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Abstract 9 

Purpose: Developing automated methods to identify task-driven quality assurance (QA) 10 

procedures is key towards increasing safety, efficacy, and efficiency. We investigate the use of 11 

machine learning (ML) methods for possible visualization, automation and targeting of QA, and 12 

assess its performance using multi-institutional data.  13 

Methods: To enable automated analysis of QA data given its higher dimensional nature, we used 14 

nonlinear kernel mapping with Support Vector Data Description (SVDD) driven approaches. 15 

Instead of using labeled data as in typical Support Vector Machine (SVM) applications, which 16 

requires exhaustive annotation, we applied a clustering extension of SVDD, which identifies the 17 

minimal enclosing hypersphere in the feature space defined by a kernel function separating 18 

normal operations from possible failures (i.e., outliers).  In our case, QA test data are mapped by 19 

a Gaussian kernel to a higher dimensional feature space and then the minimal enclosing sphere 20 

was identified. This sphere, when mapped back to the input data space along the principal 21 

components, can separate the data into several components, each enclosing a separate cluster of 22 

QA points that could be used to evaluate tolerance boundaries and test reliability. We evaluated 23 

this approach for gantry sag, radiation field shift, and MLC (multileaf collimator) offset data 24 

acquired using electronic portal imaging devices (EPID), as representative examples.  25 

Results: Data from 8 LINACS and 7 institutions (n=119) were collected.  A standardized EPID 26 

image of a phantom with fiducials provided deviation estimates between the radiation field and 27 

phantom center at 4 cardinal gantry angles. Deviation measurements in the horizontal direction 28 

(0°, 180°) were used to determine the gantry sag and deviations in the vertical direction (90°, 29 

270°) were used to determine the field shift. These measurements were fed into the SVDD 30 
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clustering algorithm with varying hypersphere radii (Gaussian widths). For gantry sag analysis, 31 

two clusters were identified one of which contained 2.5% of the outliers and also exceeded the 32 

1mm tolerance set by TG-142. In the case of field shifts, SVM clustering identified two distinct 33 

classes of measurements primarily driven by variations in the second principal component at 34 

270°. Results from MLC analysis identified one outlier cluster (0.34%) along Leaf offset 35 

Constancy (LoC) axis that coincided with TG-142 limits.  36 

Conclusion:  Machine learning methods based on SVDD clustering are promising for 37 

developing automated QA tools and providing insights into their reliability and reproducibility.  38 

 39 

Keywords: Machine learning, quality assurance, SVM, Linacs, higher dimension visualization. 40 

 41 

 42 

 43 

I. Introduction 44 

 45 

Cancer patients’ safety and their treatment outcomes, despite rigorous regulations, may be 46 

compromised by rare but deadly errors that can occur during complex treatment planning and 47 

delivery of radiotherapy as highlighted by several editorials in national and international media 48 

reports in recent years [1]. Traditionally, quality assurance (QA) in radiotherapy follows the 49 

guidelines of national and international bodies such as the American Association of Physicists in 50 

Medicine (AAPM), American Society for Radiation Oncology (ASTRO), American College of 51 

Radiology (ACR), European Society for Radiotherapy and Oncology (ESTRO), and the 52 

International Atomic Energy Agency (IAEA). For instance, the AAPM and its widely used task 53 

group (TG) report TG-40 [2] has provided a comprehensive QA program for institutional 54 

radiation oncology practice.  This report accounts for potential risks during the planning and 55 

delivery of high energy irradiation, harmonizing the treatment of patients and accommodating 56 

new advances in technology. TG-142 updated the requirements for advances in linear accelerator 57 

delivery technology[3].  A risk assessment and consensus evaluation of the critical requirements 58 

is presented in AAPM Medical Physics Practice Guideline 8a on linear accelerator QA [4].  59 

Moreover, QA is a necessary process for credentialing institutions for multi-institutional 60 

radiotherapy clinical trials such as the ones carried out by the NRG Oncology consortium and 61 
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AAPM report TG113 [5-8]. While these QA guidelines have focused on monitoring all 62 

functional aspects of radiotherapy equipment, recent efforts have been geared towards 63 

identifying failures in workflow and processes.  For instance, AAPM TG-100 has taken a risk-64 

based approach using failure mode and effect analysis (FMEA) for designing QA protocols and 65 

prioritizing effort [9]. However, whether it is the traditional TG-40/142 or the new TG-100 66 

guidelines, both approaches, as useful as they are, remain unfortunately subjective and are 67 

opinion-driven rather being data-driven; consequently, physicists are still left without an 68 

evidence-based answer to tailor a large number of laborious QA procedures to the associated 69 

failure risk. In the era of big data this limitation can be remedied [10,11].  70 

