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Summary

Center-specific survival outcomes of kidney transplant recipients are an important
quality measure, with several challenges. Existing methods based on restricted mean
lifetime tend to focus on short- and medium-term clinical outcomes and may fail to
capture long-term effects associated with quality of follow-up care. In this report, we
proposemethods that combine a log-normal frailtymodel and piece-wise exponential
baseline rates to compare the mean survival time across centers. The proposed meth-
ods allow for consistent estimation of mean survival time as opposed to restricted
mean lifetime and, within this context, permits more accurate profiling of long-
term center-specific outcomes. Asymptotic properties of the proposed estimators are
derived, and finite-sample properties are examined through simulation. The proposed
methods are then applied to national kidney transplant data. The novelty of the pro-
posed techniques arises from several angles. We utilize mean survival, in contrast
to most previous works which considered the restricted mean. Few previous studies
have used the integrated survival function as a basis for center effects. Few provider
profiling methods use a random effects model to estimate fixed center effects.
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1 INTRODUCTION

Multi-center studies become very popular in clinical science. Of particular interest is the determination of which centers have
significantly better or significantly worse outcomes. For example, the methods proposed here are motivated by the need to
profile center-specific long-term kidney transplant outcomes in the United States. Kidney transplantation has a sophisticated and
well-established program for center specific outcomes reporting and quality assurance. The data from this program are used by
transplant centers for quality improvement, by payers and regulators to achieve quality assurance, and by referring physicians
and patients to identify the appropriate center for treatment.
Conceptually, mean survival time is a meaningful measure by which to evaluate transplant centers. However, in the presence

of censoring, mean survival time may not be well estimated, since the estimated survival function need not drop to zero. To
address this concern, a commonly used alternative measure is the restricted mean lifetime, interpreted as the expected number of
time units survived, out of an upper limit. To incorporate covariates, Karrison1 compared the restricted mean lifetime between
two groups using a piecewise exponential model. Zucker2 extended Karrison’s approach based on the stratified Cox model, in

†Center effects based on mean survival
0Abbreviations: OPTN, Organ Procurementand Transplantation Network; SRTR, Scientific Registry of Transplant Recipients.
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which the relationship between the groups and the hazard function is left arbitrary. To account for imbalances in prognostic
factors by treatment status, Chen and Tsiatis3 proposed estimators for the average causal effect on restricted mean lifetime.
Zhang and Schaubel4 extended these methods to accommodate dependent censoring. Due to the use of the restriction time, the
restricted mean lifetime is a useful measure for short- and medium-term clinical outcomes. However, patients who receive a
kidney transplant have substantially longer survival, with the majority of graft losses and patient death occuring in the long-
term.5 Thus, the resulting measures for short- and medium-term outcomes may fail to capture the long-term effects that reveal
the overall quality of care provided by the center. In our motivating example, the longest term outcome available in existing
center-specific reports is three-year survival.6 By ignoring subsequent events, the loss of information may be substantial. Long-
term center-specific profiling may offer important insight into variations in processes and intensity of care and the optimization
of kidney transplantation. Given these concerns, mean lifetime may be a more appropriate measure than restricted mean lifetime
in the context of kidney transplantation.
In this report, we develop novel methods to profile center-specific measures of transplant utility. The remainder of this article

is organized as follows. The data sources and study population are described in the next section. In Section 3, we summarize
some important issues in the comparison of long-term center-specific outcomes. In Section 4, we describe our proposed model
and method to estimate center-specific differences in mean survival time. Finite-sample properties are examined in Section 5
through simulations. The proposed methods are applied to national kidney transplant data in Section 6. The article concludes
with a discussion in Section 7.

2 DATA SOURCE AND STUDY POPULATION

Data were obtained from the Scientific Registry of Transplant Recipients (SRTR). The SRTR data system includes data on all
donors, wait-listed candidates, and transplant recipients in theUnited States, submitted by themembers of theOrgan Procurement
and Transplantation Network (OPTN). The Health Resources and Services Administration (HRSA), U.S. Department of Health
and Human Services provides oversight to the activities of the OPTN and SRTR contractors.
Included in the analysis were adult patients (≥ 18 years of age at transplant) who underwent deceased donor kidney transplan-

tation between January 1990 and December 2008. Transplant centers with sample size smaller than 10 were eliminated from
additional analysis. The final sample size was n = 146, 248 from J = 282 centers across the United States. The mean age at
transplant was 48 and mean donor age was 36. The median survival time over the study period was 10.8 years across centers.
Graft failure was considered to occur when the transplanted kidney ceased to function. Failure time was defined as the time from
transplantation to graft failure or death, whichever occurred first.

