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Summary. Regularization methods, including Lasso, group Lasso and SCAD, typically focus

on selecting variables with strong effects while ignoring weak signals. This may result in biased

prediction, especially when weak signals outnumber strong signals. This paper aims to incor-

porate weak signals in variable selection, estimation and prediction. We propose a two-stage

procedure, consisting of variable selection and post-selection estimation. The variable selection

stage involves a covariance-insured screening for detecting weak signals, while the post-selection

estimation stage involves a shrinkage estimator for jointly estimating strong and weak signals

selected from the first stage. We term the proposed method as the covariance-insured screening

based post-selection shrinkage estimator. We establish asymptotic properties for the proposed

method and show, via simulations, that incorporating weak signals can improve estimation and

prediction performance. We apply the proposed method to predict the annual gross domestic

product (GDP) rates based on various socioeconomic indicators for 82 countries.
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1 Introduction

Given n independent samples, we consider a high-dimensional linear regression model

y = Xβ + ε, (1)

where y = (y1, . . . , yn)T is an n-vector of responses, X = (Xij)n×p is an n × p random design

matrix, β = (β1, . . . , βp)
T is a p-vector of regression coefficients and ε = (ε1, . . . , εn)T is an n-

vector of independently and identically distributed random errors with mean 0 and variance σ2.

Let β∗ = (β∗1 , . . . , β
∗
p)

T denote the true value of β. We write X = (x(1), . . . ,x(n))T = (x1, . . . ,xp),

where x(i) = (Xi1, . . . , Xip)
T is the i-th row of X and xj is the j-th column of X, for i = 1, . . . , n

and j = 1, . . . , p. Without the subject index i, we write y, Xj and ε as the random variables

underlying yi, Xij and εi, respectively. We assume that each Xj is independent of ε. We write

x as the random vector underlying x(i) and assume that x follows a p-dimensional multivariate

sub-Gaussian distribution with mean zeros, variance proxy σ2
x, and covariance matrix Σ. Sub-

Gaussian distributions contain a wide range of distributions such as Gaussian, binary and all

bounded random variables. Therefore, our proposed framework can accommodate more data

types, as opposed to the conventional Gaussian distributions.

We assume that model (1) is sparse. That is, the number of nonzero β∗ components is less

than n. When p > n, the essential problem is to recover the set of predictors with nonzero

coefficients. The past two decades have seen many regularization methods developed for vari-

able selection and estimation in high-dimensional settings, including Lasso (Tibshirani, 1996),

adaptive Lasso (Zou, 2006), group Lasso (Yuan and Lin, 2006), SCAD (Fan and Li, 2001) and

MCP (Zhang, 2010), among many others. Most regularization methods assume the restrictive

β-min condition which requires that the strength of nonzero β∗j ’s is larger than a certain noise

level (Zhang and Zhang, 2014). Hence, regularization methods may fail to detect weak signals

with nonzero but small β∗j ’s, and this will result in biased estimates and inaccurate predictions,

especially when weak signals outnumber strong signals.

1

This article is protected by copyright. All rights reserved.



Detection of weak signals is challenging. However, if weak signals are partially correlated

with strong signals which satisfy the β-min condition, they may be more reliably detected. To

elaborate on this idea, first notice that the regression coefficient β∗j can be written as

β∗j =
∑

1≤j′≤p

Ωjj′cov(Xj′ , y), j = 1, . . . , p, (2)

where Ωjj′ is the jj ′-th entry of Ω = Σ−1, the precision matrix of x. Let ρjj′ be the partial

correlation of Xj and Xj′, i.e. the correlation between the residuals of Xj and Xj′ after regressing

them on all the other X variables. It can be shown that ρjj′ = −Ωjj′/
√

ΩjjΩj′j′. Hence, that

Xj and Xj′ are partially uncorrelated is equivalent to Ωjj′ = 0. Assume that Ω is a sparse

matrix with only a few nonzero entries in Ω. When the right hand side of (2) can be accurately

evaluated, weak signals can be distinguished from those of noises. In high-dimensional settings,

it is impossible to accurately evaluate
∑

1≤j′≤p Ωjj′cov(Xj′ , y). However, under the faithfulness

condition that will be introduced in Section 3, a variable, say, indexed by j ′, satisfing the β-min

condition will have a nonzero cov(Xj′ , y). Once we identify such strong signals, we set to discover

variables that are partially correlated with them.

For brevity, we term weak signals which are partially correlated with strong signals as “weak

but correlated” (WBC) signals. This paper aims to incorporate WBC signals in variable selec-

tion, estimation and prediction. We propose a two-stage procedure which consists of variable

selection and post-selection estimation. The variable selection stage involves a covariance-insured

screening for detecting weak signals, and the post-selection estimation stage involves a shrinkage

estimator for jointly estimating strong and weak signals selected from the first stage. We call the

proposed method as the covariance-insured screening based post-selection shrinkage estimator

(CIS-PSE). Our simulation studies demonstrate that by incorporating WBC signals, CIS-PSE

improves estimation and prediction accuracy. We also establish the asymptotic selection consis-

tency of CIS-PSE.

The paper is organized as follows. We outline the proposed CIS-PSE method in Section 2 and
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investigate its asymptotic properties in Section 3. We evaluate the finite-sample performance of

CIS-PSE via simulations in Section 4, and apply the proposed method to predict the annual gross

domestic product (GDP) rates based on the socioeconomic status for 82 countries in Section 5.

We conclude the paper with a brief discussion in Section 6. All technical proofs are provided in

Appendix.

2 Methods

2.1 Notation

We use scripted upper-case letters, such as S, to denote the subsets of {1, . . . , p}. Denote by |S|

the cardinality of S and by Sc the complement of S. For a vector v, we denote a subvector of v

indexed by S by vS . Let XS = (xj, j ∈ S) be a submatrix of the design matrix X restricted to

the columns indexed by S. For the symmetric covariance matrix Σ, denote by ΣSS ′ its submatix

with the row and column indices restricted to subsets S and S ′, respectively. When S = S ′, we

write ΣS = ΣSS ′ for short. The notation also applies to its sample version Σ̂.

Denote by G(V , E ; Ω) the graph induced by Ω, where the node set is V = {1, . . . , p} and the

set of edges is denoted by E . An edge is a pair of nodes, say, k and k′, with Ωkk′ 6= 0. For

a subset Vl ⊂ V, denote by Ωl the principal submatrix of Ω with its row and column indices

restricted to Vl and by El the corresponding edge set. The subgraph G(Vl, El,Ωl) is a connected

component of G(V , E ; Ω) if any two nodes in Vl are connected by edges in E , and if k ∈ Vcl , then

Ωkk′ = 0 for any k′ ∈ Vl.