 71 

Radiotherapy provides a fertile environment to harness the power of big data analytics, 72 

particularly in areas related to QA and safety [11-13]. Targeting of laborious QA tasks as needed 73 

has been recognized as a key component towards safer, more accurate and efficient radiotherapy 74 

administration [14]. However, traditional statistical methods cannot handle the challenges posed 75 

by radiotherapy big data, particularly the large class imbalance in navigating a great number of 76 

variables with a small sample size of relevant clinical data. This is further taken to the extreme in 77 

the case of QA, where the event rate is not only small but rare [15], due to improvements in 78 

software and hardware functionality and the tremendous efforts performed by the medical 79 

physicist.  This issue constitutes a serious data analytics challenge.     80 

 81 

Machine learning methods represent the computational vehicle for complex data analytics due to 82 

their ability to capture nonlinear and hidden patterns in the data, handle data imbalance, visualize 83 

higher dimensional space, and generalize to out-of-sample data [16]. Several studies have 84 

utilized different machine learning techniques for QA applications.  These applications included 85 

automated error checkers of treatment plans using unsupervised learning such as k-means 86 

clustering [17] or supervised learning by neural networks [18], Bayesian networks [19], support 87 

vector machines (SVM) [20,21],  and Poisson regression [22,23]. In addition, ML was applied to 88 

linear accelerator (Linac) machine QA such as supervised learning by neural networks of Linac 89 

beam symmetry [24] and multi‐leaf collimator positional errors by random forest and Cubist 90 

methods [25].   91 

 92 
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In this work, we recognize that Linac machine QA processes in particular, are typically 93 

comprised of laborious tasks that are done based on prescriptive guidelines to monitor machines 94 

and equipment performance irrespective of the expected probability of failure risk. Methods 95 

based on process control charts have been proposed to assist in longitudinal monitoring of 96 

equipment function and separating random from systematic errors by defining action thresholds 97 

[14]. However, QA tests consist of multidimensional measures that exhibit complex and 98 

potentially nonlinear behavior among them. Thus, we hypothesize that the ability to visualize 99 

these tests in a higher dimensional space would allow for better identification of tolerance 100 

boundaries and assessment of the ability of these tests to detect failure risks. When applied to 101 

QA, it can potentially lead to a prioritized and targeted QA approach.  Given the complex nature 102 

of radiotherapy QA processes and their redundancies, we will present an unsupervised machine 103 

learning tool to facilitate clustering and visualization of radiotherapy multidimensional test 104 

results.  We highlight a method for estimating the tolerance boundaries and performance 105 

reliability of the tests by using the nontraditional Support Vector Data Description that does not 106 

require explicit training as typically practiced by SVM classification, and we evaluate its 107 

performance using multi-institutional data.   108 

 109 

II. Materials and Methods 110 

 111 

II.A Dataset 112 

The dataset that will be used in this proposal is currently available institutionally and multi-113 

institutionally through a consortium on Automated Quality Assurance (AQA) from 8 114 

participating organizations. The consortium is focused on collecting comprehensive electronic 115 

portal imaging device (EPID) test results (Figure 1) from digital linear accelerators following 116 

TG-142 guidelines [26,27]. A dataset takes about 15 minutes to deliver and is subsequently 117 

submitted to the University of Michigan AQA database for analysis using an automated program 118 

(~1 minute to run) as described by Eckhause et al. [26]. In this study, the EPID images of a 119 

phantom constructed from Lucite and 2-mm diameter steel balls acting as fiducials are used to 120 

determine leaf and collimator positions relative to the fixed fiducials, which are localized in the 121 

image using a Canny edge detection algorithm [26].  The threshold for edge detection was 122 

adjusted until all the steel balls in the phantom were detected in the image. The location of the 123 
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phantom is defined as the location of the central ball bearing. Field edges were identified by 124 

averaging the in-field and out-of-field intensities on the images and the field position was 125 

determined from the location of these edges. Leaf edges were determined according to the leaf 126 

gap size; for large gaps, the peak intensity of the gradient parallel to the leaf was used, whereas 127 

for narrow gaps (e.g., picket fence test) the positions were calculated from the local peak in the 128 

intensity profile [26]. A total of 119 independent EPID measurements of several mechanical tests 129 

of the Linac (i.e., gantry sag, field shifts. leaf positions), taken at 1-4 week intervals by 7 130 

institutions on 8 Varian TrueBeam accelerators, were analyzed.  131 

In order to enable visualization and analysis of the EPID QA data in higher dimensions, we will 132 

investigate the use of nonlinear kernel mapping with Support Vector with Data Description 133 

