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Abstract
The defocusing Davey-Stewartson II equation has been shown in numerical ex-
periments to exhibit behavior in the semiclassical limit that qualitatively resem-
bles that of its one-dimensional reduction, the defocusing nonlinear Schrödinger
equation, namely the generation from smooth initial data of regular rapid oscil-
lations occupying domains of space-time that become well-defined in the limit.

As a first step to studying this problem analytically using the inverse scat-
tering transform, we consider the direct spectral transform for the defocusing
Davey-Stewartson II equation for smooth initial data in the semiclassical limit.
The direct spectral transform involves a singularly perturbed elliptic Dirac sys-
tem in two dimensions. We introduce a WKB-type method for this problem,
proving that it makes sense formally for sufficiently large values of the spectral
parameter k by controlling the solution of an associated nonlinear eikonal prob-
lem, and we give numerical evidence that the method is accurate for such k in
the semiclassical limit. Producing this evidence requires both the numerical so-
lution of the singularly perturbed Dirac system and the numerical solution of the
eikonal problem. The former is carried out using a method previously developed
by two of the authors, and we give in this paper a new method for the numerical
solution of the eikonal problem valid for sufficiently large k.

For a particular potential we are able to solve the eikonal problem in closed
form for all k, a calculation that yields some insight into the failure of the WKB
method for smaller values of k. Informed by numerical calculations of the di-
rect spectral transform, we then begin a study of the singularly perturbed Dirac
system for values of k so small that there is no global solution of the eikonal
problem. We provide a rigorous semiclassical analysis of the solution for real
radial potentials at k D 0, which yields an asymptotic formula for the reflection
coefficient at k D 0 and suggests an annular structure for the solution that may be
exploited when k ¤ 0 is small. The numerics also suggest that for some poten-
tials the reflection coefficient converges pointwise as � # 0 to a limiting function
that is supported in the domain of k-values on which the eikonal problem does
not have a global solution. It is expected that singularities of the eikonal func-
tion play a role similar to that of turning points in the one-dimensional theory.
© 2019 Wiley Periodicals, Inc.

Communications on Pure and Applied Mathematics, Vol. LXXII, 1474–1547 (2019)
© 2019 Wiley Periodicals, Inc.



SEMICLASSICAL DS-II DIRECT TRANSFORM 1475

Contents

1. Introduction 1476
1.1. Quantum Hydrodynamics 1478
1.2. Inverse Scattering Transform 1480
1.3. Results and Outline of the Paper 1482
2. WKB Method for Calculating the Reflection Coefficient 1492
2.1. WKB Formalism 1492
2.2. Some Notes on Rigorous Analysis 1496
3. The Eikonal Problem 1496
3.1. Global Existence of f .x; yI k/ and ˛0.x; yI k/

for jkj Sufficiently Large 1496
3.2. Existence of f .x; yI k/ for j´j Sufficiently Large

Given Arbitrary k ¤ 0 1501
3.3. Series Solutions of the Eikonal Problem 1503
4. A Specialized Method for Radial Potentials with S � 0 and k D 0 1510
4.1. Riccati Equation: Formal Asymptotic Analysis 1512
4.2. Riccati Equation: Rigorous Analysis 1515
4.3. Exact Direct Scattering for k D 0 with S � 0 and A

Being the Characteristic Function of a Disk 1520
5. Numerical Approaches 1521
5.1. Spectral Methods 1522
5.2. Numerical Approaches for the Eikonal Problem 1524
5.3. Numerical Computation of the Leading-Order ˛0

Normalization Function ˛0 1529
5.4. A Spectral Method for the �-Dependent Direct Scattering Problem

for Schwartz-Class Potentials 1531
6. Numerical Examples 1534
6.1. Gaussian Potential 1534
6.2. Potential without Radial Symmetry 1540
Bibliography 1545



1476 O. ASSAINOVA ET AL.

1 Introduction
By the semiclassical limit for the defocusing Davey-Stewartson II (DS-II) equa-

tion, we mean the following Cauchy initial-value problem parametrized by � > 0:1

i�qt C 2�2.x@2 C @2/q C .g C xg/q D 0;
x@g C @

�
jqj2

�
D 0;

(1.1)

for a complex-valued field q D q�.x; y; t/ where

(1.2) @ WD
1

2

�
@

@x
� i

@

@y

�
and x@ WD

1

2

�
@

@x
C i

@

@y

�
;

subject to an initial condition of “oscillatory wavepacket” or “WKB” form:

(1.3) q�.x; y; 0/ D A.x; y/eiS.x;y/=�; A > 0; S 2 R:

Here A and S are functions independent of �, and the precise meaning of the equa-
tion x@g C @.jqj2/ D 0 in (1.1) is that for each t � 0, g is eliminated from the
equation governing q by the solid Cauchy transform: g D �x@�1.@.jqj2//, where
for a suitable function F W R2 ! C,

(1.4) x@�1F.x; y/ WD �
1

�

“
R2

F.x0; y0/dA.x0; y0/

.x0 � x/C i.y0 � y/
;

where dA.x; y/ denotes the area differential in the plane. The dependence on
� > 0 in this problem enters both through the phase factor in the initial data and
the coefficients of the DS-II equation.

The initial-value problem (1.1)–(1.3) is globally well-posed in H 1;1.R2/ [31],
a result that has recently been extended to L2.R2/ [28]. Significantly, these results
are completely insensitive to the value of � > 0. Thus, forA 2 L2.R2/ there exists
a unique global solution of the initial-value problem for every value of � > 0,
and the question we wish to address is how does this well-defined solution q D
q�.x; y; t/ behave asymptotically as � # 0? This problem is interesting because it
sets up a competition between two space-time scales:

� On the one hand, the system (1.1) admits solutions with rapid space-time
variations: indeed, setting q�.x; y; t/ D Q.x=�; y=�; t=�/, one sees that
Q satisfies (1.1) with � D 1. Thus one may expect that “typical” solutions
of (1.1) exhibit wavelengths and periods proportional to �.
� On the other hand, the functions A and S in the initial data vary on spatial

scales that are fixed as � tends to 0.

1 A more physically relevant way to write (1.1) is to introduce the real-valued mean flow ˆ WD

Re.g/ � jqj2. Then applying @ to the second equation in (1.1) and taking the real part one arrives at
the form

i�qt C �2.qxx � qyy/C 2.ˆC jqj2/q D 0;

ˆxx Cˆyy C 2.jqj
2/xx D 0:
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Therefore, the “natural” space-time scales of the system (1.1) are �x � �y �
�t D O.�/, while those of the functions A and S in the initial data are �x �
�y D O.1/. Consequently, one expects that the solution q�.x; y; t/ will exhibit a
multiscale structure when � is small, and the solution is examined on O.1/ space-
time scales. In dispersive partial differential equations formulated in one space
dimension, this competition of scales results in a back-and-forth process in which
the solution first evolves for a time according to a simplified dispersionless model
(e.g., the Madelung quantum hydrodynamic system; see Section 1.1 below) until
one or more singularities form in the approximating solution. The singularities are
resolved by dispersive terms in the full equation that produce small-scale oscilla-
tions. Then the process repeats, as the oscillations develop smooth modulations
that may be captured by a more complicated dispersionless approximating system
(e.g., Whitham’s modulation equations [8, 39]), solutions of which may also be-
come singular at a later time, and so on. The wild oscillations are confined to
space-time domains that are increasingly well-defined in the limit � # 0. The mod-
ulated oscillatory structures that appear in such a way are called dispersive shock
waves. Numerical simulations show that similar phenomena also occur in 2 C 1
systems such as (1.1); see Figure 1.1.

FIGURE 1.1. Contour plots of jq�.x; y; 1/j2 on the fixed region .x; y/ 2
Œ�2:5; 2:5� � Œ�2:5; 2:5� for Gaussian initial data of the form (1.3) with
S.x; y/ � 0 and A.x; y/ WD e�.x

2Cy2/. Left: � D 0:01. Right: � D
0:006. See [19] for other similar plots. Observe that as � decreases,
the four lens-shaped regions that appear to confine the O.�/-wavelength
oscillations become better defined in the .x; y/-plane for fixed t D 1.

Another way to think about the semiclassical limit is to consider the system
(1.1) with � D 1 but for a family of initial data parametrized by � that becomes
large in a certain sense as � ! 0. For example, by the scaling of q�.x; y; t/ D
Q.x=�; y=�; t=�/ we arrive at the system (1.1) with � D 1 for Q, but also with the
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side effect of stretching the initial data for Q in the .x; y/-directions by a factor
of ��1; this makes the L2.R2/-norm of the initial data for Q very large as � # 0.
Alternatively, one may take the � D 1 form of (1.1) for Q with pointwise large
initial data Q.x; y; 0/ proportional to ��1. In this interpretation, the semiclassical
limit at first seems similar to the strong coupling limit discussed by Ablowitz and
Clarkson [1, sec. 5.5.4]. However, the simplified dynamics of the strong coupling
limit essentially transpires on the time scale of length t D O.�/ in the variables
of (1.1), rendering the interesting dynamics observed numerically on time scales
t D O.1/ out of reach.

1.1 Quantum Hydrodynamics
Eliminating the imaginary part of g from (1.1) yields the form

(1.5)
i�qt C �2

�
qxx � qyy

�
C 2Mq D 0;

Mxx CMyy D
�
jqj2

�
yy
�
�
jqj2

�
xx
;

where M D M �.x; y; t/ WD Re.g/. This form reveals a certain formal connection
with dispersive nonlinear equations in 1 C 1 dimensions. Indeed, if one takes q
andM independent of y and accepts the solutionM D �jqj2 of the Poisson equa-
tion governing M , one finds that q solves the defocusing nonlinear Schrödinger
equation

(1.6) i�qt C �2qxx � 2jqj2q D 0:

Similarly, taking q and M independent of x and related by M D jqj2, one
arrives instead at

(1.7) � i�qt C �2qyy � 2jqj2q D 0;

which is also a (conjugated, or time-reversed) defocusing nonlinear Schrödinger
equation. Note, however, that these reductions are not obviously consistent with
the elimination of g using x@�1 given by (1.4), which assumes some sort of decay
of @.jqj2/ in all directions of the .x; y/-plane.

The simplest interpretation of the semiclassical limit is that afforded by the
quantum hydrodynamic system that one can derive from (1.1) by following the
ideas of Madelung [23]. Let us assume only that jqj > 0 for all .x; y; t/, and
represent q in the form (resembling the initial data)

(1.8) q�.x; y; t/ D A�.x; y; t/eiS�.x;y;t/=�:

Inserting this form into (1.5), dividing out the common phase factor from the first
equation, and separating it into real and imaginary parts gives, without approxima-
tion, the following system governing the three real-valued fields A D A�.x; y; t/,
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S D S�.x; y; t/, and M DM �.x; y; t/:

(1.9)

St C S
2
x � S

2
y � 2M D �

2Axx � Ayy

A
;

At C 2AxSx C ASxx � 2AySy � ASyy D 0;

Mxx CMyy C .A
2/xx � .A

2/yy D 0:

This system is to be solved with the �-independent initial data A�.x; y; 0/ D
A.x; y/ and S�.x; y; 0/ D S.x; y/. This situation obviously invites the neglect
of the formally small terms proportional to �2 on the right-hand side of (1.9). Set-
ting � D 0 in (1.9) yields the dispersionless DS-II system, which may be expected
to govern the semiclassical evolution of q�.x; y; t/ in the initial phase of the dy-
namics (until singularities form in its solution).

To write the dispersionless DS-II system in quantum hydrodynamic form, we
introduce Madelung’s quantum fluid density � and quantum fluid velocity u by

(1.10) � D ��.x; y; t/ WD A�.x; y; t/2 and u D u�.x; y; t/ WD rS�.x; y; t/;

where r is the gradient in the spatial variables .x; y/. The dispersionless DS-II
system then becomes the quantum hydrodynamic system associated to (1.1):

ut Cr.u � �3u/ � 2rM D 0;
�t C 2div.��3u/ D 0;
�M C div.�3r�/ D 0:

(1.11)

Here �3 D diag.1;�1/ is a Pauli matrix. We see that M has the interpretation of
a kind of fluid pressure, and if we were to replace �3 by the identity matrix, these
would essentially be the Euler equations of motion for a physical compressible
fluid.

If the dispersionless problem (i.e., (1.9) with � D 0, or equivalently (1.11), with
�-independent initial data) is locally well-posed, then it is reasonable to expect
that the solution of (1.1) can be approximated for small � by the dispersionless
limit over some finite time interval independent of �. In the case of the defocusing
nonlinear Schrödinger equation in 1 C 1 dimensions, the corresponding 1 C 1

reduction of (1.11) is a hyperbolic quasilinear system, and local well-posedness is
guaranteed; the accuracy of the dispersionless approximation as � # 0 has been
proven in this case by several different methods including energy estimates applied
to a Madelung-type ansatz [16], Lax-Levermore variational theory [17], and matrix
steepest-descent type Riemann-Hilbert techniques [26] following similar steps as
were earlier developed for the small-dispersion limit of the Korteweg–de Vries
equation [7]. In all these cases, shock formation and the accompanying dispersive
regularization precludes global well-posedness.

Integrable dispersionless systems in higher dimensions such as (1.11) admit cer-
tain specialized techniques [10, 24], and some aspects of these techniques have
been developed in the specific setting of the dispersionless Davey-Stewartson sys-
tem [20, 41]. However, even if one has local well-posedness for (1.11), one does
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not expect to have global well-posedness. One expects instead that the solution of
the dispersionless system develops singularities (shocks, gradient catastrophes, or
caustics) in finite time. As the singularity is approached, the terms proportional to
�2 on the right-hand side of (1.9) can no longer be discarded and must instead be
included at the same order, resulting in the generation of short-wavelength oscil-
lations near the shock point. Once these structures form near the shock point, a
different kind of ansatz is required locally for q, and a more complicated system
obtained by Whitham averaging would be expected to take the place of (1.11).

1.2 Inverse Scattering Transform
In order to study the semiclassical limit for the Cauchy problem (1.1)–(1.3), we

wish to exploit the complete integrability of this problem to express its solution via
the corresponding inverse scattering transform, which was introduced by Ablowitz
and Fokas [11–14] and refined by many others, including Beals and Coifman [3,4],
Sung [34–36], Brown [6], Perry [31], and Nachman, Regev, and Tataru [28].

To introduce the necessary formulae, we follow the notation of [31] and intro-
duce the appropriate �-scalings.

1.2.1 Direct Transform
Consider the Dirac system of linear equations

�x@ 1 D
1
2
q 2;

�@ 2 D
1
2
xq 1;

(1.12)

to which we seek for each fixed time t the unique (complex geometrical optics)
solution  j D  �j .´I k; t/ parametrized by the additional complex parameter k 2
C that satisfies the asymptotic conditions:

lim
j´j!1

 �1.´I k; t/e
�k´=�

D 1;

lim
j´j!1

 �2.´I k; t/e
�xkx́=�

D 0;
(1.13)

where ´ D x C iy. The reflection coefficient R D R�.kI t / is defined in terms of
 �2.´I k; t/ as follows:

(1.14) e�k´=� �2.´I k; t/ D
1
2
R�.kI t /´�1 CO.j´j�2/; j´j ! 1:

It can be easily shown that if q has radial symmetry, i.e., depends only on j´j and
not arg.´/, then also R� has radial symmetry, i.e., depends only on jkj and not
arg.k/.

Remark. The notation  �j .´I k; t/ is shorthand for  �j ..x; y/I .Re.k/; Im.k//; t/
and is not meant to suggest analytic dependence on either ´ or k. Similar notational
conventions hold for other functions throughout this paper.
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1.2.2 Time Dependence
As q evolves in time t according to (1.1), the reflection coefficient evolves by a

trivial phase factor:

(1.15) R�.kI t / D R�0.k/e
4itRe.k2/=�; R�0.k/ WD R

�.kI 0/:

For convenience we define

(1.16) R�.kI ´; t/ WD R�.kI t /e2iIm.k´/=�:

1.2.3 Inverse Transform
The related quantities defined by

(1.17) �1 D �
�
1.kI ´; t/ WD e�k´=� 1 and �2 D �

�
2.kI ´; t/ WD e�k´=� 2

can then be shown to satisfy, for each fixed ´ 2 C, the linear differential (with
respect to k) equations

�x@k�1 D
1
2
R�.kI ´; t/x�2;

�x@k�2 D
1
2
R�.kI ´; t/x�1;

(1.18)

where, writing k D � C i� for .�; �/ 2 R2,

(1.19) x@k WD
1

2

�
@

@�
C i

@

@�

�
;

and the asymptotic conditions

(1.20) lim
jkj!1

��1.kI ´; t/ D 1 and lim
jkj!1

��2.kI ´; t/ D 0:

The inverse scattering problem is then to recover ��1;2.kI ´; t/ given R�0.k/ from
(1.18)–(1.20), a problem that formally very closely resembles the direct scattering
problem (1.12)–(1.13). Using the definitions (1.17) and the complex conjugate of
the second equation of the system (1.12) gives the reconstruction formula

(1.21) q�.x; y; t/ D 2�

�
@ 2

 1

�
D 2�

x@ x 2
x 1
D 2
xkx�2 C �x@x�2

x�1
:

The right-hand side is in fact independent of k, so we can let jkj ! 1 and use
the asymptotics for �j with respect to k to get the reconstruction formula for the
solution of the Cauchy problem (1.1)–(1.3):

(1.22) q�.x; y; t/ D 2 lim
jkj!1

k ��2.kI x C iy; t/:
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1.3 Results and Outline of the Paper
Both the direct and inverse transforms involve singularly perturbed linear ellip-

tic problems in the plane. This paper concerns the development of tools for the
study of the direct scattering problem in the semiclassical limit � # 0. The ultimate
goal is to determine an asymptotic formula for the reflection coefficient R�0.k/ as-
sociated with suitably general real-valued amplitude and phase functions A and S .
Such a formula should contain sufficient information about the latter functions to
allow their reconstruction via the inverse problem,2 also considered in the semi-
classical limit � # 0.

1.3.1 Aside: An Analogous, Better-Understood Problem
It is useful to have in mind the simpler example of the integrable defocusing

nonlinear Schrödinger equation in the form (1.6) with initial data q�.x; 0/ D
A.x/eiS.x/=�, assuming, say, that A and S 00 are Schwartz functions. The direct
transform in this case involves the calculation of the Jost solution  for � 2 R of
the Zakharov-Shabat system [42],

(1.23) �
d 
dx
D

�
�i� A.x/eiS.x/=�

A.x/e�iS.x/=� i�

�
 ;

which satisfies the boundary conditions

(1.24)  .x/ D

8̂̂̂̂
<̂
ˆ̂̂:

"
e�i�x=�

0

#
CR�0.�/

"
0

ei�x=�

#
C o.1/; x !C1;

T �0 .�/

"
e�i�x=�

0

#
C o.1/; x ! �1;

defining the reflection coefficient R�0.�/ and transmission coefficient T �0 .�/ for
� 2 R. We note, in comparison with the direct spectral problem (1.12)–(1.13), the
association k D �i�. Asymptotic formulae for R�0.�/ and jT �0 .�/j

2 valid in the
semiclassical limit � # 0 may be obtained under some further conditions on A and
S by using the WKB method to study the problem (1.23)–(1.24) and construct an
approximation to  uniformly valid for x 2 R as � # 0. The simplest ansatz for
 is to assume that for some scalar exponent function E D E.x; �/ independent
of �,  D eE=��, where the vector function � has an asymptotic power series
expansion in �. This ansatz forces E to satisfy the eikonal equation

(1.25)
�

dE
dx

�2
C

�
�C

1

2
S 0.x/

�2
D A.x/2:

2 An important observation is that, even though the direct and inverse problems are formally
similar, they may be quite different in character in the semiclassical limit if it happens that the
reflection coefficient depends on � in a more subtle way than does the initial data q�.x; y; 0/ D
A.x; y/eiS.x;y/=� .
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It is convenient to assume now that the functions

(1.26) a.x/ WD �
1

2
S 0.x/ � A.x/ and b.x/ WD �

1

2
S 0.x/C A.x/

each have only one critical point, a minimizer xa for a with value �� WD a.xa/ and
a maximizer xb for b with value �C WD b.xb/. Then, if either � < �� or � > �C,
the exponent E is purely imaginary, and therefore the Jost solution  .x/ is rapidly
oscillatory and one can prove that its WKB approximation is indeed uniformly
accurate for all x 2 R, leading to the conclusion that R�0.�/ is small beyond all
orders in � (similar to “above barrier” reflection in quantum mechanics).

