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Purpose: There has been burgeoning interest in applying machine learning methods for predicting radiotherapy
outcomes. However, the imbalanced ratio of a large number of variables to a limited sample size in radiation
oncology constitutes a major challenge. Therefore, dimensionality reduction methods can be a key to success.10

The study investigates and contrasts the application of traditional machine learning methods and deep learning
approaches for outcome modeling in radiotherapy. In particular, new joint architectures based on variational
autoencoder (VAE) for dimensionality reduction are presented and their application is demonstrated for the
prediction of lung radiation pneumonitis (RP) from a large-scale heterogeneous dataset.

Methods: A large-scale heterogeneous dataset containing a pool of 230 variables including clinical factors (e.g.,15

dose, KPS, stage) and biomarkers (e.g., single nucleotide polymorphisms (SNPs), cytokines and micro-RNAs) in a
population of 106 non-small cell lung cancer (NSCLC) patients who received radiotherapy was used for modeling
RP. 22 patients had grade 2 or higher RP. Four methods were investigated, including feature selection (case
A) and feature extraction (case B) with traditional machine learning methods, a VAE-MLP joint architecture
(case C) with deep learning and lastly, the combination of feature selection and joint-architecture (case D). For20

feature selection, Random forest (RF), Support Vector Machine (SVM) and multi-layer perceptron (MLP) were
implemented to select relevant features. Specifically, each method was run for multiple times to rank features
within several cross-validated (CV) resampled sets. A collection of ranking lists were then aggregated by top 5%
and Kemeny graph methods to identify the final ranking for prediction. A synthetic minority oversampling tech-
nique (SMOTE) was applied to correct for class imbalance during this process. For deep learning, a VAE-MLP25

joint architecture where a VAE aimed for dimensionality reduction and an MLP aimed for classification was
developed. In this architecture, reconstruction loss and prediction loss were combined into a single loss function
to realize simultaneous training and weights were assigned to different classes to mitigate class imbalance. To
evaluate the prediction performance and conduct comparisons, the area under receiver operating character-
istic (ROC) curves (AUCs) were performed for nested CVs for both handcrafted feature selections and the30

deep learning approach. The significance of differences in AUCs was assessed using the DeLong test of U-statistics.

Results: An MLP-based method using weight pruning (WP) feature selection yielded the best performance
among the different hand-crafted feature selection methods (case A), reaching an AUC of 0.804 (95% CI: 0.761-
0.823) with 29 top features. A VAE-MLP joint architecture (case C) achieved a comparable but slightly lower35

AUC of 0.781 (95% CI: 0.737-0.808) with the size of latent dimension being 2. The combination of handcrafted
features (case A) and latent representation (case D) achieved a significant AUC improvement of 0.831 (95%
CI: 0.805-0.863) with 22 features (p-value = 0.000642 compared with handcrafted features only (Case A) and
p-value=0.000453 compared to VAE alone (Case C)) with an MLP classifier.

Conclusion: The potential for combination of traditional machine learning methods and deep learning VAE40

techniques has been demonstrated for dealing with limited datasets in modeling radiotherapy toxicities.
Specifically, latent variables from a VAE-MLP joint architecture are able to complement handcrafted features for
the prediction of RP and improve prediction over either method alone.

Keywords: radiotherapy outcome modeling, machine learning, feature selection, deep neural networks45

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



2

I. INTRODUCTION

Accurate prediction of radiotherapy response is an important component of evaluating patients’ treatment options
and for providing insights into designing of new personalized treatments and future clinical protocols. Various an-
alytical, statistical and machine learning methods have been applied into radiotherapy treatment outcome models
[1].50

Modeling normal tissue toxicity [2] is a main limiting factor towards application of promising hypofractionated and
dose escalation studies. Originally, radiotherapy response modeling utilized analytical models, which were generally
based on simplified understanding of irradiation effects, such as the Lyman-Kutcher-Burman (LKB) model [3, 4],
and the critical volume (CV) model [5, 6]. Later, treatment dosimetry along with clinical and biological factors were
incorporated into more advanced statistical (data-driven) models [7], making way towards personalized treatment55

planning. This is particularly important in the case of radiation-induced lung damage [8], which is a complex disease
that manifests in up to 30% of thoracic irradiations in the forms of acute inflammatory radiation pneumonitis (RP)
and subsequent chronic pulmonary fibrosis [9]. RP is a major obstacle to treatment success with radiotherapy in
lung, esophageal and breast cancers . Therefore, it has been an active area for applying advanced machine learning
methods. Artificial neural networks have been applied in the prediction of RP [10, 11]. These studies were based60

on a one-hidden-layer MLP and used dosimetric and clinical variables only. Support vector machines (SVM) [12, 13]
were next applied, but their performance required the selection of several hyperparameters, including kernel related
parameters and regularization terms. Bayesian networks [14, 15] were recently applied into this area and gained some
notable success. However, this requires prior knowledge of variables inter-relationships, which is necessary to constrain
the network structure design.65

The application of statistical learning techniques to data-driven outcome modeling in radiotherapy is typically con-
fronted with the problem of limited sample size and an ever increasing number of heterogeneous (clinical, dosimetric,
and biological) input variables [1]. One approach to alleviate this problem in conventional machine learning is by “se-
lecting” the most relevant features [16], an active area for many years with different categories of methods. Selection
methods that are independent of the learning algorithms (e.g., classifiers) are referred to as filtering methods [17].70

