough to build a multivariable modile SVR was
performed“on‘randomly chosen samples of increasing number of pafieatprocedure was repeated
1000 times for eachample sizeThe p-value of a ttest (zero vs nonzero coefficient in the SVR) was
performed, for the three most predictivariables D(dmin), distance and use of a replacement source.
The samplessize was consideréatge enougho build a multivariable modelvhen all these three

variables reachea pvalue undethe0.05significance level
3.RESULTS
3.1 Patients results

The mean measured skin dose was 331 (95% Cl 1.535.38 Gy). No acuteradiation injury to the
skin, necresisskin breakdown or delayed wound healimgs observed during the patients’ follap.
None of thepatientsshowed evidence of sifficant clinical complications.No late toxicity (i.e.
hyperpigmentation telangiectasia ulceration) was foundin patients that receive®BRT after

TARGIT, no additional risk of skin toxicitwas detected in the skin area close to the lumpectomy.

3.2 Statistical analysis
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The resultof the univariate statistical analysis are shown in Tablehg. it vivomeasured dose was
strongly (p<0.0001)correlated withD(d,), distance of film from the applicatoand applicator

diameter Significant but weaker correlations (p<0.05) were fowvith prescribed dose, irradiation
time and Intrabeam source used. In vivo dose was uncorrelatedumitin katerality, point of insertion

of the source,.and patient age.
3.3 Models development

A total of 26.measurements (5.6%) were removed from the asadgsoutliersin the feature selection
the following variableswere selected, and then passed to the machine learning algofitlestwibed
dose,D(dmin),nise of a replacement source, applicatimmeter laterality of breast (left and right),

outer andsuperior position of the sourcdistanceof the film, andd .

The plots of estimated versus measured dose from calibration and validédtimachine learning
methodsare shown in Figl. The performances in training and-fiddd crossvalidation are compared
in Table 3, and)the distributions of RMS&nd adeZV from the 16fold crossvalidation are shown in

Fig 2.

The univariable linear regression of in vivo dose versus,f)(dad alower RMSE, and AdjR?
(Wilcoxon_Ranksum test p<<0.05) than muitietric machine learning models in the crasdidation,
and was excluded in the remainder of éimalysis. Thenachine learningnodel with the best scores in
the 10fold cross validation, lowest RMSEand highest adlR?,, was the SVRThe RMSE and adj
R?, weré'significantly different among all models (Wilcoxon Ranksest, (p<<Q05). Therefore, SVR
was considéred as our best performing model (RMSE 746, adiR?, - 0.481),followed by SLR The
learning curvepower analysis (Fig. 3) shows that theglues forinclusion of the three most predictive
variablesin the SVR model were alielow 0.05 for sample size larger thah patients. Thereforthe
dataset ofs267upatients used in the analysis was considered largely adeduaitd multivariable

modelspredictiveof in vivo dose.
4. Discussion

Studies,reported results of in vivo dosimetry in patients who receivedsTRRS soon as the skin was
recognized.as.the main organ at risk during this procetturévo dosimetry in a series of 72 patients
resulted;in-average measured dose of@&/9with 11% of readings 6 Gy"°. Measurements witfiLD

on the skin at distances of 5 and 15 mm from the incision on 57 patianitedeéa maximum dose of
2.93 Gy on averadeThe distribution of skin doses measuiedour patient dataset are in agremst

with the previous studies.

It is no surprise that, in our results, the variable with the strongestatoon was D(g,,) in water, as it
describes the dependency of dose from the applicator diameter, depth of tbatapthie prescribed

dose and the amount of tissue between the skin and the applicktowever,the linear regression

This article is protected by copyright. All rights reserved



230

235

240

245

250

255

260

model basedn D(d,,) resulted in poor predictive capabilitpmpared to othemodels thus showing

the advantge of usingmulti-metricmachine learning to prediskin dose

The uniariate statistical analysis confirmed the dependencies of in vivo mdaskin doseon
distance_from the measured point from the applicator shadigreement witprevious repod”*®. The
distance from the applicator shaft was an independent predictor of skirpdssibly because, for a
fixed depth, anjincrease of distance implies a different geometry of ircagiathere the applicator is

moreoblique.

