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Abstract
Objectives: Bioarchaeological investigations of sex-based differences in the prevalence of den-

tal pathological lesions, particularly caries, have drawn considerable attention, and out of this

work, two dominant models have emerged. Traditionally, the first model interprets sex-related

patterns in caries as a product of gendered differences in diet. A more recent model interprets a

generally higher propensity for caries prevalence in females in light of reproductive ecology. To

test the hypothesis that females have higher risk of caries in accordance with reproductive ecol-

ogy, we examined and analyzed caries prevalence and other potentially synergistic oral patho-

logical lesions in a late medieval (A.D. 1300–1500) Italian archaeological sample.

Materials and methods: We examined sex- and age-related prevalence in caries and other oral

pathological lesions in a late medieval Italian skeletal assemblage excavated from Villamagna con-

sisting of 38 females and 37 males (n = 1,534 teeth). We examined age- and sex-related patterns

in six dental traits: antemortem tooth loss, caries, calculus, periapical inflammation, tooth wear, and

periodontitis.

Results: Significant age-related increases in antemortem tooth loss, caries, calculus, and tooth

wear were observed in both males and females. However, there was a lack of expected sex dif-

ferences in oral pathological lesions, with instead older males exhibiting significantly more ante-

mortem tooth loss and corrected caries than females.

Discussion: Results are discussed in relation to the ethnohistoric context of medieval rural die-

tary practices as well as biomedical salivary literature, which suggest that dietary changes

throughout the life course may have facilitated trade-offs that buffered females from higher

rates of dental pathological lesions.
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1 | INTRODUCTION

The analysis of oral pathological lesions has a long history in bio-

archaeology, ranging from studies of dietary reconstruction (Powell,

1985; Temple, 2007; Turner, 1979), subsistence strategies (Cohen &

Armelagos, 1984; Cohen & Cane-Kramer, 2007; Rose, Marks, & Tiezen,

1991; Temple & Larsen, 2007; Walker & Hewlett, 1990), colonial

encounters (Klaus & Tam, 2010; Larsen & Milner, 1994), reproductive

ecology (Lukacs, 1996; Lukacs, 2008; Lukacs, 2017; Lukacs &

Largaespada, 2006), to frailty (DeWitte & Bekvalac, 2010). Because of

their highly mineralized structure, human teeth preserve well in archae-

ological contexts and offer a reliable source of biosocial information on

past communities.

Sex-related difference in prevalence is frequently examined in bio-

archaeological studies of oral health. Differences in oral pathological

lesions between sexes are often interpreted within two models: dietary-

behavioral hypotheses and reproductive ecology hypotheses (Fields,

Herschaft, Martin, & Watson, 2009; Klaus & Tam, 2010; Larsen, 1983;

Lukacs, 1996; Lukacs, 2008; Lukacs, 2017; Lukacs & Largaespada,

2006; Lukacs & Pal, 1993; Temple & Larsen, 2007; Watson, Fields, &
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Martin, 2010). The former model often interprets differences in oral

health between males and females as a result of dietary differences

between sexes. Specifically, a number of bioarchaeological studies have

attributed differences in carious lesions between sexes as a product of

dietary variability, with males having greater access to protein-rich

resources such as meat and marine resources, whereas females proba-

bly relied on terrestrial plant materials and starchy cultigens (Kelley,

Levesque, & Weidle, 1991; Klaus & Tam, 2010; Larsen, 1983; Larsen,

Shavit, & Griffin, 1991; Lukacs, 1996; Lukacs & Pal, 1993; Novak, 2015;

Tayles, Domett, & Nelsen, 2000; Temple & Larsen, 2007; Walker &

Hewlett, 1990). Thus, these sex-based differences in carious frequen-

cies are believed to be due to differential consumption of cariogenic

foods between males and females.

The latter, more recent, model posits that sex differences in caries

frequency are more likely attributable to age- and fertility-related alter-

ations in oral biology as a result of reproductive biology. This model

emphasizes peri-reproductive increases in hormones such as estrogen

and progesterone and their subsequent impact on gingival tissues and

salivary production and quality, which act as buffers to cariogenic bacte-

ria (Burakoff, 2003; Laine, 2002; Silk, Douglass, Douglass, & Silk, 2008;

Steinberg, 2000). Heightened estrogen levels during pregnancy are pos-

ited as a risk factor for caries and gingival damage in that they detrimen-

tally affect saliochemical and saliometric profiles that are crucial in

maintaining oral homeostasis. Bioarchaeological studies that have

observed a significantly higher prevalence of caries in females have

attributed differences to hormone-related changes in female fertility

and salivary hypofunction, suggesting this ultimately places reproduc-

tive age females at risk for increased cariogenic activity or antemortem

tooth loss compared to their male counterparts (Lukacs, 1996; Lukacs,

2008; Lukacs, 2017; Lukacs & Largaespada, 2006; Watson et al., 2010).

Sex differences are often interpreted within the context of biomedical

and animal feeding studies, that demonstrate pregnancy-related

changes to female oral microbial flora and ecology as a result of

increased estrogen levels (Arantes, Santos, Frazao, & Coimbra, 2009;

Fields et al., 2009; Kolenbrander & Palmer, 2004; Marsh, 2004).

However, sex differences in carious lesions are not a universal, as a

number of studies have found that expected sex differences in caries

frequencies are either small or nonexistent (Douglas, 2006; Larsen,

1983, 1998; Šlaus, Bedi�c, Bradi�c, Vodanovi�c, & Brki�c, 2017; Temple &

Larsen, 2007). Analyzing caries frequencies by sex and age in a Lat-

e/Final Jomon skeletal assemblage, Temple (2011) found that although

females exhibited higher caries prevalence compared to their male

counterparts in each age category, the study failed to show significant

increases in caries prevalence and mean number of carious teeth across

female age groups. Temple (2011) also compared caries prevalence

between the high- and low-density sites of Tokai and Sanyo, to further

evaluate potential effects of birth rate and fertility on caries in light of

the reproductive ecology hypothesis. Although results showed a signifi-

cantly increased caries prevalence among high-density Tokai female

molars in the older age category compared to low-density Sanyo female

molars, Temple (2011: 114) ultimately cautions that population decline

in Tokai, paired with lack of other significant female caries prevalence

differences suggests that reproductive factors likely played a minor role

in the manifestation of caries when compared to behavioral and dietary

factors. Such variation in caries prevalence across time and space

underscores the complex etiology of cariogenesis and the synergistic

interplay with dietary variation, oral biochemistry, and hormones.

While not mutually exclusive, these models do preferentially

emphasize different aspects of the biocultural spectrum. Differing

explanations of the complex etiology of cariogenesis have helped to

broaden the bioarchaeological understanding of the ultimate causes of

dental pathological lesions. For instance, the role of saliva and its rela-

tion to caries in bioarchaeological studies was relatively underappreci-

ated until recently (Lukacs, 2017; Lukacs & Largaespada, 2006). Saliva

has been clinically demonstrated to act as an inhibitor to carcinogenesis

due to its ability to: (1) lubricate and cleanse the oral cavity, (2) buffer

against acidogenic bacteria and oral pH through bicarbonates, and

(3) remineralize enamel through calcium phosphates (Amerongen &

Veerman, 2002; de Almeida, Grégio, Machado, de Lima, & Azevedo,

2008; Dowd, 1999; Lenander-Lumikari & Loimaranta, 2000; Vitorino,

Calheiros-Lobo, Duarte, Domingues, & Amado, 2006). Yet despite the

crucial importance of saliva in relation to caries, it is near impossible to

reconstruct saliometric and saliochemical profiles in archaeological skel-

etal remains. Furthermore, emphasis on the role of salivary flows and

chemistry over dietary or behavioral explanations can be problematic if

there has been no systematic examination of sex-based dietary

differences using other sources such as stable isotopic analyses or

ethnohistoric data.

Although the protective role of saliva is relatively well known, the

production of saliva is further complicated by non-hormonal factors.

