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Abstract 

Fractures typically heal via endochondral and intramembranous bone formation, which together 

form a callus that achieves union and biomechanical recovery. PTHrP, a PTH receptor agonist, 

plays an important physiological role in fracture healing as an endogenous stimulator of 

endochondral and intramembranous bone formation. Abaloparatide, a novel systemically-

administered osteoanabolic PTH receptor agonist that reduces fracture risk in women with 

postmenopausal osteoporosis, has 76% homology to PTHrP, suggesting it may have potential to 

improve fracture healing. To test this hypothesis, ninety-six 12-week-old male rats underwent 

unilateral internally-stabilized closed mid-diaphyseal femoral fractures and were treated starting 

the next day with daily s.c. saline (Vehicle) or abaloparatide at 5 or 20 µg/kg/d for 4 or 6 weeks 

(16 rats/group/time point). Histomorphometry and histology analyses indicated that fracture 

calluses from the abaloparatide groups exhibited significantly greater total area, higher 

fluorescence scores indicating more newly-formed bone, and higher fracture bridging scores 

versus Vehicle controls. Callus bridging score best correlated with callus cartilage score (r=0.64) 

and fluorescence score (r=0.67) at week 4, and callus area correlated with cartilage score 

(r=0.60) and fluorescence score (r=0.89) at week 6. By micro-CT, calluses from one or both 

abaloparatide groups had greater bone volume, bone volume fraction, bone mineral content, bone 

mineral density, and cross-sectional area at both time points versus Vehicle controls. Destructive 

bending tests indicated greater callus maximum load and stiffness in one or both abaloparatide 

groups at both time points versus Vehicle controls. These results provide preliminary preclinical 

evidence for improved fracture healing with systemically-administered abaloparatide.  

 Keywords: Fracture healing, cartilage, osteogenesis, orthopedics, bone formation, osteoporosis 

Introduction 
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Fracture healing is usually a robust process that restores a broken bone’s original strength and 

geometry.1 Several endogenous factors are involved in orchestrating the multi-step process 

leading to successful fracture healing,2 including parathyroid hormone-related protein (PTHrP).3 

Throughout much of the fracture healing cascade, numerous mesenchymal cell types increase 

their expression of PTHrP, including osteoblasts engaged in intramembranous ossification and 

chondrocytes involved in endochondral ossification.4-6 PTH1R, the receptor for PTHrP and PTH, 

is also highly expressed by osteoblasts and chondrocytes during fracture healing,4 and PTH1R 

mediates the anabolic responses to locally-upregulated PTHrP expression. The genetic ablation 

of PTHrP or PTH impairs long bone fracture healing in mice,5; 7 and the systemic delivery of 

recombinant or synthetic forms of PTHrP and other PTH1R ligands, including full-length 

PTH(1-84) and its active amino-terminal fragment PTH(1-34), promotes fracture healing in 

animals.3 Systemically-administered PTH(1-34) has also been shown to favorably influence 

some aspects of fracture healing in humans.3  

Clinically, the goals of fracture healing are to restore biomechanical properties of the fractured 

bone and to facilitate the return of the affected limb or region to normal physiological function,8 

and attainment of these goals can be slow with certain fracture types and patient characteristics. 

Lower-limb long bone fractures sometimes lead to prolonged disability, and evidence indicates 

that around one third of working-age patients do not return to work within 12 months after a hip 

fracture.9 Pharmacological interventions that accelerate fracture healing can substantially lower 

the overall costs associated with fractures by accelerating the return to work.10 Among patients 

with open long bone fractures, as many as 25% may develop delayed union or nonunion,11 which 

can cause major loss of productivity, decreased quality of life, and extensive health care 

utilization.12-14 Despite clear unmet clinical needs, no pharmacological agents are currently 
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approved for the acceleration of fracture healing or for the treatment of delayed or nonunion 

fractures.3; 15 Recombinant human bone morphogenetic protein-2 (rhBMP-2) mixed with an 

absorbable collagen sponge (ACS) is indicated for the acute treatment of tibial shaft fractures,16 

but this combination ‘device’ product is associated with several safety issues and is only 

indicated for the treatment of tibial fractures that have accessible fracture lines.17 There remains 

an unmet need for agents that can enhance the healing of open and closed fractures, and 

systemically-administered bone anabolic agents have the potential to fulfill some of these 

needs.18 Systemic agents can be delivered to patients with open or closed fractures, including 

fractures that are managed conservatively. Systemic agents may also have utility for treating 

fractures after definitive wound closure, which holds promise for the conservative management 

of fractures that develop signs of delayed healing.  

