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Abstract 

 Several plausible theories of the neural implementation of speed/accuracy trade-off 

(SAT), the phenomenon in which individuals may alternately emphasize speed or accuracy 

during the performance of cognitive tasks, have been proposed, and multiple lines of evidence 

point to the involvement of the pre-supplemental motor area (pre-SMA). However, as the nature 

and directionality of the pre-SMA’s functional connections to other regions involved in cognitive 

control and task processing are not known, its precise role in the top-down control of SAT 

remains unclear. Although recent advances in cross-sectional path modeling provide a promising 

way of characterizing these connections, such models are limited by their tendency to produce 

multiple equivalent solutions. In a sample of healthy adults (N=18), the current study uses the 

novel approach of Group Iterative Multiple Model Estimation for Multiple Solutions (GIMME-

MS) to assess directed functional connections between the pre-SMA, other regions previously 

linked to control of SAT, and regions putatively involved in evidence accumulation for the 

decision task. Results reveal a primary role of the pre-SMA for modulating activity in regions 

involved in the decision process, but suggest that this region receives top-down input from the 

DLPFC. Findings also demonstrate the utility of GIMME-MS and solution-reduction methods 

for obtaining valid directional inferences from connectivity path models. 
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 The strategies people use to complete cognitive tasks not only have implications for task 

performance, but also reflect individual and contextual differences in the brain and behavior. In a 

common example, people can adjust their performance to meet task demands by either 

emphasizing accurate responding at the cost of speed, or increasing the speed of responding at 

the cost of accuracy. The ability to implement this type of strategy adjustment, known as 

speed/accuracy trade-off (SAT), has been found to be of high relevance for applied research in 

areas as diverse as normative aging (Forstmann et al., 2011; Ratcliff, Thapar & McKoon, 2004), 

attention problems in childhood (Mulder et al., 2010; Weigard & Huang-Pollock, 2014) and 

obsessive compulsive disorder (Erhan et al., 2017).  

Numerous explanations for the neural implementation of SAT have been posited, and 

supported by a burgeoning literature involving computational modeling, cellular recording in 

non-human primates, and human neuroimaging (for a thorough review, see: Standage, Blohm & 

Dorris, 2014). Of these theories, we focus herein on explanations of this phenomenon that are 

rooted in formal “bounded accumulator” models (Bogacz, Wagenmakers, Forstmann & 

Nieuwenhuis, 2010; Rae, Heathcote, Donkin, Averell & Brown, 2014), as these models are 
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commonly used in neuroimaging studies on the roles of human brain regions in SAT. Such 

models frame choice response time (RT) tasks as a race between accumulators that gather noisy 

evidence for each response over time, and assume that a response is initiated when one of the 

accumulators reaches a pre-determined threshold of evidence (Bogacz et al., 2010). Lowering the 

distance the accumulator must travel to surpass the threshold leads to faster, but more error-

prone responding, and raising this distance has the opposite effect. Within this framework, a 

“cortical” theory (van Veen, Krug & Carter, 2008) of SAT holds that, under speed-emphasis, 

brain regions involved in top-down control (e.g., the dorsolateral prefrontal cortex; DLPFC) send 

a non-selective excitatory signal to regions involved in the accumulation or integration of 

sensory evidence, increasing their baseline activity and reducing the accumulators’ distance-to-

threshold (van Veen et al., 2008). A distinct, “striatal” theory holds that, under speed-emphasis, 

excitatory input to motor regions, mediated by top-down connections from the pre-supplemental 

motor area (pre-SMA) to the striatum, effectively lowers the threshold for response initiation, 

which would also lead to distance-to-threshold reductions (Forstmann et al., 2008; 2010; 2011).  

 Several additional lines of work have posited distinct explanations for the behavioral 

changes observed in SAT. First, recent empirical research involving both cognitive modeling 

(Rae et al., 2014) and single-cell recordings (Heitz & Schall, 2012) has provided evidence that 

speed emphasis causes changes to the rate of evidence accumulation in addition to distance-to-

threshold reductions. Furthermore, other theoretical accounts challenge the assumption that 

distance-to-threshold changes are the primary driver of SAT. Specifically, work using attractor 
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network models, which replicate features of neural circuits putatively responsible for decision 

making, has suggested that a common excitatory input to decision circuity controls SAT by 

altering the strength of network dynamics, rather than through the modulation of thresholding 

(Furman and Wang, 2008; Roxin & Ledberg, 2008; Standage, Wang & Blohm, 2014). However, 

Standage, Blohm and Dorris (2014) proposed that a “unifying” account, in which top-down 

excitatory signals project to both decision-making attractor networks and to thresholding 

circuitry, is plausible given the current state of evidence in the SAT literature. 

 Hence, although current theories disagree about how specific decision processes change 

in SAT, most share the assumption that regions widely believed to be involved in sensory 

evidence accumulation or motor thresholding receive an excitatory input under speed emphasis, 

and that this input is provided by regions involved in the top-down control of strategy adjustment 

(Standage et al., 2014). Prior human neuroimaging work aimed at testing the “cortical” and 

“striatal” accounts of SAT has suggested that several regions previously found to be involved in 

cognitive control processes, including the dorsolateral prefrontal cortex (DLPFC: van Veen et 

al., 2008), the pre-SMA (Forstmann et al., 2010; 2011), and the anterior cingulate cortex (ACC: 

van Maanen et al., 2011), may be the source of such control signals. Of these regions, the pre-

SMA has arguably received the most support for playing a central role in the coordination of 

SAT. Neural activity in the pre-SMA as measured by functional magnetic resonance imaging 

(fMRI) and the integrity of white matter connections between this region and striatum have both 

been found to display a correlational relationship with individual differences in SAT-related 
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distance-to-threshold changes, as measured by parameters from bounded accumulator models 

(Forstmann et al., 2008; 2010; 2011; Mansfield, Karayanidis, Jamadar, Heathcote, & Forstmann 

2011). Furthermore, transcranial magnetic stimulation of the right pre-SMA has been repeatedly 

demonstrated to experimentally alter the same parameters (Berkay, Eser, Sack, Çakmak, & 

Balcı, 2018; Georgiev et al., 2016; Tosun, Berkay, Sack, Çakmak, & Balcı, 2017). However, a 

comprehensive understanding of the pre-SMA’s role in SAT is currently lacking, in part because 

the strength and directionality of functional connections between this region and other regions 

believed to be involved in the control of SAT, as well as with those linked to evidence 

accumulation and motor thresholding, is currently unclear. 

Previous work on neural connectivity between regions putatively involved in SAT has 

either employed measures of structural connections (e.g., white matter tract strength: Forstmann 

et al., 2010; 2011) or psychophysiological interactions (PPI:  van Veen et al., 2008; Green, Biele 

& Heekeren, 2011). Although these methods both have distinct advantages, they do not provide 

straightforward evidence of the directionality of connectivity between regions. Furthermore, 

previous studies have typically offered a limited window into connections between this set of 

regions, such as only exploring connectivity between the pre-SMA and striatum (Forstmann et 

al., 2010; 2011) or clarifying the DLPFC’s connections with other structures, but not 

connectivity between those structures (van Veen et al., 2008). Without a comprehensive 

description of directional connections between regions putatively involved in the control of SAT, 

and others putatively involved in more basic decision processes, crucial questions remain about 
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the source of the hypothesized top-down control signal and how the functional role of the pre-

SMA differs from that of other regions. For example, it remains unclear whether the pre-SMA 

and DLPFC play distinct roles in implementing SAT strategy changes (e.g., by influencing 

separate regions involved in decision processing), or whether the pre-SMA coordinates strategy 

changes in response to a control signal from the DLPFC.  

