
A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Coevolutionary dynamics shape the structure of
bacteria-phage infection networks

Abstract

Coevolution—reciprocal evolutionary change among interacting species
driven by natural selection—is thought to be an important force in shap-
ing biodiversity. This ongoing process takes place within tangled networks
of species interactions. In microbial communities, evolutionary change be-
tween hosts and parasites occurs at the same time scale as ecological change.
Yet, we still lack experimental evidence of the role of coevolution in driving
changes in the structure of such species interaction networks. Filling this
gap is important because network structure influences community persis-
tence through indirect effects. Here we quantified experimentally to what
extent coevolutionary dynamics lead to contrasting patterns in the archi-
tecture of bacteria-phage infection networks. Specifically, we look at the
tendency of these networks to be organised in a nested pattern by which the
more specialist phages tend to infect only a proper subset of those bacteria
infected by the most generalist phages. We found that interactions between
coevolving bacteria and phages become less nested over time under fluc-
tuating dynamics, and more nested under arms race dynamics. Moreover,
when coevolution results in high average infectivity, phages and bacteria dif-
fer more from each other over time under arms race dynamics than under
fluctuating dynamics. The trade-off between the fitness benefits of evolving
resistance/infectivity traits and the costs of maintaining them might explain
these differences in network structure. Our study shows that the interaction
pattern between bacteria and phages at the community level depends on the
way coevolution unfolds.
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1 Introduction.1

The ecological importance of coevolution (i.e., reciprocal evolutionary change be-2

tween interacting species driven by natural selection; Thompson 2005) relies on the3

ways coevolutionary dynamics shape the structure of biodiversity. For example,4

previous theoretical studies have suggested that coevolution within mutualistic5

communities can drive changes in trait distributions and hence, might shape the6

patterns of interdependencies among species (Nuismer et al. 2013; Guimarães7

et al. 2017). Yet, none of the current ecological models of antagonistic interac-8

tions can be used directly to evaluate the effects of coevolutionary dynamics on9

the structure of phenotypic diversification (see however Hochberg and van Baalen10

1998). Building a strong theory of the ecological consequences of coevolutionary11

dynamics requires the design of experimental systems that provide insights and12

guide the development of theoretical approaches.13

The life cycles and antagonistic interactions of bacteria and lytic phages make14

microbial communities a powerful model system to explore the role of coevolution15

in shaping ecological patterns because changes in gene frequencies take place at16

the same time scale as changes in population abundances (Betts et al 2016; Bohan-17

nan and Lenski 2000; Weitz et al. 2013). If changes in gene frequencies translate18

into phenotypic trait changes that affect demographic rates (such as reproduction19

or survival), then, ultimately, the genetic change will affect population dynamics.20

Phages infect their bacterial hosts by attaching to cell surface receptors and one21

way for bacteria to evolve resistance is by modifying or eliminating the attach-22

ment sites. The mutations responsible for these modifications may simultaneously23

reduce the bacteria’s competitiveness because the receptor molecules are often in-24
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volved in resource acquisition (Lenski 1988). Phages, in turn, can evolve reciprocal25

adaptations to circumvent host resistance (Meyer et al. 2012).26

Cross-infection experiments across time (i.e., time-shift assays) were initially27

applied by Buckling and Rainey (2002) to distinguish arms race dynamics (i.e.,28

hosts become resistant to a wider range of parasite genotypes and parasites evolve29

the ability to infect a wider range of host genotypes across time) from fluctuating30

dynamics (i.e., different, rather than greater, resistance and infectivity profiles31

are alternatively favoured through time). Under fluctuating dynamics (also called32

Red Queen dynamics), natural selection favors host genotypes that are rare if they33

can escape attack by parasites that are locally adapted to the most common host34

genotype (Ashby and Boots 2017, Best et al. 2017). At the same time, selection35

will continue favoring parasites capable of attacking the most common hosts. In36

contrast, arms race dynamics are driven by directional selection toward an ever-37

increasing investment in host defense and parasite counterdefense (Buckling and38

Rainey 2002; Brockhurst et al. 2003; Scanlan et al. 2011).39

Early theoretical (Hochberg and van Baalen 1998) and experimental (Lopez-40

Pascua et al. 2009) studies have suggested that the level of resources available for41

hosts shapes the outcome of coevolution. It has been suggested that the mechanism42

responsible for the influence of resources on coevolutionary dynamics is the cost of43

mutating receptors, with a lower cost when nutrients are more abundant (Lopez-44

Pascua and Buckling, 2008). What remains to be investigated is to what extent45

differences in coevolutionary dynamics lead to contrasting patterns in the structure46

of bacteria-phage infection networks.47

A bacteria-phage infection network depicts who infects whom as links connect48
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susceptible bacteria to the phages that infect them (i.e., nodes of the network).49