Based on the important role of endogenous PTHrP as a mediator of fracture healing, 

pharmaceutically-active versions of PTHrP and PTHrP analogs have been tested and shown 

capable of promoting fracture healing in animals via their systemic administration.19; 20 

Abaloparatide is a novel subcutaneously-administered PTH1R agonist with 76% amino acid 

homology to PTHrP(1-34), and its daily administration to non-fractured rats and non-human 

primates increases bone formation, bone mass, and bone strength without increasing bone 

resorption.21-25 Abaloparatide is currently approved by the U.S. Food and Drug Administration 

(FDA) as a treatment for postmenopausal osteoporosis based on its ability to reduce vertebral 

and non-vertebral fracture risk.26 Due in part to its sequence homology with PTHrP, we 

hypothesized that abaloparatide will mimic or amplify some of the chondrogenic and/or 

osteogenic effects of endogenous PTHrP during fracture healing, potentially leading to 

improvements in callus bridging and biomechanical stability. Results from a recent femoral 
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osteotomy study showed that 28 days of abaloparatide administered to mice at a single high dose 

was associated with greater callus bone volume, but callus histology was not evaluated and 

treatment effects on callus biomechanics were inconclusive due to high variability and relatively 

small sample sizes.27 The current report describes the effects of two dose levels of abaloparatide 

at two timepoints on callus histology, densitometry, and biomechanics in rats with a closed 

femoral fracture. This commonly used fracture model28 was selected based on its reliance on 

chondrogenic and osteogenic healing, and calluses were assessed at the early-to-intermediate 

healing timepoints of 4 and 6 weeks to determine whether abaloparatide accelerates 

biomechanical recovery during the period when calluses have yet to fully regain normal femur 

strength.  

Materials and Methods 

Animal care and surgery 

All animal procedures and activities were approved by and performed in an AAALAC-

accredited vivarium at PharmaLegacy Laboratories (Shanghai, China). A total of 135 male 

Sprague-Dawley rats were purchased from Vital River Laboratory Animal Technology Company 

(Beijing, China) at 8-9 weeks of age, including 96 initial study animals plus 39 spares for cases 

when the location or morphology of experimental fractures were unsatisfactory. Animals 

underwent a health inspection upon arrival and were acclimated two per cage for at least 7 days 

in clear polycarbonate plastic cages (40 by 24 by 20 cm). Acclimated animals were singly-

housed in a vivarium with a temperature range of 16-26 °C, relative humidity of 40-70%, and a 

12-h light/dark cycle. Animals had free access to standard rodent chow (Shanghai SLAC 

Laboratory Animal Company) and filtered municipal tap water.  
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At approximately 12 weeks of age, rats were randomized into 3 groups of 32 animals each using 

an algorithm that minimized between-group differences in body weight (BioBook V10.0). 

Animals were anaesthetized by isoflurane inhalation and their right hind limb shaved and 

cleaned for the creation of a closed, internally-stabilized mid-diaphyseal fracture, as described 

previously.28 Briefly, a medial peri-patellar incision was made, the patella was laterally 

displaced, and a sterile 20-gauge needle was inserted through the trochlear groove into the 

marrow cavity. The needle was removed and a sterile 1.2 mm diameter Kirschner wire (~27 mm 

long) was inserted to occupy most of the length of the medullary canal. The pinned femur was 

then positioned on a 3-point bending device and a single 700 g weight was dropped onto the 

femoral mid-diaphysis from a height of 25 cm to create a transverse fracture, which was 

confirmed by Faxitron X-ray images while the animals remained anesthetized. Buprenorphine 

HCl (0.05 mg/kg, i.m.) was administered for pain and gentamicin (20 mg/kg, i.m.) for infection 

control. Animals exhibiting improper pin placement, or unduly comminuted or poorly located 

fractures were euthanized by CO2 plus cervical dislocation or cardiac exsanguination, and 

animals from the pool of 39 spare rats underwent the fracture protocol to achieve a final n of 32 

fractured animals per treatment group. Animals were allowed to fully weight-bear after recovery 

from anesthesia. Animals were weighed at least once per week as a health-monitoring measure 

and for weight-based treatment dosing adjustments, and were observed daily to assess general 

health, recovery from surgery, and reactions to treatment.  

