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ABSTRACT 

 The photoactivatable amino acid p-benzoyl-L-phenylalanine (pBpa) has been used for the 

covalent capture of protein-protein interactions (PPIs) in vitro and in living cells. However, this 

technique often suffers from poor photocrosslinking yields due to the low reactivity of the active 

species. Here we demonstrate that the incorporation of halogenated pBpa analogs into proteins 

leads to increased crosslinking yields for protein-protein interactions. The analogs can be 

incorporated into live yeast and upon irradiation capture endogenous PPIs. Halogenated pBpas 

will extend the scope of PPIs that can be captured and expand the toolbox for mapping PPIs in 

their native environment. 
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INTRODUCTION 

 Transient protein-protein interactions (PPIs) are critical for the precise flow of 

information in cellular processes, and misregulation of these interactions have been implicated in 

an array of human diseases.1-4 There is great interest in methods to successfully detect and 

characterize these interactions. This is particularly true because the often short (ns-ps) lifetimes 

and moderate strengths (micromolar to millimolar dissociation constants) of these PPIs makes 

them difficult to study in their native environment using traditional biochemical techniques.5-9 

With the advance of amber nonsense suppression, photo-activatable unnatural amino acids 

(UAAs) such as p-benzoyl-L-phenylalanine (pBpa) have been incorporated into proteins and 

used to capture transient, moderate affinity interactions for mechanistic purposes.10-28 For 

example, our lab and others have utilized pBpa to interrogate the interactions involved in a 

variety of different cellular processes, such as those between transcriptional activators and their 

coactivator binding partners required for transcriptional initiation and those between chaperones 

and their substrates required for proper protein folding.29-34  

 pBpa is activated for crosslinking through exposure to UV light (350-365 nm).  Upon 

irradiation, the benzophenone carbonyl undergoes an n to π* transition to form a diradical 

species, and the triplet state can abstract hydrogen atoms from activated C-H bonds and 

recombine to form a covalent adduct [Fig. 1(A)].  If an activated C-H bond is not available, the 

triplet state will relax back to the ground state and can be reactivated.35-36  As a result, pBpa 

undergoes minimal side reactions with solvent, making it particularly useful for in in vivo 
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applications and for interaction surfaces where considerable water is present. However, the low 

molar absorptivity and quantum yield (εmax < 300 M-1cm-1; Φ = 0.05-0.4) of pBpa often limits 

crosslinking yield. For example, significant starting pBpa-containing protein is often observed in 

experiments (Fig. S1). 

 Early mechanistic studies of benzophenone suggest that the incorporation of electron-

withdrawing groups (EWGs) onto one or more of the aromatic rings decreases the energy barrier 

for the n to π* transition and concomitantly increases the rate of hydrogen atom abstraction.35-39 

Accordingly, we hypothesized that pBpa analogs substituted with electron-withdrawing groups 

would increase crosslinking yields [Fig. 1(B)]. Here, we demonstrate that halogenated pBpa 

analogs can be incorporated into live yeast cells using the bioorthogonal Escherichia coli tyrosyl 

tRNA/tRNA synthetase (tRNATYR
CUA/TyrRS) system and can capture in vivo transcriptional 

activator-coactivator PPIs. Additionally, the crosslinking yields for EWG-modified pBpa is 

substantively enhanced. 

 

RESULTS AND DISCUSSION 

 The design of pBpa analogs containing EWGs was influenced by the crystal structure of 

the E. coli tyrosyl tRNA synthetase that would be used for incorporation.40 Examination of the 

structure suggested that the active site would likely accommodate substituents at the para 

position of the distal ring, but that meta substituents would be more likely to experience steric 
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clashes (Fig. S2).41  Seven mono-substituted pBpa analogs containing halogen moieties (Cl, F, 

Br, and CF3) at either the meta or para positions of the benzophenone ring were prepared via an 

air-tolerant carbonylative Suzuki-Miyaura coupling with mono-substituted boronic acids and 4-

iodo-L-phenylalanine [Fig. 1(C)].42,43 The substituted pBpa analogs could be accessed with high 

purity and excellent yields over 5 steps (see Supporting Information). The incorporation of each 

analog was assessed in live yeast using the E. coli tRNATYR
CUA-TyrRS system.40 We evaluated 

the incorporation of each analog into the prototypical Gal4 transcriptional activation domain 

