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Purpose: Developing automated methods to identify task-driven quality assurance (QA) procedures
is key toward increasing safety, efficacy, and efficiency. We investigate the use of machine learning
(ML) methods for possible visualization, automation, and targeting of QA, and assess its perfor-
mance using multi-institutional data.
Methods: To enable automated analysis of QA data given its higher dimensional nature, we used
nonlinear kernel mapping with support vector data description (SVDD) driven approaches. Instead
of using labeled data as in typical support vector machine (SVM) applications, which requires
exhaustive annotation, we applied a clustering extension of SVDD, which identifies the minimal
enclosing hypersphere in the feature space defined by a kernel function separating normal operations
from possible failures (i.e., outliers). In our case, QA test data are mapped by a Gaussian kernel to a
higher dimensional feature space and then the minimal enclosing sphere was identified. This sphere,
when mapped back to the input data space along the principal components, can separate the data into
several components, each enclosing a separate cluster of QA points that could be used to evaluate tol-
erance boundaries and test reliability. We evaluated this approach for gantry sag, radiation field shift,
and [multileaf collimator (MLC)] offset data acquired using electronic portal imaging devices
(EPID), as representative examples.
Results: Data from eight LINACS and seven institutions (n = 119) were collected. A standardized
EPID image of a phantom with fiducials provided deviation estimates between the radiation field and
phantom center at four cardinal gantry angles. Deviation measurements in the horizontal direction
(0°, 180°) were used to determine the gantry sag and deviations in the vertical direction (90°, 270°)
were used to determine the field shift. These measurements were fed into the SVDD clustering algo-
rithm with varying hypersphere radii (Gaussian widths). For gantry sag analysis, two clusters were
identified one of which contained 2.5% of the outliers and also exceeded the 1 mm tolerance set by
TG-142. In the case of field shifts, SVM clustering identified two distinct classes of measurements
primarily driven by variations in the second principal component at 270°. Results from MLC analysis
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identified one outlier cluster (0.34%) along Leaf offset Constancy (LoC) axis that coincided with
TG-142 limits.
Conclusion: Machine learning methods based on SVDD clustering are promising for developing
automated QA tools and providing insights into their reliability and reproducibility. © 2019 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13433]
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1. INTRODUCTION

Cancer patients’ safety and their treatment outcomes,
despite rigorous regulations, may be compromised by rare
but deadly errors that can occur during complex treatment
planning and delivery of radiotherapy as highlighted by
several editorials in national and international media reports
in recent years.1 Traditionally, quality assurance (QA) in
radiotherapy follows the guidelines of national and interna-
tional bodies such as the American Association of Physi-
cists in Medicine (AAPM), American Society for Radiation
Oncology (ASTRO), American College of Radiology
(ACR), European Society for Radiotherapy and Oncology
(ESTRO), and the International Atomic Energy Agency
(IAEA). For instance, the AAPM and its widely used task
group (TG) report TG-402 has provided a comprehensive
QA program for institutional radiation oncology practice.
This report accounts for potential risks during the planning
and delivery of high energy irradiation, harmonizing the
treatment of patients and accommodating new advances in
technology. TG-142 updated the requirements for advances
in linear accelerator delivery technology.3 A risk assess-
ment and consensus evaluation of the critical requirements
is presented in AAPM Medical Physics Practice Guideline
8a on linear accelerator QA.4 Moreover, QA is a necessary
process for credentialing institutions for multi-institutional
radiotherapy clinical trials such as the ones carried out by
the NRG Oncology consortium and AAPM report
TG113.5–8 While these QA guidelines have focused on
monitoring all functional aspects of radiotherapy equip-
ment, recent efforts have been geared toward identifying
failures in workflow and processes. For instance, AAPM
TG-100 has taken a risk-based approach using failure mode
and effect analysis (FMEA) for designing QA protocols
and prioritizing effort.9 However, whether it is the tradi-
tional TG-40/142 or the new TG-100 guidelines, both
approaches, as useful as they are, remain unfortunately sub-
jective and are opinion-driven rather being data-driven;
consequently, physicists are still left without an evidence-
based answer to tailor a large number of laborious QA pro-
cedures to the associated failure risk. In the era of big data,
this limitation can be remedied.10,11