 Thus, a region-of-interest based directed connectivity analysis is needed to characterize 

directional relationships between these regions at the network level during SAT. However, fMRI 

network modeling methods have displayed mixed success in establishing the directionality of 

connections. In a landmark simulation/recovery study, Smith et al., (2011) found that methods 

designed to do so, such as Granger causality and the Bayes net algorithms available at the time, 

generally performed poorly; directional connections were identified with only 65-78% accuracy 

under ideal conditions. There have, however, been subsequent advances in pre-processing steps 

(the use high-pass filters) and in the development of novel network algorithms which have 

produced several methods with great promise for identifying the directionality of connections 

using fMRI data (Mumford & Ramsey, 2014). 

 Group iterative multiple model estimation (GIMME: Gates & Molenaar, 2012), which 

implements unified structural equation models (uSEM: Gates, Molenaar, Hillary, Ram & 

Rovine, 2010) to characterize both sample- and individual-level directed connectivity patterns, is 

one such method. By accounting for contemporaneous and time-lagged relationships between 

regions of interest (ROIs) in a data-driven manner, uSEMs allow researchers to make person-
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specific inferences about the presence and directionality of functional connections between 

multiple ROIs that are unbiased by sequential dependencies found in fMRI time series data 

(Gates et al., 2010). They do this by integrating SEMs to estimate contemporaneous connections 

between ROIs and vector autoregressions (VARs) to estimate lagged connections. GIMME, in 

turn, provides a method for fitting these models to sample-level data with the goal of establishing 

which connections are common to a group, while also allowing for substantial heterogeneity 

between the connectivity maps of individuals (Gates & Molenaar, 2012). The combination of 

uSEM and GIMME methods was able to correctly identify the presence and directionality of 

roughly 90% of connections in Smith et al., (2011) simulation data set, demonstrating a marked 

improvement over other methods (Gates & Molenaar, 2012). Due to the accuracy and efficacy of 

these methods, they have previously been used to investigate directional connectivity in the 

domains of brain injury (Hillary, Medaglia & Gates, 2011), tobacco cessation (Zelle, Gates, Fiez, 

Sayette & Wilson, 2016) and changes in brain functioning associated with alcohol use in college 

students (Beltz et al., 2013). Thus, they are ideal for clarifying directional connections between 

the numerous regions that are putatively involved in SAT. 

Despite this impressive performance, however, uSEMs, and thus, GIMME are subject to 

the multiple solutions problem common to all cross-sectional path analyses; there is often more 

than one possible network that fits the data well (Beltz & Molenaar, 2016; MacCallum et al., 

1993). This is most likely to occur when contemporaneous relationships are stronger than lagged 

relationships, causing the data-driven search process to decide between bi-directional 
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contemporaneous paths that, without the modeling of lagged relationships, would produce 

equivalent improvements to model fit. To address this issue, Beltz and Molenaar (2016) created 

GIMME for multiple solutions (GIMME-MS) that estimates all possible solution sets; they also 

validated selection procedures for selecting the optimal model in a simulation study. Although 

GIMME-MS has been previously applied to behavioral time series data (Beltz, Wright, Sprague 

& Molenaar, 2016), it has not been previously applied to functional connectivity analyses. 

In the current study, we apply these state-of-the-art methods to fMRI time series data 

collected while participants were asked to implement SAT during a perceptual decision task. We 

aim to accomplish two interrelated goals. First, the methodological goal of the study is to 

determine whether the application of GIMME-MS to this fMRI data set provides evidence of 

equivalent solutions, and, if this is the case, to use the multiple solution reduction procedures 

validated by Beltz and Molenaar (2016) to find an optimal set of models. Second, the substantive 

goal of the study is to use these models to investigate the presence and directionality of 

connections between regions that are putatively involved in the control of SAT and those 

putatively involved in more basic decision-making processes, such as evidence accumulation 

(e.g., parietal areas) or motor thresholding (e.g., the striatum). Although we had no strong or pre-

registered predictions of our own, we sought to assess whether the results of this analysis were 

consistent with what would be expected given previous theories of SAT. We were most 

interested in whether the analysis would reveal strong positive connections from one or more of 

the former regions (the DLPFC, ACC, or pre-SMA) to one or more of the latter, which may 
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reflect the top-down excitatory signal that is posited by several theories. Although the pre-SMA 

is arguably the region most heavily implicated in playing a role in the control of SAT (at least 

from studies using a bounded accumulator model framework), we also sought to determine 

whether this region receives top-down input from a distinct region (e.g., the DLPFC), potentially 

reflecting a higher-order control signal. In this way, we address gaps in the previous literature on 

the connectivity of brain regions associated with SAT, and demonstrate the utility of uSEM and 

GIMME-MS for doing so. 

Method 

Participants 

18 healthy adults (6 males, Mean age = 24.22, SD = 6.04)1, who were recruited from an 

undergraduate student and community sample, participated in the study. All participants were 

required to: 1) be right-handed, 2) report no history of traumatic brain injury, neurological 

disease, or major medical conditions, 3) be native English speakers, and 4) display no 

contraindications to MRI procedures. No participants needed to be excluded for exceeding the 

cutoff for excessive motion (>3mm movement in any direction within a run).  

Behavioral Task and Paradigm Timing 

1 Although this sample size may be considered low-powered for a univariate fMRI analysis, we note that, as 
GIMME fits connectivity models at the single-subject level, it primarily derives power from the length of the fMRI 
time series. As each subject in the current study contributed a time series of 950 observations, this analysis has 
high power to detect functional connections between ROIs at the individual subject level. Simulation studies have 
demonstrated that accurate results can be obtained at the group level in samples with at least 10 subjects and at 
least 200 time points per subject (Gates & Molenaar, 2012). 
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 Participants completed a numerosity discrimination task, a paradigm well-described by 

evidence accumulation models (Ratcliff & McKoon, 2008), in which they were presented with 

an array of asterisks in a box and were asked to decide whether the stimulus contained “many” or 

“few” asterisks. “Many” stimuli were boxes (289x289 pixels) presented as black on a white 

background containing 56-60 asterisks, distributed at random on an invisible 10x10 grid, while 

“few” stimuli contained 41-45 asterisks. Participants’ responses were made by pressing buttons 

on a button box that was placed under their right hand in the scanner; they pressed the button 

under their index finger for “many” and the button under their middle finger for “few”. 

 The timing of the experimental paradigm (Figure 1) was similar to that used by 

Forstmann et al. (2008), which allowed the neural responses associated with speed/accuracy 

strategy changes to be modeled as distinct from neural responses associated with the actual 

decision-making process. Prior to each trial, participants saw a 4000ms verbal cue that indicated 

whether they should emphasize speed (“FAST”) or accuracy (“ACC”) in the coming decision. 

This cue was followed by a jittered period, in which a fixation cross was presented for either 0, 

2000, or 4000ms (selected at random) before the presentation of the numerosity discrimination 

stimulus. The stimulus was presented for 1500ms, followed by a 500ms “feedback” period and 

another jittered period, in which a fixation cross was presented for either 0, 2000, or 4000ms 

(selected at random) before the presentation of the next instructional cue. The “feedback” period 

was the same length of time for all trials and conditions, and typically involved only the 

presentation of a fixation cross, but other stimuli were occasionally presented during this time to 
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encourage strategy use. Specifically, in the Accuracy-emphasis condition, participants were 

informed that their response was incorrect if they made an error (“INCORRECT”, presented in 

red lettering). In the Speed-emphasis condition, participants were informed that their 

performance was not fast enough if their response was longer than 700ms (“TOO SLOW”, 

presented in red lettering). The 700ms deadline was selected based on earlier pilot testing of the 

task, which indicated that this deadline was effective at encouraging SAT without reducing 

participants’ accuracy rates in Speed-emphasis condition to near-chance levels. Trials with RTs 

greater than this deadline (20.3% of the trials in the Speed-emphasis condition) were included in 

all behavioral and model-based analyses, as removing them would make RT distributions in the 

Speed-emphasis condition difficult to compare to those in the Accuracy-emphasis condition, and 

would force the formal model of behavioral data (see below) to be fit to truncated distributions.  