Treatments, radiography, and sample sizes 

One day after surgery, animals began receiving daily s.c. injections of 0.9% sodium chloride 

(Veh) or abaloparatide (Radius Health) at 5 (ABL5) or 20 µg/kg (ABL20) in a volume of 1 

mL/kg. The abaloparatide dose levels were based on evidence of their tolerability and efficacy 
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over a 6-week treatment period in ovariectomized rats.21 All animals were injected s.c. with the 

fluorochrome label calcein (10 mg/kg; Sigma Aldridge) 8 and 2 days prior to sacrifice.  

Fracture site microradiographs were obtained at the start of treatment and weekly thereafter until 

necropsy for evaluations of callus formation and healing progress. Sixteen animals from each of 

the three treatment groups were sacrificed after 4 weeks and 6 weeks of treatment by CO2 plus 

cervical dislocation or cardiac exsanguination. The number of animals (16 per group per time 

point) was chosen to provide 12 fracture samples for biomechanical analyses and 4 samples for 

histology.  

Sample collection and evaluation 

Fractured femurs were carefully harvested from all animals during scheduled necropsies. Twelve 

randomly-selected fractured femurs per group were wrapped in saline-soaked gauze and stored at 

-20°C prior to micro-CT and biomechanical assessment; contralateral femurs from these animals 

were similarly stored. The remaining 4 fractured femurs per group were fixed in 10% neutral 

buffered formalin for at least 48 h and stored in 70% alcohol prior to micro-CT and processing 

for histomorphometry and histology. Intermedullary pins were carefully removed prior to micro-

CT scanning in all cases. 

Micro-CT 

Fractured femurs were scanned on a SkyScan 1176 system with the following settings: voltage 

65 kV; current 385 µA; exposure 300 ms; rotation 0.7° per step (197.40° total); with images 

reconstructed to a nominal 18 µm isotropic voxel size. The region of interest (ROI) comprised a 

350-slice area (slice thickness, 17.5 µm, 6.13mm total height) encompassing the fracture callus 

symmetrically about its midline, with semi-automated contouring used to delineate its periosteal 
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extent. The quantitative analysis of the ROI included the unthresholded parameters callus 

volumetric bone mineral content (vBMC), callus cross-sectional area (CSA), and callus regional 

volumetric bone mineral density (vBMD). In addition, a threshold of 100 was applied to 

determine total callus bone volume (BV) and bone volume fraction (BVF). In both cases, no 

delineation was made between the newly formed callus and the original cortex. After scanning, 

all femurs were returned to their original storage conditions prior to biomechanical or histologic 

examination. 

Callus histology and histomorphometry 

After fixation, histology samples were further dehydrated via a graded alcohol series using a 

Shandon ExcelsierTM tissue processor (Thermo-Fisher, Shanghai, China), then embedded in 

methylmethacrylate (Thermo Fisher). Two ~200 µm-thick slabs of the callus and adjacent bone 

were harvested parallel to the long bone axis using a saw (EXAKT, Germany) and ground to ~50 

µm thickness using an EXAKT grinder (EXAKT). One unstained section was viewed under 

fluorescence microscopy to assess the extent of newly-formed calcein-labeled bone within the 

callus; semi-quantitative callus fluorescence scores were generated in a blinded manner on a 

scale of 0 to 4 (0 = none; 1 = mild; 2 = moderate; 3 = moderate-to-marked; 4 = marked). The 

other section was stained with toluidine blue (pH 6.5) for light microscopy analyses, which 

included photomicrographs, blinded semi-quantitative histology assessments, and quantitative 

bone histomorphometry. Semi-quantitative bridging scores (scale of 0 to 4) were determined in a 

binary manner by evaluating the presence or absence of contiguous bony or cartilaginous 

bridging across the periosteum and endocortex. Each of the two periosteal and endocortical 

surfaces were scored, with a maximum score of 4 indicating that all four evaluated surfaces were 

bridged. Semi-quantitative cartilage scores were determined by evaluating the extent of callus 
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cartilage (scale of 0 to 4, as described above) within each of the two callus regions on each 

section; scores for the two regions were averaged, leading to a maximum possible score of 4. The 

stained sections were also used for histomorphometric assessment of total external callus area 

(including bone, cartilage, and other tissue) using OsteoMeasure Software (Osteometrics, 

Decatur, GA, USA).  