For a symmetric matrix A, denote by tr(A) the trace of A, and denote by λmin(A) and

λmax(A) the minimum and maximum eigenvalues of A. We define the operator norm and the

Frobenius norm as ‖A‖ = λ
1/2
max(ATA) and ‖A‖F = tr(ATA)1/2, respectively. For a p-vector v,

denote its Lq norm by ‖v‖q = (
∑p

j=1 |vj|q)1/q with q ≥ 1. For any real numbers a and b, denote

by a ∧ b = min(a, b) and a ∨ b = max(a, b).
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Denote the sample covariance matrix and the marginal sample covariance between Xj and

y, j = 1, . . . , p, by

Σ̂ =
1

n

n∑
i=1

x(i)(x(i))T and ĉov(Xj, y) =
1

n

n∑
i=1

Xijyi.

For a vector V = (V1, . . . , Vp)
T, denote ĉov(V, y) = (ĉov(V1, y), . . . , ĉov(Vp, y))T.

2.2 Defining strong and weak signals

Consider a low-dimensional linear regression model where p < n. The ordinary least squares

(OLS) estimator β̂
OLS

= Σ̂
−1

ĉov(x, y) = Ω̂ĉov(x, y) minimizes the prediction error, where Ω̂ =

Σ̂
−1

is the empirical precision matrix. It is also known that β̂
OLS

is an unbiased estimator of β∗

and yields the best outcome prediction ŷbest = XΩ̂ĉov(x, y) with the minimal prediction error.

However, when p > n, Σ̂ becomes non-invertible, and thus β cannot be estimated using all

X variables. Let S0 = {j : β∗j 6= 0} be the true signal set and assume that |S0| < n. If S0 were

known, the predicted outcome, ŷbest = XS0
Σ̂
−1

S0
ĉov(xS0

, y), would have the smallest prediction

error. In practice, S0 is unknown and some variable selection method must be applied first to

identify S0. We define the set of strong signals as

S1 =
{
j : |β∗j | > c

√
log p/n for some c > 0, 1 ≤ j ≤ p

}
(3)

and let S2 = S0 \ S1 be the set of weak signals. Then, the OLS estimator and the best outcome

prediction are given by

β̂
OLS

=

(
β̂

OLS

S1

β̂
OLS

S2

)
=

(
Ω̂11ĉov(xS1

, y) + Ω̂12ĉov(xS2
, y)

Ω̂21ĉov(xS1
, y) + Ω̂22ĉov(xS2

, y)

)
and

ŷbest = XS1
Ω̂11ĉov(xS1

, y) + XS2
Ω̂21ĉov(xS1

, y) + XS1
Ω̂12ĉov(xS2

, y) + XS2
Ω̂22ĉov(xS2

, y),

where

(
Ω̂11 Ω̂12

Ω̂21 Ω̂22

)
=

(
Σ̂S1 Σ̂S1S2

Σ̂S2S1
Σ̂S2

)−1

is the partitioned empirical precision matrix. We

observe that the partial correlations between the variables in S1 and S2 contribute to the es-

timation of βS1
and βS2

as well as outcome prediction. Therefore, incorporating WBC signals

helps reduce the estimation bias and prediction error.
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We further decompose S2 = SWBC∪S2∗, where SWBC and SWBC are the sets of weak signals with

nonzero and zero partial correlations with the signals in S1, respectively. Formally, with c given

in (3),

SWBC =
{
j : 0 < |β∗j | < c

√
log p/n and Ωjj′ 6= 0 for some j ′ ∈ S1, 1 ≤ j ≤ p

}
and

S2∗ =
{
j : 0 < |β∗j | < c

√
log p/n and Ωjj′ = 0 for any j ′ ∈ S1, 1 ≤ j ≤ p

}
.

Thus, {1, . . . , p} = S1∪SWBC∪S2∗∪Snull, where Snull = {j : β∗j = 0}. We assume that |S1| = p1,

|SWBC| = pWBC and |S2∗| = p2∗.

2.3 Covariance-insured screening based post-selection shrinkage es-

timator (CIS-PSE)

Our proposed CIS-PSE method consists of the variable selection and post-shrinkage estimation

steps.

Variable selection: First, we detect strong signals by regularization methods such as Lasso or

adaptive Lasso. Denote by Ŝ1 the set of detected strong signals. To identify WBC signals, we

evaluate (2) for each j ∈ Ŝc1 . When there is no confusion, we use a j ′ to denote a strong signal.

Though estimating cov(Xj′ , y) for every 1 ≤ j ′ ≤ p can be easily done, identifying and esti-

mating nonzero entries in Ω is still challenging in high-dimensional settings. However, for iden-

tifying WBC signals, it is unnecessary to estimate the whole Ω matrix. Leveraging intra-feature

correlations among predictors, we introduce a computationally efficient method for detecting

nonzero Ωjj′ ’s.

Variables that are partially correlated with signals in Ŝ1 form the connected components of

G(V , E ; Ω) that contain at least one element of Ŝ1. Therefore, for detecting WBC signals, it

suffices to focus on such connected components. Under the sparsity assumptions of β∗ and Ω,
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Figure 1: An illustrative example of marginally strong signals and their connected components
in G(V , E ; Ω). Left panel: structure of Ω; Middle panel: structure of Ω after properly reordering
the row and column indices of Ω; Right panel: the corresponding graph structure and connected
components of the strong signals. Signals in S1 are colored red. Signals in S2∗ are colored orange.
WBC signals in SWBC are colored yellow.

the size of such connected components is relatively small. For example, as shown in Figure 1,

the first two diagonal blocks of a moderate size are relevant for detection of WBC signals.

Under the sparsity assumption of Ω, the connected components of Ω can be inferred from

those of the thresholded sample covariance matrix (Mazumder and Hastie, 2012; Bickel and

Levina, 2008; Fan et al., 2011; Shao et al., 2011), which is much easier to estimate and can

be calculated in a parallel manner. Denote by Σ̃
α

the thresholded sample covariance matrix

with a thresholding parameter α, where Σ̃α
kk′ = Σ̂kk′1{|Σ̂kk′| ≥ α}, 1 ≤ k, k′ ≤ p with 1(·) being

the indicator function. Denote by G(V , Ẽ ; Σ̃
α
) the graph corresponding to Σ̃

α
. For variable k,

1 ≤ k ≤ p, denote by C[k] the vertex set of the connected component in G(V , E ; Ω) containing k.

If variables k and k′ belong to the same connected component, 1 ≤ k 6= k′ ≤ p, then C[k] = C[k′].

For example, C[14] = C[16] = C[24] = C[26] = C[29] in the third panel of Figure 1. Clearly, when

k′ /∈ C[k], Ωkk′ = 0, evaluating (2) is equivalent to estimating

β∗j =
∑
j′∈C[j]

Ωjj′cov(Xj′ , y), j = 1, . . . , p. (4)

Correspondingly, for a variable k, 1 ≤ k ≤ p, denote by Ĉ[k] the vertex set of the connected

component in G(V , Ẽ ; Σ̃
α
) containing k. When x follows a multivariate Gaussian distribution,

6
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Mazumder and Hastie (2012) showed that C[k]’s can be exactly recovered from Ĉ[k]’s with a

properly chosen α. For a multivariate sub-Gaussian x, the same results follow as shown in the

following lemma.