They select features according to the general measurement of characteristics of a given dataset (e.g., Pearson correla-
tion). These methods act in a univariate manner and often fail to select the optimal subsets that may work well for
the learning task under consideration. Alternatively, wrapper methods try to search for an optimal set of features by
preparing and evaluating “goodness” of different combinations of features within a learning scheme [17]. For example,
in forward selection, one tries to train a model with a subset of features, based on the inferences from the previous75

model to decide the features to add to the selected set. However, wrapper methods are computationally expensive.
To ease this computational cost, a model-based ranking method was adopted here to select such optimal features, in
which a predictive model is built to rank the importance of feature relevance, and then a set of top features is selected
as candidate for the optimal set. In this study, multilayer perceptron (MLP)-based [18] selection methods including:
weight pruning (WP)[19], feature quality index (FQI) [20], feature-based sensitivity of posterior probability (FSPP)80

[21] were implemented to rank features’ relevance for the prediction of radiation toxicities. MLPs are recognized as the
building block for modern deep learning techniques. For comparison purposes, prevalent machine learning methods
based on random forest (RF) [22] and support vector machine (SVM)-based methods [23] were also implemented.
In the new era of deep learning, feature selection and classification can be achieved jointly (e.g., convolutional neural

network (CNN)). These methods have demonstrated tremendous success when applied to structured homogeneous85

data problems in various fields, such as image recognition, natural language understanding and artificial intelligence
[24–26]. However, applications to unstructured heterogeneous data such as outcome modeling in radiotherapy is yet to
be realized. Towards this goal and as an alternative to conventional feature selection or handcrafting, a deep learning
data reduction approach is considered based on variational autoencoders (VAEs). A VAE is an unsupervised learning
technique, which can learn latent representation from unlabeled data. Unlike original deterministic autoencoders90

(AEs)[27], a VAE incorporates variational inference to account for uncertainty, potentially working better with scarce
data as encountered in radiotherapy outcome models. In this study, joint VAE-MLP architectures were developed
where the latent variable learning (i.e., dimensionality reduction) and the prediction tasks were combined and si-
multaneously trained for the prediction of RP. This deep learning architecture helped avoiding common cumbersome
2-step procedures in current multivariable predictive modeling and improved the prediction performance over the95

usual individual and separate application of VAE and conventional classifier methods.

II. DATASET AND PATIENT CHARACTERISTICS

We analyzed 106 non-small cell lung cancer (NSCLC) patients treated under IRB approved protocols. Patients’ RP
statuses were evaluated by five-grades CTCAE 3.0 [28] based on clinical assessment and imaging. The RP outcome was
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then converted into RP2 (RP2=1 when RP= 2 or above, RP2=0 otherwise), serving as an indicator of complication100

of radiation treatment. The patients were treated with 4 different treatment protocols, in which the first and fourth
protocols were dose escalation studies that had the total dose increased up to 86 Gy in 30 fractions, the second and
third protocols were with standard dose fractionations, had dose up to 74 Gy, 2 Gy per fraction. Known candidate
dosimetric features: Mean lung dose, Maximum Lung Dose, the total lung volume receiving a dose greater than or
equal to 5 Gy (V5), 13 Gy (V13) and 20 Gy (V20) were generated from 2 Gy equivalents (EQD2) dose distributions105

using the linear/quadratic model (with α / β = 4 Gy)[29]. Dose distributions were computed with the AAA dose
calculation algorithm by Varian Eclipse treatment planning system. EQD2 were calculated using locally developed
software. Data of cytokines, SNPs, and microRNA were also collected as potential predictors. Blood samples obtained
at baseline before treatment, after delivering 1/3 and 2/3 of total dose were analyzed for cytokine levels [30]. Pre-
treatment blood samples were also used to analyze SNPs [31, 32] and microRNA levels [33]. All those biomarkers110

were identified from former study of lung cancer or inflammatory disease. A set of 13 clinical factors such as KPS
and Stage was also collected as candidates. A description of the dataset is given in [15] and summarized in TABLE. I
for completeness.

III. MACHINE LEARNING METHODS

Several strategies for building multivariable predictive models were investigated here as summarized in FIG. 1.115

For conventional machine learning, feature selection (case A) and feature extraction (case B) were implemented
separately for the classifiers (MLP, SVM, RF). For deep learning, a joint network architecture composed of a VAE
and an MLP was implemented for accomplishing feature extraction and prediction tasks simultaneously (case C).
Finally, handcrafted features and latent variables from the joint architecture were combined for RP2 prediction (case
D).120

We implemented our models in the Python machine learning package Scikit-learn [34] (RF, SVM) and deep learning
package Keras [35]. Specifically, MLP classifiers and VAEs were implemented with Keras sequential model, while
VAE-MLP joint architectures were implemented with Keras multi-output models where two losses were combined.
All experiments were run on a NVIDIA K40 GPU in the Advanced Research Computing -Technology Services (ARC-
TS), FLUX, at University of Michigan.125

A. Model-based feature selection techniques

1. MLP-based feature selection methods

An MLP [18] is also called feedforward artificial neural network, which consists of many neurons and several layers
where neurons connect to one another in the adjacent layers, as shown in FIG. 2. A neuron in the hidden layer and
output layer transforms values from the previous layer into a weighted linear sum followed by a non-linear activation130

function as shown in Figure FIG. 3. Specifically, ith neuron h
(1)
i in the first hidden layer can be calculated as:

h
(1)
i = f

(

p
(1)
i

)

, with p
(1)
i =

m
∑

j=1

w
(1)
ij Ij + b

(1)
i (1)

where {w
(1)
ij , b

(1)
i } denote the weights and bias, (I1, . . . , Im) ∈ Rm is an input vector of data and f(·) is the designated

activation function. Specifically in this study, sigmoid activation functions were used in hidden layers and a softmax
activation function was implemented in the output layer for classification purpose:135

sigmoid function f(x) =
ex

1 + ex

softmax f(x) = (f1(x), . . . , fk(x)) with fi(x) =
exi

∑
j
e
xj , x = (x1, . . . , xk)