 Participants completed 5 functional imaging runs of the task, each of which contained 17 

trials in each of the two conditions, leading to a total sample of 170 trials per person. The 

presentation order of the Speed- and Accuracy-emphasis cues was varied pseudorandomly from 

trial to trial (i.e., a given trial may have the same type of cue as the trial that preceded it, or a cue 

for the alternate condition, with equal probability). Given the fast pace of the task,  two “null” 

trial periods were also pseudorandomly interspersed in each run to compensate for the overlap of 

neural responses between adjacent trials. These “null” trials were simply periods of fixation cross 

presentation that lasted anywhere between 6 and 14 seconds, varying in increments of 2 seconds 
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and with an average duration of 10 seconds. In addition, a fixation cross was presented for 10 

seconds at the beginning and end of each run to improve estimates of baseline neural activity.  

MRI Data Acquisition 

 Participants were scanned with a Siemens Trio 3-T MRI scanner, using a 12-channel 

head coil. Prior to functional imaging, a whole-brain, high-resolution T1-weighted structural 

image was collected (TR = 1650ms, TE = 2.03ms, flip angle = 9°, 160 sagittal slices, 1mm slice 

thickness, 256 field of view, 1mm isotropic voxels) for inter-subject spatial normalization. Each 

functional imaging run included 190 T2*-weighted MR images, collected using an echoplanar 

imaging (EPI) sequence (TR = 2000ms, TE = 25, flip angle = 80°, 34 axial slices, 3mm slice 

thickness, 192 field of view, 3mm isotropic voxels).  

Model-Based Analysis of Behavioral Data 

 Correct and error response time data were fit to the linear ballistic accumulator model 

(LBA: Brown & Heathcote, 2008) in Dynamic Models of Choice (DMC: Heathcote et al., 2018; 

Heathcote, Lin & Gretton, 2017: https://osf.io/pbwx8/), a free set of functions for fitting 

evidence accumulation models in a hierarchical Bayesian framework with the R language (R 

Core Team, 2013). The LBA model frames decisions as a race between two or more 

accumulators that gather evidence at a linear, deterministic rate over time for each response. The 

average rate of evidence accumulation for each accumulator is defined by the “drift rate” 

parameter (v). In a typical implementation, the average rate of accumulation for the correct 

response on a given trial (vc) is estimated separately from the average rate of accumulation for 
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erroneous responses (ve). When one of the two accumulators reaches the threshold for a 

response, determined by a “threshold” parameter (b), the corresponding response is initiated. The 

model also contains parameters for between trial variability in the rate of evidence accumulation 

(distributed normally: sv), between trial variability in the start point of the accumulation process 

(distributed uniformly: A), and the time in an RT that is taken up by peripheral processes 

unrelated to the decision (t0). For the current model fit, vc and ve were allowed to vary by 

stimulus type (many/few) and b was allowed to vary by response type (many/few) to address any 

potential stimulus or response biases. To identify the model, sv for the error accumulator, only, 

was fixed at 1 as a scaling parameter (Donkin, Brown, & Heathcote, 2009).  

Although a large body of work, reviewed in the introduction, has found that thresholds 

(b) are lower under Speed- than under Accuracy-emphasis, more recent work has provided 

evidence that drift rates (vc, ve: Rae et al., 2014) also differ by SAT condition. Furthermore, it is 

also possible that Speed-emphasis reduces non-decision time (t0), as suggested by earlier 

neuroimaging evidence (Rinkenauer et al., 2004). Therefore, in order to select an optimal set of 

LBA parameters to vary by SAT condition, we conducted a small model-selection analysis in 

which five models (named Models A though E) were estimated, and each allowed different sets 

of parameters to vary by SAT: A) threshold only, B) threshold and drift rates, C) threshold and 

non-decision time, D) threshold, drift rates and non-decision time, and E) a “null” model in 

which none of the parameters were allowed to vary by SAT. For all models, a hierarchical 

Bayesian version of the LBA was implemented to estimate posterior distributions over 
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individual-level model parameter values and group-level parameter values, which assumed that 

the individual-level parameter values fell in normal distributions described by a mean (µ) and a 

standard deviation (σ) parameter (Turner, Sederberg, Brown, & Steyvers, 2013). Specific details 

of the estimation procedure and priors are reported in Supplemental Materials. Two standardized 

indices of relative fit for Bayesian models, the Watanabe-Akaike information criterion (WAIC: 

Watanabe, 2010) and deviance information criterion (DIC: Spiegelhalter, Best, Carlin, & Van 

Der Linde, 2002), both indicated that Model B, which only allowed threshold (b) and drift rate 

(vc, ve) parameters to vary by SAT, provided the best fit (Supplemental Table 1), consistent with 

the findings of Rae et al. (2014). Model B was therefore used for all subsequent analyses. 

Although this model selection procedure addressed the relative fit of models with different 

parameter constraints, we also ensured that the model displayed good absolute fit by assessing 

how well it described primary effects in the behavioral data using posterior predictive plots 

(Gelman, Meng & Stern, 1996), as described below in results.  

Inference about parameter value differences between conditions was conducted by 

calculating posterior difference distributions of µ parameter values, counting the proportion of 

samples for which one value was greater than the other, and using these proportions to calculate 

odds ratios (ORs) to quantify evidence for effects. An OR of 5:1, for example, indicates that 

there is a 5 to 1 chance that the difference distribution supports the hypothesis that a difference 

exists. As ORs provide a continuous measure of the degree of evidence for effects (in contrast to 

significance tests), we followed prior work (Winkel et al., 2016) by adopting interpretation 
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guidelines similar to those used by Jeffreys’ (1961) in the context of Bayes factors for categories 

of evidence: positive evidence (OR > 3:1), substantial evidence (OR > 10:1), strong evidence 

(OR > 30:1), and decisive evidence (OR > 100:1). Effects with very weak evidence (OR < 3:1) 

were not interpreted. 

fMRI Pre-processing, GLM Analysis and ROI Selection 

 fMRI analyses were primarily conducted using Statistical Parametric Mapping (SPM8:  

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), but also involved the use of several individual 

programs from the Analysis of Functional Neuroimages (AFNI: Cox, 1996) software package, as 

noted below. Pre-processing involved the following procedures performed using SPM8 

programs: 1) slice timing correction (interpolation to the first slice in the series), 2) realignment 

with the first image in the time series to adjust for subject motion (least-squares rigid-body 

transformation; quality = .99, separation = 4, smoothing = 5.65), 3) co-registration of the 

functional and high-resolution anatomical images (maximization of normalized mutual 

information), 4) spatial normalization of the functional data to the T1 MNI template using the 

high-resolution anatomical image to estimate transformation parameters (12-parameter affine 

registration followed by a nonlinear discrete cosine transform; nonlinear iterations = 16, 

nonlinear regularization  = 1, nonlinear frequency cutoff = 25, 3mm isotropic voxels), and 5) 

spatial smoothing with a 5.65mm FWHM Gaussian kernel. 

 Initial single-subject general linear model (GLM) analyses were conducted to facilitate 

functional ROI selection. Four regressors of interest, convolved with the canonical hemodynamic 

This article is protected by copyright. All rights reserved.



SPEED/ACCURACY TRADE-OFF DIRECTED CONNECTIVITY                                         17 
 

response function (HRF), were included: 1) Speed-emphasis preparatory cues, 2) Accuracy-

emphasis preparatory cues, 3) Speed-emphasis trials, and 4) Accuracy-emphasis trials. In 

addition, motion realignment parameters were included as nuisance regressors, a standard high-

pass filter (128 seconds) was applied to address low-frequency drift, and the AR(1) estimate was 

used to address global autoregressive noise. Following model estimation, statistical maps of 

parameter estimates for three contrasts of interest were calculated at the individual level: 1) a 

contrast to identify regions that displayed greater activity during preparation for Speed-emphasis 

trials (Speed Cue > Accuracy Cue), 2) a contrast to identify regions that displayed greater 

activity during preparation for Accuracy-emphasis trials (Accuracy Cue > Speed Cue), and 3) a 

contrast to identify regions that were primarily involved in the decision process itself, rather than 

in the neural response to the preparatory cue (Trials > Cues).  