The structure of such a network is characterized by the pattern of links established50

among all coevolving phages and bacteria that are present in the community at51

a given time. Quantifying network structure in microbial and viral communities52

is highly relevant because community assembly models rarely account for the in-53

fluence of evolutionary change on ecological dynamics. For example, phages may54

infect a single, unique bacterial phenotype or may diversify and result in nested55

networks in which the most specialist phages infect those hosts that are most sus-56

ceptible to infection rather than infecting those hosts that are most resistant to57

infection (see insets on Fig. 3). This nested pattern was first described in the con-58

text of plant-animal mutualistic networks (Bascompte et al. 2003), and posteriorly59

applied to bacteria-phage infection networks (Flores et al. 2011). The relevance60

of looking at this network pattern hinges on the fact that it may affect both the61

number of coexisting species supported by these networks (Bastolla et al. 2009)62

as well as their robustness in the face of perturbation (Rohr et al. 2014).63

In a first attempt to provide empirical evidence on how the level of resources64

available for hosts influences network structure by shifting coevolutionary dynam-65

ics, Poisot et al. (2011) found that nestedness was greater at low than at high re-66

sources. However, this study lacked competition among both bacteria and phages67

because it was performed on a collection of pairwise bacteria-phage coevolving pop-68

ulations. Only recently this question has been addressed in experimental bacteria-69

phage infection networks (Gurney et al. 2017). The authors used a previous study70

(Betts et al. 2014) to test whether the networks resulting from coevolving popula-71

tions that exhibited arms race dynamics were more nested than networks resulting72
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from fluctuating dynamics. No differences were found in terms of structure be-73

tween the networks resulting from the two modes of coevolutionary dynamics.74

However, a limitation of their approach is that they used phages from different75

families coevolving with the same bacteria species. This precludes exploring how76

coevolution shapes network structure within the same bacteria-phage system.77

Here we go further along this path in two novel directions. First, we shift78

the focus from genotypic to phenotypic coevolution. Isolates sampled from the79

coevolving population at different times might correspond to the same genotypes80

(likely the most abundant ones). Since we are interested in phenotypic evolution,81

we circumvented this uncertainty by focusing on the unique phenotypes for both82

bacteria and phages. This will allow us to minimize the effects of differences in83

genotype abundance (i.e., the ecology of the system) and focus on the evolution-84

ary dimension. Characterizing coevolutionary dynamics at the phenotype level is85

important because abundance may explain asymmetries in bacteria-phage interac-86

tions (i.e., phages of the abundant phenotypes will have frequent encounter with87

bacteria of many rare phenotypes). Second, we quantify changes in the structure88

of the interaction network at two levels. We begin by looking at the contem-89

porary interaction networks at each time step. This will allow us to explore to90

what extent the coevolutionary mode shapes network structure. We then proceed91

by considering, for each replicate, the global network of interactions accumulated92

across the entire experimental setting, which will allow us to see to what degree93

the phenotypes of the contemporary networks are more or less similar across time.94

Hereafter, we will refer to the former scale as the contemporary network and to95

the latter scale as the global (contemporary plus non-contemporary) network. As96
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a model system, we look at the structure of the network resulting from the pheno-97

typic diversification in a pairwise coevolutionary framework, where a single phage98

species (SBW25φ2) infects one host bacterium species (Pseudomonas fluorescens99

SBW25) in high and low nutrient environments (Lopez-Pascua et al. 2014).100

2 Methods.101

2.1 Coevolutionary experiments.102

We used data from the coevolutionary experiment carried out by Lopez-Pascua et103

al. (2014) using P. fluorescens SBW25 and phage SBW25φ2. They cultivated 12104

coevolving populations of bacteria and their phages during 24 days in 2 different105

nutrient environments (6 with high and 6 with low resource availability). The106

high and low nutrient media contained the same nutrients (proteose peptone and107

glycerol), but with 10-fold difference in concentration. The same receptors should108

therefore be expressed in the bacteria. While we do not know the precise binding109

site of the phage, characterization of resistant bacteria suggests phages bind to110

lipopolysaccharides on the bacteria outer membrane (Scanlan et al., 2015). Then,111

they isolated 20 bacteria and 20 phages every 4 days (i.e., 6 times for the entire112

coevolutionary process; Fig. 1a). Using those isolates, the infectivity or resistance113

of every pairwise bacterium-phage combination within each of the 12 populations114

was tested (i.e., (20 × 6) × (20 × 6) = 14400 infectivity and resistance assays per115

population; Fig. 1b). Further details on the evolution experiment, the procedure116

to isolate coevolved bacteria and phages, and how infectivity and resistance assays117

were performed can be found in Lopez-Pascua et al. (2014).118
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2.2 Phenotype-based bacteria-phage infection networks.119

We first assigned, for each replicate and resource level, a single phenotype to120

each of the 20 phages and 20 bacteria isolated in the lab at each point in time by121

identifying their unique infectivity (phages) or resistance (bacteria) profiles. These122

profiles result from testing the outcome of the (20×6)× (20×6) = 14400 pairwise123

cross-infections for each replicate. That is, we assigned the same phenotype to two124

phages (bacteria) if they showed the same infectivity (resistance) profile against all125

bacteria (phages) isolated during the entire coevolutionary process (Fig. 1c). This126

mapping of genotypes onto phenotypes resulted in infectivity matrices between127

one-third and a half the size of the 120× 120 pairwise cross-infections (mean and128

standard deviation for the number of unique infectivity (resistance) profiles of129

phages (bacteria) was 53.8 ± 35.8 (39.8 ± 24.7) at low nutrients, and 63.2 ± 24.4130