However, if �� < � < �C, there exist exactly two turning points x�.�/ <
xC.�/ such that E is imaginary, giving rapidly oscillatory WKB approximations
for x < x�.�/ and x > xC.�/, but E is real in the intermediate region x�.�/ <
x < xC.�/, and the solutions are instead rapidly exponentially growing or decay-
ing. The WKB method (in its traditional Liouville-Green form, that is) fails in the
vicinity of the two turning points, but uniform accuracy may be recovered with the
use of Langer transformations and approximations based on Airy functions [25,
sec. 7.2]. It is the connection, through the two turning points, of oscillatory solu-
tions onto exponential solutions and back again, that yields nontrivial reflection in
the semiclassical limit. One obtains from this procedure the asymptotic formulae
(see [27, app. B] for all details of virtually the same calculation)

R�0.�/ D e2i�0.�/=�.1CO.�//;ˇ̌
T �0 .�/

ˇ̌2
D 1 �

ˇ̌
R�0.�/

ˇ̌2
D e�2m.�/=�.1CO.�//;

(1.27)

as � # 0, where

(1.28) m.�/ WD

Z xC.�/

x�.�/

p
.� � a.x//.b.x/ � �/ dy

and

�0.�/ WD �
1

2
S.xC.�// � �xC.�/

C

Z C1
xC.�/

h
�
p
.� � a.x//.� � b.x// �

�
�C 1

2
S 0.y/

�i
dy

(1.29)

where � WD sgn.�C 1
2
S 0.C1//.

The only points � 2 R not covered by these approximations are those very
close to the values �˙, at which the two turning points coalesce. In any case, the
point is that these formulae represent the leading term of the reflection coefficient
and its exponentially small deviation from unit modulus (jT �0 .�/j

2 is exponentially
small, an analogue of a quantum tunneling amplitude) in the interval .��; �C/ as
explicit integral transforms of the given functions A and S , via also the related
functions a and b. This is sufficient information to allow these functions to be
recovered by using the leading term in place of the actual reflection coefficient in
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the inverse spectral transform, in this case a Riemann-Hilbert problem of quite a
different character than the direct spectral problem. See [26] for details of these
calculations.

1.3.2 Generalization to DS-II
It should be noted that the WKB approach to the calculation of R�0.�/ for the

problem (1.23)–(1.24) can also be motivated by the existence of several potentials
A.x/eiS.x/=� for which the solution  can be calculated explicitly for all � and
� > 0 in terms of special functions. Examples include piecewise-constant poten-
tials for which is constructed by solving constant-coefficient systems in different
intervals joined by continuity at the junction points, and Schwartz potentials of the
form A.x/ D A sech.x/ and S.x/ D � tanh.x/ for arbitrary constants A and �,
for which the equation (1.23) can be reduced to the Gauss hypergeometric equation
and hence R�0.�/ expressed explicitly in terms of gamma functions (see [33, 37]
where this is done for the focusing case; the calculations for the defocusing case
are similar). By contrast, for the two-dimensional problem (1.12)–(1.13), there ex-
ist no known potentials other than q � 0 for which the direct spectral problem can
be solved and the reflection coefficient R�0.k/ recovered for all k 2 C and a set of
� > 0 with accumulation point � D 0.

In the absence of any exact solutions, a natural approach to the two-dimensional
generalization (1.12)–(1.13) of this problem is to mimic the WKB ansatz that pro-
duces such useful and explicit formulae as (1.27)–(1.29). As will be shown in
Section 2, this leads one to consider a certain complex-valued eikonal function
f .x; yI k/ that is an analogue of the WKB exponent E trivially computed for the
Zakharov-Shabat system (1.23) as the antiderivative of an eigenvalue of the coeffi-
cient matrix in the system obtained from (1.23) by a simple gauge transformation
to remove the oscillatory factors e˙iS.x/=�. In the two-dimensional setting, this
function satisfies the eikonal equation:

(1.30) Œ2x@f C ix@S�Œ2@f � i@S� D A2;

a nonlinear partial differential equation in the .x; y/-plane. If A, S , and E WD f �
Re.k´/ are independent of y, with k D �i� and � 2 R, this equation reduces to
the far simpler (solvable by quadrature) one-dimensional eikonal equation (1.25).
For formal validity of the WKB ansatz near j´j D 1, we insist that f satisfy the
asymptotic condition

(1.31) lim
j´j!1

�
f C

i
2
S � k´

�
D 0; ´ D x C iy:

We refer to the problem of finding a function f D f .x; yI k/ that satisfies (1.30)–
(1.31) as the eikonal problem. An important point is that unlike the direct scattering
problem (1.12)–(1.13), the eikonal problem is independent of the parameter � > 0,
so although it is nonlinear, it is not a singularly perturbed problem at all. This may
be viewed as a distinctive advantage of the WKB approach to the direct scattering
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problem.3 In Section 3 we prove the following result. Here W.R2/ is the Wiener
algebra of functions with Lebesgue integrable Fourier transforms, equipped with
the norm k�kW defined in (3.6).

THEOREM 1.1. Suppose that u D A2 2 Lp.R2/ \W.R2/ for some p 2 Œ1; 2/,
that S 2 C 1.R2/, and that v D @S 2 W.R2/. Then for every B > kvkW, if k
satisfies the inequality

(1.32) jkj > B Cmax
�
1

4

kukW

B � kvkW
;
1

2

p
kukW

�
;

there is a unique global classical .C 1.R2// solution f .x; yI k/ of the eikonal prob-
lem (1.30)–(1.31) that satisfies the estimate

(1.33)




@f � k � 12 i@S






W
� B:

In particular, (1.32) and (1.33) imply that i@S�2@f is bounded away from 0 on R2.

One interpretation of Theorem 1.1 is that the eikonal problem (1.30)–(1.31) is
of nonlinear elliptic type for sufficiently large jkj. The leading term of the WKB
approximation explained in Section 2 is proportional to a complex-valued function
˛0 D ˛0.x; yI k/ that is required to solve the following linear equation in which
the eikonal function f appears as a coefficient:

(1.34) L ˛0 WD .2x@f C ix@S/@.A˛0/C Ax@..2@f � i@S/˛0/ D 0:

THEOREM 1.2. Under the same conditions on u D A2, S , v D @S , and k as in
Theorem 1.1, there is a unique solution ˛0 of (1.34) for which ˛20 � 1 D m 2

W.R2/.

These two results provide conditions on k sufficient to guarantee the formal
validity of the WKB expansion in the whole .x; y/-plane. As will be shown in
Section 2, global validity of the WKB expansion for a given k 2 C implies that
the reflection coefficient R�0.k/ tends to 0 with �. This situation is therefore com-
pletely analogous to the fact that in the one-dimensional analogue of this problem,
if j�j is sufficiently large there are no turning points and hence a globally defined
(purely imaginary) WKB exponent function E.xI�/ exists and leads to negligi-
ble reflection. Theorems 1.1 and 1.2 would therefore provide a two-dimensional
analogue of the fact that in the one-dimensional setting the reflection coefficient is
asymptotically supported on the finite interval Œ��; �C�.

3 Note, however, that unlike the one-dimensional reduction of the eikonal problem, which is ex-
plicitly solvable by quadratures and square roots, to our knowledge there is no analogous elementary
integration procedure for the two-dimensional eikonal problem (1.30)–(1.31), which is studied in
detail in Section 3.
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In Section 6 we give convincing numerical evidence that in the situation covered
by Theorems 1.1 and 1.2 (and more generally, that the eikonal problem (1.30)–
(1.31) has a global classical solution) the leading term of the WKB expansion
indeed gives the expected order of relative accuracy as � # 0. Unfortunately, a
proof of accuracy of the method, even in the favorable situation of global existence
of the eikonal function, eludes us. Nonetheless, the numerical results suggest the
following conjecture:

CONJECTURE 1.3. Suppose (for instance) that A and S � S1 are Schwartz-class
functions for some constant S1 2 R, and that k 2 C n f0g is such that there
exists a global classical solution f .x; yI k/ of the eikonal problem (1.30)–(1.31).
Then the solution  �.´I k/ of the direct scattering problem (1.12)–(1.13) at t D 0,
well-defined for all � > 0, satisfies

(1.35) e�f .x;yIk/=�e�iS.x;y/�3=.2�/ �.x C iyI k/ D

˛0.x; yI k/

2k

�
2@f .x; yI k/ � i@S.x; y/

A.x; y/

�
C o.1/; � # 0;

with the convergence measured in a suitable norm and the o.1/ symbol on the right-
hand side can be uniquely continued to a full asymptotic power series in positive
integer powers of �.

Some of the issues that would need to be addressed to give a proper proof of
Conjecture 1.3 are mentioned in Section 2.2. The accuracy of the WKB approxima-
tion predicted by Conjecture 1.3 is illustrated in Figure 1.2, in which the solution
of the Dirac problem (1.12)–(1.13) for a Gaussian potential A.x; y/eiS.x;y/=� D

e�.x
2Cy2/ at k D 1 and � D 1=16 is plotted in the upper row (for numerical rea-

sons we plot the modulus of the components multiplied by e�k´=� in order to have
functions bounded at infinity), while plots for the corresponding WKB approxima-
tion indicated in the conjecture are shown in the lower row. The qualitative accu-
racy of the approximation is obvious from these plots; however, a more systematic
numerical study of these questions is presented in Section 6.

A corollary of the existence of the full asymptotic expansion anticipated by Con-
jecture 1.3 is the following stronger control on the reflection coefficient.

COROLLARY 1.4. Under the same conditions on A, S , and k as in Conjecture 1.3,
the reflection coefficient satisfies R�0.k/ D O.�

p/ as � # 0 for all p.

The proof is simply based on the a priori existence of the reflection coefficient
and is given in Section 2.1.

If jkj becomes too small, we can no longer guarantee the existence of a global
solution to the eikonal problem (1.30)–(1.31). As long as k ¤ 0 it is, however,
possible to find a solution in a k-dependent neighborhood of ´ D1:

THEOREM 1.5. Suppose that u D A2 2 Lp.R2/ \W.R2/ for some p 2 Œ1; 2/,
that S 2 C 1.R2/, S � S1 2 W.R2/ for some constant S1 2 R, and v D @S 2
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FIGURE 1.2. Comparison between the solution to the Dirac system
(1.12)–(1.13) with Gaussian potential e�.x

2Cy2/ for k D 1 and � D 1=16
with the WKB approximation. First row: the modulus of e�k´=� 1 (left)
and of e�k´=� 2 (right). Second row: the corresponding WKB approxi-
mations of Conjecture 1.3.

W.R2/, and let k ¤ 0 be a given complex value. Then there exists � > 0 such that
there is a classical solution f .x; yI k/ of (1.30)–(1.31) defined for j´j � �. There
is also a corresponding classical solution ˛0.x; yI k/ of (1.34) in the same domain
j´j � � satisfying ˛0 ! 1 as j´j ! 1.

The proof is given in Section 3.2. This result begs the question of what goes
wrong with the eikonal problem if, given k ¤ 0 with jkj sufficiently small, one
tries to continue the solution inwards from ´ D 1. Here we cannot say much yet;
however, we can present a potentially illustrative example. Namely, if A.x; y/ D
.1Cx2Cy2/�1 (a Lorentzian potential) and S.x; y/ � 0, we show in Section 3.3.4
that for jkj > 1

2
, the eikonal problem (1.30)–(1.31) has the explicit global solution

(1.36) f .x; yI k/ D k´C
1

2
arcsin.W /C

.1 �W 2/1=2 � 1

2W
; W WD

x́

k.1C ´x́/
;

and the equation (1.34) has the explicit solution

(1.37) ˛0.x; yI k/ D
p
2
�
.1 �W 2/1=2

�
1C .1 �W 2/1=2

���1=2
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for which ˛0.x; yI k/! 1 as j´j ! 1. Note that ˛0 is well-defined and smooth as
long as jkj > 1

2
, i.e., exactly the same condition under which f .x; yI k/ is smooth.

With these explicit formulae in hand, we can begin to address the question of
what happens to f .x; yI k/ when jkj < 1

2
, a necessary condition for the reflection

coefficient to be nonnegligible in the limit � ! 0. It is easy to see that the whole
complex ´-plane is mapped onto the closed diskD1=.2jkj/ in theW -plane of radius
.2jkj/�1 centered atW D 0. Each point in the interior ofD1=.2jkj/ has exactly two
preimages in the ´-plane along the ray satisfying arg.´/C arg.k/C arg.W / D 0,
one with j´j < 1 and one with j´j > 1, while the map is one-to-one from the
unit circle in the ´-plane onto the boundary of D1=.2jkj/. When jkj < 1

2
, the

disk D1=.2jkj/ necessarily intersects both branch cuts emanating from W D ˙1.
Pulling the parts of the branch cuts in D1=.2jkj/ back to the ´-plane, one sees that
f .x; yI k/ is well-defined and smooth with the exception of two cuts, each of which
connects the two preimages in the ´-plane of the branch points W D ˙1, joining
them through the point on the unit circle in the ´-plane corresponding to where the
branch cut in the W -plane meets the boundary of D1=.2jkj/. Assuming jkj < 1

2
,

the two preimages of W D ˙1 are

(1.38) ´ D ˙
1

2k

h
1C �

q
1 � 4jkj2

i
; �2 D 1:

This calculation is interesting because it shows that at branch points of f , which
may be compared with turning points in the one-dimensional problem, the ampli-
tude function ˛0 given by (1.37) exhibits �1

4
power singularities, exactly as in the

one-dimensional problem (see [25, sec. 7.2] and [27, app. B.2]). This suggests that
the branch points might play the role in the two-dimensional problem that turn-
ing points play in the one-dimensional problem. The branch points and cuts for
f .x; yI k/ are shown in the ´-plane for two values of k in Figure 1.3.

In the one-dimensional problem, the reflection coefficient fails to converge to 0
with � as soon as turning points appear in the problem, and one might therefore be
led to believe that in the two-dimensional problem something similar occurs when
k decreases within a finite radius (e.g., jkj D 1

2
for A.x; y/ D .1 C x2 C y2/�1

and S.x; y/ � 0), at which point singularities first appear in the solution of the
eikonal problem. Numerical reconstructions of the reflection coefficient for small
� suggest that this is indeed the case.

In Figure 1.4 we plot the reflection coefficient as a function of jkj for the Gauss-
ian potential A.x; y/ D e�.x

2Cy2/ with S.x; y/ � 0. The reflection coefficient
was calculated by solving the direct scattering problem (1.12)–(1.13) numerically
using the scheme of [18] summarized in Section 5.4. These plots show that as
� # 0 the support of the reflection coefficientR�0.k/ appears to reduce to a bounded
region as � # 0, perhaps the domain jkj � 1

2
. Now, as will be explained in Sec-

tion 3.3.3, Theorem 1.1 predicts the existence of a global solution of the eikonal
problem (1.30)–(1.31) if jkj > 1 for the potential A.x; y/ D e�.x

2Cy2/ with
S.x; y/ � 0, but our numerical calculations described in Section 6.1 suggest that
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FIGURE 1.3. The branch points (red) and cuts (wavy lines) in the ´-
plane for the continuation below jkj D 1

2
of the solution (1.36) of the

eikonal problem (1.30)–(1.31) for the Lorentzian potential A.x; y/ D
.1 C x2 C y2/�1 with S.x; y/ � 0. Left: k D 1

2
ei�=8; right: k D

0:45ei�=8. For reference, the unit circle is shown with a dashed line.

this is not a sharp bound, and moreover they suggest that the correct value at which
singularities first form in f .x; yI k/ is again jkj D 1

2
, exactly as is known to be

true for the Lorentzian potential. Therefore, as in the one-dimensional problem,
we expect that the existence of singularities in the solution of the eikonal problem
(1.30)–(1.31) leads to nontrivial reflection in the semiclassical limit.

Despite this connection with the one-dimensional problem, it is worth dwelling
on the stark qualitative differences between the asymptotic behavior of R�0.k/ for
the two-dimensional problem as illustrated in Figure 1.4 and that of R�0.�/ for the
one-dimensional problem as given by (1.27) for �� < � < �C (and R�0.�/ D o.1/
as � # 0 for � 2 R n Œ��; �C�). Apparently, R�0.k/ is real-valued, nonoscillatory,
and develops a growing peak near k D 0 as � # 0, while R�0.�/ is complex,
rapidly oscillatory, and essentially of unit modulus within its asymptotic support.
Moreover, it seems obvious to the eye that as � # 0, R�0.k/ is converging pointwise
to a real, radially symmetric function with compact support on the disk jkj � 1

2
and that blows up as jkj # 0.

We do not yet have a good explanation for most of these interesting features of
R�0.k/. However, motivated by the numerical observation of the growth of R�0.k/
near k D 0, in Section 4 we show how the solution of the direct spectral problem
can be calculated for small � at k D 0 for radially symmetric potentials A (and
S � 0). This analysis is based on a radial ordinary differential equation, and it
results in an asymptotic formula for R�0.0/ that we prove is accurate as � # 0.
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FIGURE 1.4. Numerical calculations of the (radially symmetric and
real-valued) reflection coefficient R�0.k/ for the Gaussian potential q D
A.x; y/eiS.x;y/=� with S.x; y/ � 0 and A.x; y/ D e�.x

2Cy2/, plotted
as a function of k > 0 for several values of � > 0. The dotted verti-
cal line at k D 1

2
is the numerically predicted threshold below which

the eikonal problem does not have a smooth global solution and the sup-
port of the reflection coefficient appears to concentrate with decreasing
�. Also indicated with arrows on the vertical axis are the correspond-
ing values of the relatively accurate approximate formula 2

p
ln.��1/ for

R�0.0/ as predicted by Theorem 1.6.

THEOREM 1.6. Suppose that S.x; y/ � 0 and that A D A.r D
p
x2 C y2/,

where A.r/ is a continuous nonincreasing function with A.r/ > 0 for all r > 0

such that the function rA.r/ has a single maximum. Assume further that for some
positive constants L � U , b, and p, the inequalities Le�br

p

� A.r/ � U e�br
p

hold for r sufficiently large. Then R�0.0/ D 2.b
�1 ln.��1//1=p.1C o.1// as � # 0.