Three major salivary glands; the parotid, submandibular, and sublingual

glands are responsible for producing nearly 90% of the saliva that

enters the oral cavity (Navazesh & Kumar, 2008), supplemented by

minor salivary glands which are usually located throughout the oral

cavity in the submucosa (Hand, Pathmanathan, & Field, 1999). Saliva is

often classified as either “whole saliva,” which refers to the total saliva

produced from gland secretions, or “glandular saliva” which refers to

saliva originating from specific glands (Sreebny, 2000). Saliva is further

differentiated by alimentary stimulation as resting/unstimulated and

stimulated. Although resting saliva originates predominately from the

submandibular and sublingual glands, stimulation alters the relative

contribution of salivary glands to the parotid gland (Navazesh &

Kumar, 2008; Sreebny, 2000) and additionally results in a three- to

five-fold increase in salivary production and flow (Pedersen, Schubert,

Izutsu, Mersai, & Truelove, 1985). Crucially, stimuli can arise from not

only from exposure to acidity but also mechanically from repeated

chewing and bite force (Navazesh & Kumar, 2008: 37S). This is likely a

product of mechanoreceptors within the periodontal membrane

(Anderson & Hector, 1987; Anderson, Hector, & Linden, 1996;

Hector & Linden, 1987), such that when teeth occlude, the resulting

compression activates periodontal mechanoreceptors which then trig-

ger impulses through the trigeminal nerve to produce saliva (Pedersen

et al., 1985; Scott, Bajaj, & Linden, 1999). Hardness and size of che-

wed substrates as well as bite force are positively correlated with

increased salivary production (Anderson & Hector, 1987; Hector &

Linden, 1987; Rosenhek, MacPherson, & Dawes, 1993). Although it is

not known how dietary differences between individuals may influence

downstream effects on saliochemical production, there does seem to

be evidence that diets requiring repeated and exerted chewing efforts
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result in increased salivary flow and production originating from the

parotid gland. The rheological properties of food (i.e., food texture)

has been shown to correspond with temporalis and masseter muscle

activities (Agrawal, Lucas, Bruce, & Prinz, 1998; Bishop, Plesh, &

McCall, 1990; Gavião, Engelen, & van der Bilt, 2004; Mioche, Bouriol,

Martin, & Noël, 1999) and salivary flow (Mackie & Pangborn, 1990;

Pereira, Gavião, & van der Bilt, 2006). In controlled feeding studies

with rats, liquid diets resulted in reduced salivary production and atro-

phy of the parotid gland, where coarser diets that required more mas-

tication resulted in higher salivary production (Hall & Schneyer, 1964;

Johnson, 1984; Johnson & Sreebny, 1973). The same patterns have

been observed in humans, where firmer foods showed a 40% increase

in saliva of the parotid gland and an overall increase in pH levels in the

mouth (de Muñiz, Maresca, Tumilasci, & Perec, 1983). Experimental

studies with sugar-free gums have also demonstrated increased sali-

vary flow and increases in salivary pH as a result of alimentary and

mechanical stimulation (Bots, Brand, Veerman, van Amerongen, &

Nieuw Amerongen, 2004; Dawes & Kubieniec, 2004; Dawes &

Macpherson, 1992; Polland, Higgins, & Orchardson, 2003; Rosenhek

et al., 1993). Masticatory factors such as bite force, chewing fre-

quency, and muscle activity as well as gustatory and alimentary stimu-

lation thus all seem to contribute to salivary production as well as

salivary pH (Dodds, Hsieh, & Johnson, 1991; Dodds & Johnson, 1993;

Ikebe et al., 2007; Jenkins & Edgar, 1989; Yeh et al., 2000). As such,

consideration of masticatory factors could therefore be potentially

revealing in bioarchaeological analyses with comparisons of tooth

wear and caries.

This research focuses on a number of indicators of oral health in

the medieval Italian skeletal assemblage of Villamagna. Following the

reproductive ecological model of cariogenesis, we test the hypothesis

that females will show a greater prevalence of caries and other dental

pathological lesions. We expect sex differences in dental pathological

lesions to be especially marked in the older age category, based on the

premise that females would be more likely to have had multiple preg-

nancies by this age, and therefore, pregnancy-related elevations in hor-

mones should correspond to increases in carious lesions throughout the

lifecourse. Although we evaluate caries prevalence and other dental

pathological lesions in the context of these predominating models, we

also seek to examine the possible interplay between salivary and dietary

factors, given the aforementioned relationship between mastication,

food texture, and saliva. In doing so, we aim to weigh the relative con-

tributions of diet and possible salivary production as evidence by dental

lesions within the biocultural and ethnohistoric context of agrarian

medieval Italy.

2 | MATERIALS

Villamagna is located in the Sacco Valley of the Lazio region, approxi-

mately 65 km southeast of Rome (Figure 1). It was the site of a large

Imperial estate, initially established in the second century and

frequented by the young Marcus Aurelius before his becoming

emperor (Fentress & Maiuro, 2011). At the site, there was a monas-

tery and peasant village from the late tenth century to the late thir-

teenth century, at which point the settlement was transformed into a

castrum or fortified village lasting until the early fifteenth century

(Fentress, Goodson, & Maiuro, 2016 ). Archaeological excavation of

the site was carried out from 2006 to 2010, revealing a cemetery skel-

etal assemblage in proximity to the medieval monastery and its

church, S. Pietro (Goodson, 2016). With varying demographics of

males (n = 107), females (n = 93), and subadults (n = 204), the ceme-

tery has been interpreted as a representative sample of a rural popula-

tion who had labor ties to the estate, not a monastic cemetery itself

which would probably be characterized by exclusively male burials

(Fentress et al., 2016).

This study examines the well-preserved individuals from the late

medieval period cemetery (c. 1300–1500), in association with the

castrum (n = 382 total individuals; 79 males, 65 females, 61 indetermi-

nate sex, and 177 subadults) (Candilio & Cox, 2016). All juveniles and

adolescents were excluded from this study, due to issues in deciduous

dental preservation. In addition, adult individuals who (1) could not be

assigned an age category, (2) exhibited poorly preserved or damaged

dentition, or (3) showed substantive fragmentation of alveolar struc-

tures were also excluded. Although this restricted our final sample

size, our conservative threshold was implemented to retain individuals

whose observable dentition and oral cavities were relatively complete

and therefore permit the recording of multiple dental pathological

lesions. The resulting subsample analyzed in this study consists

of 75 adult individuals (n =38 females, n = 37 males) representing

n = 1,534 teeth (Table 1).

Dietary subsistence at Villamagna consisted largely of cereal culti-

gens and terrestrial herbivorous fauna. Documentary evidence from the

central medieval period (c. 1000–1300) at Villamagna details records of

produce and agrarian products tied to the monastic lands, such as wheat

(Triticum sp.), barley (Hordeum vulgare), broad beans (Vicia faba), and

chickpeas (Cicer arietinum) (Goodson, 2016); it is reasonable to assume

that similar crops were grown in the late medieval phase.

Zooarchaeological analyses were limited by the degree of preservation

but revealed the presence of terrestrial faunal domesticates typical of

medieval agrarian contexts, such as sheep/goat (Ovis aries/Capra hircus),

pigs (Sus scrofa), cattle (Bos taurus) and horses (Equus sp.) in the central

medieval phase (Holt, 2016). Faunal percentages could reflect changes

to agricultural land practices whereby larger terrestrial livestock such as

cattle could not be readily sustained due to possible limitations placed

on grazing rights of the peasant community. Overall, temporal changes

in fauna accompanied by an increasing reliance on smaller livestock and

poultry and more varied age-at-death pattern in faunal assemblages

suggestive of a “mixed-farming strategy” of the central medieval period,

whereby fauna were raised and consumed within households and not

for larger production purposes (Holt, 2016).