(36± 12.8) at high nutrients).131

Second, for each replicate and resource level, we redrew the 20× 20 infectivity132

matrices of bacteria and phages isolated at time t by keeping only those bacteria133

and phages with unique phenotypes (contemporary networks; Fig. 1d). Note that,134

if a bacterium or phage with the same phenotype was sampled at more than one135

point in time, the same phenotype will be found in more than one contemporary136

network. In addition, some bacteria and/or phages from a contemporary network137

might not have any interactions just because of the sampling process. This does138

not mean those bacteria had evolved resistance to all phages, but only to the139

phages isolated at time t. Likewise, those phages might not be able to infect any140

of the bacteria isolated at time t, but they would be able to infect other bacteria in141

the population—otherwise they would not have been sampled. We included those142
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phenotypes in the analyses of the contemporary networks because they affect the143

average infectivity of the coevolving population.144

Third, we redrew the infectivity matrices consisting of all pairwise cross-infections145

for each replicate and resource level (i.e., global networks; Fig. 1d) by consider-146

ing those bacteria and phages of their corresponding contemporary networks. As147

noted above, a global network might contain more than one bacterium and/or148

phage with the same phenotype if they were sampled at more than one point in149

time. We included them in our analyses to infer coevolutionary dynamics (see150

below), but kept only the isolate that was sampled first as the unique pheno-151

type in the other analyses. This ensured that we matched the unique phenotypic152

characterization to the temporal sequence of the coevolutionary process.153

Finally, to infer coevolutionary dynamics at the phenotype level (Fig. 2), the154

pairwise interactions (i.e., phage phenotype i infecting bacterium phenotype j)155

from each global network were classified into three groups: 1) interactions among156

contemporary bacteria and their coevolving phages (i.e., phage phenotype i sam-157

pled at time t was able to infect bacterium phenotype j sampled at time t); 2)158

interactions among phages sampled from future points in time and bacteria sam-159

pled from past points in time (e.g., phage phenotype i sampled at time t+ 1 was160

able to infect bacterium phenotype j sampled at time t); and 3) interactions among161

phages sampled from past points in time and bacteria sampled from future points162

in time (e.g., phage phenotype i sampled at time t−1 was able to infect bacterium163

phenotype j sampled at time t). Since the same phenotype can be sampled at more164

than one point in time, we kept the first occurrence of the pairwise interaction to165

ensure that each interaction was represented only once in the data set.166
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2.3 Statistical analysis.167

2.3.1 Phenotypic diversification and betadiversity.168

Phenotypic diversification was computed by counting the number of novel infectiv-169

ity and resistance profiles (phage and bacteria phenotypes, respectively) identified170

at each point in time, replicate, and resource level. We used a linear mixed model171

to test the effect of resources on phenotypic diversification. We specified resources,172

time, type of organism (either phage or bacterium), and their interaction as fixed173

effects, and included replicate as a random effect. We used the type I analysis of174

variance to quantify the effects of the predictors (Kenward-Roger approximation).175

Beta-diversity (i.e., changes in phenotypic composition over time) was quan-176

tified following a method that allows us to decompose the contribution of two177

additive components—phenotype replacement over time (i.e., turnover) and phe-178

notype loss or gain—to beta-diversity patterns (Baselga 2010). We used a linear179

model to analyze the effect of resources, type of organism, and their interaction on180

the total beta-diversity and on the fraction of the total beta-diversity explained181

by phenotypic turnover.182

2.3.2 Phage infectivity to evolving and coevolving bacteria.183

Interactions between unique phenotypes of bacteria and phages were identified184

by pairwise cross-infection assays (i.e., phage isolate having phenotype i infected185

bacterium isolate having phenotype j in the cross-infection assay). Phage infectiv-186

ity was also computed separately for the three types of interactions: interactions187

among coevolving bacteria and phages, interactions among phages sampled from188

future points in time and bacteria sampled from past points in time, and phages189

sampled from past points in time and bacteria sampled from future points in time.190
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The role of resources in explaining the probability for a phage to infect a coe-191

volving bacterium compared to that of infecting a bacterium either from the past or192

from the future was analyzed using a generalized linear mixed model. We modeled193

the probability of infection with a binomial distribution (link function=logit). We194

specified the statistical interaction between the type of interaction and the resource195

level as fixed effects, and we included replicate as a random effect. We used the196

type I analysis of variance to quantify the effects of the predictors (Kenward-Roger197

approximation). Here, by type of interaction we refer to the temporal dimension,198

i.e., contemporary bacteria and phage, bacteria from the future and phage from199

the past, and viceversa.200

2.3.3 Nestedness.201

We computed nestedness in the pattern of interactions among bacteria and phages202

for the global and contemporary networks. We used a slightly modified version203

of the metric introduced by Bastolla et al. (2009) that measures the average204

overlap betweeen the infectivity (susceptibility) profiles of phages (bacteria). It205

is equivalent to the widely-used NODF metric (Almeida-Neto et al., 2008), but206

without penalizing the contribution to nestedness of phages (bacteria) able to infect207

(susceptible to) the same number of bacteria (phages). Specifically, nestedness was208

computed as:209

N =

b∑
i=1,i<j

mij

min(mi,mj)
+

p∑
i=1,i<j

nij

min(ni,nj)

b×(b−1)
2

+ p×(p−1)
2

,

210

where b is the number of bacteria, p is the number of phages, mi is the number of211
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phages infecting bacterium i, ni is the number of bacteria that phage i infects, mij212

is the number of common phages infecting bacteria i and j, and nij is the number213

of common bacteria that phages i and j infect. Nestedness defined above is zero214

if mij = 0 and nij = 0 (i.e., no common interactions among bacteria nor among215

phages), and one (i.e., perfect nestedness if bacteria share all the phages they are216

susceptible to, and phages share all the hosts they infect) if mij = min(mi,mj)217

and nij = min(ni, nj).218

The absolute values of nestedness resulting from this equation (as well as for the219