(TAD) at position 849 which has been well characterized for UAA incorporation.30 Western 

blotting indicated that all five of the para-substituted analogs were incorporated into LexA-Gal4 

at position 849 at levels comparable to pBpa (Fig. 2). As suggested by the crystal structure, 

substitution at the meta position was not well tolerated and sharp declines in incorporation were 

observed with substituents larger than fluorine [Fig. 2(C), 2(D)]. Due to the failure of the 

synthetase to efficiently incorporate the 3-CF3 Bpa analog, a 3-Br Bpa analog was not prepared 

for evaluation. These findings are in agreement with previous work by Mehl and others that has 

demonstrated bioorthogonal tRNA synthetases developed for specific UAAs can incorporate 

analogs of the cognate UAA without any further mutagenesis to the active site.42,44-48 

Furthermore, this suggests the flexibility of the pBpa specific synthetase could enable the use of 

a variety of pBpa analogs, particularly those with substitution at the para position. 

 With the successful incorporation of the analogs, the modified pBpa analogs were 

assessed for their function as crosslinkers in vivo by examining the well-defined PPI between 
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Gal4 and its masking protein, Gal80. In yeast, Gal4 interacts with the Gal80 repressor through its 

TAD under normal glucose conditions.49-51 Our lab has previously demonstrated that pBpa 

incorporated in either the Gal4 TAD or Gal80 can capture this endogenous interaction in live 

yeast. Because of the high incorporation yields, the 3-F and 4-F Bpa analogs were selected for 

comparison with pBpa in this model system. Live yeast expressing a LexA+Gal4 fusion 

construct with the amber mutation at position 849 and a Myc epitope-tagged Gal80 were grown 

in glucose in the presence of either pBpa or one of the fluorine analogs [Fig. 3(A)]. Live cells 

were irradiated with UV light to capture all Gal4 binding partners and were then lysed and 

immunoprecipitated for the LexA DNA binding domain (DBD) to isolate all LexA+Gal4 protein 

interactions. To fully characterize the crosslinking abilities of the UAAs, a duplex western 

blotting strategy was used such that both the binding profile of Gal4 (red) and its direct 

interaction with Gal80 (green) could be observed on the same western blot (Fig. 3). As seen in 

Figure 3(B), both fluorine-containing pBpa analogs captured Gal4’s endogenous binding 

partners, including the Gal4-Gal80 interaction (yellow). It was not, however, possible to 

quantitatively determine a change in crosslinking yield in this system. This is likely due to the 

high  affinity of the Gal4•Gal80 complex, which in turn results in high crosslinking yields with 

even unmodified pBpa.49  

 To quantitate changes in crosslinking yield, we identified an interaction that was more 

modest in affinity and that also could be easily examined in vitro, thus removing additional 

variables in vivo such as changes in degradation rate that could influence any observations. The 
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moderate affinity interaction between the VP16 TAD and the Med25 subunit of the Mediator 

complex was used for this quantitation.52-53 It has previously been shown that a minimal peptide 

sequence (441-DFDLDMLG-448) within the N-terminal TAD of VP16 is sufficient for 

interaction with the Med25 activator interaction domain (AcID) and transcriptional activation.54-

56 We hypothesized that incorporating pBpa at position F442 would not abrogate binding with 

Med25 AcID and would enable us to observe changes in crosslinking efficiency for the pBpa 

analogs.  

 To determine the binding affinities, biotinylated UAA-containing VP16 peptides were 

incubated with Med25 coated plates. Following incubation with streptavidin-HRP and 

tetramethylbenzidine (TMB) substrate, the plates were read at 450 nm and it was found that the 

binding affinities of each pBpa analog containing VP16 peptides were minimally weakened (2-3 

fold decrease in affinity) compared to the parent pBpa peptide (Fig. S3).52,57 These values are in 

line with the binding affinity of pBpa incorporated VP16 measured by fluorescence polarization 

(Fig. S4). To evaluate the crosslinking yield, Med25 was incubated with each UAA-containing 

VP16 peptide at 12.5% of its Kd value to normalize for occupancy. Following 10 minutes of UV 

irradiation with 365 nm light to covalently capture the interaction, the amount of crosslinked 

VP16 peptide was quantified by Western blot analysis. As seen in Figure 4, all pBpa analogs 

gave increased crosslinking yields, and the largest increases were observed with the 3-CF3 (49-

fold increase), 3-Cl (30-fold increase), and 4-CF3 (23-fold increase) analogs. Similar trends in 

reactivity for the pBpa analogs were also observed with 1 minute irradiation time (Fig. S5). To 
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further validate these results, crosslinking yields were also analyzed via ELISA. The biotinylated 

VP16 peptides were incubated with Med25 coated plates and irradiated with 365 nm light. 