Lemma 2.1. Suppose that the maximum size of a connected component in Ω containing a

variable in S0 is of order O(exp(nξ)), for some 0 < ξ < 1, then under Assumption (A7) specified

in Section 3, with an α = O(
√
nξ−1) and for any variable k, 1 ≤ k ≤ p, we have

P (C[k] = Ĉ[k]) ≥ 1− C1n
ξ exp

(
−C2n

1+ξ
)
→ 1 (5)

for some positive constants C1 and C2.

We summarize the variable selection procedure for S1 and SWBC.

Step 1 (Detection of S1): Obtain a candidate subset Ŝ1 of strong signals using a penalized

regression method. We consider the following penalized least squares (PLS) estimator:

β̂
PLS

= arg min
β

{
‖y −Xβ‖2

2 +

p∑
j=1

Penλ(βj)

}
, (6)

where Penλ(βj) is a penalty on each individual βj to shrink the weak effects toward zeros

and select the strong signals, with the tuning parameter λ > 0 controlling the size of

the candidate subset Ŝ1. Commonly used penalties are Penλ(βj) = λ|βj| and Penλ(βj) =

λωj|βj| for Lasso and adaptive Lasso, where ωj > 0 is a known weight.

Step 2 (Detection of SWBC): First, for a given threshold α, construct a sparse estimate

of the covariance matrix Σ̃
α
. Next, for each selected variable m ∈ Ŝ1, detect Ĉ[m], its

connected component in G(V , Ẽ ; Σ̃
α
). Let U = ∪m∈Ŝ1

Ĉ[m]. According to (4), it suffices

to identify WBC signals within U . Let Σ̃
α

[m] be the submatrix by restricting the row and

column indices of Σ̃
α

to Ĉ[m]. Then by properly re-arranging the rows and columns of Σ̃
α

according to U , we can tranform Σ̃
α

into a block diagonal matrix as illustrated in Figure 1,
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and (Σ̃
α
)−1 can be easily computed. Denote (Σ̃

α
)−1
jj′ as the entry of (Σ̃

α
)−1 corresponding

to variables j and j ′. We then evaluate (4) and select WBC variables by

ŜWBC =

j ∈ Ŝc1 ∩ U :

∣∣∣∣∣∣
∑

j′∈Ŝ1∩U

(Σ̃
α
)−1
jj′ ĉov(Xj′ , y)

∣∣∣∣∣∣ ≥ νn

 (7)

for some pre-specified νn > 0.

Step 3 (Detection of S2∗): To identify Ŝ2∗, we first solve a regression problem with a ridge

penalty only on variables in Ŝc1WBC, where Ŝ1WBC = Ŝ1 ∪ ŜWBC. That is,

β̂
r

= arg min
β

{
‖y −Xβ‖2

2 + λ̃n‖βŜc1WBC
‖2

2

}
, (8)

where λ̃n > 0 is a tuning parameter controlling the overall strength of the variables selected

in Ŝc1WBC. Then a post-selection weighted ridge (WR) estimator β̂
WR

has the form

β̂WR
j =

{
β̂r
j, j ∈ Ŝ1WBC,

β̂r
j1(|β̂r

j| > an), j ∈ Ŝc1WBC,
(9)

where an is a thresholding parameter. Then the candidate subset Ŝ2∗ is obtained by

Ŝ2∗ = {j ∈ Ŝc1WBC : β̂WR
j 6= 0, 1 ≤ j ≤ p}. (10)

Post-selection shrinkage estimation: We consider the following two cases when performing

the post-selection shrinkage estimation.

Case 1: p̂1 + p̂WBC + p̂2∗ < n. We obtain the CIS-PSE on Ŝ0 by

β̂
CIS-PSE

Ŝ0
= Σ̂

−1

Ŝ0
ĉov(xŜ0

, y),

where Ŝ0 = Ŝ1 ∪ ŜWBC ∪ Ŝ2∗. Then β̂
CIS-PSE

Ŝ1
and β̂

CIS-PSE

ŜWBC
can be obtained by restricting β̂

CIS-PSE

Ŝ0

to Ŝ1 and ŜWBC, respectively.
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Case 2: p̂1 + p̂WBC + p̂2∗ ≥ n. Recall that β̂
WR

Ŝ1WBC
= (β̂r

j, j ∈ Ŝ1WBC)T and β̂
WR

Ŝ2∗
= (β̂r

j1(|β̂r
j| >

an), j ∈ Ŝ2∗)
T. We obtain the CIS-PSE of βŜ1WBC

by

β̂
CIS-PSE

Ŝ1WBC
= β̂

WR

Ŝ1WBC
−
(
ŝ2 − 2

T̂n
∧ 1

)
(β̂

WR

Ŝ1WBC
− β̂

RE

Ŝ1WBC
), (11)

where ŝ2 = |Ŝ2∗|, the post-selection OLS estimator β̂
RE

Ŝ1WBC
restricted to Ŝ1WBC is constructed

by

β̂
RE

Ŝ1WBC
= Σ̂

−1

Ŝ1WBC
ĉov(xŜ1WBC

, y),

and T̂n is as defined by

T̂n = (β̂
WR

Ŝ2∗
)T(XT

Ŝ2∗
MŜ1WBC

XŜ2∗
)β̂

WR

Ŝ2∗
/σ̂2, (12)

with MŜ1WBC
= In−XŜ1WBC

(XT
Ŝ1WBC

XŜ1WBC
)−1XT

Ŝ1WBC
and σ̂2 =

∑n
i=1(yi−XT

Ŝ2∗
β̂

WR

Ŝ2∗
)2/(n− ŝ2).

If XT
Ŝ1WBC

XŜ1WBC
is singular, we replace (XT

Ŝ1WBC
XŜ1WBC

)−1 with its generalized inverse. Then

β̂
CIS-PSE

Ŝ1
and β̂

CIS-PSE

ŜWBC
can be obtained by restricting β̂

CIS-PSE

Ŝ1WBC
to Ŝ1 and ŜWBC, respectively.