(2)

A cross-entropy loss function was applied for the discretized classification purpose, where it takes the form

J(w, b) = −
∑

α

[

I
(

y(α) = 1
)

log o
(α)
1 + I

(

y(α) = 0
)

log o
(α)
2

]

(3)
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and is optimized using Adam [36] algorithm, an advanced gradient-based optimization algorithm prevalently adopted
in deep learning. In Eq. 3, α ∈ {1, 2, ..., N} is the index of sample, I is the indicator function, y(α) denotes the label140

for sample α, and o(α) = (o
(α)
1 , o

(α)
2 ) denotes the 2-dimensional output vector, which indicates the probability of “yes”

and “no” for a given radiation outcome. Note that o
(α)
1 + o

(α)
2 = 1 and o

(α)
i ∈ [0, 1], as softmax activation Eq. (2)

was applied. The topology of the MLP applied is shown in FIG. 2, with the number of associated nodes shown below
layer. Optimal dropout rate was searched among (0.1, 0.2, 0.3, 0.4) on the training set.
Three common techniques for neural networks feature selection are considered here.145

• Weight pruning (WP) [19]: WP exploits both the weight value and the network structure of a neural network
(MLP). The score of ith features, i = 1, . . . ,m, is calculated by summing up the products of weights over all
the paths from feature i to outputs. Specifically, in the single-hidden-layer MLP, the importance is written as
follows:

Si =
∑

j∈H

(

|w
(1)
ji |

∑

i′∈I
|w

(1)
ji′ |

·
∑

k∈O

|w
(2)
kj |

∑

j′∈H
|w

(2)
kj′ |

)

(4)150

where I,H,O denote the nodes in the input, hidden and the output layer respectively. Eq. (4) suggests the
weights to be normalized by the sum of weights that are connected to the same input for comparison reason.
WP is based on the intuition that important features should result in weights of relatively large magnitude.

• Feature Quality Index (FQI): FQI considers the increase of training mean-squared error (MSE) when a
feature is replaced by mean (0 if features are centered). It fixes the trained neural network architecture, and155

replaces the value of a feature by 0, then, calculates MSE based on the output of a new feature matrix.

Si = MSE
(

I(i)
)

−MSE (Io) , MSE(I) =
1

N

N
∑

α=1

∑

j∈O

||o
(α)
j;I − y

(α)
j ||2 (5)

where Io are the original features, I(i) is Io with ith feature set to be zero and o
(α)
j;I is the jth output of input

matrix of sample α, I(α).

• Feature-based Sensitivity of Posterior Probability (FSPP): FSPP considers the variation of outputs160

when a feature is randomly permuted among samples. One randomly permutes the ith feature among N
samples and feeds modified features to the MLP, then calculates the sum of pairwise differences between the
new outputs and the original ones. It is based on the belief that “turning off” more important features will
influence outputs more.

Si =
1

N

N
∑

α=1

∑

j∈O

∣

∣

∣
o
(α)
j − o

(α)
j;I(i)

∣

∣

∣
(6)165

o
(α)
j;I(i)

is the jth output of I(α) after Ii is randomly permuted among N samples.

2. RF and SVM-based feature selection methods

Random forests (RF) and support vector machine (SVM) are among the most popular conventional machine
algorithms for prediction and are described in the following.

• RF [22]: RF is an ensemble learning method based on decision trees. A decision tree is a flowchart-like structure170

where each node represents a “test” on an attribute (feature) splitting samples into different branches, nodes can
be then repeatedly applied to test attributes of different branches until decision regarding classification is done
by the leaf nodes. During this process, the Gini coefficient is a common measure used to decide a split (i.e., the
feature applied, threshold). Naturally, features applied at the upper split influencing more input samples should
be deemed important. As a result, one can estimate the importance of a feature by the fraction of samples the175

feature contributes to [34]. RF randomly selects observations and features to build several decision trees and
averages the results to reduce the variance. In RF, similarly, one can estimate feature importance by averaging
the estimations of feature importance in trees [34]. In RF classifiers, max depth was searched among 2-15 on
the training set.
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• SVM [23]: SVM is an discriminative classifier which can decide an optimal separating hyperplane to categorize180

samples. In practice, as it is usually not feasible to completely separate samples from different classes, some
tolerance errors ǫ are allowed. Mathematically, the optimization problem can be formulated as minimizing the
following loss function:

L(w, ǫ) =
1

2
wTw + C

N
∑

i=1

ǫi (7)

with constraints,185

yi(w
Tφ(xi) + b) ≤ 1− ǫi (8)

where i is the index for samples, w is a vector parameters to be optimized and φ(·) is a mapping function, which
maps variables from an original space usually to a higher dimension space for a better separation. By converting
the above optimization problem into a dual optimization problem, the SVM classifier can be represented by:

f(x) =

s
∑

i=1

αiyiK(x, xi) + b (9)190

which can be resolved by solving a convex optimization problem over α = (α1, α2, ...αs). K(x, y) is called a
kernel function, which corresponds to an inner product in a feature space based on mapping function φ(·).
Some common ones are linear, polynomial and radial basis function (RBF) kernels. In the case of linear
kernels, parameter w in the original optimization can be easily recovered and used as an estimator of feature
importance. RBF-SVM classifiers were implemented with grid search for optimal C (penalty strength) and σ195

(standard deviation in RBF) among 10 points uniformly distributed in logscale between 0.001 and 1000.