Biomechanical assessment of fractured and unfractured femurs 

After thawing, fractured and unfractured femurs were tested in three-point bending using an 

MTS-858 Mini Bionix test system. Femurs underwent bending to failure at a displacement rate 

of 6 mm per minute with span length of 1 cm. Load and displacement data were used to 

determine maximum load and stiffness for each sample. 

Statistics 

One-way ANOVA was used to evaluate differences among the groups at each time point. If the 

ANOVA test was significant, Dunnett’s post-test was applied to compare the ABL5 and ABL20 

groups to Veh controls within each time point. For the qualitative callus fluorescence and 

cartilage scores, the non-parametric Kruskal-Wallis test was used to compare overall group 

differences at each time point, followed by Dunn’s multiple comparison test of each ABL group 

vs Veh control if Kruskal-Wallis was significant. These analyses and linear regressions were 

performed using GraphPad Prism V7.03, with a P value of <0.05 used to indicate statistically 

significant differences. 

Results 

Callus radiography 
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Radiographs of the fractured femur were obtained from anaesthetized animals at the time of 

fracture (week 0) and once-weekly thereafter. Representative radiographs taken at weeks 0, 2, 4, 

and 6 from the 6-week arm of the study are shown in Fig. 1. In all three groups, substantial callus 

development was evident by week 2, with an apparent increase in callus density at week 4. 

Calluses appear to be denser in the ABL5 and ABL20 groups compared with Veh controls at 

weeks 4 and 6.  

Callus Histology and Histomorphometry 

Representative photomicrographs of undecalcified toluidine blue-stained histology sections of 

week 4 and week 6 fracture calluses are presented in Fig. 2, and the following interpretations are 

consistent with observations for the overall histology sample set. At week 4, all three groups 

show substantial external callus development in the form of new intramembranous bone along 

the upper and lower periosteal surfaces; smaller and variable degrees of internal callus 

development are evident in the form of new intramedullary bone. The week 4 abaloparatide 

examples (Fig. 2B-C) exhibit somewhat denser and more developed external calluses compared 

with Veh controls (Fig. 2A), with an apparently greater extent of purple-stained callus cartilage. 

At week 6, the abaloparatide groups (Fig. 2E-F) continue to exhibit greater amounts of new 

external and internal bony callus tissue compared with Veh controls (Fig. 2D). Callus cartilage is 

minimally evident in the Week 6 Veh and ABL5 examples, whereas the Week 6 ABL20 example 

exhibits moderate callus cartilage surrounded by external bony callus tissue. 

Histomorphometry analyses indicated that total callus area was significantly greater in both 

abaloparatide groups at week 4 and in the ABL20 group at week 6 compared with Veh controls 

(Fig. 3A). Semi-quantitative histology assessments indicated a trend toward greater cartilage 
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scores at week 4 for the ABL20 group compared with Veh controls (p = 0.08; Fig. 3B). Callus 

fluorescence scores reflecting the extent of newly-formed bone were significantly higher in the 

ABL20 group at both time points compared with Veh controls (Fig. 3C). Callus bridging scores, 

reflecting cartilaginous and/or bony bridging across the fracture line, were significantly greater 

in both abaloparatide groups at week 4 compared with Veh controls, with similar levels of 

bridging for each group at week 6 (Fig. 3D).  

Linear regression analyses were performed to evaluate histological determinants of bridging 

scores and callus area (Table 1). Bridging score was positively related to cartilage score and 

fluorescence score at week 4 (r = 0.64 and 0.67, respectively; both P < 0.05) but not at week 6. 

Callus area at week 4 was positively related to fluorescence score (r = 0.90; P < 0.0001), and 

callus area at week 6 was positively related to fluorescence score (r = 0.89) and to cartilage score 

(r = 0.60; P < 0.05). 

Callus micro-CT 

Quantitative micro-CT analyses of fractured femurs indicated that the ABL5 and ABL20 groups 

had significantly greater callus bone volume, BVF, and vBMC at both time points compared 

with Veh controls (Fig. 4A-C). The ABL5 group showed significantly greater average callus 

CSA at weeks 4 and 6 compared with Veh controls (Fig. 4D). Callus region vBMD was 

significantly greater in both abaloparatide groups at both time points compared with Veh 

controls (Fig. 4E). Representative 2-D reconstructed images are shown in Fig. 5. 