2.4 Selection of tuning parameters

When selecting strong signals, the tuning parameter λ in Lasso or adaptive Lasso can be chosen

by BIC (Zou, 2006). To choose νn for the selection of WBC signals according to (7), we rank

variables j ∈ Ŝc1 ∩ U(α, Ŝ1) according to the magnitude of
∣∣∣∑j′∈Ĉ[j]

(Σ̃
α

[j])
−1
jj′ ĉov(Xj′ , y)

∣∣∣, and select

the first r ≤ n−|Ŝ1| variables to be ŜWBC. Specifically, r can be chosen such that Ŝ1WBC minimizes

the average prediction error in an independent validation dataset. For tuning parameter α,

we set α = c3 log(n), for some positive constant c3, as suggested in Shao et al. (2011). Our

empirical experiments show that α = c3 log(n) tends to give the larger true positives and the

smaller false positives in identifying WBC variables. Figure 7 in Appendix reveals that in order

to find the optimal α that minimizes the prediction error on a validation dataset, it suffices to

conduct a grid search with only a few proposed values of α. In our numerical studies, instead

of thresholding the sample covariance matrix, we threshold the sample correlation matrix. As

9
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correlations are ranged between −1 and 1, it is easier to set a target range for α. To detect

signals in S2∗, we follow Gao et al. (2017) to use cross-validation to choose λ̃n and an in (8) and

(9), respectively. In particular, we set λ̃n = c1a
−2
n (log log n)3 log(n∨p) and an = c2n

−1/8 for some

positive constants c1 and c2. In the training dataset we fix the tuning parameters and fit the

model, and in the validation dataset we compute the prediction error of the model. We repeat

this procedure for various c1 and c2, and choose a pair that gives the smallest prediction error

on the validation dataset.

3 Asymptotic properties

To investigate the asymptotic properties of CIS-PSE, we assume the following.

(A1) The random error ε has a finite kurtosis.

(A2) log(p) = O(nν) for some 0 < ν < 1.

(A3) There are positive constants κ1 and κ2 such that 0 < κ1 < λmin(Σ) ≤ λmax(Σ) < κ2 <∞.

(A4) Sparse Riesz condition (SRC): For the random design matrix X, any S ⊂ {1, . . . , p} with

|S| = q, q ≤ p, and any vector v ∈ Rq, there exist 0 < c∗ < c∗ <∞ such that c∗ ≤ ‖XT
Sv‖2

2/‖v‖2
2 ≤

c∗ holds with probability tending to 1.

(A5) Faithfulness Assumption: Suppose that

max |ΣSc1 S1
β∗S1
|+ max

∣∣ΣSc1 S2
β∗S2

∣∣+ min
∣∣ΣS1S2

β∗S2

∣∣ < min |ΣS1S1
β∗S1
|,

where the absolute value function | · | is applied component-wise to its argument vector. The

max and min operators are with respect to all individual components in the argument vectors.

(A6) Denote by Cmax = max1≤l≤B |Vl| the maximum size of the connected components in graph

G(V , E ; Ω) that contains at least one signal in S1, where B is the number of such connected

components. Assume Cmax = O(nξ) for some ξ ∈ (0, 1).

(A7) Assume min(k,k′)∈E |Σkk′| ≥ C
√
nξ−1 for some constant C > 0 and max(k,k′)/∈E |Σkk′| =

o(
√
nξ−1) for the ξ in (A6).
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(A8) For any subset Vl ⊂ {1, . . . , p} with |Vl| = O(n), supj E|Xij1(j ∈ Vl)|2ζ < ∞ for some

positive constant ζ.

(A9) Assume that ‖β∗S2∗
‖2 = o(nτ ) for some 0 < τ < 1, where ‖ · ‖2 is the Euclidean norm.

(A1), a technical assumption for the asymptotic proofs, is satisfied by many parametric

distributions such as Gaussian. The assumption is mild as we do not assume any parametric

distributions for ε except that it has finite moments. (A2) and (A3) are commonly assumed in the

high-dimensional literature. (A4) guarantees that S1 can be recovered with probability tending

to 1 as n→∞ (Zhang and Huang, 2008). (A5) ensures that for all j ∈ S1, minj∈S1
|ĉov(Xj, y)| >

maxj∈Sc1 |ĉov(Xj, y)| holds with probability tending to 1 (Lemma 4 in Genovese et al., 2012). (A6)

implies that the size of each connected component of a strong signal, i.e., C[j′], j
′ ∈ S1, cannot

exceed the order of exp(nξ) for some ξ ∈ (0, 1). This assumption is required for estimating sparse

covariance matrices. (A7) guarantees that with a properly chosen thresholding parameter α, Xk

and Xk′ have non-zero thresholded sample covariances for (k, k′) ∈ E , and have zero thresholded

sample covariances for (k, k′) /∈ E . As a result, the connected components of the thresholded

sample covariance matrix and those of the precision matrix can be detected with adequate

accuracy. (A8) ensures that the precision matrix can be accurately estimated by inverting the

thresholded sample covariance matrix; see Shao et al. (2011) and Bickel and Levina (2008)

for details. (A9), which bounds the total size of weak signals on S2∗, is required for selection

consistency on S2∗ (Gao et al., 2017).

We show that given a consistently selected S1, we have selection consistency for SWBC.

Theorem 3.1. With (A1)-(A3) and (A6)-(A8),

lim
n→∞

P
(
ŜWBC = SWBC|Ŝ1 = S1

)
= 1.

The following corollary shows that Theorem 3.1, together with Theorem 2 in Zhang and

Huang (2008) and Corollary 2 in Gao et al. (2017), further implies selection consistency for

S1 ∪ SWBC ∪ S2∗.

11
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Corollary 3.2. Under Assumptions (A1)-(A9), we have

lim
n→∞

P
(
{Ŝ1 = S1} ∩ {ŜWBC = SWBC} ∩ {Ŝ2∗ = S2∗}

)
= 1.

Corollary 3.2 implies that CIS-PSE can recover the true set asymptotically. Thus, when

|S0| < n, CIS-PSE gives an OLS estimator with probability going to 1 and has the minimum

prediction error asymptotically, among all the unbiased estimators.

4 Simulation studies

We conduct simulations to compare the performance of the proposed CIS-PSE and the post-

shrinkage estimator (PSE) by Gao et al. (2017). The key difference between CIS-PSE and PSE

lies in that PSE focuses only on S1 whereas CIS-PSE considers S1 ∪ SWBC.

Data are generated according to (1) with

β∗ = (

S1︷ ︸︸ ︷
20, 20, 20,

SWBC︷ ︸︸ ︷
0.5, . . . , 0.5︸ ︷︷ ︸

30

,

S2∗︷ ︸︸ ︷
0.5, . . . , 0.5︸ ︷︷ ︸

30

,

Snull︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸
p−63

)T. (13)

The random errors εi are independently generated from N(0, 1). We consider the following

examples.

Example 1: The first three variables, which belong to S1, are independently generated from

N(0, 1). The first ten, next ten and the last ten signals in SWBC belong to the connected com-

ponent of X1, X2 and X3, respectively. These three connected components are independent of

each other. S2∗ is independent of S1 and SWBC. Each connected component within S1 ∪SWBC and

S2∗ are generated from a multivariate normal distribution with mean zeros, variance 1, and a

compound symmetric (CS) correlation matrix with correlation coefficient of 0.7. Variables in

Snull are independently generated from N(0, 1).

Example 2: This example is the same as Example 1 except that the three connected components

within S1∪SWBC and S2∗ follow the first order autocorrelation (AR(1)) structure with correlation

coefficient of 0.7.