B. Latent variable learning by VAE

1. Variational autoencoder(VAE)

An autoencoder (AE) [37] is an artificial neural network designed for unsupervised learning. It is also used for
representation learning [38] where latent variables of input data are learned by attempting to recover its input from200

them. An AE consists of two parts: an encoder (φ) which compresses an input (from X ) into a lower dimensional space
(Z) also called latent-space representation, and an decoder (ψ) aiming to reconstruct the input out of the latent-space
representation. Mathematically, it is formulated as follows:
Architecture of VAE: layers corresponding to mean µ and standard deviation σ of latent representation z are

denoted205

φ : X → Z, ψ : Z → X , (10)

where X stands for the input space and Z denotes the latent space. An AE tries to minimize its loss function, which
quantifies the reconstruction error (the difference between inputs and outputs) in terms of squared error,

L(xenc, xdec) = ||xenc − xdec||
2 = ||(I − ψ ◦ φ)(xenc)||

2 (11)

where xenc ∈ X denote an input for encoder, xdec := (ψ ◦ φ)(xenc) as an output from decoder, and I is an identity210

mapping so that one may see from the last expression of Eq. (11) that an AE is in fact attempting to approximate the
identity map out of lower dimension. Notice that in the learning process of an AE, no ground truth of data (label) is
needed so that it belongs to the unsupervised learning category.

Although autoencoders can be set up by any functional form of φ and ψ, they are typically constructed by neural
networks, as shown in FIG. 4 (left). In fact, an AE can be setup by an MLP with at least one hidden layer of smaller215

dimension (than the input space X ) as latent space. Generally, an MLP with an input layer xenc, several hidden
layers (henc, zenc, hdec) and an output layer (xdec) whose size is equal to that of the input layer forms an AE.

One notable variant of AE is called a variational autoencoder (VAE) [39], which inherits the AE architecture but
incorporates uncertainties through a stochastic variational approach into the deterministic AE. Given inputs xenc,
the VAE assumes that the latent representation Z is subject to a Gaussian distribution with mean µ and standard220

deviation σ rather than a fixed real value. In this setting, the encoder first produces two vectors µ and σ describing
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the mean and the variance of the latent state distribution and then generates a latent vector by sampling from this
distribution. Subsequently, the decoder receives the latent vector to reconstruct the original input.

encoder Z|X ∼ Q(µ(xenc), σ(xenc)), decoder f : Z → X . (12)

VAE adopted a method called Variational Inference (VI) which approximates real distribution P (Z|X) by a simple225

distribution Q(Z|X) (e.g. Gaussian) and then solves it approximately by minimizing a so-called variational lower
bound defined as:

L = Ez∼Q [logP (X|Z)]−KL [Q(Z|X) ||P (Z)] , (13)

where the first term can be approximated by a squared error or cross-entropy loss, and the second term is the Kullback-
Leibler divergence metric (also called relative entropy), which has a closed form solution under Gaussian assumptions.230

Putting all together,one can arrive at [39]

L(xenc,xdec) = ||xenc − xdec||
2 +

1

2

J
∑

j=1

(

1 + log σ2
j − µ2

j − σ2
j

)

, (14)

where J is the latent dimension of Z. In the VAE loss Eq. (14), the first term is recognized as the reconstruction
error as in Eq. (11) and the second term can be regarded as a regularization term. A VAE was implemented with
topology shown in FIG. 4 (right). Its latent output was then fed into various classifiers downstream including MLP,235

SVM and RF for RP2 prediction.

C. VAE-MLP predictor joint structure

A VAE-MLP “joint” architecture was also implemented for RP2 prediction. A VAE [39] is a unsupervised learning
method which aims for representation learning, mapping the original data to a low-dimension latent space. An MLP
predictor takes the latent-space representation as input and produces classification decision, i.e, RP2 prediction. The240

joint-architecture in FIG. 5 conducted dimensionality reduction and prediction tasks simultaneously, realizing efficient
representation learning aided by the classification task. The total loss function of the architecture is

L(xenc, xdec, {y
(α)}) =

N
∑

α=1





m
∑

i=1

(x(α)
enc)i log(x

(α)
dec)i +

1

2

J
∑

j=1

(

1 + log σ2
j − µ2

j − σ2
j

)

+ λ
2
∑

k=1

y
(α)
k log o

(α)
k



 (15)

where yα is the binary label of data xenc and o is the output prediction for xenc.
The first two terms stem from the VAE loss and the third term measures the classification error for the prediction245

task. The parameter λ in Eq. 15 denotes the trade-off between the two tasks of VAE reconstruction and output
prediction. The applied topology of joint architecture is shown in FIG. 5, with λ set as 100 for weighing the magnitude
of the two losses.

D. Combining handcrafted features and latent variables

Latent variables from the joint architecture and handcrafted features were combined and fed into RF, SVM and250

MLP classifiers for RP2 prediction.

IV. ANALYSIS AND PERFORMANCE EVALUATION

We applied wrapper methods [17] based on MLP, RF, SVM to search for the optimal set of features, where the
“goodness” of features within each learning scheme was evaluated. Due to the noisy nature of our dataset, the
rankings were very sensitive to which portion of the data generated the ranking. As a result, multiple rankings based255

on different subsets of the data were generated and aggregated to yield a single ranking. Finally, several top features
were fed into the designated classifier for evaluation of performance.
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For comparison purposes and mitigating statistical bias, we implemented all four methodologies (A, B, C, D in
FIG. 1) in the same validation pipeline. This is referred to as a type 2b analysis in the transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement [40]. Specifically, nested260

CVs were performed, where the feature and parameter selection were tuned in inner-loop CVs, and the model with
optimal parameters were then identified from outer-loop training sets and evaluated on outer-loop test sets.