As GIMME-MS estimates several features of the data, the number of multiple solutions 

and difficulty with model convergence increases exponentially with the number of ROIs; the 

method is best suited to models involving 6-10 regions (Beltz & Gates, 2017). Although some 

alternative connectivity analysis methods permit the inclusion of many more ROIs (e.g., simple 

correlation, principle components analysis), these methods are limited in their ability to test 

temporal or directional effects, which are of key interest in the current study. Hence, we used 

previous research to select a number of ROIs within the optimal range for GIMME models. Two 

broad categories of ROIs (Supplemental Table 2) were included: 1) regions which had been 

previously linked to the top-down control of SAT and to motor thresholding by prior research, 
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and 2) regions putatively involved in evidence accumulation for the numerosity decision task 

used in the current study. For the former type of ROI, we conservatively selected a handful of 

regions, taking coordinates from prior research in order to directly extend a previous line of work 

on the pre-SMA-linked control of SAT and to facilitate generalization (e.g., avoid making 

inferences unique to the current sample’s characteristics). Regions previously found to be 

involved in strategy adjustment for Speed-emphasis, specifically the right pre-SMA and right 

striatum (Forstmann et al., 2008) and the left and right DLPFC (van Veen et al., 2010), were 

defined as 10mm radius spheres centered about Talairach coordinates from the original studies, 

transformed to MNI coordinates using the procedure proposed by Lancaster et al. (2007). Of 

note, although these regions were selected a priori, analyses of task-related activity drawn from 

them (reported in Supplemental Materials) replicated previous findings; consistent with 

Forstmann et al. (2008), the pre-SMA and striatum, but not the DLPFC, were more active during 

Speed- than Accuracy-emphasis cues. A functional ROI (Accuracy Cue > Speed Cue) 

corresponding to the anterior cingulate cortex (ACC) was also selected because van Maanen et 

al. (2011) provided evidence that this region is involved in trial-to-trial response threshold 

adjustments during Accuracy-emphasis.  

For the latter type of ROI, we combined a priori knowledge with a data-driven approach 

in order to identify regions involved in evidence accumulation during the specific decision task 

used in our experimental paradigm. We first inspected the array of regions that were active 

during decisions (the Trials > Cues contrast, which had greater power due to the increased 
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number of events in each condition) and selected those for which there was strong reason to 

believe they were involved in evidence accumulation, based on evidence from prior research. 

The right insula was selected because a prior study implicated this region in the domain-general 

accumulation of sensory evidence for perceptual decisions (Ho, Brown & Serences, 2009). The 

right intraparietal sulcus (IPS) was selected due to an abundance of evidence that this region 

encodes information about numerosity (Chochon, Cohen, Van De Moortele, & Dehaene, 1999; 

Dormal, Dormal, Joassin, & Pesenti, 2012; Piazza, Pinel, Le Bihan, & Dehaene, 2007) and is 

also involved in evidence accumulation (Kühn et al., 2011; Shadlen & Newsome, 2001). 

Additional details on ROI definition and validation are reported in Supplemental Materials.  

Connectivity Analysis with GIMME-MS 

 Extraction of ROI time series. As a goal of the study was to determine whether 

differences between Speed- and Accuracy-emphasis could be detected in connectivity 

relationships between the pre-identified regions, we sought to fit two uSEM models that would 

primarily reflect connectivity in each condition. Although an approach in which connectivity 

during the cues and decision trials within each condition could also be dissociated may have 

provided insight into changes in connectivity during different processing stages, we were more 

interested in relationships which we expected to persist throughout the cue and decision period 

(i.e., top-down connections that increased baseline activity in putative evidence accumulation 

regions). We therefore collapsed cues and trials from the same SAT conditions in our analysis in 

order to maximize statistical power to detect these relationships and to allow us to identify 
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lagged relationships which may begin during the cue phase and end during the trial phase. First, 

a GLM was fit with methods that were identical to those described above, except that the task 

regressors for cues and trials in the Speed-emphasis condition were left out of the model. As the 

residual images from this model contained variance from the un-modeled Speed-emphasis 

condition, but did not contain variance explained by the Accuracy-emphasis condition or 

nuisance regressors, this time series was used to probe connectivity specific to the Speed-

emphasis condition. Similarly, a second GLM was fit in which only the task regressors for the 

cues and trials in the Accuracy-emphasis condition were left out of the model, and the residual 

time series that resulted was used to probe connectivity specific to the Accuracy-emphasis 

condition. Residual data, averaged within each ROI mask, was extracted from both residual time 

series using AFNI’s 3dmaskave program and entered in to GIMME-MS separately to create a 

Speed-emphasis model and an Accuracy-emphasis model. 

 Search algorithm and solution reduction. GIMME-MS, a free software that is 

programmed in MATLAB (MathWorks, 2010) and calls LISREL (Jöreskog & Sörbom, 1993), 

uses a data-driven search approach to fit uSEM models with contemporaneous (at a given time 

point t) and time-lagged (e.g., t+1) relationships between ROIs in several steps. GIMME-MS 

estimates lagged relationships at the t+1 order, which was reasonable for these data (i.e., 

relationships at the t+2 order were unlikely to be systematically meaningful) because first-order 

models are thought to be sufficient to explain relationships in task-based fMRI data (Beltz & 

Molenaar, 2015).  
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By estimating a model that includes paths relevant to the entire group, and subsequently 

using this model as the starting point for individual-level searches, GIMME’s search method has 

been demonstrated to produce results that are both representative of homogeneous effects that 

are common to the group and of heterogeneity between subjects (Gates & Molenaar, 2012; Beltz 

& Gates, 2017). As the estimation of directional contemporaneous relationships can produce 

multiple equivalent solutions (e.g., those in which ROI A predicts ROI B at the same time point 

vs. the reverse effect), GIMME-MS offers an improvement on the previous version of GIMME 

by generating all possible equivalent solutions for comparison (Beltz & Molenaar, 2016). 

 First, as in the original GIMME program (Gates & Molenaar, 2012), GIMME-MS fits a 

“null” model to the single-subject covariance matrices, and uses Lagrange multiplier tests 

(Sörbom, 1989) to determine which one of the possible contemporaneous or lagged relationships, 

if estimated, would improve model fit the most for the sample overall (in this case, for 100% of 

participants). A new model that contains the selected path is estimated, and Lagrange multiplier 

tests are again used to select the remaining path that would best improve model fit for the group. 

This search procedure is repeated until Lagrange multiplier tests indicate that model fit for the 

group would no longer be significantly improved by the addition of any remaining paths. In the 

event that two paths would produce equivalent improvements in fit at a given step, which most 

frequently occurs when a contemporaneous path has a large Lagrange multiplier test early in the 

search process (Beltz & Molenaar, 2016), GIMME-MS estimates two separate models in which 

each direction of the path is estimated in a separate model before the search process continues for 
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each model. This procedure is repeated for each instance of equivalent solutions during the 

search process, leading to the generation of multiple group-level models. Third, a “trimming” 

procedure is employed to remove paths that may have become non-significant during the search 

process. 

Finally, an individual-level search process is enacted that follows a procedure parallel to 

the group procedure. The search begins with a model that only includes the group-level paths, 

and Lagrange multiplier tests are again used to free paths that would best improve model fit for 

the individual until fit would no longer be significantly improved by the estimation of any 

remaining paths. Instances in which two paths produce equivalent improvements in fit at the 

individual level are dealt with in the same way as those at the group level: both solutions are 

estimated and parallel search processes are conducted until the fit for all possible individual-level 

solutions can no longer be improved. Finally, after all individual-level models were estimated for 

all group-level model solutions that were previously identified, models were checked to ensure 

that the trimming process was successful and that the estimation of model parameters was 

accurate, in accordance with common practices for time series analysis (Lütkepohl, 2005). The 

best individual-level solutions for each group-level solution were selected using AIC (Beltz et 

al., 2016). Following this, the AIC was averaged across participants for each group-level solution 

for comparison (displayed in Supplemental Table 3) and used to select the best-fitting model.   