Radiotherapy provides a fertile environment to harness the
power of big data analytics, particularly in areas related to
QA and safety.11–13 Targeting of laborious QA tasks as
needed has been recognized as a key component toward safer,
more accurate, and efficient radiotherapy administration.14

However, traditional statistical methods cannot handle the

challenges posed by radiotherapy big data, particularly the
large class imbalance in navigating a great number of vari-
ables with a small sample size of relevant clinical data. This
is further taken to the extreme in the case of QA, where the
event rate is not only small but rare,10 due to improvements in
software and hardware functionality and the tremendous
efforts performed by the medical physicist. This issue consti-
tutes a serious data analytics challenge.

Machine learning methods represent the computational
vehicle for complex data analytics due to their ability to cap-
ture nonlinear and hidden patterns in the data, handle data
imbalance, visualize higher dimensional space, and general-
ize to out-of-sample data.15 Several studies have utilized dif-
ferent machine learning techniques for QA applications.
These applications included automated error checkers of
treatment plans using unsupervised learning such as k-means
clustering16 or supervised learning by neural networks,17

Bayesian networks,18 support vector machines (SVM),19,20

and Poisson regression.21,22 In addition, ML was applied to
linear accelerator (Linac) machine QA such as supervised
learning by neural networks of Linac beam symmetry23 and
multileaf collimator positional errors by random forest and
Cubist methods.24

In this work, we recognize that Linac machine QA pro-
cesses in particular, are typically comprised of laborious tasks
that are done based on prescriptive guidelines to monitor
machines and equipment performance irrespective of the
expected probability of failure risk. Methods based on pro-
cess control charts have been proposed to assist in longitudi-
nal monitoring of equipment function and separating random
from systematic errors by defining action thresholds.14 How-
ever, QA tests consist of multidimensional measures that
exhibit complex and potentially nonlinear behavior among
them. Thus, we hypothesize that the ability to visualize these
tests in a higher dimensional space would allow for better
identification of tolerance boundaries and assessment of the
ability of these tests to detect failure risks. When applied to
QA, it can potentially lead to a prioritized and targeted QA
approach. Given the complex nature of radiotherapy QA pro-
cesses and their redundancies, we will present an unsuper-
vised machine learning tool to facilitate clustering and
visualization of radiotherapy multidimensional test results.
We highlight a method for estimating the tolerance bound-
aries and performance reliability of the tests by using the non-
traditional Support Vector Data Description that does not
require explicit training as typically practiced by SVM classi-
fication, and we evaluate its performance using multi-institu-
tional data.
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2. MATERIALS AND METHODS

2.A. Dataset

The dataset that will be used in this proposal is currently
available institutionally and multi-institutionally through a
consortium on Automated Quality Assurance (AQA) from
eight participating organizations. The consortium is focused
on collecting comprehensive electronic portal imaging
device (EPID) test results (Fig. 1) from digital linear acceler-
ators following TG-142 guidelines.25,26 A dataset takes
about 15 min to deliver and is subsequently submitted to the
University of Michigan AQA database for analysis using an
automated program (~1 min to run) as described by Eck-
hause et al.25 In this study, the EPID images of a phantom
constructed from Lucite and 2-mm diameter steel balls act-
ing as fiducials are used to determine leaf and collimator
positions relative to the fixed fiducials, which are localized
in the image using a Canny edge detection algorithm.25 The
threshold for edge detection was adjusted until all the steel
balls in the phantom were detected in the image. The loca-
tion of the phantom is defined as the location of the central
ball bearing. Field edges were identified by averaging the
in-field and out-of-field intensities on the images and the
field position was determined from the location of these
edges. Leaf edges were determined according to the leaf gap
size; for large gaps, the peak intensity of the gradient paral-
lel to the leaf was used, whereas for narrow gaps (e.g.,
picket fence test) the positions were calculated from the
local peak in the intensity profile.25 A total of 119 indepen-
dent EPID measurements of several mechanical tests of the
Linac (i.e., gantry sag, field shifts, leaf positions), taken at
1–4 week intervals by seven institutions on eight Varian
TrueBeam accelerators, were analyzed.