The Gaussian A.r/ D e�r
2

satisfies the hypotheses of Theorem 1.6 with L D
U D b D 1 and p D 2, and we conclude that R�0.0/ D 2

p
ln.��1/.1C o.1// as

� # 0. The divergence of this approximation as � # 0 explains the rising peak at
k D 0 seen in Figure 1.4; the exact values of the approximate formula for R�0.0/
are indicated with arrows for comparison. The heuristic analysis in Section 4.1
leading up to the proof of Theorem 1.6 indicates that a similar approximation of
R�0.0/ holds true for compactly supported amplitude functionsA D A.r/, in which
.b�1 ln.��1//1=p is replaced with the largest value of r > 0 in the support of A,
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which in this case is independent of �. The proof of Theorem 1.6 is given in
Section 4.2. In Section 4.3 we show how the direct spectral problem (1.12)–(1.13)
can be solved explicitly in terms of special functions when S.x; y/ � 0 and A is
a positive multiple of the characteristic function of the disk of radius � centered
at the origin. This yields the rigorous (but specialized to this particular example)
result that R�0.0/ D 2� C o.1/ as � # 0, consistent with the general principle for
compactly supported radial amplitudes indicated above.

The analysis in Section 4 shows that the solution of the direct scattering problem
(1.12)–(1.13) at k D 0 for radial potentials A D A.r/ with S � 0 is only consis-
tent with the WKB expansion method in an annulus in the .x; y/-plane centered at
the origin with an inner radius proportional to � and an outer radius proportional to
rMatch.�/, defined as the largest solution r of the equation rA.r/ D �. In this case,
the eikonal problem (1.30)–(1.31) has an exact radial solution that is smooth except
for a conical singularity at the origin (this solution is described in Section 3.3.2).
Our analysis shows that the �-dependent problem (1.12)–(1.13) regularizes the ef-
fect of this singularity within a small neighborhood of the origin and behaves as if
A � 0 for r > rMatch.�/. This observation suggests that if one wants to capture
the behavior of the reflection coefficient for values of k of modulus sufficiently
small that the eikonal problem does not have a global smooth solution, it may be
necessary to construct the solution in nested approximately annular domains as is
known to yield accurate approximations for k D 0. This is a subject for future
investigation.

In Section 5 we provide new numerical algorithms for computing the eikonal
function f .x; yI k/ and WKB amplitude ˛0.x; yI k/, assuming that jkj is suffi-
ciently large. These algorithms are tested on the known exact solutions (1.36) and
(1.37), respectively. One of the algorithms for computing the eikonal function
f .x; yI k/ (a series-based method applicable to radial potentials with S.x; y/ � 0
that is described in Section 5.2.2) also gives a method of estimating the critical ra-
dius for jkj, below which singularities of some sort certainly appear in the eikonal
function. This method predicts the threshold value of jkj D 1

2
for the Gauss-

ian A.x; y/ D e�.x
2Cy2/ that matches with the numerical computations of R�0.k/

shown in Figure 1.4. We also briefly review the method advanced in an earlier
work [18] of two of the authors for solving the �-dependent direct scattering prob-
lem (1.12)–(1.13). In Section 6 we use the developed numerical methods to make
quantitative comparisons with the WKB method and provide quantitative justifica-
tion of Conjecture 1.3.
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2 WKB Method for Calculating the Reflection Coefficient
2.1 WKB Formalism

If the initial data is given in the form (1.3), then (1.12) takes the form of a linear
system of partial differential equations with highly oscillatory coefficients:

(2.1)
�D D

1

2

�
0 A.x; y/eiS.x;y/=�

A.x; y/e�iS.x;y/=� 0

�
 ;

 D

�
 1
 2

�
; D WD

�
x@ 0

0 @

�
:

Let us assume for simplicity that A.x; y/ is a strictly positive Schwartz-class func-
tion, and that the real-valued phase is asymptotically linear: S.x; y/ D w´C xwx́C
O.1/ as ´!1 for some w 2 C, in the sense that

(2.2) @S.x; y/! w and x@S.x; y/! xw; ´!1:

The parameter w 2 C has the effect of introducing a shift of the value of the
spectral parameter k 2 C. Indeed, if S D w´C xwx́C zS and z .´I k/ corresponds to
.A; zS/while .´I k/ corresponds to .A; S/, then z 1.´I k�iw/ D  1.´I k/e�iw´=�

and z 2.´I k � iw/ D  2.´I k/ei xw x́=�. Without loss of generality, we will therefore
assume throughout this paper that w D 0. For classical solutions of (2.1), we
require  2 C 1.R2/, and similarly for � and � to be defined shortly.

The oscillatory factors e˙iS.x;y/=� can be removed from the coefficients in (2.1)
by the substitution

(2.3)  D eiS.x;y/�3=.2�/�;

leading to the equivalent system

(2.4) �D� D
1

2

�
�ix@S A

A i@S

�
�:

This problem is not directly amenable to a perturbation approach, because if � D 0
there can only exist nonzero solutions � if the coefficient matrix on the right-hand
side is singular, which can be assumed to be a nongeneric (with respect to .x; y/ 2
R2) phenomenon.

One way around this difficulty is to introduce a complex scalar field f W R2 ! C
and make an exponential gauge transformation of the form

(2.5) � D ef .x;y/=��:

This transforms (2.4) into the form

(2.6) �D� DM.x; y/�;

where M.x; y/ is the �-independent matrix

(2.7) M.x; y/ WD
1

2

�
�ix@S � 2x@f A

A i@S � 2@f

�
:
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Now we have both the vector unknown � and the scalar unknown f , but we may
take advantage of the extra degree of freedom by choosing f in such a way that the
augmented coefficient matrix M.x; y/ on the right-hand side of (2.6) is singular for
all .x; y/ 2 R2. A direct calculation shows that the condition det.M.x; y// D 0 is
precisely the eikonal equation (1.30) for f . If f is any solution of this nonlinear
partial differential equation, it follows that there exist nonzero solutions of (2.6)
when � D 0, and such a solution can be used as the leading term in a formal
asymptotic power series expansion in powers of �.

Next, recall the asymptotic normalization conditions (1.13) on the functions  j
as ´!1, which in terms of � imply

lim
j´j!1

�1ef=�eiS=.2�/e�k´=� D 1;

lim
j´j!1

�2ef=�e�iS=.2�/e�
xkx́=�
D 0:

(2.8)

Since S is real, and since the second limit is 0, these two conditions can be com-
bined to read

(2.9) lim
j´j!1

� exp
�
1

�

�
f C

i
2
S � k´

��
D

�
1

0

�
:

Since we want to be able to accurately represent � using asymptotic power series
in �, in particular we want � to have simple asymptotics as ´ ! 1, so we now
impose on the eikonal function f the normalization condition (1.31). Under this
condition, (2.9) becomes simply

(2.10) lim
j´j!1

� D

�
1

0

�
:

Since the conditions (1.30)–(1.31) on the eikonal function f explicitly involve
the spectral parameter k 2 C, we denote any solution of the eikonal problem by
f D f .x; yI k/. Similarly, the matrix M defined in (2.7) now depends on k via f
and will be denoted M.x; yI k/, a singular matrix for all .x; y/ 2 R2.

Given a suitable value of k 2 C and a corresponding solution f .x; yI k/ of
the eikonal problem (1.30)–(1.31), we may now try to determine the terms in an
asymptotic power series expansion of � D ��.x; yI k/:

(2.11) ��.x; yI k/ �

1X
nD0

�.n/.x; yI k/�n; � ! 0:

Substituting into (2.6) and matching the terms with the same powers of � one finds
first that

(2.12) �.0/.x; yI k/ 2 ker.M.x; yI k// D span
C.x;y/

�
2@f .x; yI k/ � i@S.x; y/

A.x; y/

�
:
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This determines �.0/.x; yI k/ up to a scalar multiple, which in general can depend
on .x; y/ 2 R2 and k 2 C. We may therefore write �.0/.x; yI k/ in the form

(2.13) �.0/.x; yI k/ D
˛0.x; yI k/

2k

�
2@f .x; yI k/ � i@S.x; y/

A.x; y/

�
for a scalar field ˛0.x; yI k/ to be determined. Then from the higher-order terms
one obtains the recurrence relations

(2.14) M.x; yI k/�.nC1/.x; yI k/ D D�.n/.x; yI k/; n D 0; 1; : : : :

As M.x; yI k/ is singular, at each order there is a solvability condition to be en-
forced, namely that
(2.15)

D�.n/.x; yI k/ 2 ran.M.x; yI k// D span
C.x;y/

�
�ix@S.x; y/ � 2x@f .x; yI k/

A.x; y/

�
;

n D 0; 1; : : : ;

which we write in Wronskian form as

(2.16)
det
��
�ix@S.x; y/ � 2x@f .x; yI k/

A.x; y/

�
;D�.n/.x; yI k/

�
D 0;

n D 0; 1; : : : :

Assuming that (2.16) holds for a given n, the general solution of (2.14) is

(2.17)
�.n/.x; yI k/ D �.n/p .x; yI k/C

˛n.x; yI k/

2k

�
2@f .x; yI k/ � i@S.x; y/

A.x; y/

�
;

n D 1; 2; : : : ;

where

(2.18) �.n/p .x; yI k/ WD
2@�

.n�1/
2 .x; yI k/

i@S.x; y/ � 2@f .x; yI k/

�
0

1

�
is a particular solution and ˛n.x; yI k/ is a scalar field to be determined parametriz-
ing the homogeneous solution.

The calculation of the terms in the formal series (2.11) therefore has been re-
duced to the sequential solution of the scalar equation (2.16) for ˛n�1.x; yI k/ for
n D 1; 2; : : : . We interpret the boundary condition (2.10) in light of the formal
series (2.11) as

(2.19)
lim
j´j!1

�.0/.x; yI k/ D

�
1

0

�
; lim
j´j!1

�.n/.x; yI k/ D 0;

n D 1; 2; : : : :

Taking into account (1.31), (2.2) for w D 0, and (2.19), we require the solution of
(2.16) subject to the boundary condition

(2.20) lim
j´j!1

˛n.x; yI k/ D

(
1; n D 0;

0; n D 1; 2; : : : :
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A direct calculation shows that (suppressing the arguments)

(2.21) det
��
�ix@S � 2x@f

A

�
;D

˛n

2k

�
2@f � i@S

A

��
D �

1

2k
L ˛n

where the differential operator L is defined in (1.34). Therefore, assuming k ¤ 0,
taking n D 0 in (2.16) and using (2.13) immediately yields (1.34) for ˛0, which
by (2.20) is to be solved subject to the boundary condition ˛0 ! 1 as j´j ! 1.
Similarly, taking n > 0 in (2.16) and using (2.17) gives a related nonhomogeneous
equation:

L ˛n D 2k det
��
�ix@S � 2x@f

A

�
;D�.n/p

�
D 2k.�ix@S � 2x@f /@

"
2@�

.n�1/
2

i@S � 2@f

#
; n D 1; 2; : : : ;

(2.22)

which by (2.20) is to be solved subject to the boundary condition ˛n ! 0 as
j´j ! 1. We remark that under the conditions of Theorem 1.1 the denominator
i@S � 2@f is bounded away from 0, so we may expect that the forcing term on the
right-hand side is a smooth function of .x; y/ 2 R2 that decays as j´j ! 1 due in
part to the fact that ix@S C 2x@f ! 0 as j´j ! 1. Therefore, invertibility of L on
a suitable space of decaying functions is sufficient to guarantee the existence of all
terms of the WKB expansion.

Now we give the proof (conditioned on Conjecture 1.3) of Corollary 1.4. Ob-
serve that using (1.14), (1.31), (2.3), and (2.5), the reflection coefficient R�0.k/ can
be written in terms of the (well-defined for all .x; y/ 2 R2, k 2 C, and � > 0)
solution ��.x; yI k/ of (2.6) and (2.10) as

(2.23) R�0.k/ D 2 lim
´!1

´e�2iIm.k´/=���2.x; yI k/:

Suppose that the WKB expansion can be successfully and uniquely constructed
through terms of order �N , in which case we may write ��.x; yI k/ unambiguously
in the form

(2.24) ��.x; yI k/ D

NX
nD0

�.n/.x; yI k/�n C z�
.N/;�

.x; yI k/:

In addition, suppose that the remainder term z�
.N/;�

.x; yI k/ D o.�N / uniformly
in .x; y/ 2 R2. Then, since the rapidly oscillatory factor e�2iIm.k´/=� is bounded
despite having no limit as j´j ! 1 unless k D 0, the (known) existence of R�0.k/
for all k 2 C and � > 0 implies that �.n/2 .x; yI k/ D o.´�1/ as j´j ! 1 for all
n D 0; 1; : : : ; N , and we conclude that R�0.k/ D o.�N / as � # 0. This is rather
obvious for the case of N D 0; indeed, replacing ��2 with its leading-order approx-
imation �.0/2 .x; yI k/ D ˛0.x; yI k/A.x; y/=.2k/ yields under the assumption that
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z�
0;�
.x; yI k/ is uniformly o.1/ the approximate formula

(2.25) R�0.k/ D
1

xk
lim
´!1

´e�2iIm.k´/=�˛0.x; yI k/A.x; y/C o.1/ D o.1/

(the explicit limit is 0 because ˛0 ! 1 and A is Schwartz-class).

2.2 Some Notes on Rigorous Analysis
Assuming for a given k 2 C n f0g that the terms �.0/;�.1/; : : : ;�.N/ have been

determined, the error term z�
.N/;�

.x; yI k/ in (2.24) satisfies the equation

(2.26) Œ�D �M�z�
.N/;�

D �NC1
.N/.x; yI k/; 
.N/.x; yI k/ WD �D�.N/:

Note that 
.N/.x; yI k/ is independent of � > 0 and is, for each .x; y/ 2 R2, a
vector in ran.M.x; yI k// as a consequence of the equation (cf. (2.16)) satisfied by
˛N .x; yI k/.

In general, the singularly perturbed differential operator �D �M, although cer-
tainly invertible on suitable spaces ultimately as a consequence of the Fredholm
theory and vanishing lemma described in [31, lemma 2.3], will have a very large
inverse when � is small. Controlling this inverse is obviously the fundamental an-
alytical challenge in establishing the validity of the WKB expansion.

Here we offer only the following advice to assist in the necessary estimation:

the inverse .�D �M/�1 need only be controlled on the subspace of vector-valued

functions 
.N/ that lie pointwise in the C2.x; y/ subspace ran.M.x; yI k//. Such

uniform control would automatically imply that the norm of z�
.N/;�

is O.�NC1/,

as continuing the WKB expansion to higher order would suggest.

3 The Eikonal Problem
In this section, we consider the problem of how to construct solutions of the

eikonal problem consisting of the nonlinear equation (1.30) and the boundary con-
dition (1.31). We also consider the related problem of finding the leading-order
WKB amplitude function ˛0.x; yI k/.

3.1 Global Existence of f.x; yIk/ and ˛0.x; yIk/ for jkj Sufficiently Large
We first consider solving the eikonal problem (1.30)–(1.31) for f .x; yI k/. To

study a function that tends to zero at infinity, we define

(3.1) g.x; yI k/ WD f .x; yI k/ � k´C i
1

2
S.x; y/;

upon which (1.30) can be rearranged to read

(3.2) x@g D
u

4.k � iv C @g/
where u WD A2 and v WD @S .
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Differentiation via the operator @ and assuming that g is twice continuously differ-
entiable gives an equation for b D @g � iv:

(3.3) x@b D �ix@v C @
�

u

4.k C b/

�
:

Since we expect @g ! 0, and we may assume v D @S ! 0 as j´j ! 1, we may
invert x@ with the solid Cauchy transform x@�1 defined by (1.4). Hence we obtain
the fixed-point equation

(3.4) b D F.b/;

where F is the nonlinear mapping

(3.5) F.b/ WD �iv CB

�
u

4.k C b/

�
;

in which B denotes the Beurling transform defined by B WD x@�1@ D @x@�1.
We will seek a solution b 2W.R2/, where W.R2/ denotes the Wiener space [9]

defined as the completion of the Schwartz space S .R2/ under the norm

kbkW WD

“
R2
jyb.�x; �y/jd�x d�y ;

yb.�x; �y/ WD
1

4�2

“
R2
b.x; y/e�i.�xxC�yy/dx dyI

(3.6)

i.e., the Wiener norm is just theL1 norm in the Fourier transform domain. Observe
that since the inverse Fourier transform is given by

(3.7) b.x; y/ D

“
R2

yb.�x; �y/ei.�xxC�yy/d�x d�y ;

it follows that whenever b is a function with a nonnegative Fourier transform
yb.�x; �y/ � 0, the Wiener norm is given simply by the value of b at the origin:
kbkW D b.0; 0/. By the Riemann-Lebesgue lemma, functions in W.R2/ are con-
tinuous and decay to 0 as j´j ! 1, and kbk1 � kbkW. A key property of the
Wiener space is that it is a Banach algebra as a consequence of the convolution
theorem:

kb1b2kW D

“
R2
jbb1b2.�x; �y/jd�x d�y

D

“
R2
jyb1 � yb2.�x; �y/jd�x d�y

D

“
R2

ˇ̌̌̌“
R2

yb1.�
0
x; �
0
y/
yb2.�x � �

0
x; �y � �

0
y/d�

0
x d� 0y

ˇ̌̌̌
d�x d�y

�

“
R2

“
R2
jyb1.�

0
x; �
0
y/jj
yb2.�x � �

0
x; �y � �

0
y/jd�x d�y d� 0x d� 0y

D kb1kWkb2kW:

(3.8)
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Another important property obvious from the definition (3.6) is scale invariance:
if b 2 W.R2/ and for � > 0, b�.x; y/ WD b.x=�; y=�/, then kb�kW D kbkW
for all � > 0. The Wiener space is also well-behaved with respect to the Beurling
transform, whose action in the Fourier domain is given by

(3.9) bBb.�x; �y/ D ��x C i�y
�x � i�y

yb.�x; �y/;

so as the Fourier multiplier has unit modulus for all .�x; �y/ 2 R2, jbBb.�x; �y/j D
jyb.�x; �y/j, and therefore

(3.10) kBbkW D kbkW 8b 2W.R2/:

While all of these properties are useful to us, it is really the combination of the Ba-
nach algebra property (3.8) with the unitarity of the Beurling transform expressed
in (3.10) that makes W.R2/ a useful space for us to work with when dealing with
nonlinear problems involving the operator B such as (3.4)–(3.5).

To view (3.4)–(3.5) as a fixed-point equation on W.R2/, we first assume that
u 2 W.R2/ and v 2 W.R2/. We then need to guarantee that F.b/ 2 W.R2/
provided that b 2W.R2/. We write F.b/ in the slightly modified form

(3.11) F.b/ D �iv C
1

4k
BuCB

�
1

4
u

�
1

k C b
�
1

k

��
:

Due to (3.8) and (3.10), it is sufficient that b 7! .k C b/�1 � k�1 takes W.R2/
into itself. This will be the case provided that jkj is sufficiently large.