Summary analyses of connectivity maps. After the best-fitting models were selected for 

each Speed/Accuracy emphasis condition, several analyses were conducted to meet the study’s 
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goals. First, to identify major directed connections of regions putatively involved in the control 

of SAT and those putatively involved in evidence accumulation for the decision, group 

frequency maps (e.g., Hillary et al., 2011), which represent paths that are present for various 

proportions of the sample, were generated for each condition. Second, to investigate whether the 

between-condition differences in individual-level paths shown on these maps were statistically 

meaningful, McNemar’s mid-p test for binary matched-pairs data (Fagerland, Lydersen & Laake, 

2013) was applied to determine whether a path was present for a larger proportion of the sample 

in one of the two conditions. Finally, to determine the importance of the pre-SMA relative to 

other regions in the network, we calculated the total edges, a network metric which was simply 

defined as the total number of contemporaneous and lagged connections (excluding 

autoregressive paths) in any direction, for each region. This metric was entered into repeated 

measures ANOVAs to quantify differences between ROIs and Speed/Accuracy conditions. 

Regions with a greater number of connections in the network were assumed to play an outsized 

role in the modulation of SAT. We therefore expected that the pre-SMA would show the highest 

number of total edges, and that individual differences in total edges for this region would 

correlate with SAT-related changes in relevant LBA model parameters (e.g., b and v).  

Brain-Behavior Correlations 

  We conducted a between-subjects correlation analysis to identify relationships between 

changes in LBA model parameters (i.e., response threshold and drift rate) and connectivity 

metrics. In order to compare our results to those reported by Forstmann et al. (2008), we also 
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examined correlations between LBA parameter changes and univariate effects within the 

striatum and pre-SMA ROIs. However, as the small sample of participants in the current study 

may lead to Type II errors or unstable estimates of correlation coefficients, we note that these 

results should be interpreted with some caution. 

Individual-level parameter estimates from hierarchical models are not independent, 

making them inappropriate for entry into traditional correlational tests (Boehm, Marsman, 

Matzke, & Wagenmakers, under review), and our sample was relatively small for correlational 

analyses. Therefore, a “plausible values” analysis (Marsman, Maris, Bechger & Glas, 2016; Ly 

et al., 2017), implemented with functions in DMC, was conducted to estimate posterior 

distributions of the population’s correlation coefficient (Pearson’s r) for the relationship between 

changes in LBA model parameters and neural covariates. This analysis first calculates the 

posterior distribution for the sample’s correlation coefficient by assessing the correlation 

between the neural covariate and each individual-level posterior sample, and then follows 

methods outlined by Ly, Marsman and Wagenmakers (2016) and Ly et al. (2017) to estimate 

posterior distributions for the population. Calculation of the population posterior used a uniform 

prior, spanning r values from -1 to 1. Similar to our tests of parameter value differences between 

conditions, we used ORs to make inferences about the level of evidence for correlational 

relationships. These ORs were calculated by comparing the proportions of the posterior density 

that were above, vs. below, 0, and were interpreted using the same criteria outlined above for 

strength of evidence (e.g., >3:1 = “positive”).  
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Results 

Behavioral and LBA Model Results 

 Behavioral summary statistics demonstrated that participants successfully implemented a 

speed/accuracy trade-off in response to the experimental manipulation. In accuracy rate, there 

were main effects of Stimulus, F(1,17)=15.88,η2 =.48,p<.001, in which individuals were more 

accurate on “many” trials, and of Speed/Accuracy condition, F(1,17)=23.82,η2 =.58,p<.001, in 

which individuals were more accurate in the Accuracy-emphasis condition. In mean RT, main 

effects of Stimulus, F(1,17)=24.02,η2 =.59,p<.001, and Speed/Accuracy condition, 

F(1,17)=15.40,η2 =.48,p=.001, were also detected; individuals had faster responses to “many” 

stimuli and had faster responses in the Speed-emphasis condition.  

Joint cumulative distribution function plots (Figure 2a) suggested that the LBA model 

provided a good description of differences in the accuracy and latency of responses between 

SAT conditions, on aggregate. The most apparent misfit occurred for the longest quantiles of 

error trials. Assessments of how well the model accounted for the data at the individual level 

(Supplemental Materials) confirmed that the model provided a good description of SAT-related 

increases in RT and accuracy for every participant in the sample. Hence, data from all 

participants was retained for model-based analyses. 

 Posterior distributions for group µ LBA parameters of interest are displayed in Figure 2 

as violin plots, which contain a box plot of the samples displayed within a kernel density plot, in 

order to demonstrate the uncertainty in parameter estimates and degree of overlap. As expected, 
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there was decisive evidence for reductions in response boundary (b) in the Speed-, relative to 

Accuracy-emphasis, condition (OR>1000:1). There was also strong evidence for a response bias 

in b (OR=43.4:1), where b for “many” was lower than b for “few”, and positive evidence for an 

interaction effect (OR=3.8:1), in which this bias appeared to be more pronounced in the Speed-

emphasis condition. There was decisive evidence for slower accumulation of correct information 

(vc) in the Speed-, relative to Accuracy-emphasis, condition (OR=136.4:1). There was also 

strong evidence for a stimulus bias (OR=38.7:1), with faster vc for “many”, relative to “few” 

stimuli, and positive evidence for an interaction (OR=5.9:1), suggesting this bias was also more 

pronounced under Speed-Emphasis. There was weak evidence for a Speed/Accuracy condition 

effect (OR=1.7:1) or interaction effect (OR=1.7:1) in ve, but decisive evidence for a stimulus 

bias (OR=151.5:1), with faster ve for “few”, relative to “many” stimuli. In sum, the model-based 

analyses indicate that the SAT effects in behavioral summary statistics can be explained by both 

lower b and slower vc, consistent with the findings of Rae et al. (2014). 

Directed Functional Connectivity Analysis  

 Model comparison and selection. The search algorithm produced four group-level 

solutions (hereafter denoted as S1-S4) for each Speed/Accuracy emphasis condition, and 

multiple solutions for almost all individual-level models derived from these group-level solutions 

(ranging up to 35 per person). All group-level solutions had relatively few paths (Figure 3a), and 

all of these paths involved only the right DLPFC, left DLPFC, pre-SMA and IPS ROIs. 

Inspection of the group paths revealed that the group-level solutions were mostly identical 
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between Speed/Accuracy conditions, with the exception of S3 in the Speed-emphasis condition, 

which contains a lagged path from the IPS to pre-SMA that is not present in S3 for the Accuracy-

emphasis condition. However, AIC suggested that there were substantial differences in how well 

each of these group-level solutions fit the data from each condition (Supplemental Table 3); S4 

was preferred by AIC for the Speed-emphasis condition, while S1 was preferred for the 

Accuracy-emphasis condition. These models were therefore selected for further analysis. 

 Frequency and between-condition differences in major directed connections. Figure 3b 

displays group frequency maps for the selected model in each condition, which denote paths that 

were statistically significant (p<.05) for the proportion of individuals noted in the map. As uSEM 

models are, fundamentally, individual-level models, statistical significance testing occurs at the 

level of individual participants. Group frequency maps, therefore, provide an estimate of the 

proportion of individuals in the population that display these significant relationships. We 

interpreted all group-level paths, which were statistically significant for every individual in our 

sample, and all “majority paths”, which were significant for at least 50% of the group, as these 

paths would be most likely to generalize to other groups of subjects from the same population as 

our sample.  