A. Ranking aggregation

To select optimal features, multiple times of inner-loop 5-fold CV were run and the resulting ranking lists based on
the training sets were further analyzed for convergence and combined into a single ranking.265

The top p% method [41] was applied to aggregate rankings based on different CVs. It uses the frequency of a
feature in the top p% as its final score. For example, let p = 5, to get a generalized ranking of m features over c times
of 5-fold CVs (with different random seeds for split), one would count how many times feature i appears in the top
5%×m among the 5c ranking lists, and then rank features based on those frequencies, i.e., the higher frequency the
feature has, the more important it is.270

To decide the cut-off number ĉ of CV times c, we define a deviance value D to evaluate the convergence of ranking
lists:

D(c) =
m
∑

i=1

∑B

b=1(S
(b)
ci − S̄ci)

2/(N − 1)

S̄ci

, (16)

where S
(b)
ci is the rank of feature i by the bth samples of c times CVs. D(c) is aimed to sum up the deviations of rank

(Sci) of all features. We calculated deviations according to resulting ranking lists from B = 100 times of application275

of the top p% method over a collection of c times CV. Considering features ranking low (with large value Sci) are less
important but can affect D(c) equivalently as features ranking high, we divided sample deviations by the mean (S̄ci)
in D(c). Basically, D quantifies the deviations of orderings given size c and is expected to decrease with increasing of
c. One can fix c large enough to make D reasonably small.

After the cut-off number c = ĉ was decided, the top p% methods was applied again to aggregate rankings from 5c280

ranking lists for B=100 times. Kemeny aggregation [42] was then applied to the resulting 100 ranking lists to reach
a final ranking. Kemeny aggregation gets an optimal ranking by minimizing sum of Kendall τ distances, which is
defined by the number of pairwise disagreements between any two ranking lists,

Kemeny aggregation : min
π

B
∑

i=1

K(π, τi) (17)

with K(τ1, τ2) is the Kendall tau distances of two lists τ1 and τ2:285

K(τ1, τ2) =
∣

∣

∣

{

(i, j)
∣

∣ ∀i < j,
(

(τ1(i) < τ1(j)) ∧ (τ2(i) > τ2(j))
)

∨
(

(τ1(i) > τ1(j)) ∧ (τ2(i) < τ2(j))
)}∣

∣

∣
(18)

As one may see, the direct computation of Kemeny aggregation using Eq. (17) and (18) can be burdensome when the
lists are long. In fact, it is proven to be an NP-hard problem (at least as hard as nondeterministic-polynomial-time
problem). Fortunately, it can be converted into an equivalent graph problem [43] for computational convenience.
Kemeny problem: for B voters (rankings τ1, τ2, ...τB) voting for m candidates (features µ1, . . . , µm), get the optimal290

aggregated ranking π.
Equivalent graph problem: every node in the graph represents a candidate (feature). For every pair of candidates i, j,

let Q(i > j) denote the number of voters who rank i higher than j. One draws an edge e between each i, j with weight
we = |Q(i > j)−Q(j > i)| and orientation from the less preferred to the more preferred node, then solves x in following
pure integer linear programming problem as shown by Eq. 19. After optimal x = {xij = 0, 1}, i, j ∈ (1, 2, ...m) are295

obtained, the final ranking list can be deduced, i.e., xij = 1 means i is ranked lower than j in optimal ranking π,
xij = 0 means i is ranked higher. The final rank of feature i can be calculated as Ri =

∑m

j xij .

min
x

∑

e∈E

we xe (19)

subject to (1) ∀i 6= j ∈ {1, 2, 3, ..., n}, xij + xji = 1,

(2) ∀i 6= j 6= k ∈ {1, 2, 3, ..., n}, xij + xjk + xki ≥ 1, where x is n× n matrix with binary entries.
300
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B. Validation outline

In the nested CV, outer-loop CVs were performed 10 times to consolidate the results. On outer-loop training sets,
single-AUC pre-selection were adopted before application of any dimension reduction method, i.e., only variables with
single-variable AUCs > 0.6 were kept and further utilized for feature selection and extraction. This is because when
all 200s variables were taken into account, it was too hard to train effective RF, SVM and MLP. Without effective305

trained models, the derived model-based feature selection can be problematic. Further discussion can be found in
SEC. VI.

A synthetic minority oversampling technique SMOTE [44] was adopted to mitigate class imbalance issues for cases
A and B. In the VAE-MLP architectures, class imbalance was resolved by setting different weights for the two classes
in the prediction loss in Eq. 15. The overall validation process is summarized in FIG. 6.310

Delong test [45] which is based on Mann-Whiteney U statistics was performed to conduct comparison of AUCs
between different methods. Since Delong test sometimes fails [46] when testing two nested models on the same data
that has been used to develop the models, we conducted Delong test only on the test AUCs to alleviate this issue.
Delong method was also applied for calculation of CIs of AUCs.

V. RESULTS315

A. Conventional machine learning feature selection and prediction (Case A)

Multiple number (c) of inner CVs were performed to rank the features. The cutoff number c = ĉ was decided by
the convergence evaluation of the rankings. Then, the top 5% method was applied to the 5ĉ (ĉ times 5-fold CVs)
ranking lists for 100 times and further combined into a single ranking by Kemeny aggregation.

Convergence D(c) as defined in SEC. IVA was used to decide ĉ, where c denotes the number of CV being considered320

in the top 5% method. FIG. 7 shows that D generally decreases with increasing c for all the methods as expected.
According to the trends of D, after c = 20, the curve was almost flat, so we fixed c = ĉ (20) in the subsequent
experiments.