3 PRELIMINARIES

In this section, we summarize the computation challenges in the analysis of long-term center-specific outcomes for kidney
transplant centers. We then discuss the reasons we chose the specific model.

3.1 Piece-wise exponential baseline rates
One challenge for estimating mean survival time is that it may not be well estimated in the presence of censoring. To address
this concern, we propose a method based on piece-wise exponential baseline rates with log-normal random effect. The main
reason that we select a parametric hazard model instead of the Cox model is that the later allows for inference only on the (0, �]
interval, where � is the maximum observation time. In other words, in the Cox model, the baseline hazard function is completely
unknown and estimation and inference on the baseline may not be stable when the risk set is small. Another advantage of
piecewise exponential baseline rates is that we can use the link between mixed models and the log-normal random effect model.
Holford7 and Laird and Olivier8 noted that the piece-wise exponential model is equivalent to a Poisson log-linear regression
model with count either 0 or 1 for each combination of individual and interval, where the death indicator is the response and
the log of exposure time enters as an offset. Such connections lead to both computational and theoretical simplification. For
instance, existing generalized linear mixed model software, such as PROC GLIMMIX in SAS, can be applied to estimate the
parameters. This is especially important for our motivating example, since estimating center effects can be a computationally
intense task in nation-wide studies with large numbers of patients and centers. Finally, the choice of this parametric baseline
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hazard function leads to a fully parametric marginal likelihood, such that we can make use of maximum likelihood techniques
to estimate the parameters. In contrast, for Cox models with log-normal random effects, asymptotic properties of the penalized
partial likelihood approach are not yet well established.

3.2 Log-normal random effect
Another important consideration in our study is that the comparison of center-specific outcomes should be based on risk-adjusted
models that account for center-specific heterogeneity with respect to the types of patients treated. In our motivating example,
variations may exist among centers in both baseline risk and effectiveness of follow-up therapy. In other words, just as it is
reasonable to think that baseline survival may differ across centers, it is possible that center-specific covariate effects may also
be unequal. Evaluations of such variations are important to determine how a particular therapy should be administered. This
concern can be addressed using a random effects model, in which subjects in a center share some common effects, with center-
specific effects treated as a sample from a specific probability distribution. As pointed out by a Reviewer, it should be noted that
the incorporation of random effects does not control for unmeasured center- or individual-level confounders, but only corrects
the variance estimator such that it accounts for within-center correlations.9
A wide variety of random effects models have been proposed in survival analysis. Among them, the gamma frailty

model10,11,12 and log-normal random effect model13,14,15 are the most extensively studied approaches. As interactions between
covariate and random effects can be readily implemented within the log-normal random effects model, this approach is applied
in our study.

4 ESTIMATION

Let Ti and Ci represent the survival and censoring time, respectively, for the i’th patient. Observation times are denoted by
Xi = Ti ∧ Ci, where a ∧ b = min{a, b}. Correspondingly, we set the observed death indicator to Δi = I(Ti ≤ Ci). Let J be
the number of centers, with the total number of subjects denoted by n =

∑J
j=1 nj , where nj is the number of subjects in center

j. Each subject is characterized by a time-constant covariate vector, Zi. Correspondingly, let � be the fixed effect coefficient
vector for Zi. Let Gi denote the center for subject i; i.e., Gi = j means that subject i belongs to center j. Let ai(t) be a time-
dependent covariate for attained-age, with �a being the fixed effect coefficient for attained-age. Let b = (bT0 ,b

T
1 )
T be an vector

of random effects, where bT0 = (b01, ⋅ ⋅ ⋅, b0J ) and bT1 = (b11, ⋅ ⋅ ⋅, b1J ) are vectors containing random intercepts and random
slopes, respectively. We assume that b0 ∼ N(0J×1, �0IJ×J ) and b1 ∼ N(0J×1, �1IJ×J ).
Our proposed estimation procedure involves two stages. In Stage 1, we obtain parameter estimates under the assumed model.