(SVDD). SVM kernel methods have been proven to produce excellent classification rates by 134 

mapping relevant input features into higher dimensional space and building optimal hyperplanes 135 

to separate low from high risk categories by maximizing the separating margin between the 136 

classes (Figure 2). Successful application of SVM to medical applications has been demonstrated 137 

in many imaging and outcome modeling studies in radiation oncology [16]. However, instead of 138 

using labeled data, which would require exhaustive annotation, we will apply a cluster labeling 139 

extension of SVM using the SVDD algorithm [28,29]. 140 

 141 

II.B Data Description (SVDD) Clustering 142 

The basic idea of SVDD is that input data (x) are mapped by a nonlinear kernel (e.g., Gaussian 143 

kernel) to the higher dimensional feature space, where one would search for the minimal 144 

enclosing hypersphere with a center a and radius R such that: 145                                                             (1a) 146 

subject to: 147                   ,                                           (1b) 148 

where     are slack variables to allow outliers in the dataset with a regularization parameter C and 149      is a nonlinear mapping function (Figure 2). Using a Lagrange multiplier approach, the 150 

following conditions can be attained: 151                                                         (2a) 152                                                    (2b) 153                       ,                                  (2c) 154 
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where           are Lagrange multipliers. Data points with      are only needed to 155 

describe the mapping and are called support vectors (SVs), with points with      labelled as 156 

bounded SVs (BSVs). The solution can be obtained, as in other SVM approaches, using 157 

Quadratic Programing (QP) optimization techniques with a numerical complexity that depends 158 

on the underlying solver, which is generically between O(n2) and O(n3), where n is the number of 159 

training samples. Hence, the resulting hypersphere is given by: 160                                                  (3a) 161                                              .    (3b) 162 

For any      , where Ns is the number of SVs and        is a kernel mapping representing the 163 

inner product:                       Typical kernel mapping is represented by Gaussian or 164 

radial basis functions (RBF): 165                           ,     (4) 166 

where   is the width of the RBF kernel. The hypersphere, when mapped back to the input data 167 

space, can separate the data into several components, each enclosing a separate related collection 168 

of points (a cluster of QA tests) labelled following efficient graph-based [29] or dynamical 169 

system equilibrium [30,31] algorithms for preserving the topological mapping characteristics as 170 

seen in Figure 3. The labeling approach we will be using is based on decomposing the data into 171 

several disjoint groups, where each group is represented by a stable equilibrium point (SEP) to 172 

which its members are assigned the same cluster label. An SEP represents the state when the 173 

clustering system reaches equilibrium, i.e., the eigenvalues of the Jacobian corresponding to Eq. 174 

(3b) are positive yielding a stable and topologically invariant solution [30].  175 

 176 

II.C SVDD Clustering Application to QA 177 

There are two parameters that control the behavior of the SVDD algorithm, namely: (1) the 178 

regularization parameter (C), which defines the soft margin boundaries and controls the number 179 

of SVs and (2) the width of the RBF (), which controls the number of clusters in the input 180 

space. These parameters and the resulting sphere radius (R) can be used to identify the accepted 181 

confidence levels in the QA test suite, analogous to control limits in control charts but providing 182 

the important advantage of visualization in higher dimensional space. In this case, C helps 183 

identify numerical outliers (failures) and controls possible overlap between the QA testing 184 
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clusters while  controls the scale at which the data points are being probed (tolerance limits). 185 

Since the focus here is on visualization in higher dimensions, we fixed C=1 throughout the 186 

experiments while  was varied between two categories: large width in which all points fit into a 187 

single cluster (k=1) and small width in which there are multiple clusters (k) ≥ 2.  With this C = 1 188 

setup, it also prevents BSVs (i.e., Equation 2c boundary condition). Moreover, the reported small 189 

width here corresponds to the largest possible experimental  with k ≥ 2.  For visualization in a 190 

