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1 | INTRODUCTION

| Valarie B. Ashby? | Douglas E. Schaubel'-?

Center-specific survival outcomes of kidney transplant recipients are an impor-
tant quality measure, with several challenges. Existing methods based on
restricted mean lifetime tend to focus on short- and medium-term clinical out-
comes and may fail to capture long-term effects associated with quality of
follow-up care. In this report, we propose methods that combine a lognormal
frailty model and piecewise exponential baseline rates to compare the mean
survival time across centers. The proposed methods allow for the consistent
estimation of mean survival time as opposed to restricted mean lifetime and,
within this context, permits more accurate profiling of long-term center-specific
outcomes. Asymptotic properties of the proposed estimators are derived, and
finite-sample properties are examined through simulation. The proposed meth-
ods are then applied to national kidney transplant data. The novelty of the
proposed techniques arises from several angles. We utilize mean survival, in
contrast to the most previous works that considered the restricted mean. Few
previous studies have used the integrated survival function as a basis for center
effects. Few provider profiling methods use a random effects model to estimate
fixed center effects.
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Multicenter studies become very popular in clinical science. Of particular interest is the determination of which cen-
ters have significantly better or significantly worse outcomes. For example, the methods proposed here are motivated by
the need to profile center-specific long-term kidney transplant outcomes in the United States. Kidney transplantation
has a sophisticated and well-established program for center-specific outcomes reporting and quality assurance. The data
from this program are used by transplant centers for quality improvement, by payers and regulators to achieve quality
assurance, and by referring physicians and patients to identify the appropriate center for treatment.

Abbreviations: OPTN, organ procurementand transplantation network; SRTR, scientific registry of transplant recipients
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Conceptually, mean survival time is a meaningful measure by which to evaluate transplant centers. However, in the
presence of censoring, mean survival time may not be well estimated, since the estimated survival function need not
drop to zero. To address this concern, a commonly used alternative measure is the restricted mean lifetime, interpreted
as the expected number of time units survived, out of an upper limit. To incorporate covariates, Karrison' compared the
restricted mean lifetime between two groups using a piecewise exponential model. Zucker? extended Karrison's approach
based on the stratified Cox model, in which the relationship between the groups and the hazard function is left arbi-
trary. To account for imbalances in prognostic factors by treatment status, Chen and Tsiatis® proposed estimators for the
average causal effect (ACE) on restricted mean lifetime. Zhang and Schaubel* extended these methods to accommodate
dependent censoring. Due to the use of the restriction time, the restricted mean lifetime is a useful measure for short-
and medium-term clinical outcomes. However, patients who receive a kidney transplant have substantially longer sur-
vival, with the majority of graft losses and patient death occurring in the long term.” Thus, the resulting measures for
short- and medium-term outcomes may fail to capture the long-term effects that reveal the overall quality of care provided
by the center. In our motivating example, the longest-term outcome available in existing center-specific reports is 3-year
survival.® By ignoring subsequent events, the loss of information may be substantial. Long-term center-specific profiling
may offer an important insight into variations in processes and intensity of care and the optimization of kidney trans-
plantation. Given these concerns, mean lifetime may be a more appropriate measure than restricted mean lifetime in the
context of kidney transplantation.

In this report, we develop novel methods to profile center-specific measures of transplant utility. The remainder of this
paper is organized as follows. The data sources and study population are described in the next section. In Section 3, we
summarize some important issues in the comparison of long-term center-specific outcomes. In Section 4, we describe
our proposed model and a method to estimate center-specific differences in mean survival time. Finite-sample properties
are examined in Section 5 through simulations. The proposed methods are applied to national kidney transplant data in
Section 6. This paper concludes with a discussion in Section 7.

2 | DATASOURCE AND STUDY POPULATION

Data were obtained from the Scientific Registry of Transplant Recipients (SRTR). The SRTR data system includes data
on all donors, waitlisted candidates, and transplant recipients in the United States, submitted by the members of the
Organ Procurement and Transplantation Network. The Health Resources and Services Administration, US Department of
Health and Human Services provides oversight to the activities of the Organ Procurement and Transplantation Network
and SRTR contractors.