The top 5% criterion was applied to ranking lists from ĉ (20) series of CVs. Frequencies of features being present
in the top 5% were counted and served as an overall evaluation of importance. FIG. 8 illustrates an example of325

frequencies of features based on a random collection of 20 CVs.

With c being fixed as ĉ (20), the top 5% method was repeated for 100 times and the resulting lists were aggregated
by Kemeny optimal aggregation into a generalized ranking, as rankings by the top 5% method from different trials
may not be consistent. Specifically, we first calculated the weights of the edges in the defined graph of SEC. IVA based
on the 100 ranking lists (as the one derived from FIG. 8) and then solved the deduced integer linear programming330

problem by python library PuLP [47].

We varied the number of top features included in the predictive models including MLP, RF and SVM according
to the final rankings and evaluated their resulting AUCs. To consolidate the results, we repeated the experiment by
doing the outer-loop of the nested CVs 10 times. Average test AUCs and their error bars are shown in FIG. 9.

B. VAE analysis with separate and joint classifications (Cases B, C)335

In the VAE-related setting, i.e., cases B & C, all pre-selected features contributed to the prediction task rather than
a subset of the selected features as in case A. A comparison of prediction results from case B of separate VAE and
classifiers (MLP, SVM, RF) and case C of a VAE-MLP joint architecture is shown in FIG. 10, where the dimension
of the latent space varies from 1 to 8. Patients were represented on the 2-D latent space (Z) as points. Examples
from some randomly selected outer-loop CVs are shown in Fig. 11.340

C. Combination of handcrafted features and latent variable representation (Case D)

Here, the selected features by WP (case A) and the latent representation from VAE-MLP joint architecture (latent
size=2) (case C) were combined and used as inputs in MLP, SVM and RF classifiers for RP2 prediction. The resulting
AUCs were shown in FIG. 12, together with AUCs of case A in FIG. 9 for comparison purposes.
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D. Relevant feature analysis345

To analyze feature importance in this study, we considered the final ranking lists in the collection of all (50; 10
times outer-loop CV) iterations. Particularly, the frequency of a feature in the top 29 (the optimal number of features
as in FIG. 9) among the all ranking lists was obtained and served as an indicator of relative importance. It turns out
that 28 features were selected to be fed into the predictive models more than half of the times, which indicated they
were arguably the most relevant features. Merely 7 features (boldface in Table. II) which were selected every time350

reached a AUC of 0.782 (95% CI: 0.749-0.802) in MLP classifiers for RP2 prediction.

VI. DISCUSSION

In this work, we compared four strategies of building predictive models for lung RP post radiotherapy. Case A and
case B both had separate phases of dimensionality reduction and predictive modeling. Particularly, case A adopted
dimensionality reduction techniques feature selection (SVM, RF, MLP), and case B adopted feature extraction (VAE).355

In case C, VAEs and MLP classifiers were trained simultaneously in a deep-learning fashion. Finally, WP handcrafted
features (case A) and latent variables (case C) were fed into various classifiers for RP2 prediction in case D.
For case A, RF-, SVM- and MLP-based ranking methods including WP, FQI and FSPP were applied and the top

features in the ranking list were used as relevant predictors. Due to the heterogeneity of the data, multiple rankings
from several CVs were aggregated into a single ranking list for subsequent prediction task. This can be regarded as an360

ensemble-like method, analogous to random forest where multiple trees are assembled to make a decision. As shown
in FIG. 8, rankings/frequencies by different methods shared some common characteristics, i.e., a few features (e.g.,
SMAD4, XRCC1) were ranked high by all the methods. Some variations did exist, e.g., mean lung dose (generalized
uniform equivalent dose (gEUD)) was ranked high by three MLP-based models but not by RF or SVM. FIG. 9 shows
WP+MLP outperformed the rest of the combinations for feature selection and prediction in the range from 23 to 36365

features. With top 29 features, WP+MLP was shown to reach highest AUC of 0.804 (95% CI: 0.761-0.823).
In case B and case C, a VAE was implemented for encoding the original inputs. Unlike the common setting as

in case B, where VAEs and classifiers were trained subsequently but disjointly for the prediction task, we combined
a VAE with a MLP predictor and jointly trained the two parts to improve representation learning in case C. The
joint architecture which realized more efficient representation learning with the aid of classification task improved the370

prediction over the conventional separate training with latent sizes 1 to 8 as shown in FIG. 10. In the joint architecture,
two dimensions were sufficient to encode the original inputs for this classification problem, reaching an average AUC of
0.781 (95% CI:0.737-0.808). Two classes RP=0 and RP=1 are clearly separable in training data (red dots versus blue
dots) and are partially differentiated in the test data (yellow dots versus green dots) in FIG. 11. Although the joint
architectures’ predictive performance is slightly inferior to that of the handcrafted features, it reduces the burdensome375

feature selection process, statistical bias, and is computationally efficient. In addition, this joint architecture is more
data-needy than other proposed selection methods considering its large number of parameters. Therefore, it may
potentially work better when more data are made available.
In case D, we considered combining WP handcrafted features and latent variables from VAEs for RP2 prediction.