Indeed, consider the geometric series

(3.12)
1

k C b
�
1

k
D
1

k
�

1

1 � .�b=k/
�
1

k
D �

1X
nD1

�
�
1

k

�nC1
bn:

Since due to the homogeneity property of the norm and the Banach algebra prop-
erty (3.8),

(3.13)




�� 1k

�nC1
bn






W
D

1

jkjnC1
kbnkW �

kbknW
jkjnC1

; n D 1; 2; : : : ;

the geometric series on the right-hand side of (3.12) converges in the Wiener space
W.R2/ provided that jkj > kbkW. Moreover, given anyB > 0, under the condition
kbkW � B and jkj > B we have .k C b/�1 � k�1 2W.R2/ with

NkŒb� WD





 1

k C b
�
1

k






W
�

1X
nD1

kbknW
jkjnC1

�

1X
nD1

Bn

jkjnC1
D

1

jkj � B
�
1

jkj
D

B

jkj.jkj � B/
:

(3.14)
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Under the same conditions, an estimate for the action of the nonlinear operator F
given by (3.5) is

(3.15) kF.b/kW � kvkW C
kukW

4.jkj � B/
; kbkW � B; jkj > B:

It follows that F is a mapping from the closedB-ball in W.R2/ into itself provided
that k and B are chosen so that

(3.16) kvkW C
kukW

4.jkj � B/
� B and jkj > B:

This proves the following result.

LEMMA 3.1. Suppose that u and v are functions in the Wiener space W.R2/ with
kukW > 0. Then, for every B > kvkW, the mapping b 7! F.b/ defined by (3.5)
takes the closed B-ball in W.R2/ into itself if

(3.17) jkj � B C
kukW

4
�

1

B � kvkW
> B:

We next consider under what additional conditions the mapping F defines a
contraction on the B-ball in W.R2/. Suppose that b; b0 2 W.R2/ with kbkW � B
and kb0kW � B . Then,

kF.b0/ � F.b/kW D





B� u

4.k C b0/
�

u

4.k C b/

�




W

D





 u

4.k C b0/
�

u

4.k C b/






W

D
1

4





 .b0 � b/u

.k C b0/.k C b/






W
:

(3.18)

Adding and subtracting k�1 from .kCb0/�1 and .kCb/�1, the triangle inequality
and the Banach algebra property (3.8) give

(3.19) kF.b0/ � F.b/kW �

1

4
kukW

�
1

jkj2
C
NkŒb

0�

jkj
C
NkŒb�

jkj
CNkŒb

0�NkŒb�

�
kb0 � bkW;

where the notation in the parentheses is defined in (3.14). Using the inequality
(3.14) and the given bounds on b and b0, we therefore get

(3.20) kF.b0/ � F.b/kW �
kukW

4.jkj � B/2
kb0 � bkW:

Combining this estimate with Lemma 3.1, we have proved the following.

LEMMA 3.2. Suppose that u and v are functions in the Wiener space W.R2/. Then,
for every B > kvkW, the mapping b 7! F.b/ defined by (3.5) is a contraction
mapping on the closed B-ball in W.R2/ if k satisfies the inequality (1.32).
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Now we can give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Because u 2 W.R2/ and v 2 R2, the given condi-
tion on k implies, via the contraction mapping theorem and Lemma 3.2, the exis-
tence of a unique solution b of the fixed-point equation b D F.b/ with kbkW � B .
To obtain f from b, recall that f D g C k´ C 1

2
iS where @g D b C iv D

F.b/C iv. Applying @�1 as defined by the conjugate solid Cauchy transform and
using @�1B D x@�1, we obtain

(3.21) g D x@�1
�

u

4.k C b/

�
:

Because kbk1 � kbkW � B , the condition (1.32) on k implies that .k C b/�1 2
L1.R2/, so since u 2 Lp.R2/ and u 2 W.R2/ � L1.R2/, g is x@�1 applied
to a function that is in Lp

0

.R2/ for every p0 � p. It follows from [2, theorem
4.3.11] that g is continuous and tends to 0 as j´j ! 1, proving the asymptotic
boundary condition (1.31). Now, as @g D b C iv 2 W.R2/, in particular @g is
continuous. Furthermore, x@g D B�1@g so since B�1 maps W.R2/ onto itself,
x@g is also in W.R2/ and hence continuous. It follows that g is actually of class
C 1.R2/, and so is f D gCk´C 1

2
iS . Therefore f is a classical solution of (1.30).

Finally, the estimate (1.33) follows from kbkW � B because b D @f � k � 1
2

iv D
@f �k� 1

2
i@S . As b is the unique Wiener space solution of the fixed-point equation

b D F.b/ with kbkW � B , f is the only classical solution of (1.30) satisfying the
condition (1.33). �

Some comments:

� The lower bound (1.32) on jkj that implies existence of a global solution
depends on B , and it is attractive to try to choose B in order to guarantee a
solution for jkj as small as possible. The lower bound on jkj is continuous
with respect to B and grows both as B # kvkW and as B " 1, guar-
anteeing a strictly positive minimum value depending only on kukW and
kvkW. There exists a solution of the eikonal problem (1.30)–(1.31) with
the desired asymptotics whenever jkj exceeds this minimum value. When
v D 0, the lower bound for jkj can be made as small as

p
kukW by taking

the optimal value of B D 1
2

p
kukW.

� The contraction mapping theorem guarantees that there is exactly one so-
lution within the B-ball in W.R2/. There could in principle be other solu-
tions as well, with larger Wiener norms.

Next we consider the existence of the leading-order WKB amplitude ˛0.x; yI k/.
We will show that under the same conditions that a unique f is determined for suf-
ficiently large jkj, we also obtain a suitable function ˛0 solving (1.34) under the
boundary condition ˛0 ! 1 as j´j ! 1. That this problem has a solution when
jkj is sufficiently large is the content of Theorem 1.2 which we now prove.
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PROOF OF THEOREM 1.2. Multiplying (1.34) by A and using the eikonal equa-
tion (1.30) gives

(3.22) .2x@f C ix@S/ŒA@.A˛0/C .2@f � i@S/x@..2@f � i@S/˛0/� D 0:

We can choose to satisfy this equation by equating the second factor to 0; multi-
plying through by 2˛0 (assuming ˛0 ¤ 0) we obtain the equation

(3.23) x@
�
.2@f � iv/2˛20

�
C @

�
u˛20

�
D 0; u WD A2 and v WD @S:

Now in terms of the quantity b satisfying the fixed-point equation b D F.b/ (3.4)–
(3.5) equivalent to the eikonal problem (1.30)–(1.31), we have 2@f �iv D 2.kCb/,
so the equation for ˛0 can be written as

(3.24) 4x@
�
.k C b/2˛20

�
C @

�
u˛20

�
D 0:

Note that since b 2 W.R2/ decays to 0 as j´j ! 1, we have .k C b/2˛20 ! k2

as j´j ! 1. Taking this into account, we invert the operator x@ and obtain

(3.25) 4.k C b/2˛20 D 4k
2
�B

�
u˛20

�
:

Now, to get into the Wiener space, we seek ˛20 in the form ˛20 D 1 C m with
m 2W.R2/. Thus the problem becomes

(3.26) m �K m D h; K m WD �
B.um/

4.k C b/2
; h WD �

8kb C 4b2 CB.u/

4.k C b/2
:

Now observe that under the inequality (1.32), we have h 2W.R2/ with

(3.27) khkW �
8jkjB C 4B2 C kukW

4.jkj � B/2
:

Also, since

(3.28) kK mkW �
kukW

4.jkj � B/2
kmkW;

the inequality (1.32) implies that the operator norm of K on W.R2/ satisfies
kK kW < 1. Hence 1�K has a bounded inverse on W.R2/ given by the Neumann
series 1CK CK 2 C � � � . �

We remark that this proof shows the bounded invertibility of the linear differen-
tial operator L defined in (1.34) on a space of functions whose squares differ from
unity by a function in W.R2/.

3.2 Existence of f.x; yIk/ for j´j Sufficiently Large Given Arbitrary k ¤ 0
PROOF OF THEOREM 1.5. Let n 2W.R2/ be a function with compact support

in the unit disk satisfying n.0; 0/ D 1, and suppose that @n 2 W.R2/ as well. For
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� > 0, denote by n� 2 W.R2/ the function defined by n�.x; y/ WD n.x=�; y=�/.
Then for each h 2W.R2/, n�h! h in W.R2/ as �!1. Indeed, we have

kn�h � hkW WD

“
R2

ˇ̌bn�h.�x; �y/ � yh.�x; �y/ˇ̌d�x d�y

D

“
R2

ˇ̌ bn� � yh.�x; �y/ � yh.�x; �y/ˇ̌d�x d�y :
(3.29)

Also, note that bn�.�x; �y/ D �2yn.��x; ��y/ behaves as an approximate delta func-
tion when � is large, having unit integral on R2 independently of �. Since yn; yh 2
L1.R2/, it follows from (3.29) that kn�h� hkW ! 0 as �!1; see [22, theorem
2.16]. Therefore .1�n�/h! 0 in W.R2/ as �!1, and .1�n�/h agrees exactly
with h for j´j > �.

Given k ¤ 0, we use the function 1 � n� for � sufficiently large (given k) to
modify the functions u and v appearing in the fixed-point iteration for (1.30)–(1.31)
in such a way that the inequality (1.32) holds and therefore Theorem 1.1 applies to
the modified u and v. Concretely, given � we set

(3.30) zu WD .1 � n�/u and zS WD .1 � n�/S:

Recalling v D @S , the latter definition implies that

(3.31) zv WD @ zS D .1 � n�/v �
1

�
S@n.x=�; y=�/:

Note that the second term above has a Wiener norm of order O.��1/ because
@n 2 W.R2/ and S differs from a function in W.R2/ by a constant, so the claim
follows from the scale invariance and Banach algebra properties of the Wiener
space. The value of � will be chosen as follows. Choose B 2 .0; 1

2
jkj/. Then take

� > 0 so large that kzukW � jkjB and kzvkW �
1
2
B . It then follows that B > kzvkW

and that

(3.32) B C
1

4
�
kzukW

B � kzvkW
<
1

2
jkj C

1

2
jkj D jkj

and

(3.33) B C
1

2

p
kzukW <

1

2
jkj C

1

2
p
2
jkj < jkj

so the inequality (1.32) holds true. Therefore, by Theorem 1.1, there is a unique
global classical solution zf .x; yI k/ of (1.30)–(1.31), in which u D A2 is replaced
with zu and S is replaced with zS , that satisfies k@ zf � k � 1

2
izvkW � B . Since

zu.x; y/ D u.x; y/ D A.x; y/2 and zS.x; y/ D S.x; y/, both hold for j´j > � due
to the compact support in the unit disk of n, the construction of f .x; yI k/ given
k ¤ 0 is finished upon defining f WD zf for j´j > �. According to Theorem 1.2,
corresponding to zf defined on R2, there is a unique classical solution z̨0 of (1.34)
with the appropriate substitutions for which z̨0 ! 1 as j´j ! 1, and defining
˛0 WD z̨0 for j´j > � finishes the proof. �
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3.3 Series Solutions of the Eikonal Problem
Here we develop a method based on infinite series that reproduces some of the

above results by different means, and this method can lead to an effective, some-
times explicit, solution of the eikonal problem.

3.3.1 Series Expansions of f.x; yIk/ for S.x; y/ D 0
Suppose that S.x; y/ � 0. If also A.x; y/ � 0, then the exact solution of the

eikonal problem (1.30)–(1.31) is f .x; yI k/ D k´ regardless of the value of k 2 C.
This fact suggests a perturbative approach to the latter problem in which, for fixed
k, a measure of the amplitude A.x; y/ is taken to be the small parameter. Such an
approach is to be contrasted with that of Section 3.1 in which for fixed A and S , k
was taken to be a large parameter.

Let ı > 0 be a parameter, and consider the S � 0 form of the eikonal equation
(1.30) in which A2=4 is replaced with ıA2:

(3.34) x@f .x; yI k/@f .x; yI k/ D ıA.x; y/2:

We try to solve (3.34) by a formal series

(3.35) f .x; yI k/ � k´C

1X
nD1

ınfn.x; yI k/; ı ! 0;

where the coefficient functions fn.x; yI k/ are to be determined. Since the leading
term builds in the leading asymptotics of f .x; yI k/ for large j´j, we insist that
fn.x; yI k/! 0 as j´j ! 1 for all n for consistency with (1.31). We intend to set
ı D 1

4
once these have been determined and then assess the possible convergence

of the series.
Substituting the series (3.35) into (3.34) and collecting together the terms with

the same powers of ı yields the following hierarchy of equations:

(3.36) x@f1.x; yI k/ D
1

k
A.x; y/2

and

(3.37) x@fn.x; yI k/ D �
1

k

n�1X
`D1

x@f`.x; yI k/@fn�`.x; yI k/; n D 2; 3; : : : :

The boundary condition fn.x; yI k/ ! 0 as j´j ! 1 requires that we invert x@
on the right-hand side by the solid Cauchy transform (1.4); however, in certain
situations the inversion can be carried out explicitly. We will make this procedure
effective in the special case that A is a function with radial symmetry below in
Section 3.3.2.

Setting un WD k�1x@fn, the hierarchy (3.36)–(3.37) becomes

(3.38) u1 D k
�2A.x; y/2; un D �

n�1X
`D1

u`Bun�`; n D 2; 3; : : : :



1504 O. ASSAINOVA ET AL.

The space W.R2/ is a convenient choice to analyze the terms un for the same
reasons as in the preceding study of the fixed-point problem (3.4)–(3.5), namely
the combination of nonlinearity with the presence of the Beurling transform B in
the recurrence relation (3.38). Using the triangle inequality in the space W.R2/
along with the Banach algebra property (3.8) and the identity (3.10), we then get

(3.39) kunkW �

n�1X
`D1

ku`kWkun�`kW; n D 2; 3; : : : :

Now we renormalize un as follows: un D ku1knWvn such that (3.39) becomes

(3.40) kv1kW D 1; kvnkW �

n�1X
`D1

kv`kWkvn�`kW; n D 2; 3; : : : :

Recall the Catalan numbers that satisfy the recurrence relation

(3.41) Cn D

n�1X
`D0

C`Cn�1�`; n D 1; 2; : : :

subject to the initial condition C0 D 1. Explicitly, the Catalan numbers are given
by the formula

(3.42) Cn D
.2n/Š

.nC 1/Š nŠ
; n � 0:

From these definitions, we see that

(3.43) kvnkW � Cn�1 D
.2n � 2/Š

nŠ.n � 1/Š
; n � 1:

Now we consider the convergence of the series (using ı D 1
4

)

(3.44)
1X
nD1

ınx@fn D k

1X
nD1

4�nun D k

1X
nD1

.1
4
ku1kW/

nvn:

Since, by Stirling’s formula,

(3.45) Cn�1 D
4n

4
p
�n3=2

.1CO.n�1//; n!1;

the series (3.44) is convergent in the space W.R2/ provided that ku1kW � 1, i.e.,
that

(3.46) jkj2 � kA2kW:

Under this assumption on jkj, we then set

(3.47) f .x; yI k/ D k´C x@�1
1X
nD1

ınx@fn.x; y/ D k´C kx@
�1
1X
nD1

1

4n
un.x; y/;

under the additional assumption that x@�1 makes sense when applied to the partic-
ular element of W.R2/ given by the convergent series. Note that the assumption
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(3.46) on k coincides with (1.32) in the case that v D 0 and B D 1
2

p
kukW. As

has been pointed out, the latter is the optimal choice of B given v D 0 in (1.32).

3.3.2 Explicit Inversion of x@ for A.x; y/ Radially Symmetric
Specializing further, let us now suppose that A.x; y/ is a radially symmetric

function, that is,

(3.48) A.x; y/ D a.m/; m WD x2 C y2 D ´x́;

for a suitable function aW RC ! RC. We will show how in this case the iterative
construction of series terms fn can be made explicit, avoiding the solution of partial
differential equations or convolution with the Cauchy kernel (cf. (1.4)) at each
order.

In Section 4 we will be interested in the solution of the eikonal problem (1.30)–
(1.31) for radial phase-free potentials at k D 0, so before implementing the series
procedure described in Section 3.3.1, we briefly discuss this special case. With
S � 0 and A given in the form (3.48), observe that for k D 0 one may seek f as
a function of m D x2C y2 D ´x́ alone by writing f .x; yI 0/ D F.m/ by analogy
with (3.48). The eikonal equation (1.30) for S � 0 and A of the form (3.48) then
becomes simply

(3.49) 4mF 0.m/2 D a.m/2:

This equation has two solutions that are smooth for all m > 0 and that decay to 0
as m!1:

(3.50) F.m/ D ˙
1

2

Z 1
m

a.�/

�1=2
d� D ˙

Z 1
m1=2

a.s2/ds:

On the other hand, both of these solutions f .x; yI 0/ D F.x2Cy2/ exhibit conical
singularities at the origin r D 0 unless a.0/ D 0.

Now we return to the series approach described in Section 3.3.1. The equation
(3.36) for f1 in the current setting reads

(3.51) x@f1 D
1

k
a.´x́/2:

This equation is easily integrated under the condition that f1 should be smooth at
the origin:

(3.52) f1 D
1

k´

Z ´x́

0

a.m/2 dm:

Assuming that a 2 L2.RC/, we see easily that

(3.53) jf1j �
kak22
jk´j

;

an estimate that provides decay as ´ ! 1. Assuming also that a is continuous
down to m D 0 shows that

(3.54) f1 D
a.0/2

k
x́ C o.j´j/; ´! 0;
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indicating that f1 is smooth near ´ D 0 as well.
We next claim that for all n D 1; 2; : : : it is consistent with (3.36) and (3.37) to

write fn in the form

(3.55) fn D
Gn.m/

.2n � 1/.k´/2n�1
; m D ´x́;

whereGn is a smooth function. (Precisely, the assertion is that .2n�1/.k´/2n�1fn
is a radial function of .x; y/, i.e., depending only on the productm D ´x́.) Indeed,
this holds for n D 1 with

(3.56) G1.m/ WD

Z m

0

a.�/2 d�:

Furthermore, substituting (3.55) into (3.37) gives a recurrence relation on the func-
tions Gn:

G0n.m/ D

n�1X
`D1

Kn`
�
.2.n � `/ � 1/G0`.m/Gn�`.m/

�mG0`.m/G
0
n�`.m/

�
; n � 2;

(3.57)

where

(3.58) Kn` WD
2n � 1

.2` � 1/.2.n � `/ � 1/
:

In order to ensure that fn is smooth at the origin, we need to insist that Gn
vanish at m D 0, and so once G0n.m/ is known from (3.57), we obtain Gn itself by

(3.59) Gn.m/ D

Z m

0

G0n.�/d�:

This guarantees only that Gn.0/ D 0, but sufficiently high-order vanishing at m D
0 will be required to cancel the factor of ´2n�1 in the denominator of fn as given
by (3.55). We will need Gn.m/ D O.m2n�1/ as m ! 0 to have the necessary
smoothness. We will also need to avoid rapid growth in Gn.m/ as m ! 1 in
order that fn decay as ´!1. Although there is no additional freedom available
once the recurrence (3.57) is solved and the integration constant is determined by
(3.59), these additional properties of Gn are indeed present as can be confirmed in
examples, to which we now proceed.