Biomechanics of the callus and unfractured femur  

Destructive 3-point bending tests of fracture calluses indicated significantly greater strength 

(maximum load) in the ABL20 group at week 4 and the ABL5 group at week 6 compared with 
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their respective Veh control groups (Fig. 6A). Callus stiffness was significantly greater for the 

ABL5 and ABL20 groups compared with Veh controls at week 4, and for the ABL5 group 

versus Veh at week 6 (Fig. 6B). Unfractured contralateral femurs were also subjected to 

destructive 3-point bending tests, which indicated significantly greater maximum load in the 

ABL20 group compared with Veh controls at week 4 (Fig. 6C). Stiffness values for intact femurs 

were similar across the three groups at weeks 4 and 6 (Fig. 6D). 

The degree of biomechanical recovery of fractured femurs was assessed by calculating callus 

maximum load and stiffness values for each animal as a percentage of the average values for 

normal femurs (i.e., unfractured femurs from Veh controls). Calluses from the Veh group 

reached 24.0 ± 1.7% (mean ± SEM) and 7.4 ± 0.8% of normal maximum load and stiffness at 

week 4 (respectively), and at week 6 these values reached 35.0 ± 3.4% and 25.4 ± 3.9%, 

respectively. Calluses from the ABL5 group achieved 33.9 ± 3.8% and 11.8 ± 0.9% of normal 

maximum load and stiffness at week 4 (respectively), and at week 6 these values reached 49.2 ± 

4.6% and 53.9 ± 7.7%, respectively (all P < 0.05 vs Veh except for week 4 maximum load). 

Calluses from the ABL20 group achieved 42.5 ± 4.0% and 14.5 ± 1.0% of normal maximum 

load and stiffness at week 4, respectively (both P < 0.05 versus Veh). Maximum load remained 

similar at week 6 in the ABL20 group (42.0 ± 4.7% of normal) compared with week 4, whereas 

stiffness was further increased at week 6 to 30.6 ± 6.4% of normal (P < 0.05 vs. Veh). 

Micro-CT-based morphological determinants of callus biomechanics  

Determinants of callus biomechanics were assessed across the 3 groups at each time point via 

linear regression analyses of micro-CT-derived callus morphology variables versus callus 

maximum load and stiffness. Callus CSA, vBMC, bone volume, and BVF were positively 
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correlated with maximum load and stiffness at week 4, with r values ranging from 0.64 to 0.81 

(all P < 0.05; Table 1). At week 4, callus region vBMD was positively associated with stiffness 

but not with maximum load (r = 0.68; P < 0.05). At week 6, callus vBMC, vBMD, and BVF 

remained positively correlated with maximum load and stiffness (r values ranging from 0.34 to 

0.76; all P < 0.05), whereas callus CSA and bone volume were no longer associated with 

maximum load or stiffness.  

Discussion 

This study provides preliminary evidence for accelerated fracture healing in animals treated with 

abaloparatide, a novel and selective PTH1R agonist with 76% homology to PTHrP. Previous 

animal studies show that genetic PTHrP deficiency reduces fracture callus chondrogenesis and 

bony callus development,29 and that exogenous PTHrP and PTHrP analogs enhance fracture 

healing and osteotomy healing.19; 20 A recent study in mice with closed femoral fractures also 

showed that 28 days of abaloparatide administration at a single high dose (60 µg/kg/d) led to 

significantly greater callus bone volume.27 The current study shows that abaloparatide enhanced 

callus development, osteogenesis, fracture bridging, and biomechanical recovery during the early 

and middle stages of fracture healing in rats with a closed femoral fracture. These findings 

provide further preclinical evidence that abaloparatide may improve the healing of traumatic 

fractures, and perhaps fragility fractures as well.  

Abaloparatide-treated rats exhibited larger calluses containing substantial amounts of cartilage, 

more bone, and enhanced bridging at week 4 compared with vehicle controls. These differences 

were accompanied by enhanced callus strength and stiffness, with some evidence for accelerated 

biomechanical recovery: namely, callus maximum load was greater in the ABL20 group at week 
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4 than in Veh controls at week 6. Abaloparatide appeared to enhance intramembranous bone 

formation emanating from periosteal surfaces adjacent to the fracture line, an effect that could 

potentially contribute to a more extensive rigid scaffold for subsequent bridging. Bridging is 

typically achieved in this model via the formation of callus cartilage between the banks of this 

new intramembranous bone, and the abaloparatide-treated rats exhibited trends toward increased 

callus cartilage, though statistical power was limited by the small number of histology samples. 