The group frequency maps indicated several notable findings. First, the right and left 

DLPFC do not display major direct inputs to either the IPS or insula, and appear to be relatively 

isolated from most other regions in the network. However, the DLPFC does communicate with 

the rest of the network through the right DLPFC’s direct input to the pre-SMA. The pre-SMA, in 
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turn, provides major input to both the IPS (contemporaneous) and insula (lagged). Inspection of 

the standardized beta weights of these input paths in both the Speed- and Accuracy-emphasis 

conditions (Supplemental Table 4) revealed that they were positive for the vast majority of 

participants, suggesting that these connections were excitatory. Second, the ACC receives input 

from another putative top-down control region, the pre-SMA, but also receives input from the 

IPS and displays a lagged output to the insula. Third, despite previous evidence that greater 

structural connectivity between the pre-SMA and the striatum predicts more effective control of 

SAT (Forstmann et al., 2010), there were no directed functional connections between these two 

structures that were consistently present among most members of the group. Closer inspection of 

individual models revealed that connections between these structures were, in fact, common; the 

majority of individuals displayed at least one contemporaneous or lagged connection between the 

pre-SMA and striatum in both conditions (94% in Accuracy-emphasis, 83% in Speed-emphasis). 

Therefore, the present results suggest that these structures display functional connectivity with 

each other during the control of SAT, but the lack of a majority path between them indicates that 

the directionality and temporal characteristics (contemporaneous vs. lagged) of these connections 

are heterogeneous.  

 For group-level paths, the only clear difference between Speed-emphasis and Accuracy-

emphasis conditions was the change in directionality of the connection between the left and right 

DLPFC. For individual-level paths, no p-values from McNemar’s tests of SAT condition-related 
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differences survived correction for multiple comparisons using the Benjamini-Hochberg method 

(Benjamini & Hochberg, 1995).  

 Total edges and network hubs. When the total edges of each participant were entered into 

an ROI by Speed/Accuracy condition ANOVA, there was a significant main effect of ROI, 

F(6,102)=8.42,η2 =.33,p<.001, but there was no main effect of Speed/Accuracy condition or 

interaction between the two factors. Inspection of Figure 4 indicates that the effect of ROI was 

primarily driven by the pre-SMA, which displayed several more connections, on average, than 

the other ROIs, suggesting that this region is a major hub of the network. To further probe this 

effect, and ensure that the pre-SMA was a hub for the majority of the sample (i.e., that the effect 

is not driven by a few participants), individuals’ hubs were defined as the region, or regions, that 

displayed the most total edges for that individual. Consistent with the group result, the pre-SMA 

was the most common hub (Supplemental Table 5); this region, either by itself or in combination 

with the ACC, served as a network hub for the majority of participants in both the Speed-

emphasis (56% of participants) and Accuracy-emphasis (67% of participants) conditions. Of 

note, the ACC appeared to be the next most common hub in both conditions (29% in Speed, 23% 

in Accuracy), consistent with the relatively large number of edges it displays compared to most 

other regions (Figure 4). Thus, results suggest that the pre-SMA, and, to a much lesser extent, the 

ACC, appear to act as major hubs of the network of regions investigated in the current study.  

Brain-Behavior Correlations 
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Changes in the response threshold (b) and correct drift rate (vc) parameters, which were 

both reduced under Speed-emphasis, were used to investigate brain-behavior correlations. 

Posterior distributions from the Speed-emphasis condition for each parameter were averaged and 

subtracted from the average of those from the Accuracy-emphasis condition, and the resulting 

change distributions were entered into the plausible values analysis. Thus, a positive correlation 

would indicate that larger values of the neural covariate predict a larger change in b or vc 

between Speed- and Accuracy-emphasis conditions. On the basis of the substantive results 

described above, several covariates were used. First, we examined whether the current study’s 

fMRI dataset replicates results reported by Forstmann et al. (2008), in which univariate 

activation within the striatum and pre-SMA correlates with changes in the b parameter. Second, 

given the apparent importance of the pre-SMA as a hub region, individuals’ total edges for this 

region (averaged between conditions) were used as a covariate.  

 Use of these covariates revealed several relationships for which there was at least positive 

(OR>3:1) evidence (Figure 5). Similar to findings of Forstmann et al. (2008), the magnitude of 

decreases in the b parameter appeared to be positively related to Speed Cue > Accuracy Cue 

univariate contrast values for both the pre-SMA (OR=5.1:1) and striatum (OR=12.8:1). 

However, there was little evidence that univariate fMRI effects in either region were related to 

changes in the vc parameter (all ORs<3:1). There was moderate evidence that individuals’ total 

number of edges for the pre-SMA was positively related to the magnitude of change in the vc 

parameter (OR=4.8:1), but little evidence for the same relationship with change in b (OR=1.4:1). 
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Hence, greater complexity of the pre-SMA’s connectivity, between subjects, predicts greater 

reductions in the quality of evidence under Speed-emphasis.  

Discussion 

 The current study revealed directional connections between brain regions involved in 

SAT by applying GIMME-MS (Beltz & Molenaar, 2016) to fMRI time series data collected 

while participants were instructed to alternately emphasize speed or accuracy during a 

numerosity decision task. A behavioral analysis using the LBA model (Brown & Heathcote, 

2008) demonstrated that the experimental paradigm was effective at reducing response 

thresholds and the quality of decision evidence in the speed-emphasis condition, consistent with 

previous research on SAT (Rae et al., 2014). ROIs consisted of regions found to be involved in 

the control of SAT and motor thresholding in prior studies (DLPFC, pre-SMA, striatum, ACC: 

Forstmann et al., 2008; van Veen et al., 2010; van Maanen et al., 2011), as well as regions 

previously found to be involved in evidence accumulation for decisions (IPS, right insula: Ho et 

al., 2009, Kühn et al., 2011; Shadlen & Newsome, 2001).  

GIMME-MS produced a large number of equivalent solutions at the group and individual 

levels, likely reflecting the substantial time-locked (i.e., contemporaneous) connections between 

ROIs that occur during the completion of a directed task. Using validated procedures (e.g., Beltz 

& Molenaar, 2016), these solutions were subsequently pared down to an optimal set, and used 

for inference. Although it is not possible to establish a precise level of confidence for the choice 

of these solutions, we note that the simulation study conducted by Beltz and Molenaar (2016) 
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demonstrated that AIC was able to recover the correct model in all cases in which it was used, 

and that the true model parameters from the simulations were within the 95% confidence 

intervals of model parameters recovered in the AIC-selected model. Thus, GIMME-MS was vital 

to making accurate and informed inferences about directed functional connectivity. This is a 

unique strength of this method in applications where estimates of directionality are needed, as 

most connectivity approaches do not consider directionality, let alone produce sets of models to 

verify it (Smith et al., 2011).  

 The most noteworthy findings from this analysis concerned the respective roles of the 

DLPFC and pre-SMA. Although previous work had found increased connectivity between the 

DLPFC and a broad set of regions involved in decision processing during speed emphasis (van 

Veen et al., 2008), the uSEM analyses implemented in GIMME-MS suggested that the DLPFC 

shows few direct connections with other putatively-related ROIs. Rather, it appears to influence 

other ROIs through its top-down influence on the pre-SMA, which, in turn, shows directional 

connections to regions thought to be involved in evidence accumulation (the IPS and insula) and 

others involved in top-down control (the ACC). These connections appeared to be top-down in 

nature, with the exception of a time-lagged path from the IPS to the pre-SMA, which may serve 

as a “feedback” process for the contemporaneous path in the opposite direction. Further, analyses 

of a graph theoretical metric (total edges) indicated that the pre-SMA, but not the DLPFC, is a 

major hub in the network of SAT-associated regions, as demonstrated by its disproportionate 

number of connections and hub status for the majority of individuals.  
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Taken together, this pattern of findings suggests that the pre-SMA serves as the primary 

region involved in the coordination of SAT, consistent with previous research using univariate 

fMRI (Forstmann et al., 2008; 2010; 2011; Mansfield et al., 2011) and transcranial magnetic 

stimulation (Berkay et al., 2018; Georgiev et al., 2016; Tosun et al., 2017). It makes a crucial 

extension of this work by being the first directed functional connectivity analysis to provide 

evidence that the pre-SMA implements adjustments to SAT by sending top-down control signals 

to an array of other regions, and coordinates SAT in response to a higher-order control signal 

from the DLPFC. The finding that beta weights of the pre-SMA’s top-down connections to 

regions putatively involved in gathering evidence for the decision (IPS, insula) were positive for 

most individuals is consistent with numerous theories positing that a non-selective excitatory 

signal modulates baseline neural activity in evidence accumulation regions (Furman and Wang, 