Remark. The form (3.55) shows that, in polar coordinates ´ D rei� ,

fn D zfn.r/e�i.2n�1/� ;

and thus the infinite series f .x; yI k/ � k´ D
P1
nD1 ı

nfn.x; yI k/ is nothing but
a Fourier series consisting of only negative odd harmonics e�i� , e�3i� , e�5i� , etc.
Another important observation clear from (3.55) and the fact thatGn is independent
of k is that f .x; yI k/ � k´ is a power series in negative odd powers of k with
coefficients depending on .x; y/ 2 R2. These observations lead to a numerical
approach to the eikonal problem for radial potentials with S.x; y/ � 0 that will
be explained in Section 5.2.2. It is also clear that it is the asymptotic behavior of



SEMICLASSICAL DS-II DIRECT TRANSFORM 1507

Gn.m/ as n ! 1 that determines for a given j´j the minimum value of jkj for
which the series (3.35) converges.

3.3.3 Example: Gaussian Amplitude
Suppose that A.x; y/ D e�.x

2Cy2/, which we can write in the form (3.48) with
a.m/ D e�m. Since the Fourier transform of A.x; y/2 D e�2.x

2Cy2/ by the
definition (3.6) is e�j�j

2=8=.8�/ > 0 where j�j2 WD �2x C �
2
y , it is easy to compute

the Wiener norm of A2, and we hence conclude that the series (3.44) is convergent
in W.R2/ provided jkj �

p
kA2kW D

p
A.0; 0/2 D 1. Later in Section 6.1 we

will see convincing numerical evidence that this condition on k is not sharp, and
that the related series (3.47) is convergent in L1.R2/ for jkj � 1

2
.

Let us illustrate the analytical calculation of the terms in the series for this case.
From (3.55)–(3.56) we have

(3.60) G1.m/ D

Z m

0

e�2� d� D
1

2
Œ1 � e�2m� H) f1 D

1 � e�2´x́

2k´
:

With G1 determined, (3.57) for n D 2 reads

G02.m/ D 3G
0
1.m/G1.m/ � 3mG

0
1.m/

2

D 3e�2m
1

2
Œ1 � e�2m� � 3me�4m

D
3

2
e�2m �

�
3

2
C 3m

�
e�4m;

(3.61)

and hence using (3.59) we get

(3.62) G2.m/ D
3

16
Œ1 � 4e�2m C .3C 4m/e�4m�

H) f2 D
1 � 4e�2´x́ C .3C 4´x́/e�4´x́

16.k´/3
:

It can be checked by Taylor expansion that f2 is smooth at the origin and it decays
as ´!1.

This procedure can be continued explicitly to arbitrary order because one needs
only to be able to integrate in closed form expressions of the form mpe�2qm for
nonnegative integers p and q:

(3.63)
Z m

0

�pe�2q� d� D
pŠ

.2q/pC1

 
1 � e�2qm

pX
`D0

.2qm/`

`Š

!
:

Unfortunately, it seems difficult to deduce a closed form expression for Gn.m/ for
general n � 2 (and prove its correctness by an induction argument). Rather than
proceed in this direction, we turn to another example of a radial amplitude function
A.x; y/, for which this procedure yields dramatic results.
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3.3.4 Example: Lorentzian Amplitude
Suppose now that A.x; y/ D .1Cx2Cy2/�1, which can be written in the form

(3.48) with a.m/ D .1Cm/�1. Using the definition (3.6), the Fourier transform of
A.x; y/2 in this case turns out to be j�jK1.j�j/=.4�/ where j�j WD

q
�2x C �

2
y and

K1 is a modified Bessel function of order 1 [29, §10.25]. By an integral representa-
tion formula [29, Eqn. 10.32.9] it is obvious thatK1.j�j/ > 0, so again it is easy to
calculate the Wiener norm ofA2 and hence observe that the series (3.44) converges
in W.R2/ whenever jkj �

p
kA2kW D

p
A.0; 0/2 D 1. Again, this condition is

not sharp, and we will see so below, without the need to resort to numerics, by
explicit calculation of the terms fn given by (3.55).

Indeed, from (3.55)–(3.56) we have

(3.64) G1.m/ D

Z m

0

d�
.1C �/2

D 1 �
1

1Cm
D

m

1Cm

H) f1 D
x́

k.1C ´x́/
;

and we note that f1 is smooth at the origin and decays as ´!1. We next claim
that for general n � 2, the recurrence (3.57) and the normalization condition (3.59)
are satisfied by taking Gn in the form

(3.65) Gn.m/ D Cn�1

�
m

1Cm

�2n�1
; n � 1;

where C0; C1; : : : are suitably chosen constants. Indeed, Gn.0/ D 0 for all n � 1,
so (3.59) is obviously satisfied regardless of the choice of the constants fCkg1kD0.
Also, the form (3.65) is clearly correct for n D 1 with the choice C0 D 1. More-
over, substituting (3.65) into (3.57) shows that (3.65) is correct for general n, pro-
vided that the constants fCkg1kD0 satisfy the recurrence (3.41) together with the
initial condition C0 D 1; i.e., the constant Cn is the nth Catalan number, which is
explicitly given by (3.42). Therefore, Gn.m/ has been determined in closed form
for all n, and it follows that

(3.66) fn D
Cn�1

2n � 1

�
1

k
�
x́

1C ´x́

�2n�1
; n � 1:

Note that fn is smooth at the origin and decays as ´!1 for every n � 1.
With the terms fn all explicitly determined, we directly analyze the convergence

of the formal series (3.35) for f with ı D 1
4

. Noting that by (3.45) we have

(3.67)
Cn�1

2n � 1
D

4n

8
p
�n5=2

.1CO.n�1//; n!1;

we see that the series (3.35) with ı D 1
4

converges exactly when

(3.68) jkj �
j´j

1C j´j2
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and diverges otherwise. Moreover, given any � > 1, the convergence is absolute
and uniform for k and ´ satisfying the condition

(3.69) jkj � �
j´j

1C j´j2
:

Since the function on the right-hand side of (3.68) achieves its maximum value of
1
2

at j´j D 1, we learn that if jkj � 1
2

the series on the right-hand side of (3.35)
converges uniformly on R2 to a continuous function vanishing at infinity.

Proceeding further, the infinite series on the right-hand side of (3.35) can be
summed in closed form [40] for those k and ´ for which it converges, yielding the
explicit formula (1.36), in which the square root and the arcsin are both given by
principal branches. This explicit expression for g D f � k´, which was originally
defined as a function of W by a power series convergent for jW j < 1, defines
an analytic continuation from the unit disk in the W -plane to the whole complex
W -plane with the exception of two slits joining the points W D ˙1 to infinity
(we may choose the branch cuts to be the real intervals �1 < W � �1 and
1 � W < C1). Moreover, one can directly check that regardless of whetherW is
inside or outside of the unit disk, the explicit expression for f .x; yI k/ is an exact
solution of the equation (1.30) in the case S � 0whenA.x; y/ D .1Cx2Cy2/�1.

In this case, we can also solve explicitly for the scalar coefficient ˛0.x; yI k/,
which completes the construction of the leading term �.0/.x; yI k/ in the WKB
expansion. By direct calculation using the definition of W given in (1.36),

(3.70) @W D �kW 2 and x́
2x@W D kW 2:

Hence

(3.71) @f D
k

2
.1C .1 �W 2/1=2/;

and from the relevant eikonal equation @f � N@f D 1
4
.1C ´x́/�2 we get

(3.72) x́
2x@f D

k

2
.1 � .1 �W 2/1=2/:

Writing (1.34) in the special case of S � 0 (and hence w D 0) gives

(3.73) Ax@.@f � ˛0/C x@f � @.A˛0/ D 0

as the equation to be solved by ˛0.x; yI k/ under the condition ˛0.x; yI k/ ! 1

as j´j ! 1. Since A D kW=x́ according to (1.36), and @f and x@f are given by
(3.71)–(3.72), (3.73) can be written as

(3.74) W x́2x@..1C .1 �W 2/1=2/˛0/C .1 � .1 �W
2/1=2/@.W˛0/ D 0

where we have used k ¤ 0. Now using (3.70) it is clear that there is a solution
of the form ˛0 D ˛0.W /, i.e., that ˛0 depends on .x; y/ only via W . Indeed, by
the chain rule, the ansatz ˛0 D ˛0.W / in (3.74) leads to the ordinary differential
equation

(3.75) W
d

dW

�
.1C.1�W 2/1=2/˛0.W /

�
�.1�.1�W 2/1=2/

d
dW

.W˛0.W // D 0
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after canceling kW 2. This can be rewritten in the equivalent form

d
dW

log.W.1 �W 2/1=2˛0.W /
2/ D W �1.1 �W 2/�1=2

D
d

dW
log
�

W

1C .1 �W 2/1=2

�
:

(3.76)

Integrating, exponentiating, and solving for ˛0 gives

(3.77) ˛0.W / D C..1 �W
2/1=2.1C .1 �W 2/1=2//�1=2

where C is an integration constant. Since j´j ! 1 means W ! 0, we need
C D

p
2 to have ˛0 ! 1 as j´j ! 1, which gives (1.37).

Remark. For this example, we can explain the gap between the general sufficient
condition for convergence, namely jkj �

p
kA2kW, which works out to jkj � 1 in

this case, and the actual condition jkj � 1
2

obtained by direct analysis of the explicit
terms in the series. Indeed, it is easy to check that when fn is given by (3.66), the
corresponding functions un WD k�1x@fn satisfy the identity Bun D �x́2un for
n D 1; 2; : : : . If this specialized information is used in (3.38), the recurrence
becomes

(3.78) u1 D k
�2A.x; y/2; un D x́

2
n�1X
`D1

u`un�`:

Therefore, by introducing wn WD x́2un, we get a corresponding recurrence for
fwng

1
nD1:

(3.79) w1 D k
�2
x́
2A.x; y/2; wn D

n�1X
`D1

w`wn�`:

This recurrence relation can be studied in exactly the same way as (3.38); one
introduces vn by the rescaling wn D kw1knvn (here we can use the L1.R2/ norm
in place of the Wiener norm if desired because we need only the Banach algebra
property, having dispensed with the Beurling transform), and obtains the estimate
(3.43). Hence the condition for convergence of the series (3.44) now takes the form
kw1k � 1. Since by comparison with u1, w1 contains the additional factor of x́2,
it is easy to check that whereas ku1kW D ku1k1 � 1 reads jkj � 1, the condition
kw1k1 � 1 reads jkj � 1

2
.

4 A Specialized Method for Radial Potentials with S � 0 and k D 0
Suppose S � 0, and fix the spectral parameter to be k D 0. It is well-

known that in this case the corresponding Zakharov-Shabat scattering problem
(1.23) that arises in the one-dimensional setting with � D 0 corresponding to
k D 0, namely � 0.x/ D A.x/�1 .x/, can be solved explicitly by introduc-
ing a new coordinate m satisfying m0.x/ D A.x/ > 0. Indeed, this monotone
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change of independent variable reduces the problem to the constant-coefficient sys-
tem � 0.m/ D �1 .m/. Unfortunately, similar reasoning fails in the setting of the
two-dimensional Davey-Stewartson scattering problem (1.12).

In this section, we further assume that A.x; y/ is a function with radial sym-
metry, i.e., depending only on j´j, and show how polar coordinates can be used to
reduce the scattering problem to the study of a suitable ordinary differential equa-
tion. We then study this equation in the semiclassical limit and obtain a formula
for the reflection coefficient in this special case.

We begin by writing the scattering problem (1.12) in polar coordinates .r; �/,
where ´ D x C iy D rei� and x́ D re�i� . In polar coordinates, the operators
defined by (1.2) take the form

(4.1) @ D
e�i�

2r

�
r
@

@r
� i

@

@�

�
and x@ D

ei�

2r

�
r
@

@r
C i

@

@�

�
:

Therefore, with S � 0 and A D A.r/ being a smooth function with A0.0/ D 0,
(1.12) becomes

�
ei�

r
.r 1r C i 1�/ D A.r/ 2;

�
e�i�

r
.r 2r � i 2�/ D A.r/ 1:

(4.2)

It is then convenient to introduce new dependent variables by w1 WD  1 and w2 D
x́ 2 so that the system takes the form

�rw1r C i�w1� D A.r/w2;

�rw2r � i�w2� D r2A.r/w1:
(4.3)

If k D 0, then from (1.13)–(1.14), we see that the solution we seek has the prop-
erty that w1 ! 1 and w2 ! 1

2
R�0.0/ as r !1, thereby recovering the reflection

coefficient evaluated at the origin. Implicit is the assumption that wj are smooth
functions on the plane. We claim that in this situation, wj D wj .r/ are purely ra-
dial functions, reducing the problem to the study of the linear ordinary differential
equations

�r
dw1
dr
D A.r/w2;

�r
dw2
dr
D r2A.r/w1:

(4.4)

By the method of Frobenius, one can see that this system has a one-dimensional
space of solutions that are bounded with zero derivative at r D 0, which is a regular
singular point. Indeed, assuming that A.r/ D A.0/C O.r2/ as r # 0, the system
(4.4) can be written in the form

(4.5)
d
dr

�
w1
w2

�
D

�
1

r

�
0 ��1A.0/
0 0

�
CO.1/

��
w1
w2

�
; r # 0;
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and hence the only indicial exponent for the origin is 0 with nondiagonalizable
coefficient matrix; therefore every solution is a linear combination of a solution
analytic at r D 0 proportional there to the null vector Œ1; 0�T and a second inde-
pendent solution that diverges logarithmically at the origin. We can attempt to find
R�0.0/ by normalizing an element of this subspace of solutions regular at the origin
so that w1 ! 1 as r !1. Alternatively, we can take any nonzero element of this
subspace and obtain R�0.0/ by the formula

(4.6) R�0.0/ D 2 lim
r!1

w2.r/=w1.r/:

4.1 Riccati Equation: Formal Asymptotic Analysis
The formula (4.6) in turn motivates us to study the Riccati equation for Q WD

w2=w1 implied by the coupled linear system (4.4) for wj .r/:

(4.7) �
dQ
dr
D
A.r/

r
.r2 �Q2/:

If (4.7) is solved subject to the initial condition Q.r/ D O.r2/ as r # 0 (corre-
sponding to the regular subspace at the origin for (4.4)), then the reflection coeffi-
cient R�0.0/ may be found as R�0.0/ D 2 limr!1Q.r/ (using the fact that Q.r/ is
real-valued). Equivalently, we may introduce X.r/ WD Q.r/=r , which satisfies

�
dX
dr
D �A.r/X2 �

�

r
X C A.r/

D �A.r/ŒX �XC.r I �/�ŒX �X�.r I �/�; X.r/ D O.r/; r # 0;
(4.8)

for

(4.9) X˙.r I �/ WD
1

2A.r/

"
�
�

r
˙

s
�2

r2
C 4A.r/2

#
;

and from which one obtains R�0.0/ by

(4.10) R�0.0/ D 2 lim
r!1

rX.r/:

Note that, given the solution X.r I �/ of (4.8), the solution of the original system
(4.2) with the boundary conditions  1 ! 1 and  2 D O.1=r/ as r !1 is given
explicitly by

(4.11)
�
 1
 2

�
D z̨0

�
1

ei�X.r I �/

�
ef=� where f D �

Z C1
r

A.r 0/dr 0

and

(4.12) z̨0 D exp
�
1

�

Z C1
r

.1 �X.r 0I �//A.r 0/dr 0
�
:

Suppose that A.r/ is nonincreasing. The nullclines for (4.8) are given by X D
X˙.r I �/ (cf. (4.9)). We have XC.r I �/ > 0 > X�.r I �/ and dX=dr > 0 for
X�.r I �/ < X < XC.r I �/, while dX=dr < 0 if either X > XC.r I �/ or X <
X�.r I �/. The nullclines have the following asymptotic behavior for small �:
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� If r � �, thenXC.r I �/ D A.0/r=�CO..r=�/3/, while the lower nullcline
satisfies X�.r I �/ D ��=.A.0/r/CO.r=�/.
� If � � r and rA.r/� �, then X˙.r I �/ D ˙1C o.1/.
� If � � r and rA.r/� �, then XC.r I �/ D ŒrA.r/=��.1C o.1// while the

lower nullcline satisfies X�.r I �/ D �Œ�=.rA.r//�.1C o.1//.
Since X D X.r I �/ tends to 0 as r # 0 for fixed �, only the nullcline XC.r; �/
plays any role for small r (given � > 0 small). Moreover, since dX=dr is explicitly
proportional to ��1, X.r I �/ will very rapidly approach a small neighborhood of
the nullcline X D XC.r I �/ as r increases; therefore, for moderate values of r in
the regime where r � � but rA.r/� � (the latter condition avoiding the “tail” of
the amplitude function A.r/) we will have X.r I �/ � XC.r I �/ � 1 for small �.
On the other hand, when A.r/ becomes small as r increases, then (4.8) can be
approximated by the linear equation

(4.13) �
dX
dr
D �

�

r
X with general solution X.r I �/ D

C.�/

r
:

This approximation is exact wherever A.r/ � 0. The constant C.�/ can be
determined by matching the approximate solution X.r I �/ � C.�/=r onto the ap-
proximation X.r I �/ � 1 at an appropriate value of r , say r D rMatch. If A.r/ has
compact support, then we take the breakpoint rMatch to be the positive support end-
point; otherwise we take the breakpoint r D rMatch to be the root of the equation
rA.r/ D � that is not small as � # 0. In the latter case, rMatch ! 1 as � # 0
because A is nonincreasing and A.r/ ! 0 as r ! 1. Given � � 1 and the
corresponding value of rMatch.�/ > 0, we then determine C D C.�/ by setting
C=rMatch D 1. See Figures 4.1–4.2 for further understanding of the solutions of
the Riccati equation (4.8) and their relation to the nullcline X D XC.r I �/ as �
decreases toward 0.

For the Gaussian example A.r/ D e�r
2

, the implications of the behavior of
X.r I �/ can be seen also in numerical solutions at k D 0 of the direct spectral
problem (1.12)–(1.13) carried out using the method described below in Section 5.4.
See Figure 4.3.

Our formal approximation of X.r I �/ in the limit � # 0 is then as follows:
� For r D O.�/, X.r I �/ exhibits a rapid transition from the initial value
X.0I �/ D 0 to X.r I �/ � 1.
� X.r I �/ � 1 for r � � but r � rMatch.�/.
� X.r I �/ � rMatch.�/=r for r > rMatch.�/.