Monte Carlo_simlation of a breast phantom with realistic tissue compositions and skénsjay
demonstratedsthat in vivo dose depends on the size of apgfica®mwell as the amount of breast
tissue betwen.the applicator and tis&in. In the study of Fogg et‘althe ratios between average doses
measured withyTLDs at 5 mm and at 15 mm from the point of insertios Wvé7, 1.22, 1.24 and 1.11
for the 3.5, 4:0, 4.5 and 5.0 cm applicators resgalgt This effect hasbeen explained with more
penetrating“beam spectrunith larger applicatof$, but it should be also noted that the o$éarger
applicatorssispreferred on patients with larger breast ageonfirmed by correlation in our dataset
among @srand applicator diameter (Spearman correlation test p<<001).As expected, in the
univariate,analysis easured dose was also correlated with other variablated to the quantity of
radiation_emitteflsuch as théradiation time and therescribed doswhich is specified, according to
the TARGIT protocol, athedoseat 1 cm from the applicator surface in watBevenunits were used
for sparesourceswhenone of the two sources were not available becauseagitenancerepair or
recalibrations,and the use of a replacement source vedated to in vivo doseDosimetric and
spectrumecharacteristicgifferent fromthe other sources may explain this resbifferences in the
output dose rate of different sources has been repSrthdwever, given that the dose rate is checked
and, if necessaryreadjusted before each treatmierare unlikely toaffect measured dos&mall
differencesiinthe various structures involved in the generation-ys, including the electron source,
the beam deflector as well as the gold targeth asbetween manufactured and ideabegrthickness
could changephoton spectreand doses between different sourcdsis explaining a change of
dosé’. Infeur resultsthe feature selection successfully removed those variables that are nattedrrel
with measureddose (e.g. age) and those that suffer from collite@nd are redundant, such as
dmin, Whichsissrelated to D(gl;).

Among themulti-metric machine learningnodels,SVR showedthe best performanogowest RMSE
and highest adRr?) on the crossalidation and therefore we consider it as the model of chdiis
result_isin agreement with other repserinhere SVM classifiers were among the best performing
machine learning methots The second best methoSLR, has the advantage to provide a simple
calculation to be used in an operating room. For this reason, imelloresulting from thé&SLR is

shown in tablet.
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Our machine learning models werained on a dataset of 283 patients, which is the largest published
265 results of in vivo dosimetry in IORT. The plot of the model residuatsvshthat the in vivo dose

calculated by considered models have uncertainties. A possible expldioatibe residuals could be

the manuaimeasurements of.g, and distance, whose accuracy could be improved, for example, by

using ultrasound imaging to measure the thickness of breast tissue bétevappliator and the point

of interestiSkin dose may alswary because of variation of the compositions of the treated
270 breastTreatments are usually performed covering the patient surface over the applitiata lead

rubber protection sheet whose backscatter could increase skin dose, howavezlatively snall

amount'®, As all our treatments were performed with the protection sheedsinat possible to verify

how much,the skidose is dependent on its use.

By usingthemmodekecommended bthis study it is possible to anticipatmeasured in vivo dose from
275 TARGIT in the ‘operating roonThis work shows that the machine learning approach can be applied to
in vivo dosimetry, as successfully done in other areasadiotherapy workflow, including error

detection and preventiolf, treatment dose planning and verification®>**

. It also suggests thahe
results ofin'vivo dosimetryshould be includecdimong other categories of patient datéhe electronic
patient records in order to be availalide automateddataextraction with the ainof generatingor

280 improving prediction models fopatient dose

A word of cautionis neededThe availability ofthe modelsprovided here to predict skin dose should
not preventmeasuredn vivo dosimetry to the skinwhich remains fundamental as an independent
quality cheek of radiotherapy identifig errors in delivery, e.gcausedoy wrongcalibration of the
machine ln*vivo dosimetry still holds as an effective method to validate the introduetiol any
285 modification to the delivery of this intraoperative technidpyemeasuring dost the skin andbther

critical structures as required
5. Conclusion

This workyshews the potential of extending the machine learning approach to in vivo dogiinetr
IORT. Models™for the prediction of in vivo dose to the skin in TARGIT welerived from
290 measurementsfskin dose performed for over foyears at our center with a consistent techni@fe.
the machine learning models used, SVR was the best performing matiehrabe used tpredict and
evaluatedoseto,the skin befordgreatment deliveryandto adopt measures tainimize excessive dose

to the skin.
TABLESAND FIGURES CAPTIONS

295 Table 1. Overview of patient and in vivo dosimetry data. For dichotomic varialthes,number
(percentage) of patients, and for continuous variables, the average vl @5%i confidence intervals

are specified.
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Table 2. Results of univariate statistical analysis of variables related to trnetatamel in vivo
dosimetry. For ordinal variables, thevplue and correlation coefficient, r, from the Spearman rank
correlationtest are reported, while for categorical variables the KreMiallis rank test’s pralue is

shown

Table 3."Assessment of machine learning models with different methods. RM@IER?;, RMSE,,
Adj-R?,,(are root mean square error, and adjusteih Ehe training and validation datasets with 95%

confidence intervals.