In Stage 2, we then compute subject- and center-specific fitted survival functions. Finally, we estimate center-specific mean
survival time averaging across the marginal covariate distribution using fitted values based on parameters obtained from Stage
1. Specifics are described in the following subsections.

4.1 Stage 1: Model and parameter estimation
To approximate the baseline hazard by piecewise constants, we divide the observed time period into K follow-up time intervals
with cutpoints 0 = t0 < t1 < ⋅ ⋅ ⋅ < tK = ∞. Within each of the intervals, the baseline hazard function, �0(t), is assumed to be:

�0(t) = �k, t ∈ Ωk ≡ [tk−1, tk), k = 1, ⋅ ⋅ ⋅, K.

Thus, the baseline hazard is a constant within each interval but is allowed to vary across intervals. As shown by Lawless and
Zhang16, models using a piecewise constant baseline hazard with suitable intervals often yield accurate estimates for fixed effect
and random effect parameters.
One advantage of the piecewise exponential model is that it can easily accommodate time-varying covariates provided that

they change values only at interval boundaries. In our study, the only time-varying covariate is attained-age. To accommodate the
change of attained-age, we further split each of the time intervalsΩk into multiple subintervalsΩkq , where q = 1, ⋅⋅⋅, kq and kq is
the number of subintervals withinΩk. The values of attained-age are then defined as the age at the left boundary of each subinter-
val. The boundaries of subintervals are chosen as either the cut points of the original interval or the time scales corresponding to
an integer value of attained-age. Note that in this way each subinterval gets its own measure of exposure and its own death indi-
cator, but all subintervals are tagged as belonging to the same interval, so they get the same baseline hazard. This procedure may
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be best explained by way of an example. For individual iwith age-at-transplant equals to 18.3 and with 3 year follow-up time, we
can split the particular intervals [0, 1), and [1, 3) hazard functions into subinterval [0, 0.7), [0.7, 1), [1, 1.7), [1.7, 2.7), [1.7, 2.7)
and [2.7, 3), and the corresponding values of attained-age then recorded as a step function: ai(t) = 18.3, 19, 19.3, 20, 21 and 21.3
for each sub-interval.
The assumed proportional hazard frailty model is formulated as

�ij(t) = �0(t) exp
{

ZTi � + b0j + ai(t)(�a + b1j)
}

, (1)

where �ij(t) ≡ �(t|Zi, ai(t), Gi = j,bj) denotes the hazard function for the subject i conditional on Zi, ai(t), Gi = j, and
bj = (b0j , b1j)T .
The main reason we consider time-dependent age (i.e., attained-age) instead of time-constant age (i.e., age at time 0; in our

setting, age at transplant) is that age is often the most important risk factor for long-term studies, underscoring the importance
of separating the contributions of attained-age and follow-up time in analyzing patient outcomes. This is particularly relevant in
long-term follow-up studies where there may be considerable changes in the mortality pattern with increasing age. For example,
in the context of our motivating example, preliminary analysis indicated that the trends associated with follow-up time diminish
considerably as follow-up time increases. In contrast, the effect of attained-age plays a more important role as age increases
(details will be provided in Section 6). Since one of the concepts motivating our work is that trends over time may differ by
center, it makes sense to allow for the effect of attained-age to differ by center. We therefore allow attained-age, ai(t), to have
both fixed and random effects in model (1).
The conditional likelihood is given by

L(�1, ⋅ ⋅ ⋅, �K , �;bj) ∝ Π
nj
i=1Π

K
k=1Π

Kq

q=1

{

�ktikq exp(ZTi � + b0j + aikq(�a + b1j))
}Δikl

exp
{

−�ktikq exp(ZTi � + b0j + aikq(�a + b1j))
}

,

where tikq is the total time for subject i in subintervalΩkq andΔikq is the event indicator for subject i in subintervalΩkq . Assuming
that the J centers are independent, the conditional likelihood across all centers is given by

L(�1, ⋅ ⋅ ⋅, �K , �,b) =
J
∏

j=1
L(�1, ⋅ ⋅ ⋅, �K , �,bj).