Recalling (4.10) to calculate the reflection coefficient at k D 0 gives

(4.14) R�0.0/ � 2rMatch.�/; � # 0:

Remark. Given this asymptotic description of X.r I �/, from the formula (4.11)–
(4.12) we can see that the solution of (4.2) for k D 0 is consistent with the approach
based on the WKB method, but only in the intermediate regime � � r � rMatch.�/

where X.r I �/ � 1. Note that the exponent f satisfies the eikonal equation (1.30)
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FIGURE 4.1. The direction field of the Riccati equation (4.8) and its
relation to the nullcline XC.r I �/ in the case of a Gaussian amplitude
A.r/ D e�r

2
. For small �, the solutionX.r I �/ departs from the nullcline

X D XC.r I �/ near its “shoulder,” a feature that is increasingly well-
defined as � ! 0 and is asymptotically located at r D rMatch.�/.
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FIGURE 4.2. The same as Figure 4.1 except for the potential A.r/ D
�r�1.r/. As in Figure 4.1, the (here, discontinuous) red curve is the
nullcline X D XC.r I �/. In this case for r > 1 we have XC.r I �/ � 0

and X.r I �/ D C=r exactly.

in the form (3.49) appropriate for radial potentials with S � 0, and in particular the
solution (3.50) with the lower sign is the one selected. Indeed, it is easily checked
that the vector Œ1; ei�X.r I �/�T lies nearly in ker.M/ wherever X.r I �/ � 1. It
should also be possible to prove that z̨0 given by (4.12) isO.1/ despite the explicit
appearance of � in the denominator of the exponent. Indeed, except perhaps in
small intervals near r D 0 or near the “shoulder” of the nullclineXC.r I �/, we will
have .1 � X.r I �//A.r/ D O.�/ for r � � away from the shoulder because either
X.r I �/ D 1CO.�/ (for � � r � rMatch.�/) or 0 < X.r I �/ < 1 and A.r/ < �=r
(for r � rMatch.�/). Finally, .1�X.r I �//A.r/ D O.1/ near r D 0, so one expects
that with a bit more work the integral in the exponent in (4.12) can be shown to
be uniformly O.�/ for all r > 0. This observation may help motivate the correct
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FIGURE 4.3. Numerical solutions to the Dirac system (1.12) with nor-
malization condition (1.13) for the Gaussian potential A.r/ D e�r

2
at

k D 0 for the values � D 10�1, 10�2, 10�3 from left to right. Upper row
 1, lower row j 2j.

way to generalize the WKB formalism so that it applies for jkj below the threshold
where the eikonal function develops singularities.

4.1.1 Examples
Before turning to a rigorous proof, let us apply (4.14) in some examples.

Example 1 (Characteristic function of a disk). Suppose that A is an arbitrary pos-
itive multiple of the characteristic function of the disk of radius �. In this case
rMatch D �, and therefore R�0.0/ � 2� in the limit � # 0. Observe that this result is
independent of the amplitude of A.r/. We prove that this result is accurate by an
explicit calculation involving modified Bessel functions in Section 4.3.

Example 2 (Gaussian amplitude). Suppose that A.r/ D A0e�r
2

. Then rMatch.�/

satisfies the equation ln.rMatch/ C ln.A0/ � r2Match D � ln.��1/, and so rMatch �p
ln.��1/ as � # 0, and therefore also R�0.0/ � 2

p
ln.��1/ in this limit. Again,

the leading-order asymptotic is independent of the amplitude A0. We prove that
this formula is accurate in the relative sense in Section 4.2 below.

4.2 Riccati Equation: Rigorous Analysis
Theorem 1.6 amounts to a more careful formulation of (4.14) under suitable

conditions on the amplitude function A.r/.

PROOF OF THEOREM 1.6. Given the graph X D '.r/ in the .r; X/-plane of an
arbitrary function '.�/, we may compare the slope of the vector field of the Riccati
equation (4.8) evaluated at a point on the graph with the slope of the graph itself.
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If

(4.15) �X 0
ˇ̌
XD'.r/

WD

�
A.r/

�
.1 � '.r/2/ �

1

r
'.r/

�
� '0.r/

is positive (negative) at a point P D .r; '.r//, then the solution of (4.8) passing
through P enters the region above (below) the graph X D '.r/ as r increases. By
choosing appropriate functions '.�/ and calculating the sign of �X 0, we will be
able to obtain upper and lower bounds on the unique solution X.r I �/ of (4.8) sat-
isfyingX.r I �/! 0 as r # 0 that are sufficiently strong to establish the asymptotic
behavior of the reflection coefficient R�0.0/ given by (4.10) up to a relative error
term that vanishes with �.

To get started, we need to first locate the desired solutionX.r I �/ for small r > 0.
Using A.r/ D A.0/C o.r/ and X.r I �/! 0 as r # 0, we see that X.r I �/ actually
satisfies the stronger condition X.r I �/ D A.0/r=.2�/ C o.r/ as r # 0 (the o.r/
error term depends on �).

Now we look for simple bounds on the solutionX.r I �/. Consider first the quan-
tity �X 0 defined by (4.15) for the graph of the constant function X D '1.r/ WD 1.
Obviously,

(4.16) �X 0
ˇ̌
XD'1.r/

D �1=r < 0 8r > 0;

so all solutions of (4.8) cross the horizontal line X D 1 in the downward direction
as r increases. (Equivalently, this horizontal line lies above the nullcline X D
XC.r I �/ for all r > 0.) Since for small r the desired solutionX.r I �/ certainly lies
below this line, we obtain the inequality X.r I �/ < 1 for all r > 0.

Next, observe that if � < 1
2
A.0/ we have the inequality X.r I �/ > r for suf-

ficiently small r > 0. Computing the quantity �X 0 from (4.15) for the graph
X D '2.r/ WD r gives

(4.17) �X 0
ˇ̌
XD'2.r/

D
A.r/

�
.1 � r2/ � 2:

Clearly, �X 0jXD'2.r/ > 0 holds for small r > 0 as a consequence of the inequality
� < 1

2
A.0/; however, it is equally clear that for A.r/ with exponential decay,

�X 0jXD'2.r/ < 0 if r is sufficiently large given � > 0. Let r0.�/ denote the
smallest positive value of r for which �X 0jXD'2.r/ D 0. It is easy to see that
r0.�/ D 1��A.1/

�1Co.�/ as � ! 0. Therefore, sinceX.r I �/ > r for small r > 0
and since �X 0 for X D '2.r/ WD r is positive for 0 < r < r0.�/, the lower bound
X.r I �/ > r persists for all r 2 .0; r0.�//. In particular, at r D r0.�/ we learn
that X.r0.�/I �/ � r0.�/ D 1� �A.1/�1C o.�/. Combining this with the uniform
upper bound X.r I �/ < 1 puts the solution X.r I �/ in anO.�/-neighborhood of the
nullcline X D XC.r I �/ for r D r0.�/ � 1.

Now we try to get a lower bound on a larger interval, the length of which grows
as � # 0. For any constant ı 2 .0; 1/, we consider the horizontal line X D
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'3.r/ WD 1 � ı and compute �X 0 from (4.15) for this graph:

(4.18) �X 0
ˇ̌
XD'3.r/

D
A.r/

�
.2ı � ı2/ �

1 � ı

r
:

Since 2ı � ı2 D ı.1C .1� ı// > 0 and A.1/ > 0, we have �X 0jXD'3.r/ > 0 for
r D r0.�/ and �=ı sufficiently small. Because rA.r/ has a single maximum, the
equation �X 0jXD'3.r/ D 0 has two roots when both ı and �=ı are small, obtained
from

(4.19) rA.r/ D
�

ı
�
1 � ı

2 � ı
:

(It is easy to see that these two roots coincide with the intersection points between
the horizontal line X D '3.r/ WD 1 � ı and the graph of the nullcline X D
XC.r I �/.) One of the roots obviously satisfies r D O.�=ı/ and hence is less
than r0.�/ � 1. The other is large compared to r0.�/ when �=ı is small. Let us
denote it by r1.�; ı/. Now, given the bounds on the solution X.r I �/ established
so far for r D r0.�/, the assumption that �=ı is small implies in particular that
X.r0.�/I �/ > 1 � ı, so since graphs of solutions of (4.8) cross the horizontal line
X D '3.r/ WD 1 � ı in the upward direction for r0.�/ � r < r1.�; ı/, it follows
that the lower bound X.r I �/ � 1 � ı holds on the same interval.

To continue the lower bound for r > r1.�; ı/, we consider the graph X D
'4.r/ WD .1 � ı/r1.�; ı/=r and compute �X 0 for this graph from (4.15):

(4.20) �X 0
ˇ̌
XD'4.r/

D
A.r/

�

�
1 �

.1 � ı/2r1.�; ı/
2

r2

�
:

Obviously we have �X 0jXD'4.r/ � 0 for r � r1.�; ı/ > .1 � ı/r1.�; ı/, so
solutions of (4.8) cross the graph in the upwards direction provided r � r1.�; ı/.
Moreover, since X.r I �/ � 1 � ı holds at r D r1.�; ı/, the graph of the solution
X.r I �/ lies above the graph ofX D '4.r/ WD .1�ı/r1.�; ı/=r at r D r1.�; ı/, and
therefore the lower bound X.r I �/ � .1 � ı/r1.�; ı/=r holds for all r � r1.�; ı/.

So far, the only upper bound we have is X.r I �/ < 1; however, we can obtain
an upper bound proportional to r�1 for large r by considering the graph of the
function

(4.21) X D '5.r/ WD

�
rMatch.�/C

Z r

rMatch.�/

sA.s/

�
ds
�
1

r
:

Note that '5.rmatch.�// D 1 and that

(4.22) '5.r/ D
C

r
.1C o.1//; r !1; C WD rMatch.�/C

Z 1
rMatch.�/

sA.s/

�
ds:

The o.1/ error term depends on �, but this dependence is irrelevant for the cal-
culation of the reflection coefficient. Now, we calculate �X 0 from (4.15) for this
graph:

(4.23) �X 0
ˇ̌
XD'5.r/

D �
A.r/

�
X.r/2 < 0;
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FIGURE 4.4. The upper bounds (blue) and lower bounds (green) on the
solution X.r I �/ in the case A.r/ D e�r

2
for � D 10�4 and ı D

1= ln.��1/.

so trajectories of the Riccati equation (4.8) cross the graph of X D '5.r/ down-
wards. Since X.rMatch.�/I �/ < 1 and since '5.rMatch.�// D 1, it follows that the
inequality X.r I �/ < '5.r/ holds for all r � rMatch.�/.

To sum up, we have shown that the unique solution X.r I �/ of the Riccati equa-
tion (4.8) for which X.r I �/! 0 as r # 0 satisfies, if � > 0, ı > 0, and �=ı are all
sufficiently small, the following inequalities:

r < X.r I �/ < 1; 0 < r � r0.�/;(4.24)

1 � ı < X.r I �/ < 1; r0.�/ � r � r1.�; ı/;(4.25)

.1 � ı/r1.�; ı/

r
< X.r I �/ < 1; r1.�; ı/ � r � rMatch.�/;(4.26)

and finally,

(4.27)
.1 � ı/r1.�; ı/

r
< X.r I �/ <

�
rMatch.�/C

Z r

rMatch.�/

sA.s/

�
ds
�
1

r
;

r � rMatch.�/:

See Figure 4.4. Setting ı D ı.�/ WD 1= ln.��1/, from (4.10) we then obtain the
inequalities

R�0 WD 2.1 � ı.�//r1.�; ı.�// < R
�
0.0/

< 2rMatch.�/C 2

Z 1
rMatch.�/

sA.s/

�
ds DW xR�0:

(4.28)

It remains to prove that the upper and lower bounds R�0 and R�0 may both be

written in the form 2.b�1 ln.��1//1=p.1C o.1// in the limit � # 0.
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First consider the upper bound R�0. The first term 2rMatch.�/ can be found from
the logarithm of the defining relation for rMatch.�/:

(4.29) ln.rMatch.�//C ln.A.rMatch.�/// D � ln.��1/:

Since Le�br
p

� A.r/ � U e�br
p

implies that

ln.L/ � brp � ln.A.r// � ln.U / � brp;

it follows that for large r , ln.A.r// D �brp CO.1/. Therefore,

(4.30) ln.rMatch.�// � brMatch.�/
p
CO.1/ D � ln.��1/;

and it is clear that the dominant balance occurs between the terms �brMatch.�/
p

and � ln.�/�1, showing that rMatch.�/ D .b
�1 ln.��1//1=p.1C o.1// as � # 0. We

estimate the (positive) second term in R�0 as follows:Z 1
rMatch.�/

sA.s/

�
ds D

Z 1
rMatch.�/

sA.s/

rMatch.�/A.rMatch.�//
ds

�
U

L

Z 1
rMatch.�/

se�bs
p

rMatch.�/e�brMatch.�/p
ds

D
U

L
rMatch.�/

Z 1
1

te�brMatch.�/
p.tp�1/dt:

(4.31)

It follows by dominated convergence that this upper bound is o.rMatch.�// in the
limit rMatch.�/ " 1, or equivalently, as � # 0. This proves that the upper bound
satisfies R�0 D 2.b

�1 ln.��1//1=p.1C o.1// as � # 0.
For the lower bound R�0, since ı.�/ D .ln.��1//�1 ! 0 as � # 0, it suffices to

prove that r1.�; ı.�// D .b�1 ln.��1//1=p.1C o.1// as � # 0. For this we return
to the defining relation (4.19) for r1.�; ı/ and take a logarithm:

(4.32) ln
�
r1.�; ı.�//

�
C ln

�
A.r1.�; ı.�///

�
D

ln.ln.��1// � ln.��1/ � ln.2/CO..ln.��1//�1/:

Again using ln.A.r// D �brp CO.1/ as r " 1, this becomes

(4.33) ln
�
r1.�; ı.�//

�
� br1.�; ı.�//

p
D ln.ln.��1// � ln.��1/CO.1/:

As in the asymptotic calculation of rMatch.�/, the dominant balance is between
�br1.�; ı.�//

p and � ln.��1/, and therefore

r1.�; ı.�// D .b
�1 ln.��1//1=p.1C o.1//; � # 0;

as desired. �

The Gaussian A.r/ D e�r
2

satisfies the hypotheses of Theorem 1.6 with L D
U D 1, b D 1, and p D 2, and we are therefore guaranteed the corresponding
relatively accurate approximation R�0.0/ D 2

p
ln.��1/.1 C o.1// as � # 0. The
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FIGURE 4.5. The upper boundR�0 and lower boundR�0 for the Gaussian

potential A.r/ D e�r
2
, compared with the approximation 2

p
ln.��1/

and the numerical data for R�0.0/ shown in Figure 1.4 (the points are
colored to correspond with the curves in that figure and are highlighted
with blown-up insets). The left-hand panel illustrates absolute accuracy,
while the right-hand panel illustrates relative accuracy.

upper and lower bounds R�0 and R�0 are compared with 2
p

ln.��1/ and the numer-
ical data for R�0.0/ from Figure 1.4 in Figure 4.5. It is worth noting that the decay
of the relative error as � # 0 is extremely slow. Indeed, all of the numerical data
that we have been able to reliably compute corresponds only to the colored points
in the lower right-hand corner of the plot in the left-hand panel of Figure 4.5; al-
though these points are apparently far from the asymptotic regime of convergence
as � # 0, it is also clear that to the eye they lie nearly on top of the theoretically
predicted curve.

4.3 Exact Direct Scattering for k D 0 with S � 0 and A Being the Charac-
teristic Function of a Disk

As it is formulated, Theorem 1.6 does not apply to compactly supported po-
tentials. However, the approximate formula (4.14) for R�0.0/ can be confirmed by
an exact calculation in the case that A.x; y/ is proportional to the characteristic
function of the disk of radius �: A.r/ D A0�r<�.r/ . Referring to (4.4), we have

(4.34) �r
dw1
dr
D A0w2 and �r

dw2
dr
D A0r

2w1; 0 < r < �;

while wj .r/ D wj .�/ for r � � and j D 1; 2. Eliminating w2 from (4.34) gives

(4.35)
�
r

d
dr

�2
w1 D

�
A0r

�

�2
w1; 0 < r < �:

With A0r=� D Z, this equation becomes

(4.36)
�
Z

d
dZ

�2
w1 D Z

2w1; 0 < Z <
A0�

�
:
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Thusw1 is a solution of the modified Bessel equation of order � D 0 [29, chap. 10].
The general solution therefore is w1 D c1I0.Z/ C c2K0.Z/. In order that w1
be bounded at the origin r D 0, it is necessary to choose c2 D 0, and then we
may (without loss of generality, since only the ratio w2=w1 is important for the
calculation of R�0.0/) take c1 D 1. Thus we have w1.r/ D I0.A0r=�/, and then
from the first equation in (4.34) we get

(4.37)
w1.r/ D I0.A0r=�/ and w2.r/ D

�r

A0

dw1
dr
D rI 00.A0r=�/;

0 � r � �:

Then since wj .r/ is independent of r for r > �, we obtain from (4.6) the exact
formula for the reflection coefficient at k D 0:

(4.38) R�0.0/ D 2
w2.�/

w1.�/
D 2�

I 00.A0�=�/

I0.A0�=�/
:

According to [29, eqns. 10.40.1 and 10.40.3] (noting that in the notation of that
reference a0.0/ D b0.0/ D 1), we have I 00.Z/=I0.Z/ ! 1 as Z ! C1, so it
follows that

(4.39) R�0.0/ D 2�C o.1/; � # 0;

which agrees with the formal asymptotic result (4.14) being as rMatch.�/ D � by
definition in the compact support case.

5 Numerical Approaches
In this section we discuss various numerical approaches to the problems appear-

ing in the semiclassical limit of the defocusing DS-II equation: the solution of the
eikonal problem (1.30)–(1.31), the computation of the leading-order normalization
function ˛0 appearing in (2.13), and the solution of the full �-dependent direct
scattering problem (1.12)–(1.13). For the latter we just give a brief review of the
approach for Schwartz-class potentials in [18].

Remark. In this section and the next the notation for Fourier transforms differs
slightly from that defined in (3.6). Namely, here the Fourier and inverse Fourier
transform operators denoted below as F and F�1, respectively, are scaled by
positive constants to be unitary on L2.R2/.

For the ease of representation we concentrate on the case S � 0. Note, however,
that it is straightforward to include a phase function S bounded at infinity in the
approaches discussed below. With S � 0, the relation g D f � k´ (cf. (3.1))
defines a function vanishing at j´j D 1, which is numerically convenient. Using
polar coordinates, we thus obtain from (1.30) with S � 0 the following partial
differential equation for g:

(5.1) g2r C
1

r2
g2� C 2kei�

�
gr C

i
r
g�

�
D A2:
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This equation will be solved in the whole complex plane with a Fourier spectral
method in � and a multidomain spectral method in r . The ensuing system of
nonlinear equations will be solved iteratively with both a fixed-point method and a
Newton iteration. The case of a radially symmetric potentialA is solved in addition
with a series approach similar to Section 3.3.

This section is organized as follows: in Section 5.1 we collect some facts about
the spectral methods to be used in the following. In Section 5.2 we present two
iterative numerical approaches for the eikonal equation and an additional numer-
ical approach based on Fourier series and adapted to radial potentials A D A.r/,
and test them against the exact solution obtained in Section 3.3.4 for the case of
the Lorentzian profile A.x; y/ D .1 C x2 C y2/�1. In Section 5.3, a numerical
approach for computing the leading-order normalization function ˛0 for a given f
is presented and again checked against the corresponding exact solution for the
Lorentzian profile. In Section 5.4 we briefly summarize the approach of [18] for
the problem (1.12)–(1.13) with a Schwartz-class potential.

5.1 Spectral Methods
To compute the derivatives in (5.1), we use two different spectral techniques

since spectral methods are known for their excellent approximation properties for
smooth functions. In the situation that the eikonal equation is uniformly globally
elliptic and the solution is regular, this should lead to a very efficient approach.