12
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Example 3: This example is the same as Example 1 except that there are 30 variables in Snull (i.e.,

variables X64-X93) are set to be correlated with signals in S1. That is, X64-X73 are correlated with

X1, X74-X83 are correlated with X2, and X84-X93 are correlated with X3. These three connected

components within S1 ∪ Snull have a CS correlation structure with correlation coefficient of 0.7.

For each example, we conduct 500 independent experiments with p=200, 300, 400 and 500.

We generate a training dataset of size n = 200, a test dataset of size n = 100 to assess the pre-

diction performance, and an independent validation dataset of size n = 100 for tuning parameter

selection.

First, we compare CIS-PSE and PSE in selecting S0 under Examples 1–2. We use Lasso and

adaptive Lasso to select Ŝ1. Since both Lasso and adaptive Lasso give similar results, we report

only the Lasso results in this section and present the results of adaptive Lasso in Appendix.

We report the number of correctly identified variables (TP) in S0 and the number of incorrectly

selected variables (FP) in Sc0 . Table 1 shows that CIS-PSE outperforms PSE in identifying

signals in S0. We observe that the performance of PSE deteriorates as p increases, whereas

CIS-PSE selects S0 signals consistently even when p increases.

Table 1: The performance of variable selection on S0

p = 200 p = 300 p = 400 p = 500

Example 1
TP

CIS-PSE 59.6 (1.9) 58.7 (2.1) 57.9 (2.3) 57.7 (2.4)
PSE 41.2 (4.9) 34.4 (5.1) 25.7 (6.0) 22.6 (5.8)

FP
CIS-PSE 3.7 (2.4) 5.1 (2.7) 6.9 (3.1) 8.8 (3.3)
PSE 13.3 (4.6) 18.9 (5.2) 21.7 (5.9) 26.1 (6.0)

Example 2
TP

CIS-PSE 63.0 (0) 62.9 (0.1) 62.9 (0.1) 62.9 (0.1)
PSE 43.9 (3.9) 37.0 (4.2) 32.8 (5.0) 31.5 (4.3)

FP
CIS-PSE 3.5 (2.4) 5.0 (2.7) 6.3 (3.3) 8.1 (3.1)
PSE 12.7 (4.2) 19.5 (5.1) 22.1 (6.3) 27.4 (6.4)

NOTE. TP: true positive; FP: false positive.

Next, we evaluate estimation accuracy on the targeted sub-model S1 ∪ SWBC using the mean

squared error (MSE) as the criterion under Examples 1–2. Figure 2 indicates that the proposed
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CIS-PSE detects WBC signals and provides more accurate and precise estimates. Figure 3 shows

that CIS-PSE also improves the estimation of βS1
compared to PSE.
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Figure 2: The mean squared error (MSE) of β̂SWBC

for different p’s under Example 1 (Left panel)
and Example 2 (Right panel). Solid lines represent CIS-PSE, dashed lines are for PSE, and
dotted lines indicate Lasso.
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Figure 3: The mean squared error (MSE) of β̂S1
for different p’s under Example 1 (Left panel)

and Example 2 (Right panel). Solid lines represent CIS-PSE, dashed lines are for PSE, dotted

lines indicate Lasso RE defined as β̂
RE

Ŝ1
= Σ̂

−1

Ŝ1
ĉov(xŜ1

, y), dot-dashed lines represent Lasso, and
long-dashed lines are for WR in (9).

We explore the prediction performance under Examples 1–2 using the mean squared pre-

diction error (MSPE), defined as ‖ŷ − ytest‖2
2/ntest = ‖Xβ̂

�
− ytest‖2

2/ntest, where β̂
�

is obtained

from the training data, ytest is the response variable for the test dataset, ntest is the size of test
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dataset, and � represents either the proposed CIS-PSE or PSE. Table 2, which summarizes the

results, shows that CIS-PSE outperforms PSE, suggesting incorporating WBC signals helps to

improve the prediction accuracy.

Table 2: Mean squared prediction error (MSPE) of the predicted outcomes

p 200 300 400 500

Example 1
CIS-PSE 3.17 (0.80) 3.19 (0.78) 3.25 (0.77) 3.32 (0.77)
PSE 4.19 (0.83) 4.93 (1.02) 5.28 (1.07) 5.50 (1.16)
Lasso 10.28 (5.68) 10.02 (5.58) 9.77 (4.96) 9.78 (4.54)

Example 2
CIS-PSE 0.65 (0.14) 0.92 (0.19) 1.30 (0.16) 2.43 (0.64)
PSE 2.89 (0.61) 3.55 (0.75) 4.09 (0.68) 4.34 (0.97)
Lasso 4.20 (0.79) 4.50 (0.88) 4.68 (0.90) 4.73 (0.97)

Lastly, we consider the setting where a subset of Snull is correlated with a subset of S1; see

Example 3. Compared to Example 1, the results that are summarized in Table 3 show that the

number of false positives only slightly increases, when some variables in Snull are correlated with

variables in S1.

5 A real data example

We apply the proposed CIS-PSE method to analyze the gross domestic product (GDP) growth

data studied in Gao et al. (2017) and Barro and Lee (1994). Our goal is to identify factors that

are associated with the long-run GDP growth rate. The dataset includes the GDP growth rates

and 45 socioeconomic variables for 82 countries from 1960 to 1985. We consider the following

Table 3: Comparison of false positives (standard deviations in parentheses) between Examples
1 and 3

p = 200 p = 300 p = 400 p = 500
Example 1 3.7 (2.4) 5.1 (2.7) 6.9 (3.1) 8.8 (3.3)
Example 3 4.6 (3.5) 6.1 (3.4) 7.8 (3.8) 10.9 (4.2)
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model:

GRi = β0 + β1 log(GDP60i) + zT
i β2 + 1(GDP60i < 2898)(δ0 + δ1 log(GDP60i) + zT

i δ2) + εi, (14)

where i is the country indicator, i = 1, . . . , 82, GRi is the annualized GDP growth rate of

country i from 1960 to 1985, GDP60i is the GDP per capita in 1960, and zi are 45 socioeconomic

covariates, the details of which can be found in Gao et al. (2017). The β1 and β2 represent the

coefficients of log(GDP60) and socioeconomic predictors, respectively. The δ0 represents the

coefficient of whether the GDP per capita in 1960 is below a threshold (=2898) or not. The δ1

represents the coefficient of log(GDP60) when GDP per capita in 1960 is below 2898. The δ2

represent the coefficients of the interactions between the GDP60i < 2898 and the socioeconomic

predictors when GDP per capita in 1960 is below 2898.

We apply the proposed CIS-PSE and PSE by Gao et al. (2017) to detect S1. Additionally,

CIS-PSE is used to further identify SWBC. Effects of covariates in Ŝ1 are estimated by Lasso,

adaptive Lasso, PSE and CIS-PSE. Effects of covariates in ŜWBC are estimated by CIS-PSE. The

sample correlations between variables in Ŝ1 and ŜWBC are also provided. Table 4 reports the

selected variables and their estimated coefficients.