Positive correlations between callus cartilage and bridging scores suggest a possible contribution 

of chondrogenesis in fracture union.  

In addition to its role in initial union, callus cartilage provides a template for subsequent 

endochondral-based bone formation that provides much of the biomechanical stability of the 

healing fracture.3 The current study provides evidence for the timely conversion of callus 

cartilage to bone in all three groups, based on numerical reductions in cartilage scores between 

weeks 4 and 6 and accompanying increases in callus bone volume, vBMD, and vBMC. One or 

both abaloparatide groups also exhibited greater callus fluorescence scores, callus bone volume, 

and callus bone mineral content compared with Veh, which reflect the combined contributions of 

intramembranous and endochondral bone formation. Callus fluorescence scores correlated 

positively with total callus volume and with bridging scores, suggesting significant contributions 

of abaloparatide-induced osteogenesis toward bony callus development and bridging. However, 

it is important to note that improved bridging in the abaloparatide groups was seen only at week 

4 and not at week 6, despite the fact that none of the groups had achieved complete bridging at 

week 6.  

Consistent with the lack of complete bridging, destructive biomechanical testing of fracture 

calluses indicated that the Veh controls achieved around 25% and 35% of the strength and 
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stiffness of normal unfractured femurs by week 6. This degree of biomechanical recovery is 

similar to day 40 findings from another closed long-bone fracture study in rats,30 and indicates an 

early-to-intermediate stage of healing. There are advantages to evaluating treatment effects on 

callus development at these stages, including mechanistic insights gained by evaluating callus 

cartilage before and after it begins converting into bone. There is also value in assessing callus 

biomechanics at these stages, because over longer treatment periods, callus strength can 

significantly exceed the strength of normal unfractured bone, which had debatable clinical 

value.3 The current study showed that the one or both abaloparatide groups had greater callus 

strength and stiffness at weeks 4 and 6 vs Veh controls, with levels reaching up to around 50% of 

those observed for normal intact femurs. Future studies with longer follow-up periods may 

address whether abaloparatide reduces the time to achieve full callus biomechanical recovery.  

Significant positive correlations were observed between several micro-CT-based callus structural 

parameters versus callus strength and stiffness. For some structural parameters (e.g., CSA and 

bone volume), relationships with callus biomechanics were evident at week 4 but not at week 6. 

This temporal shift may reflect the effects of callus remodeling, which reduces external callus 

size as internal repair processes progressively stabilize the healing fracture from within. 

Conversely, callus bone volume fraction and vBMD were better callus strength surrogates at 

week 6 than at week 4. These collective findings, and the histology-based regression analyses, 

suggest that callus cartilage, bone formation, and overall callus size and mass were the main 

determinants of early callus stability, with callus remodeling and maturity becoming more 

biomechanically relevant during the intermediate stages of healing.  

The effects of abaloparatide on bone healing in this rat study are consistent with previous 

findings of favorable bone healing responses to exogenous PTHrP and other PTHrP analogs in 
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mice and rabbits with fractures or other skeletal injuries.19; 20; 27; 31; 32 This study also has several 

limitations. A standard closed femoral fracture model was considered suitable for this initial 

abaloparatide study, but data from higher-hurdle fracture models would better inform the 

potential of abaloparatide as a possible treatment for fractures that do not readily heal on their 

own. The effects of abaloparatide were only assessed in male rats, and we cannot rule out that 

abaloparatide may have different effects on fracture healing in female rats. Cartilage scores were 

semi-quantitative and were based on Toluidine Blue-stained sections and should therefore be 

considered a preliminary assessment, pending quantitative analyses using stains that are more 

specific for cartilage matrix. The study lacked an active comparator group such as PTH(1-34) or 

BMP-2 therapy, and while neither of those therapies are approved for the treatment of closed 

long-bone fractures, it would nevertheless be interesting to compare their effects versus those of 

abaloparatide. Abaloparatide administration influenced unfractured bones as well, as shown by 

improved biomechanical properties of unfractured femurs. This effect was not unexpected and 

may be considered favorable in settings of low bone mass and strength, but such effects may be 

less desirable in patients who are not at increased risk of fragility fractures. It is assumed but 

unproven that effects on unfractured bones would gradually reverse after a completing a course 

of abaloparatide therapy for fracture healing.  