Included in the analysis were adult patients (> 18 years of age at transplant) who underwent deceased donor kidney
transplantation between January 1990 and December 2008. Transplant centers with a sample size smaller than 10 were
eliminated from additional analysis. The final sample size wasn = 146 248 fromJ = 282 centers across the United States.
The mean age at transplant was 48, and the mean donor age was 36. The median survival time over the study period was
10.8 years across centers. Graft failure was considered to occur when the transplanted kidney ceased to function. Failure
time was defined as the time from transplantation to graft failure or death, whichever occurred first.

3 | PRELIMINARIES

In this section, we summarize the computation challenges in the analysis of long-term center-specific outcomes for kidney
transplant centers. We then discuss the reasons we chose the specific model.

3.1 | Piecewise exponential baseline rates

One challenge for estimating mean survival time is that it may not be well estimated in the presence of censoring. To
address this concern, we propose a method based on piecewise exponential baseline rates with a lognormal random effect.
The main reason that we select a parametric hazard model instead of the Cox model is that the latter allows for inference
only on the (0, 7] interval, where 7 is the maximum observation time. In other words, in the Cox model, the baseline
hazard function is completely unknown, and estimation and inference on the baseline may not be stable when the risk
set is small. Another advantage of piecewise exponential baseline rates is that we can use the link between mixed models
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and the lognormal random effects model. Holford” and Laird and Olivier® noted that the piecewise exponential model is
equivalent to a Poisson loglinear regression model with a count of either 0 or 1 for each combination of individual and
interval, where the death indicator is the response and the log of exposure time enters as an offset. Such connections lead
to both computational and theoretical simplification. For instance, the existing generalized linear mixed model software,
such as PROC GLIMMIX in SAS, can be applied to estimate the parameters. This is especially important for our motivating
example, since estimating center effects can be a computationally intense task in nationwide studies with large numbers
of patients and centers. Finally, the choice of this parametric baseline hazard function leads to a fully parametric marginal
likelihood, such that we can make use of maximum likelihood techniques to estimate the parameters. In contrast, for Cox
models with lognormal random effects, the asymptotic properties of the penalized partial likelihood approach are not yet
well established.

3.2 | Lognormal random effects

Another important consideration in our study is that the comparison of center-specific outcomes should be based on
risk-adjusted models that account for center-specific heterogeneity with respect to the types of patients treated. In
our motivating example, variations may exist among centers in both baseline risk and effectiveness of follow-up ther-
apy. In other words, just as it is reasonable to think that baseline survival may differ across centers, it is possible that
center-specific covariate effects may also be unequal. Evaluations of such variations are important to determine how a
particular therapy should be administered. This concern can be addressed using a random effects model, in which sub-
jects in a center share some common effects, with center-specific effects treated as a sample from a specific probability
distribution. As pointed out by a Reviewer, it should be noted that the incorporation of random effects does not control
for unmeasured center- or individual-level confounders, but only corrects the variance estimator such that it accounts for
within-center correlations.’

A wide variety of random effects models have been proposed in survival analysis. Among them, the gamma frailty
model’®*? and the lognormal random effects model*** are the most extensively studied approaches. As interactions
between covariate and random effects can be readily implemented within the lognormal random effects model, this
approach is applied in our study.

4 | ESTIMATION

Let T; and C; represent the survival and censoring time, respectively, for the ith patient. Observation times are denoted by
X; = T; AC;, where a Ab = min{a, b}. Correspondingly, we set the observed death indicator to A; = I(T; < C;). LetJbe
the number of centers, with the total number of subjects denoted by n = ijl n;, where n; is the number of subjects in
center j. Each subject is characterized by a time-constant covariate vector, Z;. Correspondingly, let # be the fixed effects
coefficient vector for Z;. Let G; denote the center for subject i, ie, G; = jmeans that subject i belongs to center j. Let a;(¢) be
a time-dependent covariate for attained age, with f, being the fixed effects coefficient for attained age. Let b = (b, b])”
be a vector of random effects, where bg = (bo1, ...,bgy) and blT = (b1, ..., byy) are vectors containing random intercepts
and random slopes, respectively. We assume that by «~ N(0x1, 6pIyx;) and by « N(0yx1, 0115)).