Previous isotopic analyses conducted by Nitsch (2016) at Villamagna

also help to contextualize medieval dietary patterns at the site. Using sta-

ble carbon δ13C and nitrogen δ15N isotopes from rib collagen of 98 late

medieval adults (n = 33 females, n = 45 males) and 85 subadults, Nitsch

(2016) found that Villamagna had relatively lower δ13C and δ15N values

compared to other Italian sites such as the 15th-century Palazzo della

Cancelleria in Rome and 8th- to 13th-century Trino Vercellese from

northern Italy. This study suggested that dietary regimens within rural

Lazio consisted of foodstuffs lower in δ13C and δ15N compared to larger

cities such as Rome (Nitsch, 2016). However, isotopic analyses also
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revealed that individuals from Villamagna did have higher values of δ13C

and δ15N than local fauna such as goats, sheep, cattle, and pigs,

suggesting consumption of these animals or of other proteinatious

sources such as marine resources or manured crops. Overall, temporal

changes in isotopic values were minor, suggesting that the bulk dietary

components of the inland Lazio region remained relatively similar over an

800-year period (Nitsch, 2016).

Significant differences in δ13C and δ15N isotope values were

found between adults and sub-adults (Nitsch, 2016). Increased δ15N

values by a level of 3–4% of the female adult mean were noted in the

first 2 years of life, likely indicating trophic enrichment coinciding with

breastfeeding. These levels returned to the female adult mean δ15N

values by 2–2.5 years of age, ultimately suggesting that weaning likely

took place around 2 years of age (Nitsch, 2016). When comparing

adult stable isotopic values by sex, results showed males to have

slightly higher values for δ15N and δ13C, which was found to be statis-

tically significant. Nitsch (2016) suggests that males may have had

more access to foodstuffs higher in δ13C and δ15N, such as faunal pro-

tein and marine resources, whereas females may have had a heavier

reliance on terrestrial cultigens at Villamagna. Nitsch (2016) suggests

that this could be a result of either: (1) sex-based status differences

and differential access to various proteins, (2) sex-divisions in labor

which required males to find work outside of the home, which could

have granted access to different foodstuffs, or (3) female abstinence

from meat consumption due to fasting and religious observances, like

those analyzed by Bynum (1987). Overall, slight but nonetheless sta-

tistically significant differences in δ13C and δ15N values suggest males

may have had greater access to protein resources such as meat or

manured crops than their female counterparts (Nitsch, 2016).

3 | METHODS

3.1 | Analytical procedures

Age estimation in adults was assessed using multiple indicators includ-

ing degenerative changes on the pubic symphysis (Brooks & Suchey,

1990), auricular surface changes (Lovejoy, Meindl, Pryzbeck, &

Mensforth, 1985), and when possible, morphological changes in the

sternal end of ribs (_lş can et al., 1984; 1985). We used three broad,

conservative age groups (18–29 years, 30–49 years, 50+ years) given

the problematic estimation of precise age categories in older adults

TABLE 1 Sample distribution of the Villamagna skeletal population

Age (years) Females Males Total

18–29 9 10 19

30–49 20 24 44

50+ 9 3 12

Total 38 37 75

FIGURE 1 Location of Villamagna in Lazio [Map: Goodson based upon Ancient World Mapping Center, http://awmc.unc.edu/awmc/applications/

alacarte/]
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(Jackes, 2000). These categories were also chosen for their relation to

important stages in the human life cycle, particularly in relation to

reproduction, as the early age category (18–29 years) should capture

the initiation of reproduction for females, and the latter categories

covering the continuation of reproduction and post-reproductive age,

respectively. Due to the overrepresentation of middle-aged adults and

particularly low representation of older males, the middle and older

age categories were collapsed for both sexes. The collapsing of these

categories should still reveal insights into pregnancy-related changes

with age and improves statistical analyses.

Sex was determined by utilizing standard methods of sex determi-

nation, with particular focus on pelvic (pubic bone) morphological

traits including the ventral arc, sub-pubic angle, sub-pubic concavity,

and the sciatic notch (Ascàdi & Nemeskèri, 1970; Brothwell, 1981;

Buikstra & Ubelaker, 1994). When available, skulls were also analyzed

for sex-related features (Buikstra & Ubelaker, 1994) to increase accu-

racy of sex determination (Mays, 1998). Adult individuals with indeter-

minate sex due to preservation were not utilized in the present study.

A total of six dental traits were analyzed for information regarding

dental lesions: antemortem tooth loss (AMTL), dental caries, tooth wear,

calculus, periodontitis, and periapical lesions. All traits were examined

visually and aided by diffuse lighting. Anterior (incisors and canines) and

posterior dentition (premolars and molars) were analyzed separately,

given the complex crown morphology of posterior dentition, particularly

molars, in harboring cariogenic bacteria (Hillson, 2008).

3.2 | Antemortem tooth loss

Teeth can be lost antemortem either as a result of: (1) advanced cari-

ous penetration of the pulp chamber which can compromise the integ-

rity of gomphoses, (2) advanced tooth wear which can similarly

expose the pulp chamber, (3) intentional ablation or removal, and

(4) trauma (Lukacs, 2007). Continued eruption of teeth can also con-

tribute to AMTL, particularly when the individual is affected by

advanced gingival inflammation or periodontitis (Clarke & Hirsche,

1991; Hildebolt & Molnar, 1991; Varrela, Paunio, Wouters, Tiekso, &

Söder, 1995; Whittaker & Molleson, 1996). In archaeological skeletal

remains, AMTL is characterized by alveolar resorption and remodeling

of alveolar sockets after the loss of a tooth (Figure 2). AMTL was cal-

culated by scoring the number of teeth lost antemortem out of total

possible or observable loci. AMTL was scored in a total of 923 female

loci and 881 male loci.

3.3 | Dental caries

Dental caries is a multifactorial infectious disease whereby the enamel

surfaces of teeth are demineralized as a result of acidogenic bacteria

within dental plaque (García-Godoy & Hicks, 2008). When teeth

erupt, a thin (0.1–1.0 micrometers) pellicle forms on the tooth surface

to aid in lubrication for mastication as well as protection against

demineralization and cariogenesis (Hara et al., 2006). Yet, dental

plaque can adhere to the surface of the pellicle, containing acidogenic

and aciduric bacteria such as Streptococcus and Lactobacillus species

that ferment dietary carbohydrates and sucrose (Loesche, 1986; ten

Cate, 2006). This fermentation produces organic acetic, lactic, formic,

and proprionic acids which create an acidic environment by reducing

the resting biofilm pH significantly, resulting in demineralization of

enamel structures and suppression of other protective non-aciduric

bacteria (García-Godoy & Hicks, 2008). Carious lesions were identified

based on the presence of demineralized enamel surfaces, ranging from

a localized pin prick, to complete destruction of the crown surface

(Figure 2). To evaluate if carious lesions were patterned along any par-

ticular surface, the location of each observable lesion was also

recorded following Buikstra and Ubelaker (1994: 55). Caries were

scored in a total of 808 female teeth and 726 male teeth. We first cal-

culated a traditional frequency of caries presence, whereby the num-

ber of teeth affected by caries are divided by the number of total

teeth observed in that group. However, given the heavy amount of

age-related antemortem tooth loss at Villamagna (Supplement 2), we

additionally used the Caries Correction Factor developed by Lukacs

(1995). This correction estimates the number of teeth lost antemor-

tem as a result of caries which is then added to the number of

observed teeth with caries before dividing by the sum of the total

number of teeth observed with the total number of teeth lost

antemortem:

Traditional caries prevalence =
a
na

Corrected caries prevalence =
a+ bxð Þ
na + bð Þ

where a refers to the number of observed teeth with caries, b refers

to the number of teeth lost antemortem which is multiplied by propor-

tion x. The proportion x is obtained by comparing the number of teeth

scored with carious pulp exposure versus the number of teeth scored

as having non-carious pulp exposure, such as heavy wear. The sum of

these products results in the total estimated number of teeth with car-

ious lesions. This is then divided by the total number of original teeth,

which is achieved by adding the total number of observed teeth (na)

to the total number of teeth lost antemortem (b). The correction fac-

tor ultimately attempts to address the fact that many teeth that were

lost antemortem may have been lost as a result of large carious lesions

(Lukacs, 1995). Traditional estimates of dividing the number of

observed teeth with caries by the number of total teeth thus may

FIGURE 2 Dental caries and antemortem tooth loss observed in the

mandibular dentition of HRU 4307. (Photos courtesy of Sabrina
Agarwal)

TROMBLEY ET AL. 257



severely underrepresent actual frequencies, as a large proportion of

teeth that were affected by caries and lost antemortem are never

seen by the researcher. This issue is particularly compounded in sam-

ples with heavy amounts of AMTL, where observed frequencies can

sometimes double when the correction factor is used (Lukacs, 1992;

Lukacs, 1995). It should be noted that intentional tooth ablation can

complicate the implementation of the caries correction factor, as the

intentional removal of teeth can falsely mimic antemortem tooth loss.