NODF metric) depend on network size (i.e., the number of phages multiplied by220

the number of bacteria) and connectance (i.e., the number of realized interactions221

over the total number of bacteria-phage pairs). That is, the smaller the number222

of phenotypes and the larger the number of interactions, the higher the chances223

for phage (bacteria) infectivity (resistance) profiles to overlap (Almeida-Neto et224

al. 2008). In contrast to having a single realization resulting from a given level225

of resources, here we had enough data (i.e., 6 replicates) to explore the effect of226

the resource level in determining changes in nestedness over time after controlling227

for network size and connectance. Since 43% of the contemporary networks were228

perfectly nested (i.e., N = 1), we first tested the role of network size in explaining229

the prevalence of perfect nestedness by using a generalized linear mixed model230

(binomial distribution; link function=logit). We specified network size and the231

interaction between time and resources as fixed effects, and included replicate as232

a random effect. Next, we explored changes in connectance over time for each233

resource level by using a generalized linear mixed model (binomial distribution;234

link function=logit). We specified resources and the interaction between time and235
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resources as fixed effects, and included replicate as a random effect. After that,236

we focused on contemporary networks that were large enough to allow nestedness237

to vary (i.e., N < 1). We then used a linear mixed model to analyze the effect238

of the resource level in determining changes in nestedness (logit-transformed) over239

time. We specified connectance, network size, and the interaction between time240

and resources as fixed effects, and included replicate as a random effect. Finally,241

we used a linear model to analyze the effect of connectance, resources, and their242

interaction, on the nestedness of the global network. All statistical analysis were243

conducted in R version 3.5.0 (R Core Team, 2018).244

3 Results.245

3.1 Phenotypic diversification and beta-diversity.246

Phages diversified more than bacteria (F1,10 = 18.93, p = 0.001; see Table S1).247

The number of novel phenotypes (i.e., unique infectivity and resistance profiles)248

decreased over time (F1,116 = 31.42, p < 0.001); however, the magnitude of the249

decay depended on whether the organism was a phage or a bacterium (F1,116 =250

18.01, p < 0.001). Specifically, the number of novel phage phenotypes decreased251

over time slower than bacteria, and much slower under high than low resources252

(F1,116 = 12.70, p < 0.001).253

Beta-diversity (i.e., changes in phenotypic composition over time) was higher254

for phages than for bacteria (F1,20 = 9.08, p = 0.007; see Table S2). We found no255

effect of the resource level on beta-diversity (F1,20 = 1.31, p = 0.266). Interestingly,256

the turnover component of beta-diversity (measured as the fraction of the total257

beta-diversity explained by phenotypic turnover) was higher for bacteria than for258
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phages under low resources (F1,20 = 7.00, p = 0.016).259

3.2 Phage infectivity to evolving and coevolving bacteria.260

In addition to previous analysis focused on characterizing coevolutionary dynamics261

at the genotype level, we identify here the two modes of coevolutionary dynamics262

at the phenotype level (i.e, regardless of the abundance of their genotypes). The263

probability of a phage infecting a bacterium depended on the interaction between264

resources and the type of interaction (i.e., contemporary, bacteria from future and265

phage from past, or bacteria from past and phage from future; χ2
df=2 = 10.15,266

p = 0.006). The magnitude and direction of this effect depended on whether267

bacteria and phages coevolved or bacteria (phages) were facing phages (bacteria)268

either from the past or the future. Under low resources, bacteria were more re-269

sistant to their contemporary than past and future phages, which is consistent270

with fluctuating dynamics when bacteria adapt more rapidly than do phages (Fig.271

2). In contrast, at high resources bacteria were more resistant to past phages and272

became less resistant to contemporary and future phages, which is a distinctive273

feature of arms race dynamics (Fig. 2). Indeed, bacteria sampled at the end of the274

experiment (i.e., t=6) evolved resistance to all sampled contemporary phages in275

83% of the replicates under high resources, but only in 33% under low resources.276

3.3 Nestedness.277

We found that the probability for a contemporary network to be perfectly nested278

depended on network size (χ2
1 = 22.93, p < 0.001; see Table S4). Small net-279

works (size <=50) were all perfectly nested, regardless of the mode of coevolution.280

Since neither coevolutionary dynamics, nor time explained network connectance281
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(χ2
df=1 = 1.31, p = 0.253 and χ2

df=1 = 0.02, p = 0.879, respectively; see Table282

S5), we did not include a three-way interaction term in the model. The change in283

nestedness over time observed when considering the non-perfectly nested networks284

depended on coevolutionary dynamics after controlling for network size and con-285

nectance (F1,9 = 21.42, p = 0.001; see Table S6). That is, nestedness decreased286

over time under fluctuating dynamics and increased over time under arms race287

dynamics (Fig. 3).288

Moving now to patterns in the global network (i.e., both contemporary and non-289

contemporary phages and bacteria), the nested pattern of bacteria-phage infections290

depended on the interaction between coevolutionary dynamics and the connectance291

of the global networks (F1,8 = 10.89, p = 0.011; see Table S7). Specifically,292

networks with higher connectances were more nested under fluctuating dynamics293

than under arms race dynamics (Fig. 4).294

4 Discussion.295

We have shown how coevolutionary dynamics influences the architecture of bacteria-296

phage infection networks. First, we found that phages diversify more than bacte-297

ria and that the turnover is higher for bacteria than for phages under fluctuating298

dynamics. Second, the two contrasting modes of coevolutionary dynamics (i.e.,299

fluctuating dynamics and arms race dynamics) driven by the level of resources300

were also found at the phenotype level. Third, the pattern of interactions among301

bacteria and phages depends on coevolutionary dynamics at two different scales.302