Our proposed estimation procedure involves two stages. In Stage 1, we obtain parameter estimates under the
assumed model. In Stage 2, we then compute subject- and center-specific fitted survival functions. Finally, we estimate
center-specific mean survival time averaging across the marginal covariate distribution using fitted values based on
parameters obtained from Stage 1. Specifics are described in the following subsections.

4.1 | Stage 1: Model and parameter estimation

To approximate the baseline hazard by piecewise constants, we divide the observed time period into K follow-up time
intervals with cut points 0 = ) < t; < --- < tx = oo. Within each of the intervals, the baseline hazard function, A¢(¢),
is assumed to be

A = A, t€Q=[t1,t), k=1, ...,K.
Thus, the baseline hazard is a constant within each interval but is allowed to vary across intervals. As shown by Lawless
and Zhang,'s models using a piecewise constant baseline hazard with suitable intervals often yield accurate estimates for
fixed effects and random effects parameters.
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One advantage of the piecewise exponential model is that it can easily accommodate time-varying covariates provided
that they change values only at interval boundaries. In our study, the only time-varying covariate is attained age. To
accommodate the change in attained age, we further split each of the time intervals Q, into multiple subintervals g,
whereq = 1, ... , kg and ky is the number of subintervals within Q. The values of attained age are then defined as the age
at the left boundary of each subinterval. The boundaries of subintervals are chosen as either the cut points of the original
interval or the time scales corresponding to an integer value of attained age. Note that, in this way, each subinterval gets
its own measure of exposure and its own death indicator, but all subintervals are tagged as belonging to the same interval;
hence, they get the same baseline hazard. This procedure may be best explained by way of an example. For individual i
with age at transplant equal to 18.3 and with 3-year follow-up time, we can split the particular intervals [0, 1) and [1, 3)
hazard functions into subinterval [0,0.7),[0.7,1),[1,1.7),[1.7,2.7),[1.7,2.7), and [2.7, 3), and the corresponding values of
attained age are then recorded as a step function: a;(t) = 18.3,19,19.3, 20, 21, and 21.3 for each subinterval.

The assumed proportional hazard frailty model is formulated as

Aij(8) = Ao(t) exp {Z] B+ bo; + ai()(Ba + by)) } . 1)

where 4;;(f) = A(t|Z;,ai(t),G; = j,b;) denotes the hazard function for subject i conditional on Z;, a;(t),G; = j, and
b; = (boj, b1

The main reason we consider time-dependent age (ie, attained age) instead of time-constant age (ie, age at time 0; in
our setting, age at transplant) is that age is often the most important risk factor for long-term studies, underscoring the
importance of separating the contributions of attained age and follow-up time in analyzing patient outcomes. This is
particularly relevant in long-term follow-up studies where there may be considerable changes in the mortality pattern
with increasing age. For example, in the context of our motivating example, preliminary analysis indicated that the trends
associated with follow-up time diminish considerably as follow-up time increases. In contrast, the effect of attained age
plays a more important role as age increases (details will be provided in Section 6). Since one of the concepts motivating
our work is that trends over time may differ by center, it makes sense to allow for the effect of attained age to differ by
center. We therefore allow attained age, a;(t), to have both fixed and random effects in model (1).