Although Robb (1997) has effectively shown that intentional tooth

ablation in women was practiced in Neolithic Italy (c. 6500–3200 BC),

to our knowledge, there is no known practice of intentional tooth

ablation that persists through the medieval period in this region or evi-

dence of ablation at Villamagna.

3.4 | Tooth wear

Tooth wear is the natural process whereby teeth progressively loose

enamel and dentine as a result of mechanical contact. This contact

can take place either through attrition, where teeth come into direct

occlusal and incisal contact between maxillary and mandibular teeth,

or via abrasion, where tooth surfaces come into contact with fibrous

or coarse material, such as gritty foodstuffs (Kaidonis, 2008; Lucas,

2004). Although there have been anthropological studies on attritional

wear (Kaidonis, Richards, & Townsend, 1993), it is often difficult to

differentially diagnose between attritional wear and abrasion without

the use of advanced microscopy such as a scanning electron micro-

scope (Kaidonis, 2008). As such, bioarchaeologists often examine

wear as a broad mechanical process resulting from both exogenous

dietary influences as well as masticatory behaviors (Larsen, 1998).

Wear can influence the manifestation of carious lesions, as extreme

wear can result in the exposure of the pulpal cavity and thus result in

pulpitis, whereas unworn teeth can harbor cariogenic bacteria in den-

tal surfaces such as grooves and pits. Wear was scored by both ante-

rior (Smith, 1984) and posterior (Scott, 1979) dentition. Molar scores

were averaged by tooth to allow for comparison with anterior denti-

tion (Klaus & Tam, 2010). Individuals who failed to have at least eight

teeth were excluded. This follows the assumption that individuals

who have lost more than half of their teeth likely affects later mastica-

tion patterns (Smith, 1984). Although a higher threshold is more con-

servative and desirable, high rates of AMTL and even postmortem

tooth loss at Villamagna would have resulted in analyses of wear to

a highly restricted subsample. Tooth wear was scored in a total of

25 females representing 617 teeth and 28 males representing

628 teeth. Tooth wear averages were then compared using two-tailed

student’s t-tests at the α = 0.05 level.

3.5 | Periapical lesions

Acute periapical lesions are cavities that form as a result of infection

penetrating the pulp chamber of a tooth that then exits out of the api-

cal foramen. Infection of the pulp chamber can be caused either as a

result of carious lesions penetrating the pulp chamber, non-carious

pulp exposure through significant wear, or trauma (Dias & Tayles,

1997). If severe, infection will become pyogenic, producing a drainage

of pus which leads to substantial inflammation and the formation of a

granuloma or mass of inundated inflammatory cells. This granuloma

then stimulates osteoclastic activity, which begins to resorb surround-

ing bone as the inflammation continues to expand (Dias & Tayles,

1997). The result is an acute periapical lesion characterized by a cavity

of resorbed bone, often on the buccal side of the alveolar bone

(Hillson, 2008; Figure 3). Periapical lesions were recorded if there was

a clear presence of a drainage channel accompanied by a necrotic cav-

ity. Periapical lesions were scored as either present or absent, while

simultaneously noting location and size. Periapical lesions were scored

in a total of 768 female loci and 712 male loci.

3.6 | Calculus

Calculus, or tartar, is formed when salivary calcium-phosphate minerals

naturally precipitate resulting in a partially calcified substrate that

adheres to the surface of the tooth. Although incipient formation of cal-

culus is not entirely understood, oral hygiene and the implementation

of dentifrice technologies appear to severely inhibit further accretion

(Jepsen, Deschner, Braun, Schwarz, & Eberhard, 2011). White (1997),

for example, suggests that supragingival calculus is relatively rare in

populations that practice regular oral hygiene, with calculus usually only

forming near major salivary gland ducts, such as the Stensen, Wharton,

and Rivinus ducts. Conversely, populations that do not use regular den-

tifrice techniques or lack access to systematized oral healthcare profes-

sionals typically exhibit mild to extreme amounts of supragingival

calculus and subgingival calculus, which are often strongly associated

with gingival recession and periodontal disease (Jepsen et al., 2011;

White, 1997). We scored calculus based on the three-stage ordinal

scale by Brothwell (1981) while also noting its location on the tooth sur-

face (Figure 4). In cases where the calculus covered multiple dental sur-

faces, the location was noted as “multiple.” Calculus was scored in a

total of 758 female teeth and 701 male teeth.

3.7 | Periodontitis

Periodontitis, or periodontal disease, is an advanced form of gingivitis

and bacterial infection resulting in degeneration of the gingival margin

(Armitage, 1995; Hernández et al., 2011). Although gingivitis is a

FIGURE 3 Periapical lesion on the buccal aspect of LM1 of HRU

3898. (Photos courtesy of Sabrina Agarwal)
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relatively benign inflammation of the gingiva and affects adults who do

not practice daily hygiene (Albandar & Rams, 2002; Eke et al., 2015),

periodontitis results in a malignant resorption and loss of irreplaceable

bone that supports alveolar sockets for the dentition. Molecular studies

using 16s amplicon ribosomal RNA (16s rRNA) sequences have shown

that the human oral microbiome can consist up some 700 differing taxa

(Aas, Paster, Stokes, Olsen, & Dewhirst, 2005; Choi, Paster, Dewhirst, &

Göbel, 1994; Dewhirst et al., 2010; Griffen et al., 2012; Moore &

Moore, 1994; Socransky, Haffajee, Cugini, Smith, & Kent, 1998), with

over 400 of these taxa being identified in the periodontal pockets alone

(Paster et al., 2001; Paster, Olsen, Aas, & Dewhirst, 2006). Localized

fluctuations of oral microflora at subgingival margins have been shown

to facilitate an increase in fermentable proteins which some microbes

are able to take advantage of more easily (Abusleme et al., 2013). Eco-

logical shifts in subgingival community biomass and structure can thus

send the oral biofilm into a dysbiotic state, where certain pathogenic

communities such as the “red complex” (Porphyromonas gingivalis, Trepo-

nema denticola, and Tannerella forsythia) appear to play an important

synergistic role with other microbes in host-culture immune system per-

turbations (Hajishengallis & Lamont, 2012), ultimately resulting in exces-

sive inflammation, weakening of periodontal ligaments, and alveolar

resorption.

In skeletal samples, periodontitis is often recognized by marked

porosity and exposed trabecular bone at the alveolar margin due to the

resorption of the overlying alveolar bone (Clarke & Hirsche, 1991; Kerr,

1988; Larsen, 1997). This can especially be seen in the recession of the

alveolar crest relative to the cemento-enamel junction (Larsen, 1997),

which has led some researchers to adopt a metric means to score peri-

odontitis, whereby the distance between the alveolar crest and

cemento-enamel junction is measured and often scored as periodontal

if greater than 2 mm (DeWitte & Bekvalac, 2010). However, the contin-

ued eruption of teeth throughout life (Varrela et al., 1995; Whittaker &

Molleson, 1996), particularly in response to heavy tooth wear to main-

tain level occlusal surfaces (Clarke & Hirsche, 1991; Craddock &

Youngson, 2004; Hildebolt & Molnar, 1991) suggest that the use of a

2 mm threshold may over estimate periodontal prevalence in skeletal

samples. More detailed, ordinal severity scales have been proposed to

account for these processes that mimic periodontal resorption (Costa,

1982; Kerr, 1988, 1991), although they often require relatively com-

plete alveolar margins and are time consuming. For this study, we

scored periodontal disease according to porosity or excessive (more

than 2 mm) distance between the CEJ-AC (Clarke & Hirsche, 1991;

Figure 4). Scores were then collapsed by individual to reflect a presence

or absence of periodontitis. Overall periodontitis prevalence was calcu-

lated by dividing the observed number of individuals with periodontal

disease by the total number of individuals. Periodontitis was scored in a

total of 36 female individuals and 37 male individuals.