At a local scale, the nested pattern of interactions between coevolving bacteria and303

phages decreases over time (i.e., niche partitioning is promoted) under fluctuating304
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dynamics, and increases over time under arms race dynamics (i.e., niche overlap305

is promoted; Fig. 3). At a global scale, the higher the network connectance, the306

higher the nestedness under fluctuating dynamics and the lower the nestedness307

under arms race dynamics (Fig. 4). Let us discuss those main findings one by one.308

4.1 Phenotypic diversification and beta-diversity309

The decrease in phenotypic diversification over time—regardless of the mode of310

coevolution—might be explained by coevolution proceeding faster earlier (Bohan-311

nan and Lenski 1997; Morgan et al. 2010) and resistance mutations with lower312

cost appearing at later stages (Bohannan and Lenski 2000). Bohannan and Lenski313

(1997) showed that, in coevolving populations of E. coli and phage T4, multiple314

resistant types appeared quickly in bacterial populations at both high and low315

resources. Under these circumstances, the community would initially increase its316

diversity, as resistant mutants appear and phages evolve counterdefenses. However,317

this first burst of adaptive radiation would be followed by a period of decelerating318

coevolution, as resistance mutations with lower cost appear, reducing the size of319

the phage population and thus its rate of evolution.320

Population abundances could explain why phages diversified over time more321

than bacteria under arms race dynamics (i.e., at high resources). Increasing con-322

centrations of resources leads to an increase in the abundance of the phage and its323

host (e.g., Bohannan and Lenski 1997; Forde et al. 2008). Furthermore, the cost of324

mutating the bacterial receptor is lower when nutrients are more abundant (Lopez-325

Pascua and Buckling, 2008). Since large populations produce more mutants and326

the cost of resistance is lower, the selective pressure on phages is stronger under327

arms race dynamics and hence, it is expected a higher diversification over time.328
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Phenotypic composition changed very fast over time, suggesting that coevo-329

lution occurs with fast rates relative to the generation time (Forde et al. 2004).330

Moreover, phenotypic turnover in bacteria was greater under fluctuating dynamics331

than under arms race dynamics, most likely as a consequence of the frequency-332

dependent selection that might take place under fluctuating dynamics—where se-333

lection continually favors rare phenotypes and disfavors common phenotypes.334

4.2 Coevolutionary dynamics335

By measuring the change in the infectivity of phage populations to a bacterial pop-336

ulation through time, we found a strong signature at the phenotype level in how337

resources drive coevolutionary dynamics (Fig. 2). Specifically, we found an ever-338

increasing reciprocal investment in defense and counterdefense at high resources339

(arms race dynamics), and selection favoring alternative phenotypes in bacteria340

and phages over time at low resources (fluctuating dynamics). Note that charac-341

terizing coevolutionary dynamics at the genotype level (i.e., when the frequency342

of genotypes is considered) did show fluctuating dynamics, but in a different way343

(see Lopez-Pascua et al. 2014). That is, instead of promoting different phenotypes344

of bacteria and phages over time, selection favored host range fluctuations (i.e.,345

the most abundant phages shifted between generalists and specialists over time).346

4.3 Network structure347

The way the level of resources modulates the ecological consequences of the cost of348

resistance and infectivity (Koskella et al. 2012) might explain the decrease in the349

nested structure of contemporary networks over time under fluctuating dynam-350

ics (Fig. 3). Under low resources, bacterial densities are expected to be low, and351
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therefore, the likelihood for a phage to encounter a susceptible bacterium would be352

low. Since evolving infectivity traits likely comes at the price of a slight decrease353

in the competitive ability for limiting resources (see Bohannan and Lenski 2000),354

evolving the ability to infect many hosts (i.e., expanded host-range) might come355

at a higher cost than evolving a single trait to infect only a few (Woolhouse et al.,356

2001; Leggett et al. 2013). Therefore, natural selection would favor specialization357

in phages (i.e., niche partioning). This would explain why nestedness decreased358

over time under fluctuating dynamics. When resources are abundant, the rate of359

encounters among bacteria and phages will be much higher, and the fitness bene-360

fits of establishing a successful infection would overcome the costs of maintaining361

infectivity traits. This would explain why nestedness increased over time under362

arms race dynamics.363

This result contrasts with the findings by Poisot et al. (2011), who reported364

high nestedness at low resources (i.e., under fluctuating dynamics). Two points365

can potentially explain this divergence. First, here we are using unique infectivity366

profiles, while in Poisot et al. (2011), as in the rest of previous studies, researchers367

used isolates that may contain the very same genotype. Second, in Poisot et al.368

(2011) there was competition neither among bacteria, nor among phages, which369

makes the comparison more difficult.370

In addition, these contrasting patterns in nestedness over time are consistent371

with previous explanations based on the genetic architecture underlying the mech-372

anism of infection (Flores et al. 2011; Beckett and Williams 2013; Weitz et al.373