Then, the marginal likelihood has the form

L(�1, ⋅ ⋅ ⋅, �K , �,�) =
J
∏

j=1
∫ exp{g(�1, ⋅ ⋅ ⋅, �K , �,�)}dbj ,

where � = (�0, �1) and

g(�1, ⋅ ⋅ ⋅, �K , �,�) = logL(�1, ⋅ ⋅ ⋅, �K , �,b) + log f (bj|�),

with f (bj|�) being the bivariate normal density. The objective function for numerical minimization is twice the negative of
the corresponding log likelihood approximation. For given �̂, the estimating equations come from setting the derivative of
logL(�1, ⋅ ⋅ ⋅, �K , �, �̂), with respect to the parameters (�1, ⋅ ⋅ ⋅, �K , �), equal to zero. To simplify the computations, we use
a Laplace approximation to approximate each such integral with a function that has a closed form. Specifically, the Laplace
approximation to the marginal log likelihood is as follows,

J
∏

j=1

{

njg(�1, ⋅ ⋅ ⋅, �K , �, �̂) + log(2�) −
1
2
log | − njg′′(�1, ⋅ ⋅ ⋅, �K , �, �̂)|

}

,

where

g′′(�, �1, ⋅ ⋅ ⋅, �K , �̂) =
)2g(�, �1, ⋅ ⋅ ⋅, �K ,�)

)�)�′
|

|

|

|

|�̂
,

and � satisfies the first-order condition:
)g(�, �1, ⋅ ⋅ ⋅, �K ,�)

)�
= 0,

for given values of � and �. Compared with other estimation procedures, such as the pseudo-likelihood estimator, the Laplace
estimators have been demonstrated to exhibit better asymptotic behavior and less small-sample bias than pseudo-likelihood
estimators. Further details can be found in Feng et al.17
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4.2 Stage 2: Difference in mean survival time
It is well known that patient characteristics may vary significantly across centers, and can have a substantial impact on the
expected center-specific survival outcomes. Accurate estimation of center effects must account for potential covariate imbalances
across centers. To address this concern, we use a technique based on direct standardization.
Direct standardization is a commonly used approach in comparisons of center-specific outcomes.18 One can express a directly

standardized measure as the difference or ratio of expected to observed outcomes in the total study population; in our case,
we use the difference. The first term (which is center-specific) represents the expected outcomes if all patients were treated at
the given center; the second term equals the total observed outcomes in the study population (e.g., national average). This is
somewhat analogous to the Average Causal Effect (ACE) from the causal inference literature. For the ACE, the study population
is evaluated under two conditions: all-patients-treated versus all-patients-untreated. In our case, we contrast ‘all patients subject
to center j practices’, versus ‘all patients subject to national average practices’. Because the same standard population is applied
to all centers, directly standardized measures are not affected by differences in center-specific covariate distributions and, hence,
are directly comparable.
Similarly, to factor out the impact of imbalances in center-specific covariate distributions, we define center effect for center j

with respect to mean survival time as follows:

�j = E(Ti|Gi = j) − E(Ti).

with an estimator for �j given by

�̂j = Ê(Ti|Gi = j) − Ê(Ti). (2)

The first term in (2)

Ê(Ti|Gi = j) = n−1
J
∑

l=1

nl
∑

i=1

∞

∫
0

Ŝi(j)(u)du

has the interpretation of mean survival time for the population, under the hypothetical scenario where all subjects were treated
in center j. Here Si(j)(u) corresponds to the hypothetical survival of a randomly chosen individual in our population if, possibly
contrary to fact, this subject is in center j:

Ŝi(j)(u) = exp

⎧

⎪

⎨

⎪

⎩

−
K
∑

k=1

kq
∑

q=1
�̂k(tikq ∧ u) exp{ZTi �̂ + b̂0j + aikq(�̂a + b̂1j)}

⎫

⎪

⎬

⎪

⎭

.