3.8 | Fertility

Recently, Lukacs (2008, 2012, 2017) has argued that fertility plays an

important role in the reproductive ecology model given that increased

rates of fertility indicate a hormonal environment that would further

increase female risk of caries and associated oral pathologies. To

account for this possibility, we used fertility ratios for the late medieval

period to explore possible temporal changes at Villamagna. Estimates of

fertility were calculated using the D30+/D5+ ratio (Buikstra & Ubelaker,

1994) whereby the number of individuals over thirty years of age are

divided by the number of individuals over five years of age. This ratio is

negatively associated with birth rate, which can provide a proxy for fer-

tility. To assess diachronic changes in fertility at Villamagna between

the central and late medieval period, we used 95% comparison intervals

as outlined by Buikstra and Ubelaker (1994):

95%CI =D30+ =D5+ �m0:05 k*∞

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:125
D5+

s

where m corresponds to the value of a Studentized maximum modulus

at the α = 0.05 level, k* as the (N(N − 1))/2 for N samples, with infinite

(∞) degrees of freedom. These intervals are comparison rather than

confidence intervals as they allow for comparisons between means

without estimating parameters for true population means or propor-

tions (see Buikstra & Ubelaker, 1994: 534 for further discussion). Com-

parison intervals that fail to overlap are considered significant.

3.9 | Statistical analyses

Statistical analyses were carried out using primarily two-tailed G tests

(also known as G2 or log-likelihood ratio test) with an α = 0.05 (see

Klaus & Tam, 2010: 598 for an excellent review). This test measures

goodness-of-fit by taking the log of the ratio of observed to expected

counts. The equation for obtaining a G-statistic simplifies to G = 2P
[O × ln(O/E)], where O refers to the observed number of counts,

E refers to the expected number of counts, and ln refers to taking the

natural log. Although the G-statistic is fit to a Chi-squared distribution

(χ2), the G-statistic differs from χ2 by directly dividing observed

counts by expected counts, which avoids overestimating statistical

differences in smaller samples when observed counts are much larger

than expected counts. In the event that expected counts were too

small (<5), a Fisher’s Exact test with an α = 0.05 was used instead.

Finally, to further explore sex-related risk for periodontitis, relative

risk cRR� �
ratios were used using the following equation:

FIGURE 4 Calculus observed on the buccal aspects of the mandibular

dentition of HRU 2890. Probable periodontitis as a result of
interseptal inflammation and resorption of the alveolar margin.
(Photos courtesy of Sabrina Agarwal)
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Relative risk cRR� �
=

P disease or outcomeð jexposureÞ
P disease or outcomeð jnoexposureÞ

The cRR estimates the risk of health event (outcome, in this case

oral pathologies) within a group (exposure, in this case Females) com-

pared to another (no exposure, Males). When the cRR is equal to 1.0,

the risk is identical between groups, where a cRR < 1.0 indicates

decreased risk in exposed group, and a cRR > 1 indicates increased risk

for a health outcome in the exposed group relative to the not exposed

group. The relative risk ratio is similar to an odds ratio (OR), except

that ORs compares the odds of an event occurring compared to a

non-occurrence (a/b), whereas relative risk examines the probability

of an event occurring by comparing the outcome of interest by all

possible outcomes (a/(a+b)). Odds ratios approximate risk when the

value of an outcome is rare or unlikely, such that a/b ≈ a/(a+b). When

an event outcome is not rare (>10%), such that a is not small in rela-

tion to b, the odds ratio can exaggerate the relationship between

exposure and outcome (Ranganathan, Aggarwal, & Pramesh, 2015).

Because relative risk ratios are not normally distributed, 95% confi-

dence intervals were obtained by taking the log (ln) of the cRR before

calculating an estimated standard error (z) and then transforming the

resulting interval with an antilog (exp) function:

ln cRR� �
� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1−x1ð Þ=x1

n1
+

n2−x2ð Þ=x2
n2

s

where z corresponds to the z-value for a 95% confidence interval

(1.96), n refers to the sample group of study, and x refers to the

observed individuals with a given oral pathological lesion. If the confi-

dence interval covers 1.0, the differences between exposed and not

exposed groups are considered not statistically significant.

4 | RESULTS

4.1 | Antemortem tooth loss

Both males and females showed a marked antemortem loss of poste-

rior dentition compared to anterior dentition (Supplement 1). When

AMTL was analyzed by tooth category, females only showed a higher

crude prevalence of loss in incisors when compared to males, although

the difference was not statistically significant (Table 2). Males showed

a higher loss of canines, premolars, and molars when compared to

females, although the difference was significant only when AMTL was

pooled for all teeth. Both males and females showed significantly

higher rates of AMTL in the older age category (30+ years) compared

to the younger one (18–29 years; Supplement 2). Older males and

males when pooled by age exhibited significantly more AMTL than

older females and females when pooled by age (Table 3).

4.2 | Caries

Caries frequencies within sexes showed that both males and females

had significantly more posterior dental caries than anterior caries

(Supplement 1). Males exhibited a significantly higher prevalence of

posterior caries when compared to females (Table 4). When caries

were compared by sex in terms of dental surface location, only root

caries were found to be significantly different between the sexes (G =

4.27, p = 0.03), with males (10.69%) exhibiting more than their female

counterparts (4.05%). When caries were analyzed by age and sex,

both corrected and uncorrected estimates showed that caries were

more prevalent in the older age category (30+ years) for both sexes

(Supplement 2). Yet, although uncorrected caries showed no signifi-

cant sex difference for either age group, the older male category and

pooled male dentition showed a significantly higher prevalence of car-

ies compared to older females and pooled female dentition when

using corrected estimates (Table 3).

4.3 | Tooth wear

Both females and males exhibited significantly increased tooth wear

with age in both anterior and posterior dentition (Supplement 3).

When sexes were compared, males displayed significantly higher

wear averages in younger age, where females only showed signifi-

cantly higher wear estimates in older age in the posterior dentition

(Table 5).

4.4 | Calculus

Calculus patterning throughout the oral cavity showed overall higher

prevalence in anterior dentition for both sexes, although this was only

significant for males (Supplement 1). Calculus was more prevalent in

the older age category for both sexes (Supplement 2). When anterior

and posterior dentition was pooled and compared by sex and age,

males exhibited higher prevalence of calculus than females, although

the difference was not significant (Table 3).

TABLE 2 Sex comparison of antemortem tooth loss (AMTL) by loci

Tooth type
Female N
observed/total

Female crude
prevalence (% AMTL)

Male N
observed/total

Male crude
prevalence (% AMTL) G p-value Interpretation

Incisors 22/211 10.43 13/195 6.67 1.685 0.194 No difference

Canines 3/114 2.63 7/110 6.36 – 0.209** No difference

Premolars 21/240 8.75 32/229 13.97 2.844 0.092 No difference

Molars 89/358 24.86 113/347 32.56 3.659 0.056 No difference

Total 135/923 14.63 165/881 18.73 4.565 0.033* Significantly more AMTL in males

*Significant at the ɑ = 0.05 level.
**p-value resulting from a Fisher’s Exact test (ɑ = 0.05) due to expected counts being less than 5.
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4.5 | Periapical lesions

Both males and females showed higher prevalence of periapical

lesions in the older age category, although the differences were not

significant (Supplement 2). When sexes were compared, females

showed an overall higher prevalence of periapical lesions than males,

although the difference was not significant (Table 3).

4.6 | Periodontitis

Relative risk ratios demonstrated that males were at an increased risk

for periodontitis than females for both age groups and overall,

although differences were not significant (Table 6)

4.7 | Fertility

D30+/D5+ fertility estimates suggest a slight increase in fertility from

the central medieval (0.372) to the late medieval period (0.342),

although this difference is not significant (Table 7). The relevance of

the fertility estimates calculated here are discussed below.