2013; Koskella and Brockhurst 2014). When interactions are driven by a gene-374

for-gene mechanism of infection, mutations in bacteria would confer resistance to375
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recently evolved phages while maintaining resistance to past phages. Likewise,376

phages would evolve infectivity traits without losing the ability to infect ances-377

tral bacteria. Therefore, the set of bacteria that a phage can infect are nested378

over time. That is, the host-range of the phages are subsets of each other (i.e.,379

niche overlap). This process would lead to nested interaction networks. In con-380

trast, when interactions are driven by a matching-alleles mechanism of infection,381

bacteria would evolve resistance to a single phage phenotype and would lose any382

evolved resistance to other phages, whereas mutations in phages would confer383

infectivity against single bacterial phenotypes at the cost of an entire loss of in-384

fectivity against ancestral phenotypes. This process would lead to less nested, or385

compartmentalized networks (i.e., niche-partioning), where the host-range of the386

phages are distinct from each other. Interestingly, it is worth noting that experi-387

mental studies (Forde et al. 2008) and mathematical models (Hochberg and van388

Baalen 1998) have suggested that the way the level of resources (and hence, co-389

evolutionary dynamics) affects the cost of resistance depends also on the genetic390

architecture of the mechanism of infection.391

At the level of the global network, the degree of nestedness decreased with con-392

nectance under arms race dynamics but increased with connectance under fluctu-393

ating dynamics (Fig. 4). Our interpretation is that when coevolution resulted in394

high average infectivity (i.e., high connectance), bacteria evolved resistance earlier395

under arms race dynamics than under fluctuating dynamics—because the fitness396

benefits of resistance would overcome the costs of evolving resistance traits. There-397

fore, at high resources phages evolved and diversified quickly from the beginning,398

which allowed them to differentiate from each other over time (i.e., low nested-399
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ness). In contrast, at low resources bacteria evolved resistance later on and phages400

did not have much time to diverge from each other (i.e., high nestedness).401

It might be argued that the way we inferred phenotypes from isolates in the402

lab is misleading. Note, however, that in a previous study, Hall et al. (2011)403

sequenced the tail fibre gene of the phage and reported that, on average, 40% of404

the phage isolates were distinct genotypes. In our study, on average 48% of the405

phage isolates were identified as unique infectivity profiles. This result suggests406

that each distinct infectivity profile (i.e., phenotype) might in fact correspond to407

a distinct genotype.408

Finally, the results here presented have one limitation that is worth stressing.409

As with all the previous papers on bacteria-phage coevolution, our work is based410

on isolation-based approaches. Essentially, this means that the interactions within411

a network are inferred from pairwise cross-infection patterns. As in other fields of412

ecology and evolutionary biology, our perception is very much constrained by such413

a pairwise approach. As a consequence, we know very little about what component414

of species coexistence or coevolutionary dynamics is due to indirect or higher-order415

effects (Bairey et al. 2016; Levine et al. 2017, Guimarães et al. 2017). Future work416

should reduce this gap. Only then, we will be well positioned to fully understand417

the community context of coevolution.418
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5 Supporting Information.

S1. Supplementary tables.

S2. Data set.

• database.csv

• phenotypic_diversification.csv

• beta-diversity.csv

• infectivity.csv

• nestedness_global.csv

• nestedness_contemporary.csv

• README.txt

S3. R code.

• R_phenotypic_diversification.r

• R_betadiversity.r

• R_infectivity.r

• R_connectance.r

• R_nestedness_global.r

• R_nestedness_contemporary.r

20



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

6 References.

Almeida-Neto, M., Guimarães, P., Guimarães, P. R. Jr., Loyola, R. D., and W.

Ulrich. 2008. A consistent metric for nestedness analysis in ecological systems:

reconciling concept and measurement. Oikos 117:1227-1239.

Ashby, B., and M. Boots. 2017. Multi-mode fluctuating selection in host-parasite

coevolution. Ecology Letters 20:357-365.

Barey, E., Kelsic, E. D., and R. Kishony. 2016. High-order species interactions

shape ecosystem diversity. Nature Communications 7:12285.

Bascompte, J., Jordano, P., Melián, C. J. and J. M. Olesen. 2003. The nested as-

sembly of plant-animal mutualistic networks. Proceedings of the National Academy

of Sciences of the United States of America 100:9383-9387.

Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Bartolo, L., and J.

Bascompte. 2009. The architecture of mutualistic networks minimizes competi-

tion and increases biodiversity. Nature 458:1018-1020.

Baselga, A. 2010. Partitioning the turnover and nestedness components of beta

diversity. Global Ecology and Biogeography 19:134-143.

Beckett, S. J. and H. T. P. Williams. 2013. Coevolutionary diversification creates

nested-modular structure in phage-bacteria interaction networks. Interface Focus

21



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

3:20130033.

Best, A., Ashby, B., White, A., Bowers, R., Buckling, A., Koskella, B., and M.

Boots. 2017. Host-parasite fluctuating selection in the absence of specificity. Pro-

ceedings of the Royal Society of London. B. 284:20171615.

Betts, A., Kaltz, O., and M. E. Hochberg. 2014. Contrasted coevolutionary dy-

namics between a bacterial pathogen and its bacteriophages. Proceedings of the

National Academy of Sciences of the United States of America 111:11109-11114.