Next, we evaluate the accuracy of predicted GR using a leave-one-out cross-validation. For

each country, we treat it itself as the test set while using all other countries as the training

set. We apply Lasso, adaptive Lasso, PSE and CIS-PSE. All tuning parameters are selected as

described in Section 4. The prediction results in Figure 4 show that CIS-PSE has the smallest

prediction errors compared to PSE, Lasso and adaptive Lasso, with Ŝ1 detected by either Lasso

or adaptive Lasso.

6 Discussion

To improve the estimation and prediction accuracy in high-dimensional linear regressions, we

introduce the concept of weak but correlated (WBC) signals, which are commonly missed by
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Figure 4: Prediction errors from post-selection shrinkage estimators: CIS-PSE, PSE and two
penalized estimators (Lasso and adaptive Lasso). Ŝ1 is detected by Lasso in the left panel and
by adaptive Lasso in the right panel.

Table 4: Estimation results of S1 and SWBC from the growth rate data

Ŝ1 is selected by Lasso

Ŝ1 β̂Lasso
S1

β̂PSE
S1

β̂CIS-PSE
S1

ŜWBC β̂CIS-PSE
SWBC

TOT 0.06 2.85 3.73 – –
LFERT 1.66 1.75 2.55 LLIFE 1.88

NOM60 0.12
NOF60 -0.10

LGDP60×NOM60 -0.02
PRIF60 -0.001 -0.002 -0.12 LGDP60×PRIF60 0.02

LGDP60×PRIM60 -0.02
LGDP60×NOF60 0.02

Ŝ1 selected by adaptive Lasso

Ŝ1 β̂Ada-Lasso
S1

β̂PSE
S1

β̂CIS-PSE
S1

ŜWBC β̂CIS-PSE
SWBC

LFERT 1.98 2.04 2.54 LLIFE 1.77
NOM60 0.08
NOF60 -0.07

LGDP60×NOM60 -0.01

NOTE. TOT: the term of trade shock; LFERT: log of fertility rate (children per woman) averaged over 1960-1985;
LLIFE: log of life expectancy at age 0 averaged over 1960-1985; NOM60: percentage of no schooling in the male
population in 1960; NOF60: percentage of no schooling in the female population in 1960; LGDP60: log GDP
per capita in 1960 (1985 price); PRIF60: percentage of primary schooling attained in female population in 1960;
PRIM60: percentage of primary schooling attained in male population in 1960.
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the Lasso-type variable selection methods. We show that these variables can be easily detected

with the help of their partial correlations with strong signals. We propose a CIS-PSE procedure

for high-dimensional variable selection and estimation, particularly for WBC signal detection

and estimation. We show that, by incorporating WBC signals, it significantly improves the

estimation and prediction accuracy.

An alternative approach to weak signal detection would be to group them according to a

known group structure and then select by their grouped effects (Bodmer and Bonilla, 2008; Li

and Leal, 2008; Wu et al., 2011; Yuan and Lin, 2006). However, grouping strategies require prior

knowledge on the group structure, and, in some situations, may not amplify the grouped effects

of weak signals. For example, as pointed out in Bühlmann et al. (2013) and Shah and Samworth

(2013), when a pair of highly negatively correlated variables are grouped together, they cancel

out each other’s effect. On the other hand, our CIS-PSE method is based on detecting partial

correlations and can accommodate the “canceling out” scenarios. Hence, when the grouping

structure is known, it is worth combining the grouping strategy and CIS-PSE for weak signal

detection. We will pursue this in the future.

7 Appendix

We provide technical proofs for Theorem 3.1, Corollary 3.2 and lemmas in this section. We first

list some definitions and auxiliary lemmas.

Definition 7.1. A random vector Z = (Z1, . . . , Zp) is a sub-Gaussian with mean vector µ and

variance proxy σ2
z, if for any a ∈ Rp, E[exp{aT(Z− µ)}] ≤ exp(σ2

z‖a‖2
2/2).

Let Z be a sub-Gaussian random variable with variance proxy σ2
z. The sub-Gaussian tail

inequality is given as, for any t > 0,

P (Z > t) ≤ e
− t2

2σ2
z and P (Z < −t) ≤ e

− t2

2σ2
z .
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The following Lemma 7.2 ensures that the set of signals with non-vanishing marginal sample

correlations with y coincides with S1 with probability tending to 1. Therefore, evaluating con-

dition (4) for a covariate j is equivalent to estimating nonzero Ωjj′’s for every j ′ ∈ S1. Let rj′

be the rank of variable j ′ according to the magnitude of |ĉov(Xj′ , y)|, j ′ = 1, . . . , p. Denote by

S̃1(k) = {j ′ : rj′ ≤ k} the first k covariates with the largest absolute marginal correlations with

y, for k = 1, . . . , p. Recall that s1 = |S1|.

Lemma 7.2. Under Assumption (A5), we have

lim
n→∞

P
(
S̃1(s1) = S1

)
= 1.

Proof of Lemma 7.2. By the definition of S̃1(s1), it is suffice to show that with probability

tending to 1, as n→∞,

max

∣∣∣∣1nXT
Sc1

y

∣∣∣∣ < min

∣∣∣∣1nXT
S1

y

∣∣∣∣ .
Since y = Xβ∗ + ε = XS0

β∗S0
+ ε = XS1

β∗S1
+ XS2

β∗S2
+ ε, we have

1

n
XT
Sc1

y =
1

n
XT
Sc1

XS1
β∗S1

+
1

n
XT
Sc1

XS2
β∗S2

+
1

n
XT
Sc1
ε.

Notice that for each j ′ ∈ Sc1 , 1
n
xT
j′ε → cov(Xj′ , ε) = 0 in probability, then max | 1

n
XT
Sc1
ε| = oP (1)

as n→∞.

It follows that when n→∞,

max

∣∣∣∣1nXT
Sc1

y

∣∣∣∣ ≤ max
∣∣ΣSc1 S1

β∗S1

∣∣+ max
∣∣ΣSc1 S2

β∗S2

∣∣+ oP (1).

Similarly, when n→∞,

min

∣∣∣∣1nXT
S1

y

∣∣∣∣ ≥ min
∣∣ΣS1S1

β∗S1

∣∣−min
∣∣ΣS1S2

β∗S2

∣∣+ oP (1).

Lemma 7.2 is concluded by combining the above two inequalities with the faithfulness condition.
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Bickel and Levina (2008) showed that for α = O(
√

log |S[j]|/n), ‖Σ̃α

[j]−Σ[j]‖ = OP (ρn), where

ρn = O(n−1C
1/4
max) with C

1/4
max given in (A6). Furthermore, Bickel and Levina (2008) and Fan et al.