In summary, abaloparatide administration to rats with a closed femoral fracture was associated 

with early increases in callus osteogenesis, improved fracture bridging, greater bony callus size 

and density, and improved biomechanical stability. We hypothesize that callus cartilage may 

have contributed to improved early bridging and callus stability in the abaloparatide groups, and 

that the timely conversion of this cartilage into bone, combined with abaloparatide-induced 

stimulation of intramembranous periosteal bone formation, may have further contributed to 
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increased callus strength and stiffness. From a clinical perspective, early improvements in 

fracture callus stability may allow earlier recovery of physical activities including weight-

bearing, potentially leading to further improvements in fracture healing due to an early regain of 

mechanical loading. These current findings, and those from other experimental orthopedic 

models,27 provide initial preclinical support for further studies of abaloparatide as an 

investigational agent for the promotion of bone healing.  
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Table 1: Callus morphology variables as determinants of callus bridging, area, strength 
(maximum load), and stiffness as determined by linear regression analyses. All listed r values are 
statistically significant (P < 0.05); NS, not significant.  

Correlation coefficients (r values)  
 

Week 4 Week 6 

Callus histology and histomorphometry (n = 4/group)   

Cartilage score vs bridging score 0.64 NS 

Cartilage score vs callus area NS 0.60 

Fluorescence score vs bridging score 0.67 NS 

Fluorescence score vs callus area  0.90 0.89 

Callus micro-CT and biomechanics (n = 12/group)   

CSA vs max load 0.78 NS 

CSA vs stiffness 0.64 NS 

vBMC vs max load 0.69 0.35 

vBMC vs stiffness 0.78 0.34 

Bone volume vs max load 0.75 NS 

Bone volume vs stiffness 0.81 NS 

BVF vs max load NS 0.53 

BVF vs stiffness 0.64 0.76 

vBMD vs max load NS 0.54 

vBMD vs stiffness 0.39 0.78 

vBMC, volumetric bone mineral content; CSA, cross-sectional area; BVF, bone volume fraction; 
vBMD, volumetric bone mineral density. 

 

Figure Legends 
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Figure 1: Representative radiographs of fracture calluses from the 6-week arm of the study. 

Examples were selected based on callus strength (maximum load) and stiffness values that were 

closest to their group means. Callus density in the ABL5 and ABL20 groups appears to be 

greater at week 4 and week 6 compared with Veh controls.  

Figure 2: Representative histology of undecalcified toluidine blue-stained sections of fracture 

calluses. Examples were selected based on microCT-based callus bone volume values closest to 

their group means. The red dashed line in Fig. A indicates periosteal new bone formation that 

comprises much of the external callus, and the blue arrows indicate new endocortical bone 

formation that comprises the internal callus. The purple arrows in Figs. B and C highlight callus 

cartilage within the fracture gap between the external bony callus regions.  

Figure 3: Histomorphometry- and histology-based callus analyses. A: Histomorphometry-based 

total callus area. B-D: Semi-quantitative histology-based analyses of (B) callus cartilage score, 

(C) callus fluorescence score, which reflects the extent of new bone formation within the 

external callus region; and (D) callus bridging score, which reflects contiguous cartilaginous and 

bony tissue that bridges the fractured ends. Data represent means and SEM, N = 4/group. *P < 

0.05 vs Veh control group at the corresponding time point. 

Figure 4: Fracture callus morphology by micro-CT. A) Callus bone volume; B) Callus bone 

volume fraction (% total volume); C) Callus volumetric bone mineral content (vBMC); D) 

Callus cross-sectional area (CSA); E) Callus region volumetric BMD (vBMD). Data represent 

means and SEM, n = 16/group. *P < 0.05 compared with Veh at the corresponding time point. 

Figure 5: Representative micro-CT images of fracture calluses. Selection of these 2-D 

reconstructed images was based on samples with ultimate load values closest to their group 

means.  

Figure 6: Biomechanics results for (A, B) fracture calluses and (C, D) unfractured intact 

contralateral femurs. Data represent means and SEM, n = 12/group. *P < 0.05 vs. Veh controls at 

the corresponding same time point.  
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Figure 1 Radiographs  . 
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Figure 2 Callus photomicrographs  . 
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Figure 3 callus histomorphometry and histology  . 
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Figure 4 Callus micro-CT  . 
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Figure 5 Micro-CT images  . 
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Figure 6 Biomechanics  . 

 