Betts, A., Gifford, D. R., MacLean, R. C., and K. C. King. 2016. Parasite di-

versity drives rapid host dynamics and evolution of resistance in a bacteria-phage

system. Evolution 70:969-978.

Bohannan, B. J. M., and R. E. Lenski. 1997. Effect of resource enrichment on a

chemostat community of bacteria and bacteriophage. Ecology 78:2303-2315.

Bohannan, B. J. M., and R. E. Lenski. 2000. Linking genetic change to community

evolution: insights from studies of bacteria and bacteriophage. Ecology Letters

3:362-377.

Brockhurst, M. A., Morgan, A. D., Rainey, P. B., and Buckling, A. 2003. Popula-

tion mixing accelerates coevolution. Ecology Lettes 11:975-979.

22



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Buckling, A., and P. B. Rainey. 2002. Antagonistic coevolution between a bac-

terium and a bacteriophage. Proceedings of the Royal Society of London, B.

269:931-936.

Flores, C. O., Meyer, J. R., Valverde, S., Farr, L., and J. S. Weitz. 2011. Statisti-

cal structure of host-phage interactions. Proceedings of the National Academy of

Sciences of the United States of America 108:E288-E297.

Forde, S. E., Thompson, J. N., and B. J. M. Bohannan. 2004. Adaptation

varies through space and time in a coevolving host-parasitoid interaction. Na-

ture 431:841-844.

Forde, S. E., Thompson, J. N., Holt, R. D., and B. J. M. Bohannan. 2008. Co-

evolution drives temporal changes in fitness and diversity across environments in

a bacteria-bacteriophage interaction. Evolution 62:1830-1839.

Guimarães, P. R. Jr., Pires, M. M., Jordano, P., Bascompte, J., and J. N. Thomp-

son. 2017. Indirect effects drive coevolution in mutualistic networks. Nature

550:511-514.

Gurney, J., Aldakak, L., Betts, A., Gougat-Barbera, C., Poisot, T., Kaltz, O., and

M. E. Hochberg. 2017. Network structure and local adaptation in co-evolving

bacteria-phage interactions. Molecular Ecology 26:1764-1777.

23



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Hall, A. R., Scanlan, P. D., Morgan, A. D., and A. Buckling. 2011. Host-parasite

coevolutionary arms race give way to fluctuating selection. Ecology Letters 14:635-

642.

Hochberg, M. E., and M. van Baalen. 1998. Antagonistic coevolution over pro-

ductivity gradients. American Naturalist 152:620-634.

Koskella, B., Lin, D. M., Buckling, A., and J. N. Thompson. 2012. The costs

of evolving resistance in heterogeneous parasite environments. Proceedings of the

Royal Society of London, B. 279:1896-1903.

Koskella, B. and M. A. Brockhurst. 2014. Bacteria-phage coevolution as a driver

of ecological and evolutionary processes in microbial communities. FEMS Micro-

biology Reviews 38:916-931.

Leggett, H. C., Buckling, A., Long, G. H., and M. Boots. 2013. Generalism and

the evolution of parasite virulence. Trends in Ecology and Evolution 28:592-596.

Lenski, R. E. 1988. Experimental studies of pleiotropy and epistasis in Escherichia

coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evo-

lution 42:425-432.

Levine, J. M., Bascompte, J., Adler, P., and S. Allesina. 2017. Beyond pairwise

mechanisms of species coexistence in complex communitites. Nature 546:56-64.

24



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Lopez-Pascua L., and A. Buckling. 2008. Increasing productivity accelerates host-

parasite coevolution. Journal of Evolutionary Biology 21:853-860.

Lopez-Pascua L., Brockhurst M. A., and A. Buckling. 2009. Antagonistic coevolu-

tion across productivity gradients: an experimental test of the effects of dispersal.

Journal of Evolutionary Biology 23:207.211.

Lopez-Pascua, L., Hall, A. R., Best, A., Morgan, A. D., Boots, M., and A. Buck-

ling. 2014. Higher resources decrease fluctuating selection during host-parasite

coevolution. Ecology Letters 17:1380-1388.

Meyer, J. R., Dobias, D. T., Weitz, J. S., Barrick, J. E., Quick, R. T., and R. E.

Lenski. 2012. Repeatability and contingency in the evolution of a key innovation

in phage lambda. Science 335:428-432.

Morgan, A. D., Bonsall, M. B., and A. Buckling. 2010. Impact of bacterial mu-

tation rate on coevolutionary dynamics between bacteria and phages. Evolution

64:2980-2987.

Nuismer, S. L., Jordano, P., and J. Bascompte. 2013. Coevolution and the archi-

tecture of mutualistic networks. Evolution 67:338-354.

Poisot, T., Lepennetier, G., Martinez, E., Ramsayer, J., and M. E. Hochberg. 2011.

25



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Resource availability affects the structure of a natural bacteria-bacteriophage com-

munity. Biology Letters 7:201-204.

R Core Team. 2018. R: A Language and Environment for Statistical Computing

(R Foundation for Statistical Computing, Vienna).

Rainey, P. B., and M. J. Bailey. 1996. Physical and genetic map of the Pseu-

domonas fluorescens SBW25 chromosome. Molecular Microbiology 19:521-533.

Scanlan, P. D., Hall, A. R., Lopez-Pascua, L., and A. Buckling. 2011. Genetic

basis of infectivity evolution in a bacteriophage. Molecular Ecology 20:981-989.