(2011) showed that the estimation error for each connected component of the precision matrix

is bounded by

‖Ω̂[j] −Ω[j]‖ = ‖(Σ̃α

[j])
−1 −Σ−1

[j] ‖ = OP (ρn). (15)

To detect the connected components of the thresholded sample covariance matrix, we adopt

the recursive labeling Algorithm as in Shapiro and Stockman (2002).

Without loss of generality, suppose that the strong signals in Ŝ1 belong to distinct connected

components of Σ̃
α
. We rearrange the indices in Ŝ1 as {1, . . . , |Ŝ1|} and write the submatrix of

Σ̃
α

corresponding to j ′, 1 ≤ j ′ ≤ |Ŝ1|, as Σ̃
α

j′. For notational convenience, we rewrite

Ω̂ = diag((Σ̃
α

1 )−1, . . . , (Σ̃
α

|Ŝ(α)
1 |)

−1,0)p×p.

The following Lemma 7.3 is useful for controlling the size of Ĉ[j].

Lemma 7.3. Under (A6)-(A7), when x is from a multivariate sub-Gaussian distribution, we

have P
(
|Ĉ[j]| ≤ O(nξ)

)
≥ 1− nξC1 exp(−C2n

1+ξ) for some positive constants C1 and C2.

Lemma 7.3 is a direct conclusion of Lemma 2.1 and Assumption (A6). Next we prove

Theorem 3.1.

Proof of Theorem 3.1. Notice that β∗j =
∑

j′∈C[j]
Ωjj′cov(Xj′ , y) and β̂j =

∑
j′∈Ĉ[j]

Ω̂jj′ ĉov(Xj′ , y).

Consider a sequence of thresholding parameters νn = O(n3ξ/2) with a decreasing series of

positive numbers un = 1 + n−ξ/4 such that limn→∞ un = 1,

P
(
{j /∈ S1 : |β∗j | > νnun} ⊆ {j /∈ S1 : |β̂j| > νn}

)
≥ 1− P

 ⋃
j /∈S1,|β∗j |>νnun

{|β̂j| ≤ νn}

 . (16)
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Moreover, since {|β̂j| ≤ νn} and {|β∗j | > νnun}, we have |β̂j − β∗j | ≥ νn(un − 1). As a result,

1− P

 ⋃
j /∈S1,|β∗j |>νnun

{|β̂j| ≤ νn}


≥ 1−

∑
j /∈S1,|β∗j |>νnun

P
(
|β̂j − β∗j | ≥ νn(un − 1)

)
. (17)

Notice that from Lemma 2.1, P (C[j] ⊆ Ĉ[j]) ≥ 1 − C1n
ξ exp(−C2n

ξ) for some positive constants

C1 and C2 and 0 < ξ < 1. Therefore, we further have

P
(
|β̂j − β∗j | ≥ νn(un − 1)

)
= P

∣∣∣∣∣∣
∑
j′∈Ĉ[j]

Ω̂jj′ ĉov(Xj′ , y)−
∑
j′∈Ej

Ωjj′cov(Xj′ , y)

∣∣∣∣∣∣ ≥ νn(un − 1)


= P

∣∣∣∣∣∣
∑
j′∈Ĉ[j]

Ω̂jj′ ĉov(Xj′ , y)−
∑
j′∈Ĉ[j]

Ωjj′cov(Xj′ , y)

∣∣∣∣∣∣ ≥ νn(un − 1)

+ C1n
ξ exp(−C2n

ξ)

≤ P

∑
j′∈Ĉ[j]

∣∣∣(Ω̂jj′ − Ωjj′)ĉov(Xj′ , y) + Ωjj′(ĉov(Xj′ , y)− cov(Xj′ , y))
∣∣∣ ≥ νn(un − 1)

+

C1n
ξ exp(−C2n

ξ)

≤ P

∑
j′∈Ĉ[j]

∣∣∣(Ω̂jj′ − Ωjj′)ĉov(Xj′ , y)
∣∣∣ ≥ νn(un − 1)/2

+

P

∑
j′∈Ĉ[j]

|Ωjj′(ĉov(Xj′ , y)− cov(Xj′ , y))| ≥ νn(un − 1)/2

+ C1n
ξ exp(−C2n

ξ). (18)

By (15) and Assumption (A6), ‖Ω̂ −Ω‖ ≤ Mn−(1−ξ/4), for some 0 < M < ∞. As n → ∞, the
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first term in (18) can be shown as:

P

∑
j′∈Ĉ[j]

|(Ω̂jj′ − Ωjj′)ĉov(Xj′ , y)| > νn(un − 1)/2


≤ P

(
1

n2
yTxĈ[j]

(Ω̂−Ω)T
jĈ[j]

(Ω̂−Ω)jĈ[j]
xT
Ĉ[j]

y >
ν2
n(un − 1)2

4

)
≤ P

(
λmax

(
1

n
xĈ[j]

(Ω̂−Ω)T
jĈ[j]

(Ω̂−Ω)jĈ[j]
xT
Ĉ[j]

)
1

n
yTy >

ν2
n(un − 1)2

4

)
.

≤ P

(
λmax

(
1

n
xĈ[j]

xT
Ĉ[j]

)
λmax

(
(Ω̂−Ω)T

jĈ[j]
(Ω̂−Ω)jĈ[j]

) 1

n
yTy >

ν2
n(un − 1)2

4

)
. (19)

Notice that E[yTy/n] = E(y2) = σ2+(β∗)TΣβ∗ ≤ σ2+λmax(Σ)‖β∗‖2 < C̃1 for some positive con-

stant C̃1. For sufficiently large n, λmax

(
xĈ[j]

xT
Ĉ[j]
/n
)
≤ λmax

(
Σ̂
)
≤ κ2+λmax

(
Σ̂−Σ

)
= κ2+‖Σ̂−

Σ‖1/2 = κ2 +O(ρ
1/2
n ) < C̃2 for some positive constant C̃2. And λmax

(
(Ω̂−Ω)T

jĈ[j]
(Ω̂−Ω)jĈ[j]

)
≤

‖Ω̂−Ω‖2 ≤M 2n−(2−ξ/2). Therefore, from (19), for sufficiently large n,

P

∑
j′∈Ĉ[j]

|(Ω̂jj′ − Ωjj′)ĉov(Xj′ , y)| > νn(un − 1)/2


≤ P

(
C̃2M

2 1

n
yTy > n(2−ξ/2)ν

2
n(un − 1)2

4

)
≤ P

(
1

n
yTy >

1

C̃2M 2

n2

4

)
≤ 4C̃2M

2E[yTy/n]

n2
≤ 4C̃1C̃2M

2

n2
→ 0, (20)

where the second last step is from applying Markov inequality to the positively valued random

variable yTy/n.