2008; Roxin & Ledberg, 2008; Standage, Blohm & Dorris, 2014; Standage, Wang & Blohm, 

2014 van Veen et al., 2008). Although the assumed status of the pre-SMA as a “motor region” 

may cast doubt on the idea that it controls areas thought to be involved in sensory processing, the 

pre-SMA has been previously implicated in a variety of non-motor functions, including mental 

rotation and sequence processing (Cona, Marino & Semenza, 2017; Cona & Semenza, 2017; 

Leek, Yuen & Johnston, 2016). We did not directly assess structural connections between the 

regions used in our connectivity analysis to demonstrate their biological plausibility, but doing so 

is a crucial next step for future work. 
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Notably, the current data are not necessarily inconsistent with the original “cortical” 

hypothesis (Bogacz et al., 2010; van Veen et al., 2008) that the DLPFC, due to its role in context 

processing (Miller & Cohen, 2001), is the source of signals controlling SAT. Rather, they 

suggest that the pre-SMA may mediate top-down signals from the DLPFC to the rest of the 

cortex. The previous connectivity study by van Veen et al. (2008) revealed that the DLPFC’s 

connections with the pre-SMA and other regions involved in decision making were stronger 

under speed-emphasis. However, as the analysis was limited to connections between the DLPFC 

and other regions, and did not address their directionality, it would not have been able to uncover 

evidence for a mediating role of the pre-SMA. Thus, the ROI-based directed connectivity 

analysis approach used in the current study provides complementary information to this previous 

analysis and reveals distinct mechanistic roles for the DLPFC and pre-SMA in the control of 

SAT that would not have been uncovered otherwise. 

Further, the between-subjects correlation analyses revealed an intriguing distinction 

between univariate and connectivity measurements of pre-SMA activity, as it relates to LBA 

model parameter changes in SAT. Univariate activation estimates in the pre-SMA appeared to be 

related to the magnitude of individuals’ reductions in response threshold (b), consistent with 

previous research (Forstmann et al., 2008), but individuals’ number of connections with the pre-

SMA was only related to reductions of evidence quality (vc) in the speed-emphasis condition. In 

the context of theories that implicate reduced distance-to-threshold as the primary mechanism of 

SAT, this dissociation may be interpreted as indicating that the pre-SMA’s broad excitatory 
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influence on other regions plays a crucial role in speed-emphasis, but that it may have a negative 

effect on decision making processes if the influence is too broad. If the pre-SMA interacts with a 

wider array of structures in some individuals than in others, it may generate more neural noise 

under speed emphasis in these individuals, leading to less efficient processing of decisions. 

Given that other models and empirical studies suggest that speed emphasis both reduces 

distance-to-threshold and impacts the rate of evidence accumulation (Heitz & Schall, 2012; Rae 

et al., 2014), the dissociation may provide clues as to the neural correlates of changes in these 

distinct features of accumulator models. 

The current findings also have implications for the “striatal” theory of SAT, which holds 

that the striatum receives a top-down signal from a control region, such as the pre-SMA, under 

speed emphasis that causes the basal ganglia to release broad inhibitory influence over the 

cortex, lowering the threshold for motor responding (Forstmann et al., 2008). In apparent 

contradiction with work that found a relationship between individuals’ changes in response 

thresholds and the structural integrity of connections between the pre-SMA and striatum 

(Forstmann et al., 2010), we found no major directional connections between these two 

structures. The vast majority of subjects displayed at least one contemporaneous or lagged 

connection between the pre-SMA and striatum, but the temporal characteristics and directionality 

of the connection differed between subjects. Thus, functional connectivity between these 

structures may be heterogeneous between participants, potentially reflecting strategy differences 

in the implementation of SAT (e.g., a sub-group of individuals may increase activity in 
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thresholding circuitry via the striatum, but other individuals may use strategies that do not 

involve the striatum). Another possibility is that the functional relationship between these 

structures changes dynamically over the course of the task (e.g., shifting between excitatory and 

inhibitory influences at different processing stages). Modifications to uSEM’s application would 

be required to test those hypotheses because the method assumes stationarity (i.e., that the 

character of relationships between ROIs does not change over time) for each time series. Finally, 

as the current analysis was limited to a subset of a priori ROIs, we cannot rule out the possibility 

that effects that are consistent with the striatal account of SAT may have become apparent had 

more motor regions been included in the analysis (e.g., primary motor cortex). 

 In addition to providing insights about the neural mechanisms of SAT, the current results 

have two major implications for studies employing connectivity analyses, both in the SAT 

literature and elsewhere. First, the results demonstrate the utility of the uSEM and GIMME 

methods for both providing insight into the directionality of connections and revealing 

connectivity characteristics that are common to the group vs. unique to individuals. The former 

strength of these methods allowed for a compelling account of the cascade of top-down 

regulation in the network of regions involved in SAT. The latter allowed for analyses that 

assessed how parameters from a formal cognitive model relate to individual differences in 

connectivity, in line with recent calls for a “model-based” cognitive neuroscience (Forstmann & 

Wagenmakers, 2015). It also allowed heterogeneous relationships between ROIs (e.g., between 

the striatum and pre-SMA) to be characterized as such. Second, the findings of multiple 
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equivalent solutions at both the group and individual levels strongly suggest that GIMME-MS 

and solution reduction strategies should be implemented when using uSEM to infer directional 

connectivity from fMRI data. The use of these strategies is particularly important when the 

direction of connections is highly relevant to the research question, as in the current case. 

Furthermore, as the majority of paths in the study were contemporaneous, and as previous 

simulations demonstrated that this feature is likely to lead to multiple solutions (Beltz & 

Molenaar, 2016), our findings underscore the need to explicitly address multiple solutions in 

situations where contemporaneous connections are dominant. 

Although the current study focused on SAT-related connectivity during both cues and 

trials, a pressing question for future work is whether connectivity properties differ between these 

distinct processes. A related question is whether trial-to-trial adjustments in response thresholds 

that occur for reasons beyond experimental manipulations of SAT (e.g., post-error increases in 

thresholds; Dutilh et al., 2012) can be linked to distinct connectivity patterns. Future studies may 

be able to investigate these questions by integrating methods which explicitly model stimulus 

input, such as extended-unified SEM (euSEM: Gates et al., 2011) with GIMME-MS. Models that 

include stimulus input may also be able to address whether features of the input HRF beyond 

magnitude (e.g., onset time or duration) influence connectivity. However, given that these 

extensions increase the complexity of already-complex uSEM models, implementing them 

would require careful consideration of model identifiability and, likely, the inclusion of a 

relatively small number of ROIs.  

This article is protected by copyright. All rights reserved.



SPEED/ACCURACY TRADE-OFF DIRECTED CONNECTIVITY                                         38 
 

The current findings are compelling, but some special considerations and limitations are 

relevant to their interpretation. First, the sample of participants was relatively small. However, as 

the time series data used in our analysis had many more observations than time series data 

previously used to validate the GIMME/uSEM method (60-200 time points, vs. the 950 time 

points used in the current study: Gates & Molenaar, 2012; Lane et al., 2018), this analysis likely 

had relatively high power to detect functional connections between ROIs at the individual 

subject level. As accurate recovery of connections present in a group can be obtained with as few 

as 10 subjects (Gates & Molenaar, 2012), we can be reasonably confident that the path counts 

reported in the group frequency maps closely approximate the true number of connections in the 

sample. Second, as the sample was two-thirds female, it is possible that results may not 

generalize well to other samples with more male participants. Third, the between-subjects 

correlation analyses were unable to identify strong links between connectivity metrics and LBA 

model parameters, potentially due to the relatively small participant sample size. Fourth, 

although the time series data entered into the analysis were not deconvolved with the HRF, there 

is some indication that consideration of the HRF may impact inferences drawn from similar 

connectivity analysis methods (e.g., Granger causality; Wu et al., 2013). Although the 

implications of this work for GIMME/uSEM-based methods are unclear, it underscores the need 

for future systematic exploration of how de-convolution may alter results from these methods. 