In contrast, the second term

Ê(Ti) = n−1
J
∑

l=1

nl
∑

i=1

∞

∫
0

Ŝil(u)du,

is the estimated mean survival time for the population, where Ŝil(u) is the estimated survival for a subject i in center l:

Ŝil(u) = exp

⎧

⎪

⎨

⎪

⎩

−
K
∑

k=1

kq
∑

q=1
�̂k(tikq ∧ u) exp{ZTi �̂ + b̂0l + aikq(�̂a + b̂1l)}

⎫

⎪

⎬

⎪

⎭

.

Note that �j is the expected survival if all patients had transplants at center j, minus the expected survival for the population.
With respect to interpretation, �j > 0 indicates that center j has a greater mean survival than the overall average. The Delta
method is used to obtain the variance estimator and confidence intervals. Thus, the proposed methods can be carried out as
internal evaluation of center-specific long term mortality (e.g., for centers to evaluate themselves or for a governing body to
evaluate this center’s mortality comparing to that expected at the national level).
The variance estimator for �̂j can be obtained using the Delta method. In particular, �̂j is a function of fixed effects and random

effects, e.g., �̂j = fj( ̂), where  ̂ = (�̂1, ⋅ ⋅ ⋅, �̂K , �̂, b̂). Let Ĉov( ̂) be the covariance matrix for  ̂ . Then the variance for �̂j can
be estimated by

V̂ar(�̂j) = f ′j ( ̂)
T Ĉov( ̂)f ′j ( ̂),
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where f ′j ( ̂) is the corresponding vector of derivatives. Similarly, confidence intervals of �̂j can be obtained. Centers with
confidence intervals completely above 0 will be identified as significantly better than the national average, while centers with
confidence intervals completely below 0 will be identified as significantly worse than the national average. The decision rule
used in our analysis is consistent with rules frequently used in practice. For each center j, we essentially test Hj ∶ �j = 0
against a two-sided alternative with a 0.05 significance level. The test is based on a limiting N(0,1), such that rejection ofHj is
equivalent to the 95% confidence interval not overlapping 0. As such, the decision rule is a deterministic (binary) function of a
Z-score, for which the variability is appropriately accounted.
Finally, based on the definition of mean survival time, the integral of survival function should go to∞. However, in practice,

it is more reasonable to calculate this integral until the patient achieves a certain maximum age. We will provide more detail in
Section 6 about how we choose this upper limit for our analysis.

5 SIMULATION STUDY

The finite-sample properties of the estimators described above were evaluated through a series of simulation studies. We con-
sidered J = 10, J = 25, J = 50, and J = 200 centers. Death times were generated from a piecewise exponential model. To
mimic the motivating example, we divided the whole follow-up period into the following intervals: [0, 1], (1, 2], (2, 3], (3, 5],
(5, 10], (10,∞]. For the kth interval, the hazard function for subject i in center j was given by formula (1), where Zi followed
a Bernoulli distribution. We set �0 = −0.1; ai(t) = a0i + t, where a0i came from a Normal distribution with constant variance
and center-dependent means, and t was the follow-up time. Random effects b0j and b1j (j = 1, ⋅ ⋅ ⋅J ) were generated from inde-
pendent Normal distributions N(0, �0) and N(0, �1), respectively, with �0 = 0.25 and �1 = 0.005. We varied the sample size
for each center as nj = 25, 50, 100. The censoring percentages were approximately 20%. Each data configuration was replicated
500 times.
To fit the model and obtain the parameter estimators in Stage 1, we implemented the Laplace approximation using the SAS

procedure GLIMMIX, with the option METHOD=LAPLACE for the required integral approximation. The mean survival time
in Stage 2 is a numerical integration of scalar functions in one dimension over connected finite intervals. We programmed this
estimation process using SAS function QUAD. We calculated the mean survival time for each observation until the age 85 and
computed the 95% confidence intervals.
In Table 1, we list the results for the proposed measures. The ASE estimators were sufficiently accurate and the CP was

generally consistent with the nominal value 0.95. The results for setting with J = 10 or J = 25 centers are not shown. In general,
for fixed J , as nj increase, the CP increases. On the other hand, for fixed nj , as J increase, the CP also increases. Overall, the
simulation results indicated that the method is performing reasonably well.
Finally, we consider the robustness of the log-normal distribution assumption. Random effects b0j and b1j (j = 1, ⋅ ⋅ ⋅J ) were

generated from independent gamma(2, 0.2) and gamma(2, 0.01) distributions, respectively. The last part of Table 2 shows that
the proposed method with a mis-specified model stills provide acceptable estimates for most of the centers. However, for centers
with the largest difference mean survival time, the bias in the estimation is more pronounced and robustness is an issue.