For the second term in (18), let z̃ = (Z̃1, . . . , Z̃p)
T = (xT

1 y/n − cov(X1, y), . . . ,xT
py/n −

cov(Xp, y))T, then we have

P

∑
j′∈Ĉ[j]

∣∣Ωjj′(x
T
j′y/n− cov(Xj′ , y))

∣∣ ≥ νn(un − 1)/2


≤ P

(
λmax

(
ΩTΩ

)
‖z̃Ĉ[j]

‖2
2 ≥

ν2
n(un − 1)2

4

)
≤ P

(
|Z̃j′| >

νnκ1(un − 1)

2|Ĉ[j]|

)
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for some j ′ ∈ Ĉ[j]. Notice that E[Z̃j′] = E[Xj′y − cov(Xj′ , y)] = 0. Also E[Z̃2
j′] = V ar[Xj′y] ≤

E[X2
j′y

2] ≤ (E(X4
j′) + E(y4))/2 < C̃3 for some positive constant C̃3 as E(X4

j′) ≤ λ2
max (Σ)

and E(y4) ≤ (λmax(Σ)‖β‖2)2 + E(ε4) < ∞. Therefore, from Jensen’s inequality, E[|Z̃j′|] =

E[(Z̃2
j′)

1/2] ≤ (E[Z̃2
j′])

1/2 ≤ C̃
1/2
3 . Then using Lemma 7.3 to control the size of Ĉ[j] and applying

Markov inequality on |Z̃j′|, we have

P

(
|Z̃j′| >

νnκ1(un − 1)

2|Ĉ[j]|

)
≤ P

(
|Z̃j′ | >

κ1n
ξ/4

2

)
≤ 2E[|Z̃j′|]

κ1nξ/4

≤ 2C̃
1/2
3

κ1nξ/4
→ 0. (21)

Plugging (20) and (21) into (18) and then plugging (18) into (17) gives

lim
n→∞

P
(
{j /∈ S1 : |β∗j | > νnun} ⊆ {j /∈ S1 : |β̂j| > νn}

)
= 1. (22)

By a similar argument, we also have

lim
n→∞

P
(
{j /∈ S1 : |β∗j | > νn/un} ⊆ {j /∈ S1 : |β̂j| > νn}

)
= 1. (23)

Combining (22) and (23), we have

lim
n→∞

P (ŜWBC = SWBC|Ŝ1 = S1).

Proof of Corollary 3.2. Notice that

P
(
{ŜWBC = SWBC} ∩ {Ŝ2∗ = S2∗} ∩ {Ŝ1 = S1}

)
= P

(
Ŝ2∗ = S2∗|{ŜWBC = SWBC} ∩ {Ŝ1 = S1}

)
P
(
{ŜWBC = SWBC} ∩ {Ŝ1 = S1}

)
= P

(
Ŝ2∗ = S2∗|Ŝ1WBC = S1WBC

)
P
(
ŜWBC = SWBC|Ŝ1 = S1

)
P
(
Ŝ1 = S1

)
. (24)

Under the SRC in (A4), by Lemma 1 in Gao et al. (2017) or Theorem 2 in Zhang and Huang

(2008),

lim
n→∞

P
(
Ŝ1 = S1

)
= 1. (25)
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From Theorem 3.1,

lim
n→∞

P
(
ŜWBC = SWBC|Ŝ1 = S1

)
= 1. (26)

Equations (25) and (26) together give limn→∞ P (ŜWBC = SWBC) = 1. This further gives that

P (S1 ⊂ Ŝ1WBC ⊂ {S1WBC ∪ S2})→ 1. Then by Corollary 2 in Gao et al. (2017), we also have

lim
n→∞

P ({Ŝ2∗ = S2∗}|{Ŝ1WBC = S1WBC}) = 1. (27)

Combining (25), (26), (27) and (24) completes the proof.

The following Tables 5 - 6 and Figures 5 - 6 give the selection, estimation and prediction

results under Examples 1 and 2 when Ŝ1 is selected by adaptive Lasso.

Table 5: The performance of variable selection on S0 when Ŝ1 is selected by adaptive Lasso

p = 200 p = 300 p = 400 p = 500

Example 1
TP

CIS-PSE 61.4 (2.4) 61.1 (2.5) 61.0 (2.6) 61.1 (2.6)
PSE 41.2 (5.0) 34.4 (5.1) 25.7 (6.1) 22.6 (5.8)

FP
CIS-PSE 2.5 (2.1) 4.6 (2.5) 6.7 (3.2) 8.6 (3.0)
PSE 15.1 (4.9) 19.7 (5.0) 22.3 (5.4) 28.0 (6.2)

Example 2
TP

CIS-PSE 62.5 (0.8) 58.0 (2.2) 54.6 (2.9) 52.0 (3.5)
PSE 43.9 (3.8) 37 (4.2) 32.8 (4.3) 31.5 (4.2)

FP
CIS-PSE 3.4 (2.6) 5.2 (3.0) 6.0 (3.5) 7.7 (4.1)
PSE 13.1 (3.7) 18.6 (4.7) 21.9 (5.5) 28.0 (6.1)

Table 6: Mean squared prediction error (MSPE) of the predicted outcomes when Ŝ1 is selected
by adaptive Lasso

p 200 300 400 500

Example 1
CIS-PSE 2.16 (0.57) 3.06 (0.63) 3.30 (0.72) 3.60 (0.81)
PSE 3.91 (0.71) 4.85 (0.86) 5.71 (1.02) 6.27 (1.17)
adaptive Lasso 15.02 (4.37) 14.67 (3.90) 14.49 (4.00) 14.74 (4.29)

Example 2
CIS-PSE 2.69 (0.58) 2.96 (0.72) 3.23 (0.81) 3.31 (0.83)
PSE 3.77 (0.77) 4.76 (1.08) 5.50 (1.17) 5.82 (0.18)
adaptive Lasso 4.48 (0.79) 4.81 (0.91) 4.94 (0.97) 4.97 (1.01)

Figure 7 shows the averaged sum of squared prediction error (SSPE) on the validation

datasets across 500 independent experiments for different α’s.
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Figure 5: The mean squared error (MSE) of β̂SWBC
for different p’s when Ŝ1 is selected by adaptive

Lasso under Example 1 (Left panel) and Example 2 (Right panel). Solid lines represent CIS-PSE,
dashed lines are for PSE, and dotted lines indicate adaptive Lasso.
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Figure 6: The mean squared error (MSE) of β̂S1
for different p’s when Ŝ1 is selected by adap-

tive Lasso under Example 1 (Left panel) and Example 2 (Right panel). Solid lines repre-
sent CIS-PSE, dashed lines are for PSE, dotted lines indicate adaptive Lasso RE defined as

β̂
RE

Ŝ1
= Σ̂

−1

Ŝ1
ĉov(xŜ1

, y), dot-dashed lines represent adaptive Lasso, and long-dashed lines are for
WR in (9).

25

This article is protected by copyright. All rights reserved.



0.2 0.4 0.6 0.8

21
5

22
0

22
5

23
0

α

P
re

di
ct

io
n 

er
ro

r

Figure 7: The sum of squared prediction error (SSPE) corresponding to different α’s.
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