In order to enable visualization and analysis of the EPID
QA data in higher dimensions, we will investigate the use of
nonlinear kernel mapping with support vector with data
description (SVDD). SVM kernel methods have been proven
to produce excellent classification rates by mapping relevant
input features into higher dimensional space and building
optimal hyperplanes to separate low from high risk categories
by maximizing the separating margin between the classes

(Fig. 2). Successful application of SVM to medical applica-
tions has been demonstrated in many imaging and outcome
modeling studies in radiation oncology.15 However, instead
of using labeled data, which would require exhaustive anno-
tation, we will apply a cluster labeling extension of SVM
using the SVDD algorithm.27,28

2.B. Data description (SVDD) clustering

The basic idea of SVDD is that input data (x) are mapped
by a nonlinear kernel (e.g., Gaussian kernel) to the higher
dimensional feature space, where one would search for the
minimal enclosing hypersphere with a center a and radius R
such that:

minR2 þ C
X

i
ni (1)

subject to:

kUðxiÞ � ak�R2 þ ni;_i; (2)

where ni are slack variables to allow outliers in the dataset
with a regularization parameter C and Uð�Þ is a nonlinear
mapping function (Fig. 2). Using a Lagrange multiplier
approach, the following conditions can be attained:

kUðxiÞ � ak\R2 ! ai ¼ 0; ci ¼ 0 (3)

kUðxiÞ � ak ¼ R2 ! 0\ai\C; ci ¼ 0 (4)

kUðxiÞ � ak[R2 ! ai ¼ C; ci ¼ 0; (5)

where ai � 0; ci � 0 are Lagrange multipliers. Data points
with ai [ 0 are only needed to describe the mapping and are
called support vectors (SVs), with points with ai ¼ C.
ai ¼ C labeled as bounded SVs (BSVs). The solution can be
obtained, as in other SVM approaches, using Quadratic Pro-
graming (QP) optimization techniques with a numerical com-
plexity that depends on the underlying solver, which is
generically between O(n2) and O(n3), where n is the number
of training samples. Hence, the resulting hypersphere is given
by:

(a) (b)

FIG. 1. (a) The quality assurance (QA) phantom containing small spherical fiducials. The two pieces of plastic (upper left and lower right) create contrast for
measuring image quality. (b) An electronic portal imaging devices image of the QA phantom. The locations of the fiducials (marked with circles) are determined
with automated analysis software (Reproduced from25 with permission). [Color figure can be viewed at wileyonlinelibrary.com]
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a ¼
XNs

i
aiUðxiÞ (6)

R2ðxÞ ¼ 1� 2
XNs

i
aiKðxi;xkÞþ

XNs

i

XNs

j
aiajKðxi;xjÞ:

(7)

For any xk 2 SV, where Ns is the number of SVs and
Kð�; �Þ is a kernel mapping representing the inner product:
Kðxi; xjÞ ¼ UðxiÞ � UðxjÞ. Typical kernel mapping is repre-
sented by Gaussian or radial basis functions (RBF):

Kðxi; xjÞ ¼ exp �kxi�xkk
r2

� �
; (8)

where r is the width of the RBF kernel. The hypersphere,
when mapped back to the input data space, can separate the
data into several components, each enclosing a separate
related collection of points (a cluster of QA tests) labeled fol-
lowing efficient graph-based28 or dynamical system equilib-
rium29,30 algorithms for preserving the topological mapping
characteristics as seen in Fig. 3. The labeling approach we
will be using is based on decomposing the data into several
disjoint groups, where each group is represented by a stable
equilibrium point (SEP) to which its members are assigned
the same cluster label. An SEP represents the state when the
clustering system reaches equilibrium, that is, the eigenvalues
of the Jacobian corresponding to Eq. (7) are positive yielding
a stable and topologically invariant solution.29