5 | DISCUSSION

5.1 | Diet, reproductive ecology, and oral health at
Villamagna

Significant age-related changes in AMTL, caries, tooth wear, and cal-

culus were found in both sexes. Due to the fact that cariogenesis is an

age-progressive process, it follows that older individuals will have

higher prevalence of caries due to increased exposure to aciduric and

acidogenic oral bacteria (Hillson, 2000, 2001). Significant AMTL (males

= 25.17%; females = 18.39%) and caries (males = 33.18%; females =

26.34%) observed in the posterior dentition for both sexes is similarly

not surprising, given the complex crown morphology of posterior

teeth, larger occlusal surfaces, and grooves that harbor cariogenic bac-

teria (Hillson, 2008). Higher levels of calculus in older males (73.88%)

and females (69.26%) may similarly suggest elevated levels of age-

related microbial oral flora forming dental plaque as a result of

increased carbohydrate consumption (Hillson, 2008). Higher averages

of wear in older age for both sexes are similarly not surprising given

the age-progressive process of mastication (Lovejoy, 1985; Powell,

1985; Scott, 1979; Smith, 1984). However, sex differences in wear

TABLE 4 Sex-comparison of anterior and posterior caries

Location
Female N
observed/total

Crude female
prevalence (% affected)

Males N
observed/total

Crude male
prevalence (% affected) G p- value Interpretation

Anterior 15/303 4.95 17/298 5.70 0.16 0.689 No difference

Posterior 133/505 26.34 142/428 33.18 3.664 0.056* More posterior caries in males

*Significant at the ɑ = 0.05 level.

TABLE 3 Sex and age comparisons of dental pathological lesions

Analysis Age category

Female N
observed/
total

Female
crude
prevalence

Male N
observed/
total

Male
crude
prevalence G p-value Interpretation

AMTLa 18–29 years 6/245 2.45 7/223 3.14 0.202 0.653 No difference

30+ years 129/678 19.03 158/658 24.01 3.915 0.048* Significantly more AMTL in males

Total 135/923 14.63 165/881 18.73 4.369 0.037* Significantly more AMTL in males

Cariesb 18–29 years uncorrected 27/241 11.20 28/217 12.90 0.027 0.601 No difference

30+ years uncorrected 121/576 21.34 131/509 25.74 2.209 0.137 No difference

Total uncorrected 148/808 18.32 159/726 21.90 2.452 0.117 No difference

18–29 years corrected 32/247 12.96 34/224 14.18 0.413 0.520 No difference

30+ years corrected 233/696 33.48 275/674 40.65 4.957 0.026* Significantly more caries in older
males

Total corrected 265/943 28.10 309/898 34.41 5.873 0.015* Significantly more caries in males

Calculusc 18–29 years 112/218 51.38 113/213 53.05 0.058 0.809 No difference

30+ years 374/540 69.26 331/488 73.88 0.077 0.782 No difference

Total 486/758 64.12 444/701 63.34 0.035 0.853 No difference

Periapical
lesionsd

18–29 years 4/241 1.66 5/219 2.28 – 0.742** No difference

30+ years 21/527 3.98 11/493 2.23 2.55 0.110 No difference

Total 25/768 3.26 16/712 2.25 1.37 0.243 No difference

AMTL = antemortem tooth loss.
aNumber of discernable teeth lost antemortem/number of observable loci.
bNumber of observed and/or estimated carious lesions/total number of teeth observed. See text for details on calculating corrected vs. uncorrected prevalence.
cNumber of observed teeth with calculus/total number of teeth observed.
dNumber of discernable loci with periapical lesions/total number of observable loci.
*Significant at the ɑ = 0.05 level.
**p-value resulting from a Fisher’s Exact test (ɑ = 0.05) due to expected counts being less than 5.
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are worth considering. Significantly higher averages of wear in youn-

ger males throughout the oral cavity (anterior = 5.65; posterior = 3.6)

may suggest increased dietary reliance on coarse cultigens in younger

age as compared to females (anterior = 4.89; posterior = 2.98). In older

age, females exhibit more posterior wear averages (5.65) than males

(5.03), although this could be a function of older males having

increased posterior AMTL, leaving females with higher wear averages

in posterior dentition.

Another possibility is that wear differences may reflect gendered

and age-related dietary changes throughout the life course, with

females having increased reliance on coarse starchy cultigens in later

life. This would support previous isotopic evidence showing females

having lower δ15N and δ13C values than males, overall indicating a

higher reliance on carbohydrate resources such as starchy cultigens in

females compared to males (Nitsch, 2016). Although this likely suggests

increased access to dietary protein sources such as terrestrial faunal

and marine resources in younger males, higher wear averages in youn-

ger age males throughout the oral cavity could also suggest increased

reliance on manured crops, which would explain higher δ15N values as

well as higher wear averages compared to females. The process of

manuring on cereals has been shown experimentally to impact δ15N

levels extracted from human bone collagen, resulting in trophic enrich-

ment of δ15N and suggesting that communities which rely heavily on

manured cereal grains may exhibit higher δ15N values that could be mis-

takenly be interpreted as a result of animal consumption (Bogaard,

Heaton, Poulton, & Merbach, 2007; Fraser et al., 2011). Manuring, as

well as marling—fertilizing with a mixture of clays, calcium, and lime

carbonates—were both techniques commonly used throughout medie-

val agrarian settings, particularly in relation to demesne lands (Jones,

2004; Mathew, 1993). Although marl could potentially influence wear

patterns via coarse inclusions within dietary produce, it is unlikely that it

would be readily incorporated into the diet given that food

processing likely removed fertilized soil and marl before cooking,

although future research is needed to confirm this. Thus, young

males in particular may have had a more varied plant-animal diet by

incorporating manured crops, although further analyses using isoto-

pic analyses throughout the life course by sampling throughout

different skeletal elements as well as further archaeobotanical evi-

dence are required to confirm this.

The overall lack of statistically significant differences between

males and females for AMTL and caries was surprising. In both bio-

archaeological (Cucina & Tiesler, 2003; Nelson, Lukacs, & Yule, 1999;

Oyamada et al., 2007; Watson et al., 2010) and clinical studies

(Al-Shammery, El-Backly, & Guile, 1998; Corraini et al., 2009; López &

Baelum, 2006; Shigli, Hebbal, & Angadi, 2009), higher rates of AMTL

have consistently been observed in females than males. Some clinical

research suggests that AMTL is more likely a result of carious pulp

exposure in females (Meisel et al., 2008; Shigli et al., 2009), where

AMTL in males is more likely a result of periodontal disease (Anand &

Kuriakose, 2009; Wasterlain, Cunha, & Hillson, 2011). Females at

Villamagna did show a higher prevalence of caries that penetrated the

pulp chamber (20.27%) than males (16.98%), although the difference

was not significant. Nevertheless, this paired with the results that males

exhibited higher prevalence of periodontal disease (cRR= 0.88), may sup-

port these biomedical observances.

Corrected and uncorrected estimations of caries frequencies

only showed intra-sex differences in caries prevalence by older age

and in lesion location throughout the oral cavity, but no significant

differences between sexes. In both uncorrected (males = 25.74%;

females = 21.34%) and corrected (males = 40.65%; females =

33.48%) estimates, males exhibited higher caries prevalence than

females, but only reached significance in corrected older males and

when ages were pooled (Table 3). A wealth of clinical studies exam-

ining sex differences in caries prevalence in children have found girls

and boys to have no difference in caries experience (Birkeland,

Ibrahim, Ghandour, & Haugejorden, 2005; Campus, Lumbau, Lai,

Solinas, & Castiglia, 2001; Perinetti, Caputi, & Varvara, 2005;

Sgan-Cohen, Katz, Horev, Dinte, & Eldad, 2000; Suni, Helenius, &

Alanen, 1998; Younes & El-Angbawi, 1982) or boys having higher

prevalence than girls (Freeman, Maizels, Wyllie, & Sheiham, 1993;

Leroy, Bogaerts, Lesaffre, & Declerck, 2005; Sales-Peres & Bastos,

2002). These studies interpret caries experienced in light of socio-

TABLE 5 Sex-related tooth wear by age

Age (years)
Female anterior
tooth wear average

Male anterior
tooth wear average t p-value

Female posterior
tooth wear average

Male posterior
tooth wear average t p-value

18–29 4.89 5.65 −3.24 0.001* 2.98 3.6 −2.701 0.007*

30+ 5.65 7.19 −1.47 0.144 5.65 5.03 3.312 0.001*

Total 6.20 6.75 −2.98 0.003* 4.79 4.52 1.611 0.108

*Significant at the ɑ = 0.05 level.