Following washing and incubation with streptavidin-HRP, the covalently captured VP16 peptide 

was visualized by addition of TMB substrate [Fig. S6(A)]. Similar trends in reactivity were 

observed [Fig. S6(B), S6(C)], although the total increase in crosslinking yield is lower. This can 

be attributed to higher background to the format of the assay. Taken together, our results support 

the predicted effect of appending electron withdrawing groups onto the benzophenone 

framework to decrease the excitation energy gap for the n to π* transition of the carbonyl 

oxygen’s electrons, thereby increasing the reactivity of the benzophenone core and ultimately 

increasing the crosslinking yield of the molecule.  

 

CONCLUSION 

 Although pBpa has been shown to have lower reactivity compared to the other common 

photocrosslinking groups such as the aryl azides and diazarines, its ability to be reactivated and 

minimal reactivity with solvent makes it a strong tool for the covalent capture of transient PPIs in 

vivo.14 Therefore, there was a need to increase the crosslinking yield of pBpa to improve the 

capture of PPIs and accelerate their characterization. Based on previous studies with 

benzophenones, we hypothesized that pBpa analogs substituted with electron withdrawing 

groups would increase crosslinking yields. We synthesized seven mono-substituted pBpa analogs 

(Fig. 1) and showed that upon irradiation of live yeast expressing UAA-containing LexA+Gal4 
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we capture Gal4’s endogenous binding partners, including its masking protein Gal80. 

Furthermore, we demonstrated in vitro the halogenated pBpa analogs increased crosslinking 

yields for weak transient interactions. Taken together, we recommend use of the 4-CF3 analog in 

cases where increased crosslinking yield is needed as it is incorporated at similar levels to pBpa 

and produced a 23-fold increase in crosslinking yield.  

 Through this study, we have expanded our toolbox of chemical probes for capturing 

challenging PPIs in their native environment. We anticipate that these halogenated pBpa analogs 

will have additional downstream applications post-crosslinking and isolation. For instance, 

bromine and chlorine atoms have enabled quantitative proteomic analysis without the need for 

expensive isotopic labeling systems, such as stable isotope labeling using amino acids in cell 

culture (SILAC) systems.58-59 Upon MS analysis, the protein targets can be quantified between 

samples using the specific chlorine or bromine isotopes to accurately identify interaction partners 

with minimal bias between experimental replicates. The unique isotopic signatures of these 

halogens could enable the identification of PPIs such as low abundance activator-coactivator 

interactions that may be drowned out by high abundance proteins and have eluded research 

efforts for years.60 Utilizing the halogenated pBpa analogs developed will more readily facilitate 

the successful implementation of in vivo covalent capture for studying PPIs involved in a variety 

of biological processes. 
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MATERIALS AND METHODS 

UAA incorporation and expression 

 LS41 yeast was transformed with pLexA+Gal4 849 TAG-1X Flag or pLexA+Gal4WT-

1X Flag and pSNRtRNA-pBpaRS plasmids. Individual colonies were grown in 5 mL SC media 

containing 2% raffinose, but lacking histidine, tryptophan, and uracil for selection. The cultures 

were incubated at 30°C with 250 rpm agitation. Following incubation, these cultures were used 

to inoculate 5 mL cultures of SC media containing 2% raffinose and 2% galactose, with or 

without 1 mM pBpa/1 mM pBpa EWG analog (dissolved in 50 μL 1 M NaOH), and 50 μL 1 M 

HCl. The cultures were incubated at 30°C with agitation to an OD660 of 1.0. Three ODs were 

isolated, washed with sterile water, and stored at -20°C. The samples were lysed in 10 μL 4X 

NuPAGE LDS Sample loading buffer (Invitrogen), 10 μL 1X lysis buffer (50 mM Tris-Acetate 

pH 7.9, 100 mM potassium acetate, 20% glycerol, 0.2% Tween20, 2 mM β-mercaptoethanol, and 

2 mM magnesium acetate), and 10 μL 1 M DTT by boiling at 95°C for 10 min. The samples 

were run on a 3-8% Tris-acetate SDS-PAGE gel and analyzed by Western blot with the anti-Flag 

(M2) antibody (Sigma Aldrich). Expression levels were quantified using ImageJ and relative 

levels of LexA-Gal4 protein for each experiment were expressed as follows ((experimental/WT 

LexA-Gal4)*100). 