The conditional likelihood is given by

L(1. ... Ag. Biby) oI T T {ditig exp (Z7 B + by + g + b)) }
exp { —Artikg €xp (Z] B + bo; + aig(Pa + b1))) } ,

where ;4 is the total time for subject i in subinterval Q;, and Ay is the event indicator for subject i in subinterval €.
Assuming that the J centers are independent, the conditional likelihood across all centers is given by

J
L(Ay, ..., Ak, B.0) = [ LA, ..., 4k, B, D)),
j=1

Then, the marginal likelihood has the form

J
L(A1, ..., 4k, B, 0) = H/exp{g(/ll, ..oy Ak, B, 0)}db,
j=1

where 6 = (0, 61) and
8(A1, ..., Ak, p,6) =logL(A4, ..., Ak, B,b) +1og f(b;]0),

with f(b;|0) being the bivariate normal density. The objective function for numerical minimization is twice the negative
of the corresponding log-likelihood approximation. For given 0, the estimating equations come from setting the derivative
oflogL(44, ..., Ak, ﬂ,@), with respect to the parameters (44, ... , Ag, f), equal to zero. To simplify the computations, we
use a Laplace approximation to approximate each such integral with a function that has a closed form. Specifically, the
Laplace approximation to the marginal log-likelihood is as follows:

~ 1 ~
{njg(ﬂl, ,/IK,,B, 9) +10g(27[) - E 10g ‘_”jg”(/h, s/lK: ﬁ, 9))} ,

J
J=1

where
()zg(ﬂ, /11, ey AK, 9)

"B, A, ... g, 0) =
g Bk . 6) 000"
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and 0 satisfies the first-order condition, ie,

6g(ﬂ,/11, ,/1[{,9) _
00

07

for given values of f and 4. Compared with other estimation procedures, such as the pseudo-likelihood estimator,
the Laplace estimators have been demonstrated to exhibit better asymptotic behavior and less small-sample bias than
pseudo-likelihood estimators. Further details can be found in the work of Feng et al."”

4.2 | Stage 2: Difference in mean survival time

It is well known that patient characteristics may vary significantly across centers and can have a substantial impact on the
expected center-specific survival outcomes. An accurate estimation of center effects must account for potential covariate
imbalances across centers. To address this concern, we use a technique based on direct standardization.

Direct standardization is a commonly used approach in the comparison of center-specific outcomes.'® One can express
a directly standardized measure as the difference or ratio of expected-to-observed outcomes in the total study popula-
tion; in our case, we use the difference. The first term (which is center specific) represents the expected outcomes if all
patients were treated at the given center; the second term is equal to the total observed outcomes in the study popula-
tion (eg, national average). This is somewhat analogous to the ACE from the causal inference literature. For the ACE,
the study population is evaluated under two conditions: all patients treated versus all patients untreated. In our case,
we contrast “all patients subject to center j practices” versus “all patients subject to national average practices.” Because
the same standard population is applied to all centers, directly standardized measures are not affected by differences in
center-specific covariate distributions and, hence, are directly comparable.

Similarly, to factor out the impact of imbalances in center-specific covariate distributions, we define the center effect
for center j with respect to mean survival time as follows:

6; = E(Ti|G; = j) — E(Ty),

with an estimator for §; given by

6, = E(Ti|G; = j) — E(Ty). ()
The first term in (2), ie,
J n, ©
ET|G=j)=n"Y ) / Sicjwydu,
/=1i=1 0

has the interpretation of mean survival time for the population, under the hypothetical scenario where all subjects
were treated in center j. Here, S;(;(u) corresponds to the hypothetical survival of a randomly chosen individual in our
population if, possibly contrary to fact, this subject is in center j, ie,

K kK,
S’i(j)(u) = exp —ZZik(tikq AN Ll) exp {ZlTﬂ + boj + aikq(ﬁa + blj)}
k=1q=1
In contrast, the second term, ie,
J n, &
ETy=n)Y / Sie(wydu,
£=1i=1 4

is the estimated mean survival time for the population, where Sig(u) is the estimated survival for a subject i in center 7, ie,

K k

Sie(u) = exp _Zij(tikq A U)exp {ZlTﬁ + bos + Qg (P + Blf)}
k=1g=1

=S
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Note that §; is the expected survival if all patients had transplants at center j, minus the expected survival for the
population. With respect to interpretation, 6; > 0 indicates that center j has a greater mean survival than the overall
average. The delta method is used to obtain the variance estimator and confidence intervals. Thus, the proposed methods
can be carried out as an internal evaluation of center-specific long-term mortality (eg, for centers to evaluate themselves
or for a governing body to evaluate this center's mortality, comparing to that expected at the national level).