TABLE 6 Relative risk (RR) ratios comparison of periodontitis by sex

and age

Age (years)
Female
present/absent

Male
present/absent RRa 95% CIb

18–29 6/3 9/1 0.80 0.50–1.28

30+ 24/3 27/0 0.91 0.81–1.01

Total 30/6 36/1 0.88 0.76–1.01

aRR ratio results. Greater prevalence in females if RR ≥ 1.01; greater prev-
alence in males if RR ≤ 0.99.
b95% confidence intervals (CI) for each RR ratio. First number reported is
the lower interval, where second number reported is upper bound interval.
Note that when the confidence interval covers 1.0, there is no significant
difference.

TABLE 7 Fertility estimates by phase for Villamagna

Phase Dates D30+/D5+ Lower 95% CI Upper 95% CI

Central 10th to 13th c. 0.37 0.28 0.47

Late 13th to 14th c. 0.34 0.29 0.39

CI = confidence interval.
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economic factors such as diet, access to oral healthcare, oral

hygiene procedures, and dental behaviors. These studies are not

incompatible with the reproductive ecology model, yet the observa-

tion that females at Villamagna did not overtake male caries

prevalence in the older age group is surprising given the overrepre-

sentation of older (50+ years) females in this age category. Overrep-

resentation of older females compared to males would suggest

increased risk for caries as a result of parity-related exposure to ele-

vated hormone levels that have deleterious effects on salivary

chemistry and flow.

This is further complicated by the fertility estimates at Villamagna.

Although not significant, fertility estimated from D30+/D5+ ratios dem-

onstrated a slight increase in fertility by the late medieval period (cen-

tral = 0.37, late = 0.34). This supports previous paleodemographic

work on Villamagna conducted by Candilio and Cox (2016). Using p-

ratios alongside a large meta-analysis of central medieval Italian ceme-

teries (Barbiera & Dalla Zuanna 2009), Candilio and Cox found that

both central and late medieval Villamagna fell within the upper limits

of Italian comparisons, indicating high mortality, low life expectancy,

and likely high fertility for central and late medieval Villamagna

(Candilio & Cox, 2016). Under the reproductive ecology model, such

high estimates would imply higher estimations of caries prevalence in

females, which was not observed. Although it would be ideal to calcu-

late D1-10/D1-5 ratios to determine whether temporal changes in birth

rate were accompanied by weaning related deaths, under-representa-

tion of infant remains in the Central Medieval period (n = 7) prevented

such analyses. Overall estimates for both Central and Late Medieval

periods were relatively high, and given the possibility of increased fer-

tility during this time period, we would expect to see a starker differ-

ence between male and female caries prevalence.

The relationship between tooth wear and caries at Villamagna is

worth considering further. Although excessive wear can lead to perfo-

ration of the pulp chamber and resulting caries or periapical lesions,

teeth with little to no wear are often more susceptible to surface car-

ies due to the preservation of grooves and pits on enamel surfaces

which can harbor cariogenic bacteria (Hillson, 2008; Klaus & Tam,

2010). At Villamagna, the higher rate of wear observed in older female

posterior dentition probably explains the increased pulpal perforations

and periapical lesions in females despite differences not being signifi-

cant. However, a higher average rate of wear throughout younger

male oral cavities, paired with lack of dental trauma and higher rates

of older male AMTL and male periodontitis, likely all could point to

males having a heavier reliance on coarse and textured foodstuffs in

early life that resulted in heavily abraded wear, pulpal perforation, and

AMTL in later life. Such dietary influences in early life may suggest the

patterning of dental caries observed in later life, with minimal sex dif-

ferences or with males even having increased caries prevalence when

compared to females in corrected estimates.

Results demonstrating a higher prevalence of root caries among

males (males = 10.69%; females = 4.05%) is also worth considering

further. A study by Watson and colleagues (Watson et al., 2010)

examining bioarchaeological remains from Early Agricultural period

(1600 B.C. to A.D. 200) Mexico showed females having a higher prev-

alence of root caries when compared to their male counterparts.

Drawing in part on clinical literature, the authors suggest that the

higher prevalence of sub-cervical caries in females was likely a result

of increased resorption of the alveolar margin which exposed the

roots to cariogenic activity (Watson et al., 2010). However, a bio-

archaeological study conducted on skeletal remains from Lagoa Santa,

southern Brazil found contrary results, with males exhibiting more

root caries than females, although the difference was not significant

(DaGloria & Larsen, 2014). Cervical and sub-cervical caries are highly

linked to the recession of alveolar margins and periodontal disease

(Hillson, 2008; Otani et al., 2009), and given that males exhibited

slightly more periodontal disease at Villamagna (Table 6), it follows

that they would exhibit more cervical caries than females.

Under the reproductive ecology model, the earlier eruption of teeth

in females may help to explain their higher prevalence of caries. In short,

the female dentition is exposed to oral flora earlier and longer than

males, thus exposing their teeth to higher risk of cariogenesis (DePaola,

Soparker, Tavares, Allukian, & Peterson, 1982). The higher prevalence

of male caries in the younger age group we observed in both corrected

(males = 14.18%, females = 12.96%) and uncorrected (males = 12.90%,

females = 11.20%) estimates challenges this idea and suggests that

exposure time is not a strong predictor of carious lesion patterning

(Moorrees, 1957). Another potential factor put forth by the reproduc-

tive ecology model is that salivary chemistry is altered significantly in

episodes of fasting, which ultimately exposes females to higher risk of

caries (Lukacs, 2012). In a clinical study by Johansson, Ericson, and

Steen (1984), the effect of fasting on women was found to produce

reduced salivary flow and increased plaque formation. Although the

study controlled for diet over an 8-day period, the statistical power of

the study is relatively low given the final sample of only eight women

able to complete the full fasting period. Nevertheless, results from this

study suggest that in the context of Villamagna, given the significantly

lower values of δ15N and δ13C in females (Nitsch, 2016), which might

be associated with fasting, we would expect females to show a higher

prevalence of caries than were observed under the reproductive eco-

logical model. In the later middle ages, in relation to new ideas about

religious communities and individual devotion, a number of women in

Italy and elsewhere undertook extreme fasting (Bell, 1987; Bynum,

1987). In the 13th to 16th centuries, women seem to have concen-

trated greater attention than men to food and abstinence from food

(whether all food or different kinds of food, such as meat) within their

religious practice (Bynum, 1985; Newman 1995).

The most parsimonious explanation under the reproductive ecology

model posits that pregnancy-related hormone changes in salivary pro-

duction and quality ultimately result in higher caries prevalence amongst

females (Lukacs, 2017; Lukacs & Largaespada, 2006). However, clinical

salivary literature illustrates the complicated role that saliva plays in rela-

tion to oral pathologies. Age-related changes to salivary production

have been observed in both males and females, suggesting lower resting

saliometric profiles in the elderly for both sexes, although with females

having lower salivary flow rates than males (Navazesh, Mulligan, Kipnis,

Denny, & Denny, 1992; Pedersen et al., 1985; Percival, Challacombe, &

Marsh, 1994; Sreebny, 2000). However, inconsistencies in methodolo-

gies and the impact of medicinal side effects in the elderly prevent sim-

ple assessments of how ageing affects salivary production (Dodds,

Johnson, & Yeh, 2005; Navazesh & Kumar, 2008; Sreebny, 2000). For

instance, saliometric profiles vary substantially with stimulation. Resting

TROMBLEY ET AL. 263



(i.e., unstimulated) salivary flows are comprised of 70% input from the

submandibular/sublingual glands, 15–20% from the parotid gland, and

5–8% from minor salivary glands (Sreebny, 2000). Stimulation alters

where salivary production originates, with upwards of 40–50% from

the parotid and sub-mandibular and sub-lingual glands (Sreebny, 2000).