 

In vivo crosslinking analysis 
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 A colony of LexA+Gal4 849 TAG-5X Flag:Gal80-6X Myc was grown in 5 mL SC 

media containing 2% glucose, but lacking histidine, tryptophan, leucine and uracil for selection. 

The cultures were incubated at 30°C with 250 rpm agitation. Following incubation, these 

cultures were used to inoculate 100 mL cultures of SC media containing 2% glucose, with 1 mM 

pBpa or 1 mM EWG pBpa analog (dissolved in 1 mL 1 M NaOH), and 100 mL 1 M HCl. The 

cultures were incubated at 30°C with agitation to an OD660 of 1.0. For each culture, the cells 

were isolated by centrifugation and washed with the SC media lacking histidine, tryptophan, and 

uracil. The cell pellets were resuspended in 2 mL SC media containing 2% glucose and then 

transferred to small culture dishes and subjected to UV light at 365nm (Eurosolar 15W UV 

lamp) with cooling for 30 minutes. The cells were isolated by centrifugation and stored at -20°C 

until lysis.  The control samples were washed with 1 mL SC media containing 2% glucose, 

isolated by centrifugation, and stored at -20°C until lysis.  

 For lysis, cells were resuspended in 600 μL lysis buffer (50 mM HEPES – KOH pH 7.5, 

140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-Deoxycholate and 2X Complete Mini, 

EDTA Free Protease Inhibitor (Roche)) and lysed using glass beads by vortexing at 4°C. 

Subsequently, the lysate was pelleted and the supernatant incubated with anti-LexA antibody (sc-

1725, Santa Cruz Biotechnologies) for 2 hours at 4°C for immunoprecipitation. The proteins 

bound to the antibody were isolated by incubation for 1 hour with 40 μL pre-washed 

Dynabeads protein G magnetic beads (ThermoFisher) at 4°C. After immunoprecipitation, the 
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beads were washed six times with 1 mL Wash Buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 

0.5% NP-40, 0.1% Na-Deoxycholate, and 1 mM EDTA) and stored at -20°C until elution. 

 The samples were eluted from the beads by heating at 95°C for 10 minutes in 10 μL 

NuPAGE 4X LDS Sample Loading Buffer (Invitrogen), 10 μL water, and 10 μL 1M DTT. The 

samples were run on a 4-15% Mini-PROTEAN TGX pre-cast SDS-PAGE gel (Bio-Rad). 

The gel was transferred to immobilin PDVF membrane (Millapore) and blocked for 1 hour at 

room temperature using SuperBlock (PBS) Blocking Buffer (ThermoFisher). The membrane 

was incubated with both mouse anti-Flag (M2) (Sigma Aldrich, F1804) and rabbit anti-cMyc 

(Sigma Aldrich, C3956) primary antibodies overnight at 4oC. The membrane was washed three 

times for 10 minutes each with PBS-T (10 mM Na2HPO4•7H2O, 1.7 mM KH2PO4, 140 mM 

NaCl, 3 mM KCl, 0.05% Tween-20, pH 7.4), followed by incubation with anti-mouse 680nm 

(LI-COR, 926-68072) and anti-rabbit 800nm (LI-COR, 926-32211) secondary antibodies for 1 

hour at room temperature. The membrane was washed three times for 10 minutes each with PBS-

T, 5 minutes with PBS (10 mM Na2HPO4•7H2O, 1.7 mM KH2PO4, 140 mM NaCl, 3 mM KCl, 

pH 7.4), and visualized using an Azure c600 western blot imager (Azure Biosystems). 

 

In vitro crosslinking analysis 

 Med25 AcID 6x-His was diluted in binding buffer (25 mM HEPES, 40 mM KCl, 8 mM 

MgCl2, 100 mM NaCl, 0.01% Tween-20, pH 7.4) to 22 μM, and biotin labeled VP16 peptides 
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were diluted to 25% of their Kd values in binding buffer. Equivalent volumes of Med25 AcID 

and peptide were incubated at room temperature for 30 minutes in a clear, flat bottom, 

polystyrene, 96-well plates (Fisherbrand).  The solutions were irradiated with UV light at 365nm 

(Eurosolar 15W UV lamp) with cooling for 10 minutes.  15 μL of each sample was mixed with 5 

μL NuPAGE 4X LDS Sample Loading Buffer (Invitrogen) and boiled for 5 minutes. The 

samples were run on a 4-20% Mini-PROTEAN TGX pre-cast SDS-PAGE gel (Bio-Rad). 