Since case C outperformed case B across all the latent sizes in FIG. 10, we extracted latent variables from the380

joint architecture only. As shown in FIG. 12, better predictive performance was achieved by combining the selected
handcrafted features and the latent representation by VAEs, which is especially in the case of small number of samples.
The improvement may be because the latent representation, which takes all features into account to compensate the
incomplete discrete representation by the handcrafted feature selection algorithms. When only a small portion of
features are available for the predictive model, the complementary information was distinctively useful for such385

heterogeneous data modeling problem. However, it is our conjecture that, with more data samples become available,
case C may supersede handcrafted features to eliminate the necessity of such a combination.
A summary of important results is provided in TABLE. III. For VAE-related methods, Case C outperformed case

B with arbitrary latent size. Moreover, combining WP (case A) handcrafted features and latent variables (case D)
improved prediction by pure WP features at arbitrary number of features. Note that although we conducted Delong390

test between case B and case C, case A and case D at specific (the best AUC in each case) points for brevity, the
conclusion still held as we varied the number of features/latent sizes as in FIG. 10 and FIG. 12
From TABLE. II, one can see that the reduced feature set from case A was diverse in the type of features, including

dosimetric, cytokines, miRNA and SNP variables. This may indicate the necessity of integrating multi-type factors
into RP modeling in particular and radiotherapy outcome modeling in general.395

In this study, our proposed dimensionality reduction techniques were all applied after pre-processing according to
single-variable AUCs, which reduced the number of variables to around 70. This is because our limited sample size is
not enough to support application of direct dimension reduction techniques on the original dataset, i.e., the adopted
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classifiers gave random prediction results without pre-selection. Therefore, such primitive dimensionality reduction
by AUC criterion was applied prior to the investigated techniques to mitigate redundancy effects. However, the VAE-400

MLP joint architecture was still applicable to the whole dataset, though, the predictive performance was degraded
even with some additional regularization technique being applied. Particularly, we added a term of L2 regularization
to the first-layer weights of the loss function,

Ladd = λ
∑

i∈I

∑

j∈H

w2
ji (20)

where I,H denote the nodes in first (input) and second layers respectively. The regularization was aimed for sparse405

weight matrices, addressing the overfitting issue when a large number of features was available. FIGs. 13-15, show
heat maps of absolute values of weight parameters in the first layers under different strengths of regularization, where
y-axis stands for nodes in the first layer and x-axis denotes the second layer. Clearly, with increasing strength of
regularization, weight matrices become sparse and less features take effect in the models.
With λ = 1, the average AUC reaches 0.662 (95% CI: 0.622-0.701) outperformed 0.627 at λ = 0. The improved AUC410

when λ = 1 indicates some random noise in the original data need to be suppressed for better predictive performance.
Without pre-selection, a VAE-MLP joint architecture did not work well even with regularization techniques, which

might be due to the fact that the limited sample size was not able to support the rather complex models (too many
parameters). One may further consider more advanced VAE structures, which can take into account the correlations
between input variables to reduce the demand for sample size, potentially allowing training without such pre-selection.415

As in the VAE architecture for image data, convolutional neural networks considering spatial invariance and adjacent
pixels-correlation take place of the MLP in encoder and decoder architectures. The resulting architecture had far less
parameters and required less data to train on. In the outcome modeling data, biological variables which are from the
same signaling pathway or longitudinal data measured at different times may be highly correlated with each other, as
well as dosimetric data. An advanced VAE architecture considering these inter-correlations may potentially further420

reduce its dependence on the sample size, enabling better model learning from the raw data.
In this study, we investigated the proposed methods solely on a NSCLC dataset. We recognize that the generalization

of this methodology to other datasets is needed. Though modeling outcomes based on such heterogeneous datasets
(clinical, dosimetric, imaging, and biomarkers) is recognized to be the right approach, it is still evolving in radiotherapy.
As the result, the availability of such dataset is still limited and validation would be the subject of future study. To425

allow others in the community to explore our approaches, we are currently preparing a Medical Physics DataSet
article that will include releasing the data and the associated code.

VII. CONCLUSIONS

This work demonstrates the potential for combination of traditional machine learning methods and deep learning
VAE techniques when dealing with limited datasets for modeling radiotherapy toxicities. Specifically, the combination430

of selected features from MLP-based method WP and latent variables from VAE-MLP joint architecture (case D)
yielded the highest AUC compared to the AUCs by either handcrafted features (case A) or latent variables (cases B,
C) individually.
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TABLE I. Variables considered in RP2 prediction

Categories Names

Dosimetric Information (5) Mean Lung Dose, Maximum Lung Dose, V5, V13, V20

Clinical Factors (13)

Smoking, COPD, Chemo, Gender, Adenocarcinoma, Squamous cell carcinoma

Large cell carcinoma, Poorly differentiated carcinomas, Stage, Age, GTV, KPS,

Ratio of weight change

Cytokines for pre,2-week
and 4 week during
treatment (30+30+30)

EGF, eotaxin, fractalkine, G-CSF, GM-CSF, IFN-γ, IL-10, IL-12p40, IL-12p70,

IL-13, IL-15, IL-17, IL-1, IL-1, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8,

IP-10, MCP-1, MIP-1α, MIP-1β, sCD40L, TGF-α, TNF-α , VEGF, TGF-β1

miRNAs (62)