2.C. SVDD clustering application to QA

There are two parameters that control the behavior of the
SVDD algorithm, namely: (a) the regularization parameter
(C), which defines the soft margin boundaries and controls
the number of SVs and (b) the width of the RBF (r), which
controls the number of clusters in the input space. These
parameters and the resulting sphere radius (R) can be used to
identify the accepted confidence levels in the QA test suite,
analogous to control limits in control charts but providing the
important advantage of visualization in higher dimensional
space. In this case, C helps identify numerical outliers (fail-
ures) and controls possible overlap between the QA testing
clusters while r controls the scale at which the data points
are being probed (tolerance limits). Since the focus here is on
visualization in higher dimensions, we fixed C = 1

throughout the experiments while r was varied between two
categories: large width in which all points fit into a single
cluster (k = 1) and small width in which there are multiple
clusters (k) ≥ 2. With this C = 1 setup, it also prevents BSVs
[i.e., Eq. (5) boundary condition]. Moreover, the reported
small width here corresponds to the largest possible experi-
mental r with k ≥ 2. For visualization in a two-dimensional
input space, dimensionality reduction by projection into prin-
cipal component analysis (PCA) is used when the dimensions
are greater than 2. The software tools used are based on
extensions of MATLAB (Mathworks, Natick, MA, USA) for
pattern recognition of data description31 and efficient SVM
cluster labeling.30 The experiments were conducted on a 64-
bit Windows 7 machine running an Intel Xeon-E5 processor
with clock speed of 3.7 GHz and 32 GB of memory.

3. RESULTS

3.A. Gantry sag analysis by SVDD clustering

The gantry sags are primarily the result of gravitational
torque. It is quantified as the difference in the field center
with respect to the phantom center (central ball bearing on
the EPID image), when the gantry is rotated from 0° to 180°
using IEC standards.32 Visualizing the EPID image as a
matrix, the differences are estimated in the in-plane and
cross-plane directions of the image and fed into the SVDD
clustering algorithm. In Fig. 4, we demonstrate the applica-
tion of the proposed SVDD clustering algorithm to EPID-
based measurements of gantry sag. Figure 4(a) (r = 0.5)
shows a single cluster, while Fig. 4(b) (r = 0.25) reveals two
clusters, with “Cluster#2” here being the outliers’ data con-
sidering the TG-142 recommended limits of gantry sag of
1 mm. Using Eq. (7), the RBF mapping with large and small
widths (r) corresponds to hyperradii (R) of 1.35 and 2.69,
respectively. The calculations were performed in less than a
second (i.e., on average 0.42 � 0.05 s for r = 0.5 and
0.43 � 0.07 s for r = 0.25). Interestingly, the members of
this outlier cluster corresponded to different machines from
different institutions. In this case, the percentage of outliers
(Cluster#2) represents 2.5% while the TG-142 isotropic box

FIG. 2. Kernel-based mapping from a lower dimensional space (X) to a
higher dimensional space (Z) called the feature (Hilbert) space, where non-
separable classes become linearly separable. In case of support Vector
Machine, this mapping can be achieved using polynomials or radial basis
functions to create higher order features from the input data. Samples on the
borders constitute support vectors and they are represented by the most
difficult cases to diagnose (Reproduced from 15).

FIG. 3. The main principle of the support vector data description approach is
that by first mapping input data from potentially different characteristics
(e.g., normal Linac operation vs outliers) into a higher dimension and identi-
fying the enclosing sphere (left), then re-mapping the sphere back into the
data space, the data points can be divided efficiently into their corresponding
clusters (right).28 [Color figure can be viewed at wileyonlinelibrary.com]
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is higher at 8.4%. Note that the PCAs here correspond to the
0° to 180° sag measurements, respectively, and demonstrate
greater variation in the second principal component that cor-
responds to 180°.

3.B. Radiation field shift analysis by SVDD
clustering

The shift in the radiation field is measured in the vertical
direction and is defined as the difference between the radiation
field positions with respect to the phantom averaged at gantry
angles of 90° and 270° in the in-plane and cross-plane direc-
tions of the EPID image. In Fig. 5, we demonstrate the applica-
tion of the proposed SVDD clustering algorithm to EPID-
based measurements of radiation field shift with Fig. 5(a)
showing a single cluster compared to Fig. 5(b) revealing four
clusters. The hyperradii corresponding to large and small RBF
widths were R = 1.98 and 4.85, respectively. Three of the four
clusters (Clusters #2-#4) were primarily inside the TG-142 rec-
ommended limits for radiation field shift of 1 mm. The outlier
cases are estimated to be 2.5% while SVDD cluster analysis
identified more outliers (2.5%) compared to the TG-142 limits
(1.7%). Note that the PCAs here correspond to the 90° to 270°
shift measurements, respectively. Again, the calculations were
performed in less than a second (i.e., on average 0.45 � 0.1 s
for r = 0.5 and 0.42 � 0.06 s for r = 0.25).