2D input space, dimensionality reduction by projection into principal component analysis (PCA) 191 

is used when the dimensions are greater than 2. The software tools used are based on extensions 192 

of MATLAB (Mathworks, Natick, MA, USA) for pattern recognition of data description [32] 193 

and efficient SVM cluster labeling [31]. The experiments were conducted on a 64-bit Windows 7 194 

machine running an Intel Xeon-E5 processor with clock speed of 3.7 GHz and 32 GB of 195 

memory. 196 

 197 

III. Results 198 

 199 

III.A Gantry sag analysis by SVDD clustering  200 

The gantry sags are primarily the result of gravitational torque. It is quantified as the difference 201 

in the field center with respect to the phantom center (central ball bearing on the EPID image), 202 

when the gantry is rotated from 0◦ to 180◦ using IEC standards [33]. Visualizing the EPID image 203 

as a matrix, the differences are estimated in the in-plane and cross-plane directions of the image 204 

and fed into the SVDD clustering algorithm. In Figure 4, we demonstrate the application of the 205 

proposed SVDD clustering algorithm to EPID-based measurements of gantry sag. Figure 4a 206 

(=0.5) shows a single cluster, while Figure 4b (=0.25) reveals two clusters, with “Cluster#2” 207 

here being the outliers’ data considering the TG-142 recommended limits of gantry sag of 1 mm. 208 

Using Equation 3b, the RBF mapping with large and small widths () corresponds to hyperradii 209 

(R) of 1.35 and 2.69, respectively. The calculations were performed in less than a second (i.e., on 210 

average 0.42±0.05s for =0.5 and 0.43±0.07s for =0.25). Interestingly, the members of this 211 

outlier cluster corresponded to different machines from different institutions. In this case, the 212 

percentage of outliers (Cluster#2) represents 2.5% while the TG-142 isotropic box is higher at 213 

8.4%. Note that the PCAs here correspond to the 0◦ to 180◦ sag measurements, respectively, and 214 

demonstrate greater variation in the second principal component that corresponds to 180o.  215 
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 216 

 217 

III.B Radiation field shift analysis by SVDD clustering  218 

The shift in the radiation field is measured in the vertical direction and is defined as the 219 

difference between the radiation field positions with respect to the phantom averaged at gantry 220 

angles of 90◦ and 270◦ in the in-plane and cross-plane directions of the EPID image. In Figure 5, 221 

we demonstrate the application of the proposed SVDD clustering algorithm to EPID-based 222 

measurements of radiation field shift with Figure 5a showing a single cluster compared to Figure 223 

5b revealing four clusters. The hyperradii corresponding to large and small RBF widths were R = 224 

1.98 and 4.85, respectively. Three of the four clusters (Clusters #2-#4) were primarily inside the 225 

TG-142 recommended limits for radiation field shift of 1 mm. The outlier cases are estimated to 226 

be 2.5% while SVDD cluster analysis identified more outliers (2.5%) compared to the TG-142 227 

limits (1.7%). Note that the PCAs here correspond to the 90◦ to 270◦ shift measurements, 228 

respectively. Again, the calculations were performed in less than a second (i.e., on average 229 

0.45±0.1s for =0.5 and 0.42±0.06s for =0.25). 230 

 231 

III.C MLC analysis by SVDD clustering  232 

The multileaf collimator data included measurements for the Varian Millennium and high 233 

definition (HD) MLCs [26,27]. The Millennium MLCs consist of 120 leaves with the inner 40 234 

leaves having widths of 0.5 cm and the outer leaves having widths of 1 cm. The HD MLCs 235 

consist of the inner 32 leaves having widths of 0.25 cm and the outer leaves having widths of 0.5 236 

cm. Measurements of Leaf offset Constancy (LoC) and transmission were available for each leaf, 237 

for a total of 3486 points with the majority (83.5%) being from HD MLCs. The transmission 238 

measurements were adjusted from baseline on a per leaf basis following TG-142. Previous work 239 

by AQA consortium members demonstrated that the EPID-measured LoC is a comprehensive 240 

and efficient way to determine if the dosimetric leaf gap (DLG) is consistent with baseline[27]. 241 