Scanlan, P. D., Hall, A. R., Blackshields, G., Friman, V. P., Davis, M. R. Jr.,

Goldberg, J. B., and A. Buckling. 2015. Coevolution with bacteriophages drives

genome-wide host evolution and constrains the acquisition of abiotic-beneficial mu-

tations. Molecular Biology and Evolution 32:1425-1435.

Thompson, J. N. 2005. The geographic mosaic of coevolution. University of

Chicago Press. Chicago, IL (USA).

Weitz, J. S., Poisot, T., Meyer, J. R., Flores, C. O., Valverde, S., Sullivan, M. B.,

and M. E. Hochberg. 2013. Phage-bacteria infection networks. Trends in Micro-

biology 21:82-91.

26



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Woolhouse, M. E. J., Taylor, L. H., and D. T. Haydon. 2001. Population biology

of multihost pathogens. Science 292:1109-1112.

27



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

7 Figures

Figure 1: Experimental coevolution.
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Figure 1: Experimental coevolution. a) Coevolving bacteria and phages: 20

bacteria and 20 phages were isolated every 4 days from 12 populations that were

coevolving for 24 days in 2 different nutrient environments (6 with high and 6

with low resource availability). b) Cross-infection matrices obtained at the end of

the experiment: 6 20x20 matrices of bacteria and phages isolated from the same

point in time are represented along the diagonal (black). Below the diagonal (red),

pairwise cross-infections between bacteria isolated at earlier points in time than

phages are shown. Above the diagonal (green), pairwise cross-infections between

bacteria isolated at later points in time than phages are represented. In blue,

a selection of 4 phage infectivity profiles are highlighted. c) Infectivity profiles

(columns) of the 20 + 20 phages isolated at time t=5 and t=6 and obtained after

crossing them with the 120 bacteria isolates (rows) are represented (only the cross-

infection patterns of 4 phage and 45 bacteria isolates are shown for illustrative

purposes). The infectivity profile of phage #20 isolated at time t=5 and the

infectivity profiles of phages #1, #2, and #3 isolated at time t=6 are all the same.

When this happened, we only kept in the global networks the infectivity profile of

the phage isolated at the earliest point in time, and discarded the rest. Changes in

the size of the matrices along the diagonal can happen as a result of this process.

We applied the same procedure to obtain unique bacteria resistance profiles (rows).

d) The resulting cross-infection matrix of unique infectivity/resistance profiles

(i.e., phage/bacteria phenotypes) is shown. We use these cross-infection matrices

in our analysis (i.e., we worked at the phenotype level).
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Figure 2: Coevolutionary dynamics. Phage infectivity (red) and bacterial re-
sistance (i.e., 1 - infectivity; blue) at the phenotype level was computed for contem-
porary bacteria and phages (i.e., both were isolated for the first time at the same
point in time), and when bacteria (phages) were facing phages (bacteria) either
from the past or the future through time-shifts experiments. Mean and confidence
intervals at 95% of infection and resistance probabilities are shown for low and high
resources (for all replicates). Under low resources, bacteria were more resistant to
contemporary than to non-contemporary phages and phages were less virulent to
contemporary than to non-contemporary bacteria. This result is consistent with
fluctuating dynamics when bacteria adapt more rapidly than do phages. In con-
trast, at high resources bacteria (phages) were more resistant (virulent) to phages
(bacteria) from the past than to contemporary phages (bacteria), and to contem-
porary phages (bacteria) than to phages (bacteria) from the future. This result
indicates an ever-increasing reciprocal investment in defense and counterdefense
over time (i.e., arms race dynamics).
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Figure 3: Nestedness of contemporary networks over time. We computed
the nested pattern of infection among bacteria and phages that were isolated in the
lab at the same point in time (cartoon on the left). Each circle corresponds to a
contemporary network, and its diameter is proportional to network size (measured
as the number of phages multiplied by the number of bacteria). The darker the
color of the circle, the higher the average infectivity (i.e., connectance). Regression
lines represent how coevolutionary dynamics affect nestedness over time at the av-
erage level of connectance and network size (shaded areas indicate the confidence
intervals at 95%). Cartoons at the right of the regression lines illustrate the infec-
tion patterns corresponding to the nestedness values predicted at the last point in
time for hypothetical contemporary networks with the same level of connectance
(C = 0.3). Nestedness decreased over time under fluctuating dynamics (red; left)
and increased over time under arms race dynamics (blue; right).
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Figure 4: Nestedness of the global network. We computed the nested pattern
of infections among all bacteria and phages resulting from the entire coevolutionary
experiment (global network with contemporary and non-contemporary bacteria
and phages; cartoon on the left). Each circle corresponds to a replicate under
fluctuating dynamics (red) and arms race dynamics (blue). The diameter of each
circle is proportional to network size (measured as the number of phages multiplied
by the number of bacteria). Lines represent the regression lines of the best fit of
a generalized linear model (shaded gray areas indicate the confidence intervals
at 95%). The average infectivity of the network (i.e., connectance) was different
across replicates regardless of the mode of coevolution. Cartoons in the corners of
the figure illustrate the infection patterns corresponding to the nestedness value
for hypothetical networks with high and low connectances (C = 0.6 and C = 0.3,
respectively). Nestedness increased with connectance under fluctuating dynamics,
but decreased under arms race dynamics.
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