Table 4.“Estimated coefficients from the SLR modelling with standardr €@&) and pvalue for

inclusion.n the model.
Figure 1. Calibration and crosgalidation of machine learningadels.

Figure 2. Distribution of values of RMSE and aBf from 10fold crossvalidation repeated 100 times

for multivariable machine learning models.

Figure 3. Analysis of statistical power of the study by learning curve. Thalpe of ttests (zero vs
nonzero,_coefficient) for inclusion of the three most predictive variabléa vivo dosimetry in the

SVR madel’is plotted against the number of patients used for training.
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Table 1.

Characteristics (N=283)

Data

Tumor site (inner/central/outer):
- Inner:
- Central
- Outer
Tumor site (inferior/central/superior)
- Inferior
- Central
- Superior
Prescribed dose
- 6Gy
- 506y
Intrabeam soureesused, serial number
- Sourcel, #338
- Source2;#321
- Temporary,replacement
Applicator diameteri(3.5/4/4.5/5 cm)
- 35cm
- 4.0lcm
- 45cm
- 50cm
Age [mean (95%°0]
Depth of applicator [mean (95% JE(cm)

Distance film-applicator [mean (95% )¢(cm)
Measured dosefmean (95%)[CIGy)

Relative standardsdeviation of measured dose [mean (9PUAG)

Table 1. Overview of patient and in vivo dosimetry data. For dichotomic variathlesjumber (percentage) of patients,

54 (19.1%)
53 (18.7%)
176 (62.2%)

43 (15.2%)
77 (27.2%)
163 (57.6%)

262 (92.6%)
21 (7.4%)

111 (39.2%)
127 (44.9%)
45 (15.9 %)

6 (2.1%)
40 (14.1%)
69 (24.4%)
168 (59.4%)
65 (3485)
1.4(0.8-2.5)
3.1(1.5-4.5)

3.21(1.53-5.38)
5.2 (2.1-9.9)

and for continuous variables, the average value with 95% confidencealatarg specified.

Table 2.
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Variable p-value r

Prescribed Dose (5 Gy or 6 Gy) <0.05 0.1394
Irradiation time <0.05 -0.1934
Distancesoffilm from the applicator shaft <0.0001 -0.2936
Depth of the applicator surface beneath the filg.fd <0.0001 -0.5679
Calculateddose in water at;d D(dmin) <0.0001 0.5751
Spherical applicator diameter <0.0001 -0.2564
Age of the patient (y) 0.48 -0.0424
Intrabeam source 1, 0.387
“  source 2 0.2667
replacement source <0.05
Breast laterality 0.27
Inner/medial/outer insertion of source 0.14
Superior/midline/inferior insertion of source 0.97

Table 2. Results of univariate statistical analysis of variables related to treatment and thosimetry. For ordinal
variables, the p-value_and correlation coefficient, r, from the Spearman raekation test are reported, while for

categorical variablessthe KrusKalallis rank test’s p-value is shown

Table 3.
I“earning method RM SE, Adj-R%  RMSE\(95%CI)  Adj-R3,(95%Cl)
SLR 0.725 0.51 0.751(0.74,0.762 0.474(0.459,0.489)
SVR 0.714 0.525  0.746(0.737,0.756) 0.481(0.468,0.494)
EML Boost 0.536 0.732  0.767(0.747,0.79) 0.451(0.417,0.479)
EML Bag 0.611 0.652  0.760(0.749,0.770) 0.461(0.447,0.476)
NN 0.683 0.564  0.765(0.742,0.795) 0.453(0.41,0.487)
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Linear regression on Dgg) 0.788 0.440 0.791(0.788,0.797) 0.439(0.408,0.467)

Table 3. Assessment of machine learning models with different metiRMSE, Adj-Rz, RMSE,, Adj-RZ\,, are root

mean square error, and adjustédnRhe training and validation datasets with 95% confidence intervals.

Table 4.

o ) Standard

Coefficient of /SL R model Estimate p-value
Error (SE)

(Intercept) 1,986 0,209 1.2:1078

Distance -0,246 0,048 4.8-107

D (Gyin) 0,408 0,027 6.46:10%

Use of a replacement source -0,555 0,124 1.16:10°

Table 4. Estimated“coefficients from the SLR modelling with standard error §8H)p-value for inclusion in the

model.
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