Rigorous studies not only measure stimulated and unstimulated salivary

flows but also measure glandular saliva (Navazesh & Kumar, 2008). In a

large (n = 1,130) cohort study of non-medicated individuals, Dodds

et al. (2005) collected saliva using these measurements alongside the

compositional analysis of saliochemical profiles for each individual. The

authors found that salivary production and flow declined with age in all

secretions except for unstimulated parotid flow, with females exhibiting

lower flow rates than males (Dodds et al., 2005). In an experimental

study examining salivary flow rates between premenopausal, perimeno-

pausal, and postmenopausal women, results showed that only subman-

dibular salivary production was significantly different between pre- and

postmenopausal women (Streckfus et al., 1998). Overall reduction in

sub-mandibular salivary secretion could have impacts on caries manifes-

tations, as sub-mandibular glands are responsible for producing organic

glycoproteins in the form of mucins, which are important in preventing

demineralization and plaque formation (Amerongen, Oderkerk, &

Driessen, 1987; Baughan, Robertello, Sarrett, Denny, & Denny, 2000;

Slomiany, Murty, Piotrowski, & Slomiany, 1996; Tabak, Levine,

Mandel, & Ellison, 1982; Vissink, Spijkervet, & Van Nieuw Amerongen,

1996). Pregnancy has also been shown to result in a decrease in salivary

calcium and phosphate which aid in remineralizing enamel (Laine, 2002).

Overall, the role of saliva in the manifestation of oral pathologies is a

crucial one and should not be overlooked.

Another factor that has not been fully addressed in bio-

archaeological analyses is the aforementioned interplay between sali-

vary secretion and mastication. Previous research has shown that

masticatory performance decreases with tooth loss, particularly in

post-canine teeth (Akeel, Nilner, & Nilner, 1992; Hatch, Shinkai,

Sakai, Rugh, & Paunovich, 2000; Julien, Buschang, Throckmorton, &

Dechow, 1996; Van der Bilt, Oltohoff, Bosman, & Oosterhaven,

1994). Given that males exhibited significantly more posterior AMTL

than females (males = 25.17%; females = 18.39%; p = 0.001), and

more overall AMTL in both the older age category (males = 24.01%,

females = 19.03%; p = 0.048) and when pooled by age (males =

18.73%, females = 14.63%; p = 0.037), this could suggest that older

males may have had reduced masticatory performance as a result of

tooth loss. This reduction in bite force and total occlusal area would

likely result in reduced masticatory-parotid salivary reflex, which can

cascade into reduced salivary flow and quality and increased risk of

cariogenesis. Furthermore, females at Villamagna were observed to

have higher wear averages in older age, and lower δ15N and δ13C

values compared to males, although males exhibited more corrected

caries in older age and when pooled. Taken together, older female reli-

ance on plant-based foodstuffs with firm consistency could have

resulted in more wear, but been adaptive in that the mechanical

demands of mastication for such cultigens could have resulted in sali-

vary hyperfunction and thus buffering from caries (Dodds & Johnson,

1993; Ikebe et al., 2007; Navazesh & Kumar, 2008; Yeh et al., 2000).

Future research in needed to explore this possible relationship further,

possibly by analyzing dental microwear as well as marking masticatory

entheseal changes in relation to carious lesions.

Recent clinical research on the relationship between early child-

hood malnutrition and oral pathologies in adult permanent dentition

suggests additional factors which may have affected the medieval

population at Villamagna (Deeley et al., 2008; Patir et al., 2008; Psoter

et al., 2008b; Psoter, Gebrian, Prophete, Reid, & Katz, 2008a; Psoter,

Reid, & Katz, 2005; Reyes-Perez et al., 2014; Russell, Psoter, Jean-

Charles, Prophte, & Gebrian, 2010). A number of recent studies sug-

gest that stress, particularly early childhood protein-energy malnutri-

tion (ECPEM) during growth and development, can have severe

consequences on both primary (Alvarez et al., 1988; Alvarez, Eguren,

Caceda, & Navia, 1990; Cleaton-Jones et al., 2000; Infante & Gillespie,

1976, 1977; Kanchanakamol et al., 1996; Li, Navia, & Bian, 1996;

Sweeney & Guzman, 1966; Sweeney, Saffir, & De Leon, 1971) and

permanent dentition, including eruption (Psoter et al., 2008a), peri-

odontal disease (Russell et al., 2010), caries (Psoter et al., 2005;

Reyes-Perez et al., 2014), and salivary gland hypofunction (Psoter

et al., 2008b). A number of epidemiological studies have found associ-

ations between enamel hypoplasias (Infante & Gillespie, 1976, 1977;

Kanchanakamol et al., 1996; Li et al., 1996; Pascoe & Seow, 1994;

Sweeney et al., 1971; Sweeney & Guzman, 1966), and wasting and

stunting (Alvarez, 1995; Alvarez et al., 1988, 1990; Cleaton-Jones

et al., 2000; Li et al., 1996) with caries incidence in primary and per-

manent teeth (Alvarez, 1995; Psoter et al., 2005), suggesting the

importance of growth and development in caries incidence through-

out the life course. Although bioarchaeologists have been keen to

examine oral pathologies in relation to age-at-death and frailty

(DeWitte & Bekvalac, 2010), the inverse link between early childhood

stress and the manifestation of oral pathologies in later life has not

been fully explored in bioarchaeological studies and provides a poten-

tially exciting avenue for further research.

In summary, given that we see: (1) significantly higher prevalence

of AMTL and caries in older males; (2) previous isotopic evidence

suggesting males had higher access to more protein-rich resources

where females showed significantly lower δ15N and δ13C values,

suggesting an increased reliance on starchy cultigens; and (3) overrep-

resentation of 50+ year old females in comparison to males, we would

expect to discover starker sex differences in the patterning of female

oral pathological lesions under the reproductive ecology model. We

suggest that our results are better explained by the dietary model.

Although the dietary model is more compelling in this context, we also

find that the observed results at Villamagna may best be explained by

a synthesis of dietary and salivary factors. For example, given the fact

that females at Villamagna likely consumed higher quantities of

starchy foods compared to males, we would expect higher caries prev-

alence in females from the perspective of the dietary model. We sug-

gest that salivary factors relating to food texture and alimentary

stimulation, as well as food preparation techniques may act as buffers

to cariogenesis and overall caries prevalence, even in the consumption

of cariogenic foods (Ikebe et al., 2007; Yeh et al., 2000). Observed

patterns of increased male oral pathological lesions likely indicate

trade-offs throughout the life course, whereby age-related changes in

diet might have affected overall oral health in older males. Similarly

for females, changes in diet throughout the life course may have
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affected masticatory patterns and oral ecology that could have para-

doxically buffered against oral pathological lesions in later life.

6 | CONCLUSION

The manifestation of oral pathological lesions and caries in particular

remains a complicated and exciting field of bioarchaeological inquiry.

Tracing proximate and ultimate explanations for oral health require the

employment of multiple methodologies throughout the oral cavity

alongside biocultural context and supplementation of emerging etiolo-

gies in clinical studies. Both reproductive and dietary explanations con-

tribute immensely to the complex etiology of cariogenesis. However,

the opposition of such models should be met with caution, as carious

lesions may best be understood as the complicated intersection of

saliometric and saliochemical profiles, age-related changes in diet,

mechanical factors relating to mastication and salivary reflexes, and

even growth and development. This is further complicated by the fact

that both diet and reproductive ecology are age-related processes that

alter and fluctuate throughout the life course. Future work should also

consider corroboration with biocultural information gleaned from his-

torical documents as well as archaeobotanical and isotopic methodolo-

gies relating to diet, food preparation, and possibly even food texture.
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_lş can, M., Loth, S., & Wright, R. (1984). Age estimation from the rib by
phase analysis: White males. Journal of Forensic Sciences, 29, 1094–
1104.
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