The variance estimator for §; can be obtained using the delta method. In particular, §; is a function of fixed effects
and random effects, eg, 5 ;= f;(y), where § = A1y s ks ﬁﬁ) Let C/o\v(q”}) be the covariance matrix for . Then, the
variance for ; can be estimated by

Var(é)) = f](@)" Cov@) f;@).

where f J’ (@) is the corresponding vector of derivatives. Similarly, confidence intervals of 5,- can be obtained. Centers
with confidence intervals completely above 0 will be identified as significantly better than the national average, whereas
centers with confidence intervals completely below 0 will be identified as significantly worse than the national average.
The decision rule used in our analysis is consistent with rules frequently used in practice. For each center j, we essentially
test H; : §; = 0 against a two-sided alternative with a 0.05 significance level. The test is based on a limiting N(0,1),
such that rejection of H; is equivalent to the 95% confidence interval not overlapping 0. As such, the decision rule is a
deterministic (binary) function of a z score, for which the variability is appropriately accounted.

Finally, on the basis of the definition of mean survival time, the integral of survival function should go to co. However, in
practice, it is more reasonable to calculate this integral until the patient achieves a certain maximum age. We will provide
more details in Section 6 about how we choose this upper limit for our analysis.

5 | SIMULATION STUDY

The finite-sample properties of the estimators described above were evaluated through a series of simulation studies. We
considered J = 10,J = 25,J = 50, and J = 200 centers. Death times were generated from a piecewise exponential
model. To mimic the motivating example, we divided the whole follow-up period into the following intervals: [0, 1], (1, 2],
(2,31, (3,5], (5,10], and (10, oo]. For the kth interval, the hazard function for subject i in center j was given by formula (1),
where Z; followed a Bernoulli distribution. We set f, = —0.1; a;(t) = ag; + t, where ay; came from a Normal distribution
with constant variance and center-dependent means, and ¢ was the follow-up time. Random effects by; and by; (j =
1, ... ,J) were generated from independent Normal distributions N(0, ) and N(0, 6;), respectively, with , = 0.25 and
61 = 0.005. We varied the sample size for each center asn; = 25, 50, 100. The censoring percentages were approximately
20%. Each data configuration was replicated 500 times.

To fit the model and obtain the parameter estimators in Stage 1, we implemented the Laplace approximation using
the SAS procedure GLIMMIX, with the option METHOD=LAPLACE for the required integral approximation. The mean
survival time in Stage 2 is a numerical integration of scalar functions in one dimension over connected finite intervals.
We programmed this estimation process using the SAS function QUAD. We calculated the mean survival time for each
observation until the age 85 and computed the 95% confidence intervals.

In Table 1, we list the results for the proposed measures. The ASE estimators were sufficiently accurate, and the CP was
generally consistent with the nominal value of 0.95. The results for setting with J = 10 or J = 25 centers are not shown.
In general, for fixed J, as n; increase, the CP increases. On the other hand, for fixed n;, as J increase, the CP also increases.
Overall, the simulation results indicated that the method is performing reasonably well.

Finally, we consider the robustness of the lognormal distribution assumption. Random effects bp; and by ; (j = 1, ... ,J)
were generated from independent gamma(2, 0.2) and gamma(2, 0.01) distributions, respectively. The last part of Table 2
shows that the proposed method with a mis-specified model still provides acceptable estimates for most of the centers.
However, for centers with the largest difference mean survival time, the bias in the estimation is more pronounced, and
robustness is an issue.