Let-7a-5p, miR-100-5p, miR-106b-5p, miR-10b-5p, miR-122-5p, miR-124-3p,

miR-125b-5p, miR-126-3p, miR-134, miR-143-3p, miR-146a-5p, miR-150-5p,

miR-155-5p, miR-17-5p, miR-17-3p, miR-18a-5p, miR-192-5p, miR-195-5p,

miR-19a-3p, miR-19b-3p, miR-200b-3p, miR-200c-3p, miR-205-5p, miR-21-5p,

miR-210, miR-221-3p, miR-222-3p, miR-223-3p, miR-224-5p, miR-23a-3p,

miR-25-3p, miR-27a-3p, miR-296-5p, miR-29a-3p, miR-30d-5p, miR-34a-5p,

miR-375, miR-423-5p, miR-574-3p, miR-885-5p, miR-92a-3p, let-7c, miR-10a-5p,

miR-128, miR-130b-3p, miR-145-5p, miR-148a-3p, miR-15a-5p, miR-193a-5p,

miR-26b-5p, miR-30e-5p, miR-374a-5p, miR-7-5p, miR-103a-3p, miR-15b-5p,

miR-191-5p, miR-22-3p, miR-24-3p, miR-26a-5p, miR-20a-5p, miR-93-5p, miR-16-5p

SNPs (60)

Rs3857979(BMP1), Rs4988044 (ATM), Rs1800587(IL1A), Rs17561(IL1A),

Rs2070874(IL4), Rs1801275(IL4R), Rs4073(CXCL8), Rs2234671(CXCR1),

Rs1800896(IL10), Rs3135932(IL10RA), Rs1800872(IL10), Rs11556218(IL16),

Rs4760259(GLI1), Rs1799983(NOS3), Rs689470(PTGS2), Rs12102171(SMAD3),

Rs6494633(SMAD3),Rs4776342(SMAD3),Rs11615(ERCC1), Rs609261(ATM),

Rs12906898(SMAD6), Rs7227023(SMAD7), Rs7333607(SMAD9), Rs664143(ATM),

Rs4803455(TGFB1), Rs1061622(TNFRSF1B), Rs664677(ATM), Rs20417(PTGS2),

Rs373759(ATM), Rs189037(ATM), Rs12456284(SMAD4), Rs1800057(ATM),

Rs3212961(ERCC1), Rs3212948(ERCC1), Rs238406(ERCC2), Rs12917(MGMT),

Rs17655(ERCC5), Rs1047768(ERCC5), Rs12913975(SMAD6), Rs1805794(NBN),

Rs1625895(TP53), Rs1042522(TP53), Rs25489(XRCC1), Rs9293329(XRCC4),

Rs1800469(B9D2&TGFB1), Rs2075685(TMEM167A&XRCC4), Rs25487(XRCC1),

Rs1800795(IL6), Rs1799796(XRCC3), Rs1800468(B9D2&TGFB1),

Rs1478486(XRCC4), Rs2228000(XPC), Rs2228001(XRC), Rs3218384(XRCC2)

Rs1799793(ERCC2), Rs1803965(MGMT), Rs2279744(MDM2), Rs2308321(MGMT),

Rs3218536(XRCC2), Rs2834167(IL10RB), Rs3212986(ERCC1)

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



14

TABLE II. Features being selected more than half of the times (the boldfaced ones were selected every time) in outer-loop CVs

Categories Names

Dosimetric Information (1) Mean Lung Dose (α/β=4)

cytokine (10) 2w eotaxin, 4w eotaxin, pre TNF-α, 2w TNF-α, 4w TNF-α, 2w IL-8, 4w IL-8, 2w MCP-1,
2w fractalkine, pre IFN-γ,

miRNA (8) hsa-miR-192-5p, hsa-miR-22-3p, hsa-miR-128, hsa-miR-15a-5p, hsa-miR-223-3p, hsa-miR-23a-
3p, hsam-miR-210, hsa-miR-100-5p

SNPs(9) Rs3857979(BMP1), Rs238406(ERCC2), Rs12456284(SMAD4), Rs1625895(TP53),
Rs1799983(NOS3), Rs4803455(TGFB1), Rs25487(XRCC1), Rs1800468(TGFB1),
Rs2075685(XRCC4)

TABLE III. Summary of RP2 prediction results from all the 4 strategies

Methods Num of features AUC Delong test

Case B (VAE+MLP) 7 (latent Z) 0.624 (95%CI: 0.577-0.658)
p-value: 1.33× 10−7

Case C (VAE-MLP) 2 (latent Z) 0.781 (95%CI: 0.737-0.808)

Case A (WP+MLP) 29 0.804 (95% CI: 0.761-0.823)
p-value: 6.42× 10−4

Case D ([latent Z + WP]+MLP) 22+2 (latent Z) 0.831 (95% CI: 0.805-0.863)

FIG. 1. Building multivariable predictive models via standard machine learning and deep architectures
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FIG. 2. Diagram of MLP: input (I), hidden (h) and out-
put (o) layers are labeled correspondingly. Numbers of
nodes are scribed beneath

FIG. 3. Diagram of a single neuron with 3 input nodes,
where an activation function f is applied for final output.
(x and a are input and output of this neuron respectively)

FIG. 4. [Left] Diagram of an AE composed of an encoder (E) and a decoder (D). [Right] Diagram of a VAE: numbers of nodes
(*) in the implemented architecture are denoted
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FIG. 5. Diagram of a VAE-MLP joint architecture: µ is used as input of MLP classifier. The number of nodes in each layer is
given

FIG. 6. Nested CV in validation process for evaluating for cases A, B, C and D
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FIG. 7. Top 5%: Comparison of convergence (D) as a function of CV size for feature selection methods

FIG. 8. Top 5%: Frequencies of features based on a random collection of 20 CV
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FIG. 9. Top 5%: AUC trend with increasing number of features

FIG. 10. AUC trend with increasing latent dimension

FIG. 11. Visualization of latent variable Z of patients
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FIG. 12. AUCs by combining WP features with latent Z in SVM (A) RF (B), MLP (C) classifiers

FIG. 13. λ = 0.01 visualization of weightsFIG. 14. λ = 0.1 visualization of weights FIG. 15. λ = 1 visualization of weights
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