3.C. MLC analysis by SVDD clustering

The multileaf collimator data included measurements for the
Varian Millennium and high definition (HD) MLCs.25,26 The
Millennium MLCs consist of 120 leaves with the inner 40

leaves having widths of 0.5 cm and the outer leaves having
widths of 1 cm. The HD MLCs consist of the inner 32 leaves
having widths of 0.25 cm and the outer leaves having widths
of 0.5 cm. Measurements of Leaf offset Constancy (LoC) and
transmission were available for each leaf, for a total of 3486
points with the majority (83.5%) being from HD MLCs. The
transmission measurements were adjusted from baseline on a
per leaf basis following TG-142. Previous work by AQA con-
sortium members demonstrated that the EPID-measured LoC is
a comprehensive and efficient way to determine if the dosimet-
ric leaf gap (DLG) is consistent with baseline.26 The procedure
for the EPID measurements were adapted from the LoSasso
scheme for measuring DLG by using five fields: three sliding
gap fields, a transmission field, and an open field.26 The 3486
LoC and transmission data points were fed into the SVDD clus-
tering algorithm. The TG-142 limit for leaf position repeatabil-
ity of 1 mm was applied to the LoC and evaluated, and MLC
transmission was assessed against a 0.5% allowable variation
from baseline. Figure 6 shows the clustering results for large
[Fig. 6(a)] and small [Fig. 6(b)] RBF widths r = 2 and 0.3
with corresponding hyperradii R = 0.35 and 1.12, respectively.
Moreover, Fig. 6(b) identified an outlier clusters (Clusters #2)
along the LoC axis (i.e., principal component #1). Both the
TG-142 and the SVDD estimates in this coincided with an out-
liers’ rate of 0.34%. The calculation times here increased poly-
nomially (i.e., on average 14.4 � 0.15 s for r = 2 and
174.8 � 0.62 s for r = 0.3).

4. DISCUSSION

We have presented a machine learning approach for visu-
alization of QA data in higher dimensions and potentially for

FIG. 4. Gantry sag analysis using support vector data description clustering. The principal components 1 and 2 correspond to the 0° and 180° angles, respec-
tively. (a) Using a large Gaussian kernel width (r = 0.5), it is noted that the cluster exceeds the bounds of the task group (TG)-142 recommendation (1 mm box)
in the input data space. (b) Using a small Gaussian kernel width (r = 0.25), it is noted the presence of two clusters of measurements, with the smaller cluster rep-
resenting the “true” outliers per the shape of data which is anisotropic in comparison to the TG-142 recommendation. [Color figure can be viewed at wileyonline
library.com]
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providing a mean for defining tolerance limits based on inher-
ent data characteristics and detecting outliers. The approach
was based on Support Vector Data Description (SVDD) with
a clustering algorithm for analysis of QA data. As seen in the
results, this method allows for visualization of higher dimen-
sional QA test data and interpretation of non-isotropic bound-
ary limits. The presented results were primarily qualitative,
and the clusters are dependent on the selection of the RBF
kernel width (sphere radii). Effects of the different QA tests

on identifying failures could also be analyzed in this
approach in a similar fashion to factor loading analysis,
where the effect of including/excluding a test/parameter could
be visualized in terms of separating annotated cases.