The procedure for the EPID measurements were adapted from the LoSasso scheme for 242 

measuring DLG by using five fields: three sliding gap fields, a transmission field, and an open 243 

field [27].  The 3486 LoC and transmission data points were fed into the SVDD clustering 244 

algorithm. The TG-142 limit for leaf position repeatability of 1 mm was applied to the LoC and 245 

evaluated, and MLC transmission was assessed against a 0.5% allowable variation from baseline. 246 
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Figure 6 shows the clustering results for large (Figure 6a) and small (Figure 6b) RBF widths  = 247 

2 and 0.3 with corresponding hyperradii R = 0.35 and 1.12, respectively. Moreover, Figure 6b 248 

identified an outlier clusters (Clusters #2) along the LoC axis (i.e., principal component #1). 249 

Both the TG-142 and the SVDD estimates in this coincided with an outliers’ rate of 0.34%. The 250 

calculation times here increased polynomially (i.e., on average 14.4±0.15s for =2 and 251 

174.8±0.62s for =0.3).  252 

 253 

 254 

 255 

IV. Discussion 256 

We have presented a machine learning approach for visualization of QA data in higher 257 

dimensions and potentially for providing a mean for defining tolerance limits based on inherent 258 

data characteristics and detecting outliers. The approach was based on Support Vector Data 259 

Description (SVDD) with a clustering algorithm for analysis of QA data. As seen in the results, 260 

this method allows for visualization of higher dimensional QA test data and interpretation of 261 

non-isotropic boundary limits. The presented results were primarily qualitative, and the clusters 262 

are dependent on the selection of the RBF kernel width (sphere radii). Effects of the different QA 263 

tests on identifying failures could also be analyzed in this approach in a similar fashion to factor 264 

loading analysis, where the effect of including/excluding a test/parameter could be visualized in 265 

terms of separating annotated cases.    266 

 267 

In this work, we have focused on applying SVDD as a visualization tool, to learn about the 268 

nature of the QA data, but it can subsequently be used as an effective outlier detector as 269 

presented in the results. For instance, when a deviation in gantry sag is detected, this can be 270 

reported to physics/engineering for maintenance and a decision made about the needed timing of 271 

maintenance and the clinical impact. [34].      In such a case the SVDD can be considered as 272 

having a one-class representation of normal Linac operations and the rest would be considered as 273 

outliers.  In our case, we have heuristically determined the RBF width, as the largest one that 274 

would result in the number of clusters ≥ 2. We showed that a large width will result in one-275 

cluster and the that there is a width that would yield ≥ 2, if outliers exist. To apply a more 276 

autonomous approach, one would consider assembling a training data with known normal 277 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

10 

operations with or without known errors (i.e., failing data) . In such a task, a grid search is 278 

applied with cross-validation resampling to avoid overfitting in order to identify the hypersphere 279 

radius that would minimize the classification error in a similar fashion as supervised SVM 280 

training [35,36].  Moreover, the current application suggests batch processing of measurements. 281 

However, a strength of SVDD is that it can be also used as an online detector by applying 282 

incremental learning techniques [37,38], which would allow for efficient training and real-time 283 

monitoring in a similar fashion to control charts [39].  284 

 285 

The importance of using measurements to evaluate leaf position reproducibility, such as with an 286 

EPID, rather than log files alone has previously been demonstrated by Agnew et al.  [40]. A 287 

number of investigators have demonstrated the importance of the accuracy of MLC leaves on 288 

dosimetric accuracy of IMRT including when tolerances are considered.  Others have noted that 289 

pre-treatment IMRT QA methods may be inadequate at identifying different types of delivery 290 

errors, especially when a gamma value is used that incorporates both distance and dose criteria 291 

[41,42]. The machine learning methods applied here for an evaluation of periodic QA permit a 292 

multi-dimensional evaluation of the results. The methods can also be used to identify 293 

dependencies of different QA results.   294 

 295 

The current methodology shows promise in identifying the most sensitive QA parameters and 296 

quantifying the detection of outliers in a data-driven approach. In this context, SVDD can be 297 

used for visualization and failure monitoring. The RBF width and/or the hypersphere radius can 298 

be related to machine tolerances providing an anisotropic description of normal operations versus 299 

anomalies and a mean for estimating their likelihood of occurrence and detection, which can be 300 

subsequently used to rank the necessary frequency of QA tests.  However, there are also 301 

limitations for using RBF kernels with sphere mapping, which performed adequately for the 302 