The gel was transferred to PDVF membrane (Bio-Rad) and blocked for 1 hour at room 

temperature with SuperBlock (PBS) Blocking Buffer (ThermoFisher). The membrane was 

incubated with 1:100 diluted anti-HIS HRP conjugated antibody (Santa Cruz sc-8036 HRP) for 1 

h at room temperature. The membrane was washed three times for 10 minutes each with PBS-T 

(10 mM Na2HPO4•7H2O, 1.7 mM KH2PO4, 140 mM NaCl, 3 mM KCl, 0.05% Tween-20, pH 

7.4), and visualized with SuperSignal West Femto ECL substrate (ThermoFisher) using an Azure 

c600 western blot imager (Azure Biosystems). The membrane was washed three times with PBS-

T then stripped by incubating in Restore western blot stripping buffer (ThermoFisher) for 45 

minutes at 37oC. The membrane was washed three times with PBS-T then incubated with 1:2000 

diluted HRP-conjugated streptavidin (Abcam 7403) for 1 hour at room temperature. The 

membrane was washed three times for 10 minutes each with PBS-T and visualized with 

SuperSignal West Femto ECL substrate (ThermoFisher) using an Azure c600 western blot 

imager (Azure Biosystems). Crosslinking yields were quantified using ImageJ. The relative 

amount of Med25-VP16 crosslinked product for each sample was normalized based on the 
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protein levels of Med25 in the HIS-HRP blot. The fold changes were expressed as follows 

(Med25-VP16 F442UAA crosslinked product / Med25-VP16 F442Bpa crosslinked product) 

 

Supplementary Material 

 Additional supplemental figures, detailed experimental methods, and compound 

characterization can be found in the Supporting Information. 
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Figure Legends 

Figure 1. (A) Covalent chemical capture mechanism of pBpa. Upon irradiation with 365 nm UV 
light, pBpa reversibly forms a diradical species. If an activated C-H bond is available, hydrogen 
atom abstraction followed by radical recombination will yield the crosslinked adduct. (B) A 
series of pBpa analogs with halogen substituents either meta or para to the carbonyl group were 
prepared. (C) Synthesis of halogenated pBpa analogs. Full experimental details and compound 
characterization can be found in the Supporting Information. 

Figure 2. In vivo incorporation of Halo-Bpa analogs. (A)  Position 849 was mutated to the amber 
stop codon (TAG) for UAA incorporation within the LexA+Gal4 chimeric transcriptional 
activator. A C-terminal Flag tag was appended for visualization. (B-E) Incorporation of the 
Halo-Bpa analogs into LexA+Gal4 849TAG in the presence or absence of 1 mM UAA. Loading 
control is an endogenous yeast protein that consistently comes out with Flag visualization. (F) 
Relative expression levels of the Halo-Bpa analogs compared to pBpa. Expression levels of 
LexA+Gal4 849UAA mutants relative to LexA+Gal4 WT were quantified by using ImageJ. 

Figure 3. LexA+Gal4 849UAA in vivo crosslinking. (A) Experimental scheme of in vivo 
covalent chemical capture of Gal4 binding partners. (B) 3-F and 4-F Bpa capture Gal4’s 
endogenous binding partners (red) and the Gal4-Gal80 interaction (yellow) when irradiated with 
UV light. 

Figure 4. VP16 (441-448) F442UAA in vitro crosslinking. Each Halo-Bpa analog had increased 
crosslinking yield for the Med25-VP16 adduct compared to pBpa upon UV irradiation. (A) 
Western blot visualization of 6XHis+Med25:Biotin+VP16 F442UAA in vitro crosslinking. 
Crosslinked adducts visualized with Streptavidin-HRP and Med25 loading visualized with anti-
HIS-HRP antibody. (B) Relative fold change in Halo-Bpa crosslinking yields compared to pBpa 
from 6XHis+Med25:Biotin+VP16 F442UAA western blot. The yields are an average of two 
replicates. Crosslinking yields were quantified using ImageJ. The relative amount of Med25-
VP16 crosslinked adducts for each sample was normalized based on the protein levels of Med25 
in the HIS-HRP blot. The fold changes were expressed as follows (Med25-VP16 F442UAA 
crosslinked product / Med25-VP16 F442Bpa crosslinked product). 
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