Fifth, the procedure used to investigate changes in connectivity between speed and accuracy 

conditions did not reveal many differences. This was surprising, because cues that encourage 
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speed-emphasis, relative to accuracy-emphasis, have been found to increase univariate activation 

of the pre-SMA in both previous work (Forstmann et al., 2008) and the current study (see 

Supplemental Materials), suggesting that the top-down relationship between the DLPFC and pre-

SMA should become stronger in this condition. However, two methodological details may 

explain this apparent discrepancy. It is possible that the level of pre-SMA activation detected by 

univariate methods does not reflect the pre-SMA’s covariation with other ROIs. Moreover, given 

that uSEM uses information from the entire time series, rather than just that associated with 

specific events, the directed connections it reveals may be those that are most stable across the 

time series, rather than context-specific connections associated with these events. Thus, as 

outlined above, data from this study should be interpreted together with complementary work 

that used methods of assessing context-specific connectivity in SAT (e.g., van Veen et al., 2008). 

Sixth, we relied on previous fMRI research on SAT to select a small number of ROIs for our 

connectivity analysis rather than taking a full-brain data-driven approach agnostic to prior 

findings. As a result, the regions we included almost certainly represent only a small portion of 

the regions that are essential to complete the decision task, and our results may have been 

different had we used a connectivity analysis approach which allowed inclusion of more ROIs. 

Our current approach allowed us to directly assess whether patterns of connectivity were 

consistent with previous theories of the neural basis of SAT, but it also risked the possibility of 

entrenching these theories by restricting the ROIs included in the analysis. As this trade-off 

between specificity in providing tests of existing theories and sensitivity to detecting patterns 
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that may inform alternative theories is inherent in the scientific process, this issue must be 

addressed by future work which complements ours by taking a large-scale network-based or 

exploratory approach. Seventh, the numerosity task used in this study is different from decision 

tasks used in prior work on SAT; several previous studies have used the “moving dots” task, in 

which participants decide whether a cloud of dots, some of which are moving at random while a 

subset moves in a single direction, appears to move to the left or right (Forstmann et al., 2008; 

2010; 2011; Ivanoff, Branning & Marois, 2008; van Maanen et al., 2011), and van Veen et al. 

(2008) used a modified version of the Simon task, in which participants had to respond as to the 

color of a square presented to the right or left of a fixation point. Although we assumed herein 

that brain regions involved in cognitive control during our numerosity task overlapped with those 

identified in prior studies, it is possible that different systems may be involved, requiring 

replication of our findings in other decision paradigms.  

Finally, as our analysis focused heavily on explanations for SAT that adopt an 

accumulate-to-threshold framework, it may be difficult to extend our inferences to theories of 

SAT rooted in attractor models (e.g., Furman and Wang, 2008; Roxin & Ledberg, 2008; 

Standage et al., 2014). Relatedly, our results do not address another leading theory of SAT, 

which posits that the subthalamic nucleus (STN), in response to a control signal from the ACC or 

pre-SMA, raises response thresholds under accuracy-emphasis by inhibiting motor circuitry 

(Bogacz et al., 2010; Frank, Scheres & Sherman, 2007; Frank et al, 2015). We did not include 

the STN in this analysis because of evidence that the spatial resolution provided by a 3-Tesla 
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MRI scanner is not high enough to effectively distinguish STN activity from that of surrounding 

subcortical structures (de Hollander, Keuken & Forstmann, 2015). However, a recent study using 

ultra-high resolution (7-Tesla) MRI found evidence of functional connectivity between the ACC 

and STN (Keuken et al., 2015). Although the current analysis did not reveal a clear role for the 

ACC, this prior work suggests that the ACC may be involved in shifting response thresholds 

under accuracy emphasis through its influence on the STN. Thus, future work integrating ultra-

high resolution functional imaging with connectivity analyses may be able to assess the role of 

the STN in the larger network. 

In sum, we used a state-of-the-art combination of the uSEM and GIMME connectivity 

analysis methods (Gates & Molenaar, 2012), and novel approaches for selecting optimal 

solutions among models (Beltz & Molenaar, 2016), to provide an informative account of 

directional relationships between brain regions involved in the control of SAT, and the pre-SMA 

in particular. This analysis both demonstrated the need for multiple solution reduction 

procedures when assessing cross-sectional path models of fMRI connectivity, as these 

procedures provide a potent tool for establishing evidence for the directionality of functional 

connections, and allowed us to make several substantive discoveries. We found evidence that the 

pre-SMA is the primary region involved in the top-down coordination of SAT through its 

influence on a broad set of other brain areas, but that this region may receive higher-order top-

down control signal from the DLPFC to trigger strategy changes. Combined with findings 

suggesting that increases in striatal output under speed emphasis may also drive SAT, the results 
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are consistent with the unifying account of Standage, Blohm and Dorris (2014), who posit that 

SAT may be governed by the modulation of activity in both evidence accumulation and 

thresholding circuitry. Lastly, as GIMME-MS allowed us to obtain a formal group-level model 

that putatively explains directional relationships between the DLPFC, pre-SMA and IPS during 

SAT, this model can now be fit to other data sets in confirmatory analyses that can both test 

whether our results are robust and extend them to answer new questions. In this way, GIMME-

MS provides a model-based approach to directional connectivity analysis that can explicitly 

contribute to the growth of cumulative knowledge about SAT and other cognitive phenomena. 
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Figure Legends 

Figure 1. Schematic of the behavioral task and fMRI paradigm timing. 
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Figure 2. Plots illustrating model fit and posterior distributions of LBA parameter values. a) 

Cumulative probability of a response plotted against RT for 5 main RT quantiles (dots: 

.10,.30,.50,.70,.90) and for smaller, 1 percent quantiles (lines), for each Speed/Accuracy 

condition and type of stimulus: Grey = empirical data, Black = posterior predictive data from the 

LBA model, Solid lines = “few” responses, Dotted lines = “many” responses. b) Violin plots, 

which display box plots of posterior samples within kernel density plots of the same samples, of 

group µ estimates of the b parameter for “few” and “many” responses. For all violin plots: Dark 

gray = Speed-emphasis, Light gray = Accuracy-emphasis. c) Violin plots of group µ estimates of 

the vc parameter for “few” and “many” stimuli. d) Violin plots of group µ estimates of the ve 

parameter for “few” and “many” stimuli. 
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Figure 3. Group-level path modeling results from GIMME-MS. a) Multiple group-level 

solutions for the Speed- and Accuracy-emphasis connectivity models. Black lines denote 

contemporaneous paths while grey lines denote lagged paths. Only the four ROIs, out of seven 

total, that were involved in the relatively sparse group models are shown. b) Group frequency 

maps of all contemporaneous (Black) and lagged (Grey) group-level paths and majority 

individual-level paths (present in >50% of the sample) for the best-fitting models of the Speed- 

and Accuracy-emphasis conditions. Returning arrows indicate autoregressive paths. LDPC = left 

DLPFC; RDPC = right DLPFC, pSMA = pre-SMA; ACC = anterior cingulate; INS = insula; Str 

= striatum; IPS = intraparietal sulcus 
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Figure 4. The total number of edges of each region for Speed-emphasis and Accuracy-emphasis 

conditions. Triangles represent the values of each individual. Circles represent the group mean, 

with error bars indicating 95% confidence intervals. LDPC = left DLPFC; RDPC = right 

DLPFC, PSMA = pre-SMA; ACC = anterior cingulate; INS = insula; STRI = striatum; IPS = 

intraparietal sulcus 
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Figure 5. Scatterplots with the mean of individuals’ posterior distributions of changes in LBA 

parameter values (Accuracy – Speed) on the y-axis and neural covariates on the x-axis for all 

relationships with at least positive (OR>3:1) evidence. Density plots to the right of each 

scatterplot represent the posterior distribution of the Pearson’s r value for each relationship. 
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