presented cases. However, other kernels/geometries or algorithms may be more appropriate in 303 

other instances. Moreover, in this work we simplified the representation of TG-142 by a 304 

bounding box, and the results are not intended to show preference but to provide a reference for 305 

comparison only, as supervised training with annotated data may be required to evaluate and 306 

establish definitive limits as discussed earlier. In addition, before applying principles such as 307 

those in TG 100, further data collection and analysis is required that incorporates a longer time 308 
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component and includes other events such as machine breakdowns and preventive maintenance 309 

on the linear accelerators. If dealing with large datasets for AQA applications becomes an issue 310 

in this context, faster training algorithms of SVDD are available and can be utilized [43,44]. 311 

There is a richness to such datasets because the same type of detector is used for all 312 

measurements. Since it is unlikely that a single institution can collect sufficient data over a few 313 

years, pooling data across institutions [26] may be required to create datasets of the size required 314 

to harness the power of machine learning. The application of machine learning extends beyond 315 

the traditional analysis of QA results, which focuses on whether or not a test limit was met or 316 

exceeded.   317 

 318 

V. Conclusions 319 

Machine learning methods based on SVDD clustering can be used as a promising tool for 320 

developing automated QA methods analysis and providing insights into the effectiveness, 321 

reliability, and reproducibility of such tests.  Such methods offer an enhancement to the 322 

information that is typically available in an individual clinic and it is an area where collaboration 323 

and multi-institutional data can be valuable to establish a more efficient data-driven approach 324 

rather than an opinion-driven QA program in radiotherapy.  325 

 326 
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 439 

FIGURE LEGENDS 440 

 441 

Figure 1. (a) The QA phantom containing small spherical fiducials. The two pieces of plastic 442 

(upper left and lower right) create contrast for measuring image quality. (b) An EPID image of 443 

the QA phantom. The locations of the fiducials (marked with circles) are determined with 444 

automated analysis software (Reproduced from [26] with permission). 445 

 446 

Figure 2. Kernel-based mapping from a lower dimensional space (X) to a higher dimensional 447 

space (Z) called the feature (Hilbert) space, where non-separable classes become linearly 448 

separable. In case of SVM, this mapping can be achieved using polynomials or radial basis 449 

functions to create higher order features from the input data. Samples on the borders constitute 450 

support vectors and they are represented by the most difficult cases to diagnose (Reproduced 451 

from [16]). 452 

 453 

Figure 3. The main principle of the SVDD approach is that by first mapping input data from 454 

potentially different characteristics (e.g., normal Linac operation versus outliers) into a higher 455 

dimension and identifying the enclosing sphere (left), then re-mapping the sphere back into the 456 

data space, the data points can be divided efficiently into their corresponding clusters (right) 457 

[29]. 458 

 459 
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Figure 4. Gantry sag analysis using SVDD clustering.  The principal components 1 and 2 460 

correspond to the 0° and 180° angles, respectively. (a) Using a large Gaussian kernel width 461 

(=0.5), it is noted that the cluster exceeds the bounds of the TG-142 recommendation (1 mm 462 

box) in the input data space. (b) Using a small Gaussian kernel width (=0.25), it is noted the 463 

presence of two clusters of measurements, with the smaller cluster representing the “true” 464 

outliers per the shape of data which is anisotropic in comparison to the TG-142 recommendation. 465 

 466 

Figure 5. Radiation field shift analysis using SVDD clustering with principal components 1 and 467 

2 corresponding to the lateral angles (90°, 270°) angles, respectively. (a) Using a large Gaussian 468 

kernel width (=0.5), the cluster encloses all measurements with the red circles showing the 469 

support vectors (boundary points). (b) Using a small Gaussian kernel width (=0.25), the 470 

presence of two distinct classes of measurements is noted primarily related to variations in the 471 

second principal component (270° measurements).   472 

 473 

Figure 6. MLC shift analysis using SVDD clustering, the principal components 1 and 2 474 

correspond to LoC and transmission respectively with the dashed rectangle representing TG-142 475 

limits. (a) Using a large Gaussian kernel width (=2), it is noted that the cluster encloses all 476 

measurements, with the red circles showing the support vectors (boundary points). (b) Using a 477 

small Gaussian kernel width (=0.3), it is noted the presence of 2 regions (clusters) in the data in 478 

the LoC direction.   479 
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