6 DATA APPLICATION

Adjustment covariates in this study included age, race, gender, primary renal diagnosis (PRD), donation after cardiac death
(DCD), ExpandedCriteria Donor (ECD), bodymass index (BMI), years on dialysis prior to transplant, indicator for repeat kidney
transplantation, and cold ischemic time. To separately examine the effects of follow-up time and attained-age, we first fitted two
preliminary piece-wise exponential models. In the first model, the effect of attained-age was approximated as piece-wise linear
(Figure 1A). In the second model, attained-age was treated as the time axis, and follow-up time was considered as a categorical
covariate. The corresponding effect of follow-up time is shown in Figure 1B, which suggests that the hazards associated with
follow-up time stabilized as follow-up time increased. This finding motivates us to assume that the hazard functions remain
constant after the maximum follow-up time. However, this choice involves extrapolation outside of observation range and is an
arbitrary choice for our particular dataset. In a more general situation, we may use linear function for extrapolation. Another
preliminary analysis was to choose a reasonable upper limit for calculating the mean survival time. The maximum observed
value for attained-age in our data was 96. However, analysis based on person-year indicated that only a few observations had an

This article is protected by copyright. All rights reserved.



Kevin He ET AL. 7

Table 1
Simulation results: Performance of center effect estimators; � = average of �j over j = 1 ⋅ ⋅ ⋅ J .

Distribution J , nj Parameters TRUE BIAS ESD ASE CP

Log-normal J = 50, nj = 100 �1 -5.273 -0.108 0.212 0.234 0.93
�5 -4.180 0.074 0.296 0.322 0.98
�15 -2.533 0.146 0.473 0.439 0.93
�25 -0.819 0.020 0.613 0.565 0.93
�35 1.219 -0.049 0.782 0.737 0.94
�45 5.046 -0.164 1.112 1.045 0.94
�50 11.284 -0.252 1.396 1.372 0.94
� 0.000 -0.000 0.740 0.636 0.94

J = 50, nj = 50 �1 -5.225 -0.084 0.330 0.333 0.94
�5 -4.110 0.081 0.426 0.455 0.97
�15 -2.500 0.168 0.616 0.615 0.96
�25 -0.866 0.088 0.786 0.784 0.96
�35 1.193 -0.052 1.099 1.012 0.93
�45 5.021 -0.255 1.456 1.422 0.96
�50 11.025 -0.261 1.806 1.862 0.96
� -0.003 0.003 1.006 0.878 0.95

J = 50, nj = 25 �1 -5.168 -0.036 0.449 0.482 0.96
�5 -4.040 0.131 0.590 0.649 0.98
�15 -2.479 0.239 0.872 0.859 0.95
�25 -0.797 0.035 1.164 1.069 0.94
�35 1.232 -0.104 1.481 1.373 0.93
�45 4.485 -0.257 1.974 1.892 0.94
�50 10.510 -0.258 2.535 2.463 0.96
� 0.000 -0.001 1.384 1.197 0.94

J = 200, nj = 25 �1 -5.725 -0.284 0.416 0.363 0.94
�20 -3.845 -0.031 0.305 0.638 0.93
�60 -2.270 0.025 0.920 1.044 0.95
�100 -0.745 0.033 1.125 1.308 0.96
�140 1.131 0.119 1.459 1.586 0.93
�180 4.898 -0.086 1.964 2.198 0.96
�200 12.534 0.038 2.598 3.411 0.92
� 0.001 -0.001 1.240 1.566 0.93