6 | DATA APPLICATION

Adjustment covariates in this study included age, race, gender, primary renal diagnosis, donation after cardiac death,
expanded criteria donor, body mass index, years on dialysis prior to transplant, indicator for repeat kidney transplanta-
tion, and cold ischemic time. To separately examine the effects of follow-up time and attained age, we first fitted two
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TABLE 1 Simulation results: performance of center effect estimators; 5 = average of 6; over

j=1,...,J

Distribution J, n; Parameters TRUE BIAS ESD ASE CP
Lognormal J = 50,n; = 100 01 -5273 -0.108 0.212 0.234 0.93
Os —4.180 0.074 0.296 0.322 0.98

015 —2.533 0.146 0.473 0.439 0.93

a5 —0.819 0.020 0.613 0.565 0.93

835 1.219 -0.049 0.782 0.737 0.94

045 5.046 —-0.164 1.112 1.045 0.94

ds0 11.284 —-0.252 1.396 1.372 0.94

é 0.000 —0.000 0.740 0.636 0.94

J =50,n; = 50 61 —5.225 —0.084 0.330 0.333 0.94
Os —-4.110 0.081 0.426 0.455 0.97

815 —2.500 0.168 0.616 0.615 0.96

825 —0.866 0.088 0.786 0.784 0.96

035 1.193 —-0.052 1.099 1.012 0.93

b45 5.021 —0.255 1456 1.422 0.96

bs0 11.025 -0.261 1.806 1.862 0.96

é —0.003 0.003 1.006 0.878 0.95

J = 50, nj = 25 o1 —5.168 —0.036 0.449 0.482 0.96
Os —4.040 0.131 0.590 0.649 0.98

o015 —-2.479 0.239 0.872 0.859 0.95

025 -0.797 0.035 1.164 1.069 0.94

035 1.232 —-0.104 1.481 1.373 0.93

845 4485 —0.257 1.974 1.892 0.94

S50 10.510 —0.258 2.535 2.463 0.96

6 0.000 —0.001 1.384 1.197 0.94

J = 200,n; = 25 61 —5.725 —0.284 0.416 0.363 0.94
620 —3.845 —-0.031 0.305 0.638 0.93

d60 —-2.270 0.025 0.920 1.044 0.95

5100 —0.745 0.033 1.125 1.308 0.96

8140 1.131 0.119 1.459 1.586 0.93

5180 4.898 —0.086 1.964 2.198 0.96

6200 12.534 0.038 2.598 3.411 0.92

é 0.001 —0.001 1.240 1.566 0.93

Gamma J = 50, nj = 50 61 —-2.907 -0.167 0.287 0.344 0.98
Os —2.228 —0.002 0.387 0.408 0.94

615 —-1.341 0.071 0.521 0.492 0.94

625 —0.586 0.141 0.503 0.566 0.94

035 0.334 0.136 0.682 0.785 0.92

O4s 2.936 —0.199 0989 1.005 0.91

050 8.032 —-0.258 1.506 1.967 0.85

5 0.004 —0.004 0.645 0.758 0.94

Abbreviation: ASE, average causal effect; CP, coverage probability; ESE, empirical standard error.

preliminary piecewise exponential models. In the first model, the effect of attained age was approximated as piecewise
linear (Figure 1A). In the second model, attained age was treated as the time axis, and follow-up time was considered as a
categorical covariate. The corresponding effect of follow-up time is shown in Figure 1B, which suggests that the hazards
associated with follow-up time stabilized as follow-up time increased. This finding motivates us to assume that the haz-
ard functions remain constant after the maximum follow-up time. However, this choice involves extrapolation outside of
observation range and is an arbitrary choice for our particular data set. In a more general situation, we may use a linear
function for extrapolation. Another preliminary analysis was to choose a reasonable upper limit for calculating the mean
survival time. The maximum observed value for attained age in our data was 96. However, analysis based on person-year
indicated that only a few observations had an attained age larger than 85 (< 0.005%). Therefore, we calculated the mean
survival time for each patient until they reached age 85.