In this work, we have focused on applying SVDD as a
visualization tool, to learn about the nature of the QA data,
but it can subsequently be used as an effective outlier
detector as presented in the results. For instance, when a
deviation in gantry sag is detected, this can be reported to

FIG. 5. Radiation field shift analysis using support vector data description clustering with principal components 1 and 2 corresponding to the lateral angles (90°,
270°) angles, respectively. (a) Using a large Gaussian kernel width (r = 0.5), the cluster encloses all measurements with the red circles showing the support vec-
tors (boundary points). (b) Using a small Gaussian kernel width (r = 0.25), the presence of two distinct classes of measurements is noted primarily related to
variations in the second principal component (270° measurements). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Multileaf collimator shift analysis using support vector data description clustering, the principal components 1 and 2 correspond to LoC and transmission
respectively with the dashed rectangle representing task group-142 limits. (a) Using a large Gaussian kernel width (r = 2), it is noted that the cluster encloses all
measurements, with the red circles showing the support vectors (boundary points). (b) Using a small Gaussian kernel width (r = 0.3), it is noted the presence of
two regions (clusters) in the data in the LoC direction. [Color figure can be viewed at wileyonlinelibrary.com]
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physics/engineering for maintenance and a decision made
about the needed timing of maintenance and the clinical
impact.32 In such a case, the SVDD can be considered as
having a one-class representation of normal Linac opera-
tions and the rest would be considered as outliers. In our
case, we have heuristically determined the RBF width, as
the largest one that would result in the number of clus-
ters ≥ 2. We showed that a large width will result in one-
cluster and the that there is a width that would yield ≥ 2, if
outliers exist. To apply a more autonomous approach, one
would consider assembling a training data with known nor-
mal operations with or without known errors (i.e., failing
data). In such a task, a grid search is applied with cross-
validation resampling to avoid overfitting in order to iden-
tify the hypersphere radius that would minimize the classi-
fication error in a similar fashion as supervised SVM
training.33,34 Moreover, the current application suggests
batch processing of measurements. However, a strength of
SVDD is that it can be also used as an online detector by
applying incremental learning techniques,35,36 which would
allow for efficient training and real-time monitoring in a
similar fashion to control charts.37

The importance of using measurements to evaluate leaf
position reproducibility, such as with an EPID, rather than
log files alone has previously been demonstrated by Agnew
et al.38 A number of investigators have demonstrated the
importance of the accuracy of MLC leaves on dosimetric
accuracy of IMRT including when tolerances are considered.
Others have noted that pretreatment IMRT QA methods may
be inadequate at identifying different types of delivery errors,
especially when a gamma value is used that incorporates both
distance and dose criteria.39,40 The machine learning methods
applied here for an evaluation of periodic QA permit a multi-
dimensional evaluation of the results. The methods can also
be used to identify dependencies of different QA results.

The current methodology shows promise in identifying
the most sensitive QA parameters and quantifying the detec-
tion of outliers in a data-driven approach. In this context,
SVDD can be used for visualization and failure monitoring.
The RBF width and/or the hypersphere radius can be related
to machine tolerances providing an anisotropic description of
normal operations vs anomalies and a mean for estimating
their likelihood of occurrence and detection, which can be
subsequently used to rank the necessary frequency of QA
tests. However, there are also limitations for using RBF ker-
nels with sphere mapping, which performed adequately for
the presented cases. However, other kernels/geometries or
algorithms may be more appropriate in other instances.
Moreover, in this work we simplified the representation of
TG-142 by a bounding box, and the results are not intended
to show preference but to provide a reference for comparison
only, as supervised training with annotated data may be
required to evaluate and establish definitive limits as dis-
cussed earlier. In addition, before applying principles such as
those in TG 100, further data collection and analysis is
required that incorporates a longer time component and
includes other events such as machine breakdowns and

preventive maintenance on the linear accelerators. If dealing
with large datasets for AQA applications becomes an issue in
this context, faster training algorithms of SVDD are available
and can be utilized.41,42 There is a richness to such datasets
because the same type of detector is used for all measure-
ments. Since it is unlikely that a single institution can collect
sufficient data over a few years, pooling data across institu-
tions25 may be required to create datasets of the size required
to harness the power of machine learning. The application of
machine learning extends beyond the traditional analysis of
QA results, which focuses on whether or not a test limit was
met or exceeded.

5. CONCLUSIONS

Machine learning methods based on SVDD clustering can
be used as a promising tool for developing automated QA
methods analysis and providing insights into the effective-
ness, reliability, and reproducibility of such tests. Such meth-
ods offer an enhancement to the information that is typically
available in an individual clinic and it is an area where collab-
oration and multi-institutional data can be valuable to estab-
lish a more efficient data-driven approach rather than an
opinion-driven QA program in radiotherapy.
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