Gamma J = 50, nj = 50 �1 -2.907 -0.167 0.287 0.344 0.98
�5 -2.228 -0.002 0.387 0.408 0.94
�15 -1.341 0.071 0.521 0.492 0.94
�25 -0.586 0.141 0.503 0.566 0.94
�35 0.334 0.136 0.682 0.785 0.92
�45 2.936 -0.199 0.989 1.005 0.91
�50 8.032 -0.258 1.506 1.967 0.85
� 0.004 -0.004 0.645 0.758 0.94
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Table 2
Regression parameters of transplant data: log-normal frailty model with a piece-wise exponential baseline rate; BMI = body

mass index; PRD = primary renal diagnosis (disease leading to ESRD)

Variable Coefficient Standard Error P-value

Sex: Male 0.068 0.009 < 0.001
Donation after cardiac death 0.047 0.039 0.224
BMI: (18.5, 25] -0.042 0.011 < 0.001
BMI: (25, 30] 0.029 0.014 0.043
BMI: > 30 0.126 0.021 < 0.001
PRD: Polycystic kidney disease -0.258 0.028 < 0.001
PRD: Diabetes 0.591 0.021 < 0.001
PRD: Hypertension 0.178 0.022 < 0.001
PRD: Other diagnosis 0.130 0.020 < 0.001
Race: American Africa 0.043 0.010 < 0.001
Race: Hispanic -0.248 0.016 < 0.001
Race: Asian -0.460 0.026 < 0.001
Race: Other -0.179 0.038 < 0.001
Cold ischemic time 0.003 0.0005 < 0.001
Dialysis time 0.025 0.002 < 0.001
Expanded Criteria Donor 0.172 0.015 < 0.001
Donor age 0.007 0.0003 < 0.001
Repeat kidney transplant -0.010 0.016 0.550

1

attained-age larger than 85 (< 0.005%). Therefore, we calculated the mean survival time for each patient until they reached age
85.
We next performed a log-normal frailty model with a piece-wise exponential baseline rate. Specifically, we chose 6 intervals

for time. A random effect for intercept was selected for the heterogeneity in baseline risk, and a random effect for attained-age
was estimated for the heterogeneous effect of age at transplant and follow-up time. We then estimated the mean survival time
across centers. We also constructed the standard error estimator for the difference of mean survival time based on the Delta
method described in Section 4.2.
We ordered centers based on difference in mean survival time and we provided plots of confidence intervals in Figure 2.

Centers with confidence intervals higher than 0 were identified as significantly better than the national average, while centers
with confidence intervals lower than 0 were identified as significantly worse than the national average. A total of 50 centers had
mean survival times significantly lower than expected, while 29 centers were significantly above the average.
As stated in Section 4.2, since both �̂j and �̂k (for centers j and k, respectively) are obtained by averaging over the same

covariate distribution (i.e., that of the total study population), one could validly compare �̂j and �̂k; e.g., by testingHjk ∶ �j = �k.
In our analysis of the SRTR data, we took the perspective of a regulatory board, which would typically be more interested in
determining which centers were different from the overall average, rather than directly comparing centers to each other.

7 DISCUSSION

In this report, we combine a log-normal random effects model and piece-wise exponential baseline hazard to compare mean
survival time across centers. The Laplace approximation for integration is applied to obtain maximum likelihood estimations in
a computationally tractable fashion. Our contribution over the literature can be summarized in the following aspects. First, the
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FIGURE 1 Effects of Follow-up Time and Attained Age

(a) Figure 1A
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(b) Figure 1B

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Follow−up Time Effect

Year post transplant

Lo
g 

H
az

ar
d 

R
at

io

proposed method allows for valid estimation of long-term center-specific outcomes, in contrast to most previous works which
focussed on short-term or medium-term outcomes. Second, we propose measure a direct standardized measure based on the
integrated survival function.
The proposed method is motivated by monitoring long-term center-specific outcomes. Surgeons and patients can compare

center-specific results in a particular region as an external evaluation. Alternatively, center-specific evaluations can be carried out
as an internal evaluation for centers to evaluate themselves or for a governing body to evaluate this center’s survival comparing

FIGURE 2 Analysis of SRTR Data: Point Estimates �̂j (j = 1, ⋅ ⋅ ⋅, 282) and 95% Confidence Intervals .
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to that expected at the national level. Centers with survival significantly worse than the national average may be subject to
various degrees of intervention, including site visits and perhaps de-accreditation. Moreover, special care can be dedicated to
such centers to improve their long-term outcomes.
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