Since g.r; �/ is periodic in �, a Fourier spectral method is natural in this context.
We write g.r; �/ D

P
n2Z an.r/e

in� and approximate the Fourier series via a
discrete Fourier transform (see, for instance, [38] and references therein), i.e., for
even N

(5.2) g.r; �/ �

N=2X
nD�N=2C1

an.r/ein� ; g�.r; �/ �

N=2X
nD�N=2C1

inan.r/ein�
I

and hence the derivative of g.r; �/ with respect to � is approximated via the de-
rivative of the sum approximating g.r; �/. Note that the Nyquist mode aN=2.r/
has to be put equal to 0 in the approximation of g� ; see [38]. The discrete Fourier
transform is computed efficiently via a fast Fourier transform (FFT). The numeri-
cal error in approximating the Fourier series with a truncated sum is of the order of
the first neglected Fourier coefficient. Thus it decreases exponentially with N for
analytic functions, indicating the spectral convergence of the method.

In order to obtain a spectral approach also in r , we consider two domains,
I: r 2 Œ0; 1� and II: s D 1=r 2 Œ0; 1�, similar to [5] and references therein. In
the coordinate s, equation (5.1) reads

(5.3) s4g2s C s
2g2� C 2kei�.�s2gs C isg�/ D A2:

It is assumed that A vanishes as s ! 0 at least as fast as s. Thus we can solve
(5.3) after division by s2. Note that equation (5.3) is singular for s D 0, whereas
equation (5.1) is singular for r D 0.
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In both domains I and II we approximate the functions an.r/ (respectively an.s/;
in an abuse of notation, we use the same symbol in both cases), n D �N=2 C
1; : : : ; N=2 via a sum of Chebyshev polynomials. We only outline the approach
for domain I, it is completely analogous for domain II. The idea of a Chebyshev
collocation method is to introduce the collocation points lj D cos.�j=Nc/, j D
0; 1; : : : ; Nc , and to approximate a function F.l/, l 2 Œ�1; 1�, via the sum

(5.4) F.l/ �

NcX
mD0

bmTm.l/;

where Tm.l/ D cos.m arccos.l// are the Chebyshev polynomials [29, §18.3]. The
spectral coefficients bm,m D 0; : : : ; Nc , are determined by the relations following
from imposing (5.4) as an equality at the collocation points,

(5.5) F.lj / D

NcX
mD0

bmTm.lj /; j D 0; : : : ; Nc :

They can be determined conveniently via a fast cosine transform (FCT), which
can be computed via the FFT; see [38]. The numerical error in approximating
a function via a truncated Chebyshev series is as in the case of discrete Fourier
series: it decreases exponentially withNc for analytic functions, making this again
a spectral method.

It is well-known that the derivative of a Chebyshev polynomial can be expressed
itself in terms of Chebyshev polynomials. The basis for this is the identity

(5.6)
T 0mC1.l/

mC 1
�
T 0m�1.l/

m � 1
D 2Tm.l/; m D 2; 3; : : : ;

and T 01.l/ D T0.l/, T 00.l/ D 0. The action of a derivative on a Chebyshev sum
(5.4) can thus be expressed in terms of the action of a differentiation matrix D on
the vector of spectral coefficients bm, m D 0; : : : ; Nc .

In a similar way the multiplication of a function with l can be expressed in terms
of the action of a matrix on the vector of spectral coefficients. The approach (see,
for instance, [5,15]) is based on the well-known recurrence formula for Chebyshev
polynomials,

(5.7) TmC1.l/C Tm�1.l/ D 2lTm.l/; n D 1; 2; : : : :

This identity allows multiplication and division in coefficient space by l ˙ 1. We
define for given Chebyshev coefficients bm coefficients zbm via

P1
mD0
zbmTm.l/ WDP1

mD0.l ˙ 1/bmTm.l/.
We put r D .1 C l/=2 in domain I. The coefficients an.r/, n D �N=2 C

1; : : : ; N=2; are thus approximated via the sum an �
PNc
mD0 anmTm.l/. The

action of the derivative with respect to r is therefore approximated by the action
of a matrix D following from (5.6) on the spectral coefficients, and similarly the
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action of division by r becomes the action of a matrix R following from (5.7) on
the coefficients. Thus we approximate the derivatives via

(5.8) gr ˙
i
r
g� �

N=2X
nD�N=2C1

NcX
mD0

0@ NcX
jD0

.Dmj � nRmj /anj

1A:
The same technique is used in domain II with s D .1 C l/=2. The solutions

obtained in domain I and II have to be matched for r D s D 1 to be continuous. As
in [5], this is done with Lanczos’ tau method [21]: one of the equations for each n
following from using the discretization (5.8) in (5.1) is replaced by the condition
that an.r D 1/ D an.s D 1/, n D �N=2 C 1; : : : ; N=2. More concretely, we
replace for n < 0 the equations corresponding to m D Nc in domain I, and for
n > 0 the equations corresponding to m D Nc in domain II. In addition, the
Nyquist mode is put equal to 0.

5.2 Numerical Approaches for the Eikonal Problem
We now discuss two different numerical approaches for the eikonal problem

(1.30)–(1.31), each of which produces an approximation to the function g D f �

k´ that solves (5.1) and satisfies g! 0 as j´j ! 1.

5.2.1 Iterative Methods for the Discretized Eikonal Equation
The spectral discretization described in Section 5.1 leads to an approximation of

(5.1) in terms of a .2Nc C 2/N -dimensional nonlinear system of equations. This
system will be solved iteratively.

A first approach is based on a fixed-point iteration. We write for jkj > 1
2

the
system corresponding to (5.1) in the form

(5.9)
NcX
jD0

.Dmj � nRmj /anj D G.fanmg/;

where

G.fanmg/ WD
1

2k
F

 
A2 �

N=2X
nD�N=2C1

NcX
mD0

 
NcX
jD0

.Dmj C nRmj /anj

!

�

N=2X
nD�N=2C1

NcX
mD0

 
NcX
jD0

.Dmj � nRmj /anj

!!
;

(5.10)

where F denotes the combined action of the FFT and the FCT on the angular and
radial variables, respectively. Since both FFT and FCT are fast, it is convenient
when possible to switch between physical space and the space of spectral coeffi-
cients in order to compute products instead of convolutions in coefficient space.
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We first solve (5.9) by expressing it in the form of a fixed-point iteration:
NcX
jD0

.Dmj � nRmj /a
KC1
nj D G

�˚
aKnm

	�
:

Here we choose as the initial iterate the solution of the x@-problem,
NcX
jD0

.Dmj � nRmj /a
0
nj D F Œe�i�A2=.2k/�:

Numerical resolution in each domain is controlled via the decrease of the spectral
coefficients with N and Nc . As discussed for the examples below, numerical reso-
lution is ideal if the coefficients decrease to the order of machine precision both in
the Fourier and Chebyshev dependence. If jkj is large enough, the fixed-point iter-
ation converges linearly, i.e., kaKC1nm � aKnmk1 D O.K

�1/, as might be expected.
Alternatively, we can use a Newton iteration. To this end we write the equation

following from (5.1) after the spectral discretization described in Section 5.1 in the
form F.fanmg/ D 0 and solve it with a standard Newton iteration:

(5.11) aKC1nm D aKnm � Jac
�
F
�˚
aKnm

	���1
F
�˚
aKnm

	�
:

Here the tau method is applied in the inversion of the Jacobian, the action of which
is computed as a convolution in the space of coefficients. Using again the solution
of the x@-problem

PNc
jD0.Dmj � nRmj /a

0
nj D F Œe�i�A2=.2k/� for jkj > 1

2
as the

initial iterate, we observe the expected quadratic convergence typical for Newton’s
method, i.e., kaKC1nm � aKnmk1 D O.K�2/. The disadvantage of the approach
is that the Jacobian is a .2Nc C 2/N � .2Nc C 2/N matrix, but the quadratic
convergence implies that the iteration takes roughly the same amount of time as
the fixed-point iteration to reach a residual of 10�10, which is generally where
iterations are stopped.

5.2.2 A Fourier Series Method for the Radially Symmetric Case
In the radially symmetric case A D A.r/, we can proceed as in Section 3.3 and

solve for a series in ei� : writing4

(5.12) g.r; �/ D

1X
nD0

cn.r/

.2k/2nC1
e�i.2nC1/� ;

where cn D cn.r/, we find from (5.1) that

(5.13) c00 C
1

r
c0 D A.r/

2;

4 The fact that only negative odd harmonics appear in (5.12) is a consequence of the form of the
coefficients fn in the series approach for radial potentials with S.x; y/ � 0 described in Section 3.3.
Comparing with (3.35) for ı D 1

4 and (3.55), we see that in the notation of Section 3.3, cn.r/ D
GnC1.r

2/=Œ2.2nC 1/r2nC1�.



1526 O. ASSAINOVA ET AL.

and for n > 0,

(5.14) c0nC
2nC 1

r
cn D

n�1X
jD0

�
1 �

2j C 1

r

��
1C

2.n � j � 1/C 1

r

�
cj cn�j�1;

where the prime denotes differentiation with respect to r , and it is required that
cn.r/ ! 0 as r ! 1 for all n � 0. Equations (5.13) and (5.14) are solved
again with the Chebyshev collocation method described above. As noted in Sec-
tion 3.3.2, the series (5.12) is a power series in odd negative powers of k and hence
for given .x; y/ 2 R2 will converge if jkj is large enough. For smaller jkj, it can
only converge if the cn decrease rapidly enough as n ! 1. In applications only
convergent cases are interesting where the series can be effectively truncated for
some n D N� . In this case a coupled system of N� ordinary differential equa-
tions of the form (5.13) and (5.14) has to be solved with zero initial conditions at
r D 1. On the other hand, the numerical computation of the L1.RC/-norms
of cn.�/ and their analysis for increasing n allows one to make a good prediction
of the critical radius jkj, above which there exists a global smooth solution of the
eikonal problem, and below which the latter solution necessarily develops singu-
larities analogous to turning points in the one-dimensional problem.

5.2.3 Comparison with the Exact Solution for the Lorentzian Profile
Note that the numerical approaches for the eikonal equation presented above are

essentially independent and can thus be used as mutual tests. To illustrate how
the codes work in practice and to establish which accuracies can be expected, we
test them for the example of the exact solution (1.36) for a Lorentzian amplitude
A.x; y/ D .1Cx2Cy2/�1. To compare with the numerics, we get g.x; yI k/ from
(1.36) simply by omitting the term k´ on the right-hand side. Since W is invariant
under ´ 7! 1=x́, the exact solution g is symmetric with respect to reflection through
the unit circle in the ´-plane. As described in Section 3.3.4, g is smooth provided
jkj > 1

2
. We first plot the exact solution for k D 1 in Figure 5.1.

For the iterative solution of this problem, we useNc D 32Chebyshev polynomi-
als and N D 50 Fourier modes. It can be seen in the left-hand panel of Figure 5.2
that the coefficients anm decrease exponentially in .n;m/ and that they reach ma-
chine precision well before the boundary of the spectral domain. This indicates that
the solution is numerically resolved. The fixed-point iteration is stopped for this
case when the difference between consecutive iterates is less than a given thresh-
old, kaKC1nm � aKnmk1 < 10�10. This is achieved in this example in 10 iterations
of the fixed-point method. The difference between the numerical result and the
exact solution is shown in the right-hand panel of Figure 5.2. It can be seen that
the numerical error is largest near the origin and that it is of the order of 10�11.
Note that this error is not affected if the iteration is stopped at a smaller threshold;
it is due to the large condition numbers of the differentiation matrices which are for
Chebyshev differentiation of the order N 2

c ; see, e.g., the discussion in [38]. Thus
the maximally achievable accuracy is of the order 10�11 with this approach for
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FIGURE 5.1. The exact solution g.x; yI k/ D f .x; yI k/ � k´ for the
Lorentzian potential A.x; y/ D .1 C x2 C y2/�1 and S.x; y/ � 0 for
k D 1. Left: Re.g.x; yI 1//; right: Im.g.x; yI 1//. By exact reflection
symmetry through the unit circle, we only plot the solution for r � 1.
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FIGURE 5.2. Chebyshev and Fourier coefficients of the fixed-point ap-
proximation of the solution in Figure 5.1 plotted over the .n;m/-grid on
the left, and the difference of the numerical solution and the exact solu-
tion on the right. In the left-hand panel, the origin of the spectral domain
is the corner of the plot where janmj is largest.

this example. If the problem required a higher numerical resolution (a larger Nc),
the maximally achievable accuracy would be slightly lower. This problem can be
addressed by introducing more than two domains in the r-variable, but this will not
be needed for the examples studied here.

Note that the fixed-point code finds the symmetry of the solution with respect to
r ! 1=r with the same accuracy; i.e., the same difference between the numerical
and the exact solution will be found for r > 1. Therefore we do not show the
solution for r > 1 in this case though it is obtained with a precision of the order of
10�11 in the whole complex plane.
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for the case of the Lorentzian amplitude A.x; y/ D .1 C x2 C y2/�1

with S.x; y/ � 0 and the numerical solution constructed with the series
approach described in Section 5.2.2 for k D 1. Right: the L1 norm of
the coefficients cn.�/ in a log-log plot in blue (for reference, the red line
has slope �5=2).

The Newton iteration converges in this case after three iterations to the same
precision. In practice, it takes longer than the fixed-point iteration since the com-
putation of the convolutions and the inversion of the Jacobian are computationally
expensive. Krylov subspace techniques might be helpful in this context but have
not been explored so far.

As the Lorentzian A.x; y/ D .1Cx2Cy2/�1 is radially symmetric, the numer-
ical series approach described in Section 5.2.2 also applies, and we use the same
discretization resolution parameters as in the iterative approaches, namelyNc D 32
and N D 50 (recall that only odd powers of e�i� appear in this approach). The
difference between numerical and exact solutions in this case is of the order of
10�14, mainly near the origin as can be seen in the left-hand panel of Figure 5.3.
The reason for a smaller error in this case is that only ordinary differential equa-
tions have to be solved, as the effect of the Fourier discretization of � is essentially
decoupled. Since there is no iteration, this method is also the fastest of the three
discussed here. The L1 norm of the functions cn decreases as n�5=2 as expected
by the formulae (3.66) and (3.67) (also noting that j´j=.1C j´j2/ � 1

2
). Note that

the finite precision employed delimits the number of coefficients cn, which can be
used in practice.

The series approach also makes clear which problems are to be expected for
smaller k. As k decreases toward the critical value of 1

2
, more and more terms in

the series (5.12) will be needed to obtain the same accuracy, and for even smaller
values of k the series fails to converge (the continuation of the exact solution,
however, will be bounded with jump discontinuities along some branch cuts, as
shown in Figure 1.3). For k D 0:6, we thus need a considerably higher resolution
in �, as can be seen in Figure 5.4 where we use Nc D 40 and N D 140. The
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decrease of the Fourier modes is visibly much slower than before. The fixed-point
iteration converges after 22 iterations, and the difference to the exact solution is
of the order of 10�10 (this time it is largest near the rim of the disk). The Newton
iteration converges in just four iterations, but becomes too slow at these parameters
in comparison to the fixed-point iteration. Using the same parameters for the series
approach based on (5.12), we get as before a difference of the order of 10�14

between the numerical and exact solutions.

Remark. Since the equations (5.10) and (5.11) are nonlinear, aliasing errors (see,
e.g., [38]) can play a role in this context due to the use of truncated series in the
computation of products. To address this we use a filtering in coefficient space: if
the iteration is stopped at a given level tol (typically 10�10), all spectral coeffi-
cients with janmj < tol are put equal to 0.

Summing up, for radially symmetric potentials A, the series approach described
in Section 5.2.2 is the most efficient of the ones presented here. If sufficient numer-
ical resolution is provided, which can be controlled via the decrease of the cn.r/
in n and of their Chebyshev coefficients, an accuracy of the order of 10�14 can be
reached. We note that for potentials without radial symmetry, the series method is
inapplicable but the fixed-point iteration method remains as an efficient option.

5.3 Numerical Computation of the Leading-Order
Normalization Function ˛0

Once the eikonal problem is solved for f .x; yI k/, the corresponding function
˛0 has to be determined in order to complete the construction of the leading term
in the WKB expansion of the solution of the direct scattering problem. In the case
S � 0, ˛0 is the solution of the linear equation (3.73) that satisfies ˛0 ! 1 as
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j´j ! 1. In polar coordinates, this equation reads

2

�
.e�i�gr C k/˛0r C

1

r

�
e�i� g�

r
C ik

�
˛0�

�
C

��
grr C

1

r
gr C

1

r2
g��

�
C

�
gr C

i
r
g�

��
.lnA/r �

i
r
.lnA/�

��
e�i�˛0 D 0:

(5.15)

This equation is treated numerically in a similar way as was the eikonal problem
in Section 5.2, which allows the use of the same numerical grid. The derivatives of
both the potential A and the function g are computed as described in Section 5.1
with spectral methods in the two radial domains that meet at the unit circle.

Remark. The derivatives of the solution f in (5.15) contain divisions by r . As can
be checked for the exact solution (1.36) in the case of the Lorentzian potential A,
the terms divided by r appearing in the action of the Laplacian on f do not all
vanish for r D 0. This implies that analytically unbounded terms cancel, which
is numerically challenging even for a spectral method to resolve. Thus a loss in
accuracy near r D 0 is to be expected in the computation of ˛0 via (5.15).

The numerical solution of (5.15) with ˛0 ! 1 as j´j ! 1 in the caseA.x; y/ D
1=.1Cx2Cy2/ and S � 0 is shown for r < 1 in the left-hand panel of Figure 5.5
(note that the corresponding exact solution (1.37) is symmetric under the reflection
mapping r 7! 1=r). The right-hand panel of the same figure shows a plot of the
corresponding spectral coefficients. It can be seen that the solution is well-resolved
for Nr D N� D 64. The divisions by r in the expressions in (5.15) lead, however,
to a saturation level for the coefficients of the order of 10�10. Loosely speaking,
this is the level of the numerical error.
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The expected accuracy is thus of the order of 10�10, and that this is indeed the
case can be seen in Figure 5.6, where the difference between the numerical and the
exact solution (1.37) is shown for r < 1 on the left and for r > 1 on the right. It
appears that the largest errors occur for r D 0. For other values of the radius, the
numerical error is of the order 10�11. This shows that the solution of (5.15) can be
obtained with high accuracy on the whole complex plane.

5.4 A Spectral Method for the �-Dependent Direct Scattering Problem
for Schwartz-Class Potentials

A spectral approach to solve the x@-problem for potentials in the Schwartz class
was developed by Klein and McLaughlin in [18]. We briefly summarize the ap-
proach here; the reader is referred to [18] for details.

The idea is to introduce the functions

(5.16) m˙.´I k/ D e�k´=�. 1.´I k/˙  2.´I k// � 1

satisfying the boundary conditions lim´!1m˙.´I k/ D 0. In these variables, the
system (1.12) becomes diagonal and takes the form

(5.17) x@m˙ D ˙
q

2�
e.k´�k´/=� � .m˙ C 1/:

We write both of these equations in the common form

(5.18) x@m D
Q

2�
e.k´�k´/=� � . xmC 1/

wherem D m˙ andQ D ˙q. Since under the Fourier transform F (cf. (3.6), here
scaled to be L2.R2/-unitary) we have F fx@mg D 1

2
i.�xC i�y/F fmg D 1

2
i�F fmg

for � D �x C i�y , the dual Fourier variable to ´ D x C iy, in the Fourier domain
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system (5.18) becomes

(5.19) S.�/ D �iF
�
Q

�
e.k´�k´/=� �F�1

�
1

�
S.�/

��
� iF

�
Q

�
e.k´�k´/=�

�
where S WD �F fmg D �2iF fx@mg.