We next performed a lognormal frailty model with a piecewise exponential baseline rate. Specifically, we chose six
intervals for time. A random effect for intercept was selected for the heterogeneity in baseline risk, and a random effect
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TABLE 2 Regression parameters of transplant data: lognormal frailty model
with a piecewise exponential baseline rate

Variable Coefficient Standard Error p Value
Sex: Male 0.068 0.009 < 0.001
Donation after cardiac death 0.047 0.039 0.224
BMI: (18.5, 25] —0.042 0.011 < 0.001
BMI: (25, 30] 0.029 0.014 0.043
BMI: > 30 0.126 0.021 < 0.001
PRD: Polycystic kidney disease —0.258 0.028 < 0.001
PRD: Diabetes 0.591 0.021 < 0.001
PRD: Hypertension 0.178 0.022 < 0.001
PRD: Other diagnosis 0.130 0.020 < 0.001
Race: American African 0.043 0.010 < 0.001
Race: Hispanic —0.248 0.016 < 0.001
Race: Asian —0.460 0.026 < 0.001
Race: Other -0.179 0.038 < 0.001
Cold ischemic time 0.003 0.0005 < 0.001
Dialysis time 0.025 0.002 < 0.001
Expanded criteria donor 0.172 0.015 < 0.001
Donor age 0.007 0.0003 < 0.001
Repeat kidney transplant —0.010 0.016 0.550

Abbreviations: BMI, body mass index; PRD, primary renal diagnosis (disease leading to
ESRD); ESRD, end-stage renal disease.
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FIGURE1 Effects of (A) attained age and (B) follow-up time [Colour figure can be viewed at wileyonlinelibrary.com]

for attained age was estimated for the heterogeneous effect of age at transplant and follow-up time. We then estimated the
mean survival time across centers. We also constructed the standard error estimator for the difference of mean survival
time based on the delta method described in Section 4.2.

We ordered centers based on difference in mean survival time, and we provided plots of confidence intervals in Figure 2.
Centers with confidence intervals higher than 0 were identified as significantly better than the national average, whereas
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FIGURE2 Analysis of the Scientific Registry of Transplant Recipients data: point estimates 5 ;(j =1, ... ,282)and 95% confidence intervals

centers with confidence intervals lower than 0 were identified as significantly worse than the national average. A total
of 50 centers had mean survival times significantly lower than expected, whereas 29 centers were significantly above the
average.

As stated in Section 4.2, since both 3\, and &), (for centers Jj and k, respectively) are obtained by averaging over the
same covariate distribution (ie, that of the total study population), one could validly compare 3\] and 3;(, eg, by testing
Hj : 6; = 6. In our analysis of the SRTR data, we took the perspective of a regulatory board, which would typically
be more interested in determining which centers were different from the overall average, rather than directly comparing
centers to each other.

7 | DISCUSSION

In this report, we combine a lognormal random effects model and piecewise exponential baseline hazard to compare
mean survival time across centers. The Laplace approximation for integration is applied to obtain maximum likelihood
estimations in a computationally tractable fashion. Our contribution over the literature can be summarized in the fol-
lowing aspects. First, the proposed method allows for valid estimation of long-term center-specific outcomes, in contrast
to the most previous works that focused on short- or medium-term outcomes. Second, we propose a direct standardized
measure based on the integrated survival function.

The proposed method is motivated by monitoring long-term center-specific outcomes. Surgeons and patients can com-
pare center-specific results in a particular region as an external evaluation. Alternatively, center-specific evaluations can
be carried out as an internal evaluation for centers to evaluate themselves or for a governing body to evaluate this cen-
ter's survival, comparing to that expected at the national level. Centers with survival significantly worse than the national
average may be subject to various degrees of intervention, including site visits and perhaps de-accreditation. Moreover,
special care can be dedicated to such centers to improve their long-term outcomes.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.
The following supporting information is available as part of the online article: Table S1. Simulation results: Perfor-
mance of fixed effect and random effect parameters.
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