In the numerical approach [18] the Fourier transforms in (5.19) are approxi-
mated by discrete Fourier transforms computed by a two-dimensional FFT. The
integrand in (5.19) is regularized in the form

(5.20) F�1
�
1

�
S.�/

�
D F�1

�
1

�
.S.�/ �G.�//

�
CF�1

�
1

�
G.�/

�
;

where G.�/ is chosen such that .S.�/ � G.�//=� is regular to machine precision
(as indicated by the fact that the Fourier coefficients decrease exponentially to the
order of the roundoff error), and also such that F�1fG.�/=�g can be computed
explicitly. A useful choice for G is

(5.21) G.�/ D e�j�j
2
MX
nD0

x@n
�
S.0/

nŠ
x� n; x@� WD

1

2

�
@

@�x
C i

@

@�y

�
;

since it cancels the most offending terms in S near the origin, while F�1fG.�/=�g
can be calculated with the help of the identity

(5.22) F�1

(
x� n

�
e�j�j

2

)
D i.2i/n

nŠ

´nC1

"
1 � e�j´j

2=4
nX
kD0

1

kŠ

�
j´j2

4

�k#
:

The factor e.k´�k´/=� appearing in (5.19) leads to a shift in Fourier space of
the Fourier transform of a function multiplied by it. Indeed, if we introduce the
shift operator Sk=� whose action on a function f of � is given by Sk=�f .�/ WD

f .� C 2ixk=�/, then (5.19) can be recast in the form

(5.23) S.�/ D Sk=� ıK0S.�/CSk=�F.�/;

where the operator K0 and forcing function F are independent of k:

(5.24) K0S.�/ WD �iF

(
Q

�
�F�1

�
1

�
S.�/

�)
and F.�/ WD �iF

�
Q

�

�
:

As discussed in detail in [18], for larger values of jkj=� the effect of the shift is that
the benefit of the regularization procedure (5.20) is diminished because it is effec-
tively removing a singularity that is not present at all since the shifted transform
is large near the boundary of the (spectral) computational domain but vanishes to
machine precision near the origin � D 0.
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To address this problem, equation (5.23) may be replaced by a system of equa-
tions for two functions, f and h:

h D K0f C F;

f D Sk=� ıK0 ıSk=�h:
(5.25)

It is a direct matter to check that if .f; h/ solves (5.25), then S D f C Sk=�h

solves (5.23). However, since it turns out that for large jkj=� both functions f and
h are small near the boundary of the spectral computational domain, the system
(5.25) is better suited to regularization via (5.20) than is (5.23) itself. Moreover, to
recover the reflection coefficient, the function f is not needed, and it can therefore
be explicitly eliminated from the first equation of (5.25) using the second equation,
leading to a closed equation for a single function h. See [18, sec. 5.2] for details.

Numerically this integral equation is solved by standard discretization amenable
to the two-dimensional FFT. The resulting system of algebraic equations is not
complex linear in h due to the complex conjugation present in the operator K0, but
rather real linear in its real and imaginary parts. This linear system is solved with
GMRES [32], a Krylov subspace approach that is especially useful in our setting
because it avoids the necessity of storage of the coefficient matrix. As discussed
in [18], the numerical error in the solution is of the order of the Fourier coefficients
of the largest values of � carried in the computation.

Recall that S D �2iF fx@mg, so that once S is found, x@m is available via the
(spectrally accurate) FFT. As discussed in [18], knowledge of x@m˙ is sufficient
to compute the reflection coefficient. In order to obtain m˙, as will be needed
to compare numerical solutions with the WKB approximations introduced in Sec-
tion 2, we invert x@ in the Fourier domain for S D f CSk=�h via division by � and
using again the regularization procedure (5.20) with a shift in the Fourier domain
for the second term in the expression for S for k ¤ 0. It is important to realize
that the quantities m˙ decrease only as 1=j´j for ´ ! 1 and are thus not them-
selves suitable for a Fourier spectral approach (the periodically continued functions
would not be differentiable at the computational boundary), but that the function
.S.�/ � G.�//=� is in the Schwartz class. For the latter term, Fourier spectral
methods on a sufficiently large computational domain are very efficient and show
spectral convergence, which is controlled as always by the decay of the modulus of
the Fourier coefficients at the boundaries of the computational domain in Fourier
space.

As an example of the result of a computation using this numerical approach, we
show the solutions to the Dirac system (1.12) with normalization (1.13) obtained
with a Gaussian potential A.x; y/ D e�.x

2Cy2/ and S.x; y/ � 0 for k D 0 and
� D 1 in Figure 5.7. The function  1 has minimal modulus at the origin and tends
to 1 at infinity, whereas the function  2 vanishes at the origin and decreases slowly
to 0 as ´!1.
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FIGURE 5.7. Numerical solution to the Dirac system (1.12)–(1.13) with
a Gaussian potential for k D 0 and � D 1. Left: modulus of  1; right:
modulus of  2.

6 Numerical Examples
In this section we test the conjectures formulated in the previous sections for

several examples with and without radial symmetry. We first address the case of
a Gaussian potential for various values of � and compare the solution to the Dirac
system (1.12) for sufficiently large k to the leading-order semiclassical solution
built from the solution to the eikonal problem. A similar study is presented for a
non-radially-symmetric potential in the Schwartz class.

6.1 Gaussian Potential
As a first computational example outside the realm of potentials A.x; y/ for

which the eikonal problem (1.30)–(1.31) has a known solution, we consider here
the Gaussian

(6.1) A.x; y/ D A.r/ D e�r
2

as a canonical example of a smooth, rapidly decaying, and radially symmetric po-
tential. Since the reflection coefficient is a function of jkj only for radial potentials
such as (6.1), we will here restrict attention to real positive k.

First, we numerically solve the eikonal problem for this potential using the series
approach of Section 5.2.2 with discretization parameter Nr D 40 and 200 terms in
the series (5.12). The coefficients fcn.r/g as computed via (5.12) have L1.RC/
norms exhibiting algebraic decay as n ! 1 as suggested by Figure 6.1, where
a log-log plot of kcn.�/k1 is shown on the left. The essentially linear behavior
of the plot for larger values of n indicates algebraic (predominantly power-law)
decay as n!1. We can fit the norms fkcn.�/k1g with a least-squares method to
ln kcn.�/k1 � �˛n�ˇ lnn�
 and find ˛ D 10�4, ˇ D 1:0951, and 
 D 1:1122
for values of n > 20 (the results do not change much if the fitting is done for
n > 50).
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FIGURE 6.1. Left: a log-log plot of the L1.RC/ norms of the coef-
ficients fcn.r/g appearing in the series solution (5.12) of the eikonal
problem (1.30)–(1.31) for a Gaussian potential. Right: the quantity
� WD ln kcn.�/k1 � .�˛n � ˇ lnn � 
/ obtained after a linear least-
squares regression.

The results of the fitting can be seen in the right-hand panel of Figure 6.1 in
the form of the quantity � WD lnkcn.�/k1 � .�˛n � ˇ lnn � 
/. The fact that
˛ is essentially 0 while ˇ is finite is strong numerical evidence that the series
(5.12) converges for jkj > 1

2
and diverges for jkj < 1

2
. Of course, this threshold

value of jkj D 1
2

is the known exact value for the Lorentzian potential, but for
the Gaussian A.x; y/ D e�.x

2Cy2/ the best analytical estimate we have is, as
explained in Section 3.3.3, that the x@-derivative of (5.12) converges in W.R2/ if
jkj � 1. In general, there is obviously nothing special about the value jkj D 1

2
;

indeed, if fcn.r/g1nD0 are the coefficients for the potential A.r/, then from (5.13)–
(5.14) we see that fM 2nC2cn.r/g

1
nD0 are the coefficients for the rescaled potential

MA.r/ for any M > 0, and it follows that if jkj D 1
2

is the threshold value
for A.r/, then jkj D 1

2
M is the threshold value for MA.r/. The coincidence of

threshold values for the Gaussian and Lorentzian potentials is perhaps related to
the fact that for both potentials kA2k D 1 in W.R2/ as well as in L1.R2/, as
explained in Sections 3.3.3 and 3.3.4, respectively. In any case, since it is known
from the explictly solvable Lorentzian case that upon decreasing jkj through the
convergence threshold, singularities appear in the solution f .x; yI k/ of the eikonal
problem (1.30)–(1.31) at certain points in the .x; y/-plane, we may reasonably
conjecture that some kind of singularity formation for a critical value of jkj is a
generic feature at least for radial potentials.

To solve the Dirac system (1.12) with normalization (1.13) for the Gaussian
potential for various values of �, we use the approach of Section 5.4 with Nx D
Ny D 212 Fourier modes for .x; y/ 2 4Œ��; �� � 4Œ��; ��. The first row of
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FIGURE 6.2. Solution to the eikonal problem (1.30)–(1.31) for the
Gaussian potential with k D 1. Left: real part of g D f � k´; right:
imaginary part of g D f � k´.

Figure 1.2 shows plots of the modulus (scaled by e�k´=�) of the components of the
solution obtained for k D 1 and � D 1=16.

In order to compare solutions to the eikonal problem (1.30)–(1.31) for a given
potential as well as the corresponding leading-order normalization function ˛0 to
a solution to the �-dependent direct scattering problem (1.12)–(1.13), we have to
interpolate from the mixed Chebyshev-Fourier (polar coordinate) grid used for g
and ˛0 to the two-dimensional Fourier (Cartesian) grid used for the computation
of  1 and  2. There are efficient ways to do this. For simplicity we use here
simply the definition of the spectral approximations of g and ˛0. A function f is
approximated in each of the radial domains under consideration as

(6.2) f .r; �/ �

NrX
nD0

N=2X
mD�N=2C1

cnmTn.l/eim� :

Thus for given spectral coefficients cnm, the corresponding function can be com-
puted for arbitrary values of r and �. For the Gaussian potential, the solution to
the eikonal problem (1.30)–(1.31) can be seen after interpolation to a Cartesian
grid in Figure 6.2. The corresponding Cartesian interpolation of the leading-order
normalization function ˛0 can be seen in Figure 6.3.

With the numerical computations of f and ˛0 complete, we may construct the
leading term of the formal WKB approximation described in Section 2 for the so-
lution of the direct scattering problem (1.12)–(1.13). We are now in a position
to compare this approximation with numerically computed solutions to the direct
scattering problem obtained as described in Section 5.4. To quantify the compari-
son, we use (1.35) for S.x; y/ � 0 to define the quantities

(6.3) �1 WD
ˇ̌̌
 1e�f=� �

˛0

k
@f
ˇ̌̌
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FIGURE 6.3. Leading-order normalization function ˛0 for the Gaussian
potential with k D 1. Left: real part; right: imaginary part.

and

(6.4) �2 WD

ˇ̌̌̌
 2e�f=� �

˛0A

2k

ˇ̌̌̌
:

Conjecture 1.3 asserts that both of these quantities should be proportional to � as
� # 0. For the Gaussian potential at k D 1 we plot �1 and �2 for four values of �
in Figures 6.4 and 6.5, respectively.

The expected scaling in � can indeed be seen from these plots, but it is even
more obvious from the results of a linear regression to determine the best fit to
the logarithms of the L1 norms of �1 and �2 as functions of ln.�/ as is shown in
Figure 6.6. The data for the regression is calculated for the values � D 20; 2�1; : : : ;
2�5, although we should keep in mind that for the larger values of �, accuracy of
the WKB approximation might not be expected. On the serial computers we used
for our numerical simulations, we cannot go much lower than � D 0:04 for lack
of resolution. The precise results of the linear regression are as follows. In the
left panel of Figure 6.6, it can be seen that log10 k�1k1 � ˛ log10 � C ˇ with
˛ D 0:99 and ˇ D �1:24. In the same way we get for �2 the values ˛ D 0:99

and ˇ D �0:46 as can be seen in the right panel of Figure 6.6. Thus in both cases
the expected linear dependence in � predicted by Conjecture 1.3 is numerically
confirmed.

To show that the good agreement between numerics and conjecture is not due
to a special choice of the spectral parameter k, we make similar plots as shown
in Figure 6.6 for two more values of k. The upper and lower rows of Figure 6.7
correspond to k D 0:75 and k D 1:25, respectively. (Note that the solution of the
eikonal problem is expected to become singular for sufficiently small k.) For � as
large as � D 1, �1 might not be expected to be small; nonetheless, the regression
line taking the corresponding data into account has the slope 0:97. For�2 the slope
of the regression line is 0:99. For k D 1:25 we find that the slope of the line for�1
is 0:88, and for �2 it is 1:03. Thus in all cases the results are compatible with the
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FIGURE 6.4. The quantity �1 of (6.3) for the Gaussian potential with
k D 1 for � D 1

2
(upper left), 1

4
(upper right), 1

8
(lower left), 1

16
(lower

right).

expected O.�/ scaling. The slopes (exponents) obtained from regression would be
expected to be even closer to 1 if numerical simulations for smaller values of � were
performed; however, such experiments are out of reach for the serial computer we
used for our simulations.

Remark. A comparison between the WKB approximation and the numerical so-
lution of the direct scattering problem can be made only if the eikonal problem
has a global solution, hence allowing the construction of the WKB approximation
globally in the .x; y/-plane. According to Theorem 1.1, this is guaranteed for jkj
sufficiently large. The lower bound on jkj sufficient to guarantee a global solu-
tion is given in (1.32). In Section 3.1 it is shown that for phase-free potentials
(S.x; y/ � 0) the lower bound (1.32) can be optimized by choice of the constant
B to jkj >

p
kA2kW, and in Section 3.3.3 the lower bound is calculated for the

Gaussian potential to be jkj > 1. However, even the optimized lower bound is
only a sufficient condition for the global solvability of the eikonal problem (1.30)–
(1.31). Since the hypotheses of Conjecture 1.3 only refer to the existence of a
global solution of (1.30)–(1.31), we chose in our study to deal with values of k for
which the eikonal problem can be solved numerically (which as pointed out above
appears to be possible for jkj larger than 1

2
), even if those values lie on or within
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FIGURE 6.5. The quantity �2 of (6.4) for the Gaussian potential with
k D 1 for � D 1
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(upper left), 1

4
(upper right), 1

8
(lower left), 1
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(lower

right).
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FIGURE 6.6. Dependence of k�1k1 (left panel) and k�2k1 (right
panel) on � for k D 1, together with the result of linear least-squares
regression for the logarithms.

the optimal radius jkj D 1 for Theorem 1.1 to make a theoretical prediction about
the eikonal problem.
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FIGURE 6.7. Dependence of k�1k1 (left column) and k�2k1 (right
column) on �, together with the results of linear least-squares regression
for the logarithms; upper row for k D 0:75, lower row for k D 1:25.

6.2 Potential without Radial Symmetry
Next we consider the numerical solution of the eikonal problem (1.30)–(1.31)

and coincident construction of the leading-order WKB approximation together
with the numerical solution of the �-dependent direct scattering problem (1.12)–
(1.13) in the case of a phase-free potential (S � 0) and an amplitude A.x; y/ in
the class of rapidly decaying smooth functions, but now without radial symmetry
even asymptotically for large j´j. Concretely, we consider the potential

(6.5) A.x; y/ D e�.x
2C5y2C3xy/:

To solve the Dirac system (1.12)–(1.13) for the potential (6.5) for various values
of �, we once more use the approach of Section 5.4 with Nx D Ny D 212 Fourier
modes for .x; y/ 2 4Œ��; �� � 4Œ��; ��. The modulus of the solutions obtained
for k D 1 and � D 1

32
can be seen in Figure 6.8.

Since the potential (6.5) is not radially symmetric, the numerical, series-based
approach described in Section 5.2.2 does not apply, so we must use instead an iter-
ative approach to the eikonal problem as described in Section 5.2.1, and it turns out
that we will also need higher resolution in � than for radially symmetric potentials
to effectively solve for g D f � k´. We use Nr D 64 Chebyshev polynomials
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FIGURE 6.8. Numerical solutions to the Dirac system (1.12)–(1.13)
with potential (6.5) for k D 1 and � D 1

32
. Left: the modulus of

e�k´=� 1; right: the modulus of e�k´=� 2.

FIGURE 6.9. Numerical solution g D f � k´ to the eikonal problem
(1.30)–(1.31) with k D 1 for the potential (6.5) with S � 0. Left: real
part; right: imaginary part.

and N� D 128 Fourier modes for the case k D 1. The real and imaginary part of
the function g.x; yI k/ D f .x; yI k/�k´ are plotted in the left and right panels of
Figure 6.9, respectively. The corresponding spectral coefficients r � 1 and r � 1
are shown in Figure 6.10, indicating that the solution is well-resolved.

Next, we solve for the leading-order normalization function ˛0.x; yI k/ also for
k D 1 as described in Section 5.3. The real and imaginary parts of the numerically
computed ˛0.x; yI 1/ can be seen in Figure 6.11.

Given f and ˛0, we may again compare the numerical solution to the Dirac
system (1.12)–(1.13) to the leading term of the formal WKB approximation de-
scribed in Section 2. For the potential (6.5) at k D 1, we plot �1 and �2 defined
by (6.3)–(6.4) for four values of � in Figures 6.12 and 6.13, respectively.

It is clear that the numerical treatment of potentials lacking radial symmetry is
considerably more challenging than for radially symmetric potentials such as the



1542 O. ASSAINOVA ET AL.

120
-15

10060

-10

80

lo
g 1

0|a
nm
|

40 60

-5

4020

0

20

120
-15

10060

-10

80

lo
g 1

0|a
nm
|

40 60

-5

4020

0

20

FIGURE 6.10. Chebyshev and Fourier spectral coefficients plotted over
the .n;m/-grid for the solution shown in Figure 6.9. Left: the coeffi-
cients for r � 1; right: the coefficients for r � 1.

FIGURE 6.11. The numerically computed leading-order normalization
function ˛0 for the potential (6.5) without radial symmetry at k D 1.
Left: real part, right: imaginary part.

Gaussian considered in Section 6.1. Thus the numerical errors for small values of �
are larger, and we would need access to parallel computers in order to get the same
accuracy as in the Gaussian case for a given small �. Nonetheless, we computed the
quantities�1 and�2 of (6.3) and (6.4), respectively, for the same values of � as in
the Gaussian case. In Figure 6.14 we plot the L1.R2/-norms of these quantities
for the potential (6.5) for various values of � and compare the data in a log-log plot
with lines of slope 1, which would correspond to the O.�/ relative error predicted
by Conjecture 1.3. Obviously the somewhat surprisingly good agreement for val-
ues of � � 1 observed in the Gaussian case is not present here, and for small values
of � the above-mentioned resolution problems in the solution of the Dirac system
(1.12)–(1.13) are visible. Nonetheless, compatibility with the conjectured scaling
proportional to � can be recognized. Thus, our numerical computations also con-
firm Conjecture 1.3 for certain potentials outside the class of radially symmetric
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FIGURE 6.12. The quantity �1 of (6.3) for the potential (6.5) with k D
1 for � D 1
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16
(lower right).

functions. We leave the numerical study of potentials A.x; y/eiS.x;y/=� for which
S.x; y/ 6� 0 and the investigation of Conjecture 1.3 in such cases for the future.
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FIGURE 6.13. The quantity �2 of (6.4) for the potential (6.5) with k